18 Appendix: Some matrix algebra

18.1 Definition of matrix

A matrix A is an n—rows m—columns array of elements the elements are indicated by
a;,; where the first index stands for row and the second for column. n and m are called
the row and colum dimensions (sometimes shortened in “the dimensions”) or sizes of
the matrix A. Sometimes we write: A is a nxm matrix.

Sometimes a matrix is indicated as A = {a;;}.

When n = m we say the matrix is square.

When the matrix is square and a;; = aj we say the matrix is symmetric.

When a matrix is made of just one row or one colum it is called a row (column)
vector.

18.2 Matrix operations
1. Transpose: A" = {a;;}. A” = A. If A is symmetric then A’ = A.

2. Matrix sum. The sum of two matrices C' = A + B is defined if and only if
the dimensions of the two matrices are identical. In this case C' has the same
dimensions as A and B and ¢;; = a;;+b;j. Clearly A+ B = B+Aand (A+B) =
A+ B

3. Matrix product. The product C' = AB of two matrices nzm and qzk is defined
if and only if m = ¢. If this is the case C' is a nxk matrix and ¢;; = >, ayby;. In
the matrix case it may well be that AB is defined but BA not. An important
property is C' = B’ A’ or, that is the same, (AB)" = B’A’. Provided the products
and sums involved in what follows are defined we have (A + B)C' = AC + BC.

18.3 Rank of a matrix

A row vector x is said to be linearly dependent from the row vectors of a matrix A if
it is possible to find a row vector z such that x = zA. The same for a column vector.
The number of linearly independent vectors

r(A) (or rank(A)) the rank or a matrix A is defined as the number of linearly
independent rows or (the number is the same) the number of linearly independent
columns of A.

A square matrix of size n is called non singular if r(A) = n.

If B is any n x k matrix, then r(AB) < min(r(A),r(B)).

If B is an n x k matrix of rank n, then r(AB) = r(A).

If C'is an | x m matrix of rank m, then r(C'A) = r(A).
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18.4 Some special matrix

1. A square matrix A with elements a;; = 0,7 # j is called a diagonal matrix.

2. A diagonal matrix with the diagonal of ones is called identity and indicated with
I. JA = A and Al = A (if the product is defined).

3. A matrix which solves the equation AA = A is called idempotent.

18.5 Determinants and Inverse

There are several alternative definitions for the determinant of a square matrix.

The Leibniz formula for the determinant of an n x n matrix A is det(A) = |A| =
ZUGSn SgTL(O') H?:l Ai,ffi‘

Here the sum is computed over all permutations o of the set 1,2,...,n. sgn(o)
denotes the signature of o; it is +1 for even ¢ and —1 for odd ¢. Evenness or oddness
can be defined as follows: the permutation is even (odd) if the new sequence can be
obtained by an even number (odd, respectively) of switches of numbers.

The inverse of a square matrix A is the solution A~! (or inv(A)) to the equations
ATTA=T=AA"L.

If A is invertible then (A")~! = (A~1Y

The inverse of a square matrix A exists if and only if the matrix is non singular
that is if the size and the rank of A are the same.

A square matrix is non singular if and only if it has non null determinant.

det(A™') =1/det(A)

If the products and inversions in the following formula are defined then (AB)™! =
B71A™L

Inversion has to do with the solution of linear non omogeneous systems.

Problem: find colum vector x such that Ax = b with A and b given.

If A is square and invertible then the unique solution is x = A~1b.

If Aisnxk withn > k but r(A) = k then the system Az = b has no exact solution,
however the system A’Ax = A’b has the solution x = (A’A)-1 A’b.

18.6 Quadratic forms

A quadratic form with coefficient matrix given by the symmetric matrix A and variables
vector given by the column vector z (with size of A equal to the number of rows of x)
is the scalar given by:

' Ar =30, ) aiain;.

A symmetric matrix A is called semi positive definite if and only if

' Az > 0 for all

It is called positive definite if and only if
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a2’ Az > 0 for all non null x

If a matrix A can be written as A = C'C' for any matrix C' ten A is surely at least
spd. In fact 2’ Ax = 2/C’'C'x but this is the product of the row vector 2'C” times itself,
hence a sum of squares and this cannot be negative. It is also possible to show that
any psd matrix can be written as C'C for some C.

18.7 Random Vectors and Matrices (see the following appendix
for more details)

A random vector, resp matrix, is simply a vector (matrix) whose elements are random
variables.

18.8 Functions of Random Vectors (or Matrices)

e A function of a random vector (matrix) is simply a vector (or scalar) function of
the components of the random vector (matrix).

e Simple examples are: the sum of the elements of the vector, the determinant of
a random matrix, sums or produts of matrices and vectors and so on.

e We shall be interested in functions of the vector (matrix) X of the kind: Y =
A+ BXC where A, B and C are non stochastic matrices of dimensions such that
the sum and the products in the formula are well defined.

e A quadratic form 2’ Az with a non stochastic coefficient matrix A and stochastic
vector x is and example of non linear, scalar function of a random vector.

18.9 Expected Values of Random Vectors

e These are simply the vectors (matrices) containing the expected values of each
clement in the random vector (matrix).

o E(X') = B(XY

e An important result which generalizes the linear property of the scalar version
of the operator E(.) for the general linear function defined above, is this F(A +
BX(C)=A+ BE(X)C.

18.10 Variance Covariance Matrix

e For random column vectors, and here we mean vectors only, we define the variance
covariance matrix of a column vector X as:

V(X) =V(X') = BE(XX') - BE(X)E(X") = E(X — E(X))(X — E(X)))
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e The Varcov matrix is symmetric, on the diagonal we have the variances (V' (X;) =
ag(i) of each element of the vector while in the upper and lower triangles we have
the covariances (Cov(X;; X;)).

e The most relevant property of this operator is:

V(A+ BX) = BV(X)B

e From this property we deduce that varcov matrices are always (semi) positive
definite as. In fact if A = V(2) x is a column vector of the same size as z, then
V(2'z) = 2/ Ax which cannot be negative for any possible x.

18.11 Correlation Coeflicient
e The correlation coefficient between two random variables is defined as:
Cov(X;; X;)

PXiX; =
O'XiO'Xj

The correlation matrix o(X)is simply the matrix of correlation coefficients or,
that is the same, the Varcov matrix of the vector of standardized Xj.

e The presence of a zero correlation between two random variables is defined, some-
times, linear independence or orthogonality. The reader should be careful using
these terms as they exist also in the setting of linear algebra but their mean-
ing, even if connected, is slightly different. Stochastic independence implies zero
correlation, the reverse proposition is not true.

18.12 Derivatives of linear functions and quadratic forms

Often we must compute derivatives of functions of the kind 2’ Ax (a quadratic form)
or 2/q (a linear combination of elements in the vector ¢ with weights z) with respect
to the vector =.

In both cases we are considering a (column) vector of derivatives of a scalar function
w.r.t. a (column) vector of variables (commonly called a 'gradient’). There is a useful
matrix notation for such derivatives which, in these two cases, is simply given by:

o0x' Ax

=2A
ox v
and
ox'q
or g



The proof of these two formulas is quite simple. In both cases we give a proof for
a generic element k of the derivative column vector.
For the linear combination we have

I/q = Z Z;q;
J

ox'q
8$k - (.Zk’
For the quadrati form
ox' Ax
=27'A
ox'
2 Axr = Z Z TT;a;
(2
GZ Zla:ia:jaij
‘ 3;k = Z xja/k’j"i_z Ti0; k2T Rag = ija;w-—i-z Tjag j+2Tpap, = 2Agx
Jj#k i#k J#k J#k

Where Aj; means the k — th row of A and we used the fact that A is a symmetric
matrix.

An important point to stress is that the derivative of a function with respect to a
vector always has the same dimension as the vector w.r.t. the derivative is taken, in
this case x, so, for instance

o0x' Ax
=2A
ox v
and not
o' Az ,
T 22" A

(remember that A is symmetric).

18.13 Minimization of a PD quadratic form, approximate so-
lution of overdetermined linear systems

Now Let us go back to the linear system Az = b with A an n x k£ matrix of rank k.

If n > k this system has no solution, however, let’s try to solv a similar problem. By

solving a system we wish for Az — b = 0 in our case this is not possible so let us try

anch change the problem to this min,(Az — b)'(Az —b). In words try to minimize the
sum of squared differences between Ax and b if you cannot make it equal to 0. we have

(Az —b)'(Az — b) = 2’ A’ Az + b'b — 20’ Ax
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Now let us take the derivative of this w.r.t. z

0
a—x'AA':E +0'b— 20 Ax = 2A" Ax — 2A"b
x
(remember the rule about the size of a derivatives vector). We now create a new
linear system equating these derivatives to 0.

A'Az = A'b

And the solution is
v =(A'A)TAD
This is the “least squares” approximate solution of a (overdetermined ) linear system.
(see the Appendix on least squares and Gauss Markov model).

18.14 Minimization of a PD quadratic form under constraints.
Simple applications to finance

Suppose we are given a column vector r where 7;is the random (linear) return for the
stock j.

Suppose we are holding these returns in a portfolio for one time period and that the
(known) relative amount of each stock in our portfolio is given by the column vector
w such that 1’w = 1 where 1 indicates a column vector of ones of the same size as w.

Then the random linear return of the portfolio over the same time period is given
by r, = w'r.

Since w is known we have E(w'r) = w'E(r) and V(w'r) = w'V(r)w.

The fact that, over one period of time, the expected linear return and the variance
of the linear return of a portfolio only depend on the expected values and the covariance
matrix of the single returns and the weight vector is what allows us to implement a
simple optimization theory. For the moment let us suppose that the problem is

min w'V(r)w
w:l’w=1

In this problem we want to minimize a quadratic form under a linear constraint.

It is to be noticed that, without the constraint, the problem would be solved by
w = 0 (no investment). The constraint does not allow for this.

Such problems can be solved with the Lagrange multiplier method.

The idea is to artificially express, in a single function, both the need of minimizing
the original function and the need to do this with respect to the constraint 1'w = 1.

In order to do this we define the Lagrangean of the problem given by

L(z,\) = w'V(r)w+ 2\(1'w — 1)
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In this function th value of the unconstrained objective function is summed with the
value of the constraint multiplied by a dummy parameter 2\.
We now take the derivatives of the Lagrangean w.r.t. w and .

ai( V(r)w 4 2A\(T'w — 1))

=2V (r )w—|—2)\1
8( Vryw+ 2 \(Tw —1)) =2

(1w — 1)
If we set both these to zero we get, supposing V' (r) invertible

V(r)w = A1
Tw=1

Notice the difference between thel-sIn the first equation 1 is a column vector which is
required because we cannot equate a vector to a scalar. The same for 1’ in the second
equation which while the r.h.s. is a scalar one (for dimension compatibility with the
Lh.s.). We do not stress this using, e.g., boldface for the vector 1 becouse the meaning
follows unanbiglusly from the context.

It is clear that the second equation is satisfied if and only if w satisfies the constraint.

What is the meaning of the first equation (or, better, set of equations)? The
unconstrained equation would have been

V(r)w =0

whose only solution (due to the fact that V(r)is invertible) would be w = 0. But this
solution does not satisfy the constraint. We still try to get V(r)w = 0 but we can’t,
due to the constraint. What we shall be able to get is V(r)w = Al. For some A chosen
in such a way that the constraint is satisfied.

To find this A, simply put together the result of the first set of equations: w =
AV (r)7'1 and the equation expressing the constraint: 1w = 1. Both equations are
satisfied if and only if

A=1/1V(r)™?

We now know A, that is we know of exactly how much we must violate the unconstrained
optimization condition (first set of equations) in order to satisfy the constraint (second
equation).
In the end, putting this value of \in the solution for the first set of equations, we
get
Vir)y 11
V()1
It is to be noticed that these are only necessary conditions but, for our purposes,
this is enough.
What we got is the one period "minimum variance portfolio” made of securities
whose returns covariance is V (r).

153



What is the variance of this portfolio?

1V (r)1 1

V(w/r) = w’V(T)U} = (1/‘/(7“)_11)2 = 1'V<T)_11

The expected value shall be

E(w'r)=wE(r) = —1‘1//(‘2;)1?1({)

18.15 The linear model in matrix notation

Suppose you have a matrix X of dimensions n x k containing n observations on each
of k variables. You also have a n x 1 vector y containing n observations on another
variable.

You would like to approximate y with a linear function of X that is: Xb for some
kx1 vector b.

In general, if n > k it shall be possible to exactly fit Xb to y so that the approxi-
mation shall imply a vector of errors e = y — Xb.

You would like to minimize e but this is a vector, we must define some scalar
function of it we wish to minimize.

A possible solution is €€ that is: the sum of sqares of the errors.

We then wish to minimize

fe=(y— Xb)'(y — Xb) =y'y+0X'Xb— 2y’ X0

If we take the derivative of this w.r.t b we get

%(y'y + 0 X' Xb— 2y Xb) =2X'Xb—2X"y
(again remember the size rule and remember that ' Xb = b’ X'y each is the transpose
of the other but both are scalars).

The solution of this is

b= (X'X)"'Xy

This simple application of the rule for the approximate solution of an overdetermined
system yields tha most famous formula in applied (multivariate) statistics. Whet this
problem, for the moment yust a best fit problem, shall be immersed in the appropriate
statistical setting, our b shall become the Ordinary Least Squares parameter vector
and shall be of paramount relevance in a wide range of applications to economics and
finance.

154



19

Appendix: What you cannot ignore about proba-
bility and statistics

Why a Preliminary Course

The finance master is conceived as a postgraduate course and contains a sizable
quantitative section.

The actual useful development of the program stands on the requirement, for the
student, to posses a set (actually not very big) of prerequisite notions which shall
be given as granted at the beginning of the master itself.

This course, while quite introductory, is no exception.

A student coming from Bocconi undergraduate programs in finance or in eco-
nomics should posses more than enough knowledge for covering these require-
ments.

Students coming from different Universities should, with all probability, have
followed similar programs.

Since, however, at the beginning of a more advanced course there could be some
uncertainty about the required initial level of knowledge, we provide the follow-
ing summary with the only purpose of describing the bare minimal notions, in
probability and statistical inference, required for beginning this course (and more
in general the two year master).

The best use of this summary is to read it and to spend some time on the exercises
most connected with it in past exams (see previous section).

If everything is clear and known, no problem, otherwise spending some time with
the teacher during office hours in order to agree on some further study could be
useful.

Probability

19.1 Probability: a Language

Probability is a language for building decision models.
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e As all languages, it does not offer ready made splendid works of art (that is:
right decisions) but simply a grammar and a syntax which point to avoiding
inconsistencies. We call this grammar and this syntax “probability calculus”.

e On the other hand, any language makes it simple to “say” something, difficult to
say something else and there are concepts that cannot be even thought in a ny
given language. So, no analysis of what we write in a language is independent on
the structure of the language itself, And this is true for probability too.

e The language is useful to deduce probabilities of certain events when other prob-
abilities are given, but the language itself tells us nothing about how to choose
such probabilities.

19.2 Interpretations of Probability

e A lot of (often quite cheap) philosophy on the empirical meaning of probability
boils down to two very weak suggestions: for results of replicable experiments it
may be that probability assessments have to do with long run (meaning what?)
frequency;

e For more general uncertainty situations, probability assessments may have some-
thing to do with prices paid for bets, provided you are not directly involved in
the result of the bet except with regard to a very small sum of money.

e In simple situations, where some symmetry statement is possible, say the stan-
dard setting of “games of chance”, the probability of relevant events can be re-
duced to some sum of probabilities of “elementary events” you may accept as
“equiprobable”.

19.3 Probability and Randomness

e Probability is, at least in its classical applications, introduced when we wish to
model a collective “random” phenomenon, that is an instance where we agree that
something is happening “under constant conditions” and, this not withstanding,
the result is not fully determined by these conditions.

e Traders are interested in returns from securities, actuaries in mortality rates,
physicists in describing gases or subatomic particles, gamblers in assessing the
outcomes of a given gamble.

o At different degrees of confidence, students in these fields would admit that, in
principle, it could be possible to attempt a specific modeling for each instance
of the phenomena they observe but that, in practice, such model would require
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such a precision in the measurement of initial conditions and parameters to be
useless. Moreover computations for solving such models would be unwieldy even
in simple cases.

e For these reasons students in these fields are satisfied with a theory that avoids a
case by case description but directly models frequency distributions for collectives
of observations and uses the probability language for these models.

19.4 Different Fields: Physics

e Quantum physics seems the only field where the “in principle” clause is usually
not considered valid.

e In Statistical Physics a similar attitude is held but for a different reason. Statis-
tical physics describes pressure as the result of “random” hits of gas molecules on
the surface of a container. In doing this they refrain using standard arguments
of mechanics of single particle not because this would be in principle impossible
but because the resulting model would be in practice useless (for instance its
solution would depend on a precise measurement of position and moment of each
gas molecule, something impossible to accomplish in practice).

19.5 Finance

e Finance people would admit that days are by no means the same and that prices
are not due to “luck” but to a very complex interplay of news, opinions, sentiments
etc. However, they admit that to model this with useful precision is impossible
and, at a first level of approximation, days can be seen as similar and that it is
interesting to be able to “forecast” the frequency distribution of returns over a
sizable set of days.

e The attitude is similar to Statistical Physics where, however, hypotheses of ho-
mogeneity of underlying micro behaviours are more easy to sustain. Moreover
while we could model in an exact way few particles we cannot do the same even
with a single human agent.

19.6 Actuarial Mathematics

e Actuaries do not try to forecast with ad hoc models the lifespan of this or that
insured person (while they condition their models to some relevant characteristic
the like of age, sex, smoker-no smoker and so) they are satisfied in a (conditional)
model ling of the distribution of lifespan in a big population and in matching this
with their insured population.
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e Gambling

e Gamblers compute probabilities, and sometimes collects frequencies. They would
like to be able to forecast each single result but their problem, when the result
depends on some physical randomizing device (roulette, die, coin, shuffled deck
of cards etc.) is exactly the same as the physicist’s problem.

19.7 Wrong Models

e In a sense all probability models are then “wrong”. With the exception (perhaps)
of Quantum Mechanics, they do not describe the behaviour of each observable
instance of a phenomenon but try, with the use of the non empirical concept of
probability, to directly and at the same time fuzzily describe aggregate results:
collective events.

e For this simple reason they are useful if our payout depends on collectives of
events.

e They are not useful for predicting the result of the next coin toss but they are
useful for describing coin tossING.

19.8 Meaning of Correct

e When we say that a probability model is “correct” (would be better to call it
“satisfactory”) we do mean that this model is a full successful description of facts
but that its probability statement are well matched by empirical frequencies.
Sometimes, probability model are used in cases when the relevant event shall
happen only one or few times.

e In this case the model shall be useful for organizing our decision process non for
describing its outcome.

19.9 Events and Sets

e Probabilities are assessed for “events” which are propositions concerning facts
whose value of Truth can reasonably be assessed at a given future time. However,
formally, probabilities are numbers associated with sets of points.

e Sets of points are indicated by capital letters: A, B, C,.... The “universe” set (rep-
resenting the sure event) is indicated with 2 and the empty set (the impossible
event) with @(read: “ou”).

e Finite or enumerably infinite collections of sets are usually indicated with {4;};  and
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e You are required to know the basic set theoretical operations: AN B Intersection,
AU B Union, A\ B Symmetric difference, A negation and their basic properties.
The same is true for finite and enumerably infinite Unions and intersections:
'—L1J...nAi , _1U A; and so on.

1= 1=1...00

19.10 Classes of Events

e Probabilities are assigned to classes of events which are usually assumed closed
with regard to some set operations.

e The basic class is an Algebra, usually indicated with an uppercase calligraphic
letter: A. An algebra is a class of sets which include € and is closed to finite
intersection and negation of its elements, that is: if two sets are in the class also
their intersection and negation is in the class. This implies that also the finite
union is in the class and so is the symmetric difference (why?).

e When the class of sets contains more than a finite number of sets, usually also
enumerably infinite unions of sets in the class are required to be sets in the class
itself (and so enumerable intersections, why?). In this case the class is called a
o-algebra. The name “Event” is from now on used to indicate a set in and algebra
or o-algebra.

19.11 Probability as a Set Function

e A probability is a set function P defined on the elements of an algebra such that:

P(Q2) =1, P(A) =1— P(A) and for any finite number of disjoint events {A;};
(Az N Aj =0Vi 7£ j) we have: P( _%J Az) = Z?:l P(AZ> .

i

e [f the probability is defined on a g-algebra we require the above additivity prop-
erty to be valid also for enumerable unions of disjoint events.

19.12 Basic Results

e A basic result, implied in the above axioms, is that for any pair of events we
have: P(AUB) = P(A)+ P(B) — P(ANB)

e Another basic result is that if we have a collection of disjoint events: {A;}";
(A;NAj = O Vi # j) and another event B such that B = U_,(A; N B) then we
can write: P(B) ="  P(BNA;)
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19.13 Conditional Probability

e For any pair of events we may define the conditional probability of one to the
other, say: P(A|B) as a solution to the equation P(A|B)P(B) = P(AN B).

e If we require, and we usually do: P(B) # 0, we have: P(A|B) = P(ANB)/P(B).

19.14 Bayes Theorem

Using the definition of conditional probability and the above two results we can prove
Bayes Theorem.
Let {A;};_,be a partition of  in events, that is: {A;}; | (A, NA; = OVi# j)and
U A, =Q, we have:

i=1..n

_ P(B|A;)P(A;)
P(A;|B) = S P(B|A;)P(A;)

19.15 Stochastic Independence

VY RNA3

e We say that two events are “independent in probability”, “stochastically inde-

pendent” or, simply, when no misunderstandings are possible, “independent” if
P(ANB)= P(A)P(B).

e If we recall the definition of conditional probability, we see that, in this case,
the conditional probability of each one event to the other is again the “marginal”
probability of the same event.

19.16 Random Variables

e These are functions X (.) from  to the real axis R.

e Not all such functions are considered random variables. For X (.) to be a random
variable we require that for any real number ¢ the set B, given by the points w
in 2 such that X (w) <t is also an event, that is: an element of the algebra (or
o-algebra).

e The reason for this requirement (whose name is “measurability”) is that a basic
tool for modeling the probability of values of X is the “probability distribution
function” (PDF) (sometimes “cumulative distribution function” CDF) of X de-
fined for all real numbers ¢t as: Fx(t) = P{w} : X(w) < t) = P(B;) and,
obviously, in order for this definition to have a meaning, we need all B; to be
events.
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19.17 Properties of the PDF

e From its definition we can deduce some noticeable properties of Fx

1. it is a non decreasing function;
2. its limit for ¢ going to —oo is 0 and its limit for ¢ going to +o0 is one;

3. we have: limy o F,.(t + h) = Fx(t) but this is in general not true for 4 1 0 so that
the function may be discontinuous.

e We may have at most a enumerable set of such discontinuities (they are discon-
tinuities of the first kind).

e BEach of these discontinuities is to be understood as a probability mass concen-
trated on the value ¢t where the discontinuity appears. Elsewhere F'is continuous.

19.18 Density and Probability Function

e In order to specify probability models for random variables, usually, we do not
directly specify F' but other functions more easy to manipulate.

e We usually consider as most relevant two cases (while interesting mix of these
may appear):

1. the absolutely continuous case, where F' shows no discontinuity and can be dif-
ferentiated with the possible exception of a set of isolated points

2. the discrete case where F' only increases by jumps.

19.19 Density

In the absolutely continuous case we define the probability density function of X as:
fx(t) = %ﬁ]s:t where this derivative exists and we complete this function in an
arbitrary way where it does not. Any choice of completion shall have the property:

Fx(t) = [' fx(s)ds

19.20 Probability Function

In the discrete case we call “support” of X the at most enumerable set of values x;
corresponding to discontinuities of F' and we indicate this set wit Supp(X)and define
the probability function Py (z;) = Fx(x;) —lim poFx(x; + h) for all z; : z; € Supp(X)
with the agreement that such a function is zero on all other real numbers.
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19.21 Expected Value

The “expected value” of (in general) a function G(X) is then defined, in the continuous

and discrete case as
oo

EG) = /G(s)fx(s)ds

and

E(G)= > G(z;)Px(x;)

x; €Supp(X)

If G is the identity function G(t) = t the expected value of G is simply called the

LA PR PR

“expected value”, “mathematical expectation”, “mean”, “average” of X.

19.22 Expected Value

e If G is a non-negative integer power: G(X) = X*, we speak of “the k-th moment
of X and usually indicate this with mgor puy.

e If G(X) is the function I(X € A), for a given set A, which is equal to 1 if X =
x € A and 0 otherwise (the indicator function of A) then E(G(X)) = P(X € A).

e In general E(G(X)) # G(E(X)) with a noticeable exception: if G(X) =aX +b
with a andb constants. In this case we have F(aX + ) = aE(X) +b. Sometimes
the expected value of X is indicated with px or simply p.

19.23 Variance
e The “variance” of G(X) is defined as V(G(X)) = E((G(X) — E(G(X))?) =
E(G(X)?) - E(G(X))*.
e A noticeable property of the variance is that such that V (aG(X)+b) = a*V (G(X)).

e The square root of the variance is called “standard deviation”. For these two
quantities the symbols o2 and o are often used (with or without the underscored
name of the variable).

19.24 'Tchebicev Inequality

e A fundamental inequality which connects probabilities with means and variances
is the so called “Tchebicev inequality™

1
P(X ~ BE(X)| <o) 21~ 55
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e As an example: ifAis set to 2 the inequality gives a probability of at least 75%
for X to be between its expected value 4+ and - 2 times its standard deviation.

e Since the inequality is strict, that is: it is possible to find a distribution for
which the inequality becomes an equality, this implies that, for instance, 99%
probability could require a + “10 ¢” interval.

e For comparison, 99% of the probability of a Gaussian distribution is contained
in the interval p 4 2.5760.

e These simple points have a great relevance when tail probabilities are computed
in risk management applications.

19.25 Vysochanskij—Petunin Inequality

Tchebicev inequality can be refined by the Vysochanskij-Petunin inequality which,
with the added hypothesis that the distribution be unimodal, states that, for any
2 _

A > 75 = 1.632993 \

P(X —pl<Xo)>1——

(X —pl <20} 21—

more than halving the probability outside the given interval given by Tchebicev: the
75% for A\ = 2 becomes now 1 — ¢ that is 88.(9)%.

19.26 Gauss Inequality

This result is an extension of a result by Gauss who stated that if m is the mode (mind
not the expected value: in this is the V-P extension) of a unimodal random variable
then )

2 - 2

S

P(]| X —m|< A1) > N . ,

Where 72 = E(X —m)?2.

19.27 Cantelli One Sided Inequality

A less well known but useful inequality is the Cantelli ore one sided Tchebicev in-
equality, which, phrased in a way useful for left tail sensitive risk managers, becomes

and for A = —2 this means that at least 2 of the probability (80%) is above the p — 20
lower boundary.
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19.28 Quantiles
e The “a-quantile” of X is defined as the value q, = inf(t) : Fix(t) > a.

e Notice that in the case of a continuous random variable this equation could be
written as ¢, =t : Fx(t) = a.

e Notice, moreover, that in the discrete case the definition we gave above is just
one of the possible definitions.

19.29 Median

o If o = 0.5 we call the corresponding quantile the “median” of X and use for it,
usually, the symbol M.

e It may be interesting to notice that, if G is continuous and increasing, we have

My(G(X)) = G(My(X)).

19.30 Univariate Distributions Models

e Models for univariate distributions come in two kinds: non parametric and para-
metric.

e A parametric model is a family of functions indexed by a finite set of parameters
(real numbers) and such that for any value of the parameters in a pre defined
parameter space the functions are probability densities (continuous case) or prob-
ability functions (discrete case).

e A non parametric model is a model where The family of distributions cannot be
indexed by a finite set of real numbers.

e [t should be noticed that, in many applications, we are not interested in a full
model of the distribution but in modeling only an aspect of it as, for instance,
the expected value, the variance, some quantile and so on.

19.31 Some Univariate Discrete Distributions

e Bernoulli: P(z) =0, 2 =1; Plx) =1—-0, 2 =0, 0 <6 < 1. You should
notice the convention: the function is explicitly defined only on the support of
the random variable. For the Bernoulli we have: E(X) =46, V(X) =0(1—0).

e Binomial: P(z) = (")6*(1—60)"*, 2=0,1,2,...,n; 0 < 0 < 1. We have: E(X) =
nb; V(X) =nb(1—0).
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e Poisson:P(z) = Ne /x!, 1 =0,1,2,...,00; 0 < \. We have: E(X) = \; V(X) =
A.

e Geometric P(z) = (1 —60)"7'0, x =1,2,...,00; 0 < 6 < 1. We have E(X) = 4;
V(X) =7

19.32 Some Univariate Continuous Distributions

Negative exponential: f(z) = 0e=% 2 > 0, § > 0. We have: E(X) =1/0; V(X) =
1/62. (Here you should notice that, as it is often the case for distributions with con-
strained support, the variance and the expected value are functionally related).

19.33 Some Univariate Continuous Distributions

Gaussian: f(z) = \/2;76_?(’”_“)2@ eER, peR, 02 >0. We have E(X) = u,V(X) =
o%. A very important property of this random variable is that, if a and b are constants,
then Y = aX + b is a Gaussian if X is a Gaussian.

By the above recalled rules on the £ and V' operators we have also that E(Y) =
ap+b; V(Y) = a®0?. In particular, the transform Z = % is distributed as a “standard”
(expected value 0, variance 1) Gaussian.

19.34 Some Univariate Continuous Distributions

The distribution function of this random variable is usually indicated with ®, so ®(x)
is the probability of observing values of the random variable X which are smaller then
or equal to the number x, in short: ®(z) = P(X < x). With z;_, = ®7(1 — a) we
indicate the inverse function of ®that is: the value of the standard Gaussian which
leaves on its left a given amount of probability. Obviously ®(®'(1 —a)) =1 — a.

19.35 Random Vector

e A random vector X of size n is a n- dimensional vector function from € toR",
that is: a function which assigns to each w € Q a vector of n real numbers.

e The name “random vector” is better than the name “vector of random variables” in
that, while each element of a random vector is, in fact, a random variable, a simple
vector of random variables could file to be a random vector if the arguments w;
of the different random variables are not constrained to always coincide.

e (If you understand this apparently useless subtlety you are well on your road to
understanding random vectors, random sequences and stochastic processes).
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19.36 Distribution Function for a Random Vector

e Notions of measurability analogous to the one dimensional case are required to
random vectors but we do not mention these here.

e Just as in the case of random variable, we can define probability distribution
functions for random vectors as Fx(t1,ts,....,t,) = P{w} : Xj(w) < t,Xs(w) <
to, ..., Xp(w) < t,) where the commas in this formulas can be read as logical “and”
and, please, notice again that the wfor each element of the vector is always the
same.

19.37 Density and Probability Function

As well as in the one dimensional case, we usually do not model a random vector by
specifying its probability distribution function but its probability function: P(z1, ..., x,)
or its density: f(x1,...,x,), depending on the case.

19.38 Marginal Distributions

e In the case of random vectors we may be interested in “marginal” distributions,
that is: probability or density functions of a subset of the original elements in
the vector.

e If we wish to find the distribution of all the elements of the vector minus, say,
the ¢-th element we simply work like this:

e in the discrete case

P(ZEL vy Tim1, Tip 1, $n) = E P(fﬁb ---,$¢—1>a93i,$i+1---35n)
x; €Supp(X;)

e and in the continuous case:

f(l’l, ey Li—1, Tjy1, l’n) = / f(.fl, ey i1, g, ZEH_ll’n)dl‘Z
x; €Supp(X;)

We iterate the same procedures for finding other marginal distributions.

19.39 Conditioning

e Conditional probability functions and conditional densities are defined just like
conditional probabilities for events.
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Obviously, the definition should be justified in a rigorous way but this is not
necessary, for now!

The conditional probability function of, say, the first ¢ elements in a random
vector given, say, the other n — i elements shall be defined as:

P(xq,...,z,)
P(xy, .., xi|xi, ..wp) = —————5
( b | 1 ) P(ZEZ'_H, (L’n)
e For the conditional density we have:
flxy, .o xy)

floy, i@, xn) = f(Zig1s )

In both formulas we suppose denominators to be non zero.

19.40 Stochastic Independence

e Two sub vectors of a random vector, say: the first 7 and the other n — 1 random
variables, are said to be stochastically independent if the joint distribution is the
same as the product of the marginals or, that is the same under our definition, if
the conditional and marginal distribution coincide.

e We write this for the density case, for the probability function is the same:
f@r, o zn) = flr, ) f(Tig1s o )

flxy, o wilrign, mn) = f(1, .., x5)

e This must be true for all the possible values of the n elements of the vector.

19.41 Mutual Independence

e A relevant particular case is that of a vector of mutually independent (or simply
independent) random variables. In this case:

e Again, this must be true for all possible (z1,...,z,). (Notice: the added big
subscript to the uni dimensional density to distinguish among the variables and
the small cap xz;which are possible values of the variables).
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19.42 Conditional Expectation

e Given a conditional probability function P(zy, ..., x;|zy1,...2,) or a conditional
density f(x1,...,xi|%is1,...2,) we can define conditional expected values of, in
general, vector valued functions of the conditioned random variables.

e Something the like of E(g(xy,...,x;)|%it1,...2,)) (the expected value is defined
exactly as in the uni dimensional case by a proper sum/series or integral opera-
tor).

19.43 Conditional Expectation

e [t is to be understood that such expected value is a function of the conditioning
variables. If we understand this it should be not a surprise that we can take
the expected value of a conditional expected value. In this case the following
property is of paramount relevance:

E(E(g(x1, ..., x)|Tis1, - 20)) = E(g(z1, ..., x;))

e Where, in order to understand the formula, we must remember that the first
expected value in the left hand side of the identity is with respect to (wrt) the
marginal distribution of the conditioning variables: (z;y1,...z,), while the inner
expected value of the same side of the identity is wrt the conditional distribution.

19.44 Conditional Expectation

e On the other hand the expected value on the right end side is to be intended as
wrt the marginal distribution of the conditioned variables: (1, ..., ;).

e To be really precise we must say that the notation we use (small printed letters
for both the values and the names of the random variables) is approximate: we
should use capital letters for variables and small letters for values. However we
follow the practice that usually leaves the distinction to the discerning reader.

19.45 Law of Iterated Expectations

In the simplest case of two vectors we have: Fy(Ex;v(X|Y)) = Ex(X). For the
conditional expectation value, wrt the conditioned vector, all the properties of the
marginal expectation hold.
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19.46 Regressive Dependence

e Regression function and regressive dependence.

e Usually the conditional expectation Fxy(X]|Y) is called “regression function” of
X on Y, while Fyx(Y|X) is the regression function of Y on X. If Exyv(X][Y)
is constant wrt Y we say that X is regressively independent on Y.

o If Fyx(Y|X) is independent of X we say that Y is regressively independent on
X.

e Regressive dependence/independence is not a symmetric concept: it can hold on
a side only, however in the case of even one sided regressive independence, zero
correlation is implied, the reverse, however, is not true.

e Moreover, stochastic independence implied two sided regressive independence,

again, the converse is not true.

19.47 Distribution of the max and the min for independent
random variables

Let {Xi,...,X,} be independent random variables with distribution functions

Let X1y = max{Xy,..., X, } and X(,,) = min{X, ..., X, }.

Then FX(1)(t) - H?:l FXi (t) and FX(”)(t) =1- H?:l(l - FXi (t))

If the random variables are also identically distributed we have Fx (1) = [[; Fx,(t) =
Pr(t) and Py = 1— [Ty (1 — Fx,(t) = 1 — (1— F@H)".

19.48 Distribution of the max and the min for independent
random variables

e Why? Consider the case of the max. F X(l)(t) is , by definition, the probability
that the value of the max among the n random variables is less than or equal to
t.

e But the max is less than or equal ¢ if and only if each random variable is less
than or equal to ¢.

e Since they are independent this is given by the product of the Fy, each computed
at the same point ¢, that is Fx, (t) = [, Fx,(?).
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e For the min: 1 — F, (?) is the probability that the min is greater that ¢. But
this is true if and only if each of the n random variables has a value greater than ¢
and for each random variable this probability is 1 — Fx,(t). they are independent
SO...

19.49 Distribution of the sum of independent random variables
and central limit theorem

e Let {Xi,..., X, } be independent random variables. Let S, = Y " | X; be their
sum.

e We know that, if each random variable has expected value u; and variance o2,
then E(S,) =" u; and V(S,) =>"1", o7

e Can we say something about the distribution of S,,?

e If we knew the distributions of the X; we could (but could be cumbersome)
compute the distribution of the sum.

e However, if we do not know (better: do not make hypotheses on) the distributions
of the X; we still can give proof to a powerful and famous result which, in its
simplest form, states:

19.50 Distribution of the sum of independent random variables
and central limit theorem

o Let {Xi,..., X,,} be iid random variables with expected value p and variance o2

Then
o —p
lim Pr ( 5 < t) = ®(t)

n—oo O’/\/ﬁ
Where @ is the PDF of a standard Gaussian.

e In practice this means that, under the hypotheses of this theorem, if “n is big
enough ” (a sentence whose meaning is to be, and can be, made precise) we can
Sl

approximate Fg, (s) with O(2—7%).

19.51 Distribution of the sum of independent random variables
and central limit theorem

e More general versions of this theorem, with non necessarily identically distributed
or even non independent X; exist.
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e This result is fundamental in statistical application where confidence levels for
confidence intervals of size of errors for test must be computed in non standard
settings.

Statistical inference

19.52 Why Statistics

e Probabilities are useful when we can specify their values. As we did see above,
sometimes, in finite settings, (coin flipping, dice rolling, card games, roulette, etc.)
it is possible to reduce all probability statement to simple statements judged, by
symmetry properties, equiprobable.

e In these case we say we “know” probabilities (at least in the sense we agree on
its values and, as a first approximation, do not look for some “discovery rule” for
probabilities) and use these for making decisions (meaning: betting). In other
circumstances we are not so lucky.

e Consider for instance rolling a pyramidal “die”: this is a five sided object with
four triangular sides a one square side. In this case what is the probability
for each single side to be the down side? For some news on dice see http:
//en.wikipedia.org/wiki/Dice

19.53 Unknown Probabilities and Symmetry

e The sides are not identical, so the classical argument for equiprobability does not
hold. We may agree that the probability of each triangular face is the same but
what is the total value of these four probabilities? Or, that is the same, what is
the probability for the square face to be the down one?

e Just by observing different pyramidal dice we could surmise that the relative
probability of the square face and of the four triangular faces depend, also, on
the effective shape of the triangular faces. We could hypothesize, perhaps, that
the greater is the eight of such faces, the bigger the probability for a triangular
face to be the down one in comparison to the probability for the square face.

19.54 Unknown Probabilities and Symmetry

e With skillful physical arguments we could come up with some quantitative hy-
pothesis, we understand, however, that this shall not be simple. With much
likelihood a direct observation of the results from a series of actual rolls of this
dice could be very useful.
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e For instance we could observe that the peaker are the triangular sides the smaller
the probability for the square side to be down (and conclude that there should
be some unknown height such that the probability of each side is 1/5, at least
for a given way of trowing the die).

19.55 No Symmetry

e Consider now a different example: horse racing. Here the event whose probability
we are interested in is, to be simple, the name of the winner.

e [t is “clear” that symmetry arguments here are useless, moreover, while observa-
tion of past races results could be relevant, the idea of repeating the same race
a number of times in order to derive some numerical evaluation of probability is
both unpractical and, perhaps, even irrelevant.

19.56 No Symmetry

e What we may deem useful are data on past races of the contenders but these
data regard different track conditions, different tracks and different opponents.

e Moreover they regard different times, hence, a different age of the horse(s), a
different period in the years, a different level of training, and so on.

e History, in short.
e This not withstanding, people bet, and bet hard on such events. Where do their

probabilities come from?

19.57 Learning Probabilities

e Let us sum up: probability is useful for taking decision (betting) when the only
unknown is the result of the game.

e This is the typical case in simple games of chance (not in the, albeit still simple,
pyramidal dice case).

e [f we want to use probability when numerical values for probability are not eas-
ily derived, we are going to be uncertain both on uncertain results and on the
probability of such results.

e We can do nothing (legal) about the results of the game but we may do something
for building some reasonable way for assessing probabilities. In a nutshell this is
the purpose of statistics.
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e The basic idea of statistic is that, in some cases, we can “learn” probabilities from
repeated observations of the phenomena we are interested in.

e The problem is that for “learning” probabilities we need ... probabilities!

19.58 Pyramidal Die

e Let us work at an intuitive level on a specific problem. Consider this set of basic
assumptions concerning the pyramidal die problem.

e We may agree that the probability for each face to be the down one in repeated
rollings of the die is constant, unknown but constant.

e Moreover, we may accept that the order with which results are recorded is, for
us, irrelevant as “experiments” (rolls of the dice) are made always in the same
conditions.

e We, perhaps, shall also agree that the probability of each triangular face is the
same.

19.59 Pyramidal Die Model

e Well: we now have a “statistical model”. Let us call #;7 = 1, 2, 3, 4 the probabilities
of each triangular face.

e This are going to be non negative numbers (probability theory require this) more-
over, if we agree with the statement about their identity, each of these value must
be equal to the same 6 so the total probability for a triangular face to be the
down one shall be 46.

e By the rules of probability the probability for the square face is going to be 1 —46
and, since this cannot be negative, we need 6 < .25 (where we perhaps shall avoid
the equal part in the <sign).

19.60 Pyramidal Die Constraints

e All these statements come from probability theory joint with our assumptions on
the phenomenon we are observing.

e In other, more formal, words we specify a probability model for each roll of the
die and state this:

e In each roll we can have a result in the range 1,2,3,4,5;
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e The probability of each of the first four values is # and this must be a number
not greater than .25.

e With just these words we have hypothesized that the probability distribution of
each result in a single toss is an element of a simple but infinite and very specific
set of probability distributions completely characterized by the numerical value
of the “parameter”  which could be any number in the “parameter space” given
by the real numbers between 0 and .25 (extrema included if you like).

19.61 Many Rolls

e This is a model for a single rolling. But, exploiting our hypotheses, we can easily
go on to a model for any set of rollings of the dice.

e In fact, if we suppose, as we did, that each sequence of results of given length has
a probability which only depends on the number of triangular and square faces
observed in the series (in technical terms we say that the observation process
produces an “exchangeable” sequence of results, that is: sequences of results
containing the same number of 5 and non 5 have the same probability).

e Just for simplicity in computation let us move on a step: we shall strengthen our
hypothesis and actually state that the results of different rollings are stochasti-
cally independent (this is a particular case of exchangeability that is: implies but
is not implied by exchangeability).

19.62 Probability of Observing a Sample

e Under this hypothesis and the previously stated probability model for each single
roll, the joint probability of a sample of size n, were we only record 5s and not
bs, is just the product of the probabilities for each observation.

e In our example: suppose we roll the dice 100 times and observe 40 times 5
(square face down) and 60 times either 1 or 2 or 3 or 4, since each of these
faces is incompatible with the other and each has probability €, the probability
of “either 1 or 2 or 3 or 47 is 46.

e The joint probability of the observed sample is thus (40)%°(1 — 46)%°.

19.63 Pre or Post Observation?

But here there is a catch, and we must understand this well: are we computing the
probability of a possible sample before observation, or the probability of the observed
sample? In the first case no problems, the answer is correct, but, in the second, we
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must realize that the probability of observing the observed sample is actually one, after
all we DID observe it!

e Let us forget, for the moment, this subtlety which is going to be relevant in what
follows. We have the probability of the observed sample, since the sample is
given, the only thing in the formula which can change value is the parameter 6.

e The probability of observing the given sample shall, in general, be a function of
this parameter.

19.64 Maximize the Probability of the Observed Sample

e The value which maximizes the probability of the observed sample among the
possible values of 6 is (check it!) § =60/400=3/20=.15

e Notice that this value maximizes (46)%°(1 — 40)%°: the probability of observing
the given sample (or any given specific sample containing 40 5s and 60 non 5s)
but also maximizes( [y ) (40)%°(1 — 46)*° that is: the probability of observing A
sample in the set of samples containing 40 5s and 60 non 5s. (Be careful in
understanding the difference between “the given sample ” and “A sample in the

set”, moreover notice that (14000) = (16000)).

19.65 Maximum Likelihood

e Stop for a moment and fix some points. What did we do, after all? Our problem
was to find a probability for each face of the pyramidal dice. The only thing we
could say a priori was that the probability of each triangular face was the same.
From this and simple probability rules we derived a probability model for the
random variable X whose values are 1,2, 3,4 when the down face is triangular,
and 5 when it is square.

e We then added an assumption on the sampling process: observations are iid
(independent and identically distributed as X). The two assumptions constitute
a “statistical model” for X and are enough for deriving a strategy for “estimating”
0 (the probability of any given triangular face).

e The suggested estimate is the value f which maximizes the joint probability
of observing the sample actually observed. In other words we estimated the
unknown parameter according to the maximum likelihood method.
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19.66 Sampling Variability

e At this point we have an estimate of 6 and the first important point is to under-
stand that this actually is just an estimate, it is not to be taken as the “true”
value of 6.

e In fact, if we roll the dice another 100 times and compute the estimate with
the same procedure, in all probability a different estimate shall come up and for
another sample, another one and so on and on.

e Statisticians do not only find estimates, most importantly they study the worst
enemy of someone which must decide under uncertainty and unknown probabil-
ities: sampling variability.

19.67 Possibly Different Samples

e The point is simple: consider all possible different samples of size 100. Since, as
we assumed before, the specific value of a non 5 is irrelevant, let us suppose, for
simplicity, that all that is recorded in a sample is a sequence of 5s and non 5s.

e Since in each roll we either get a 5 or a non 5 the total number of these possible
samples is 2100,

e On each of these samples our estimate could take a different value, consider,
however, that the value of the estimate only depends of how many 5 and non 5
were observed in the specific sample (the estimate is the number of non 5 divided
by 4 times 100).

e So the probability of observing a given value of the estimate is the same as the
probability of the set of samples with the corresponding number of 5s.

19.68 The Probability of Our Sample

e But it is easy to compute this probability: since by our assumptions on the
statistical model, every sample containing the same number of 5s (and so of non
5s) has the same probability, in order to find this probability we can simply
compute the probability of a generic sample of this kind and multiply it times
the number of possible samples with the same number of 5s.

e If the number of 5s is, say, k we find that the probability of the generic sample
with k 5s and 100-k non 5s is (see above): (46)1097%(1 — 40)*.
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19.69 The Probability of a Similar Estimate

e This is the same for any sample with £ 5 and 100-k non 5. There are many
samples of this kind, depending on the order of results. The number of possible
samples of this kind can be computed in this simple way: we must put k 5s in a
sequence of 100 possible places.

e We can insert the first 5 in any of 100 places, the second in any of 99 and so on.

o We get 100%99 % ... % (100 — k) = (I%E!k)! however there are k ways to choose the
first 5 k — 1 for the second and so on up to 1 for the k'* and for all these k! ways

(they are called “combinations” the sample is always the same, so the number of

different samples is k!(ll()oooik)! = (120) .

19.70 The Probability of a Similar Estimate

e This is the number of different sequences of “strings” of 100 elements each con-
taining k 5s and 100-k non 5s.

e Summing up: the probability of observing k 5s on 100 rolls, hence of computing
and estimate of 0 equal to k/400, is precisely: ('}") (46)1°°F(1 — 40)* (which is
a trivial modification of the binomial).

19.71 The Probability of a Similar Estimate

e So, before sampling, for any possible “true” value of # we have a different proba-
bility for each of the (100 in this case) possible values of the estimate.

e The reader shall realize that, for each given value of 6 the a priori (of sampling)
most probable value of the estimate is the one corresponding to the integer num-
ber of 5s nearest to 100(1 — 46) (which in general shall not be integer).

19.72 The Estimate in Other Possible Samples

e Obviously, since this is just the most probable value of the estimate if the prob-
ability is computed with this 6, it is quite possible, it is in fact very likely, that
a different sample is observed.

e Since our procedure is to estimate 6 with 1%%6’“ this immediately implies that, in

the case the observed sample is not the most probable for that given 6, the value
of the estimate shall NOT be equal to 6, in other words it shall be “wrong” and
the reason of this is the possibility of observing many different samples for each
given “true” 6, that is: sampling variability.
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e In general, using the results above, for any given 6, the probability of observing a

sample of size n which gives as an estimate ¥ is (as above) (}) (46)"*(1—46)*

19.73 The Estimate in Other Possible Samples

e So, for instance, the probability, given this value of #, of observing a sample such
that, for instance, the estimate ”4—_nk is equal to the parameter value, is, if we
suppose that the value for § which we use in computing this probability can be
written as 72—;’“ (otherwise the probability is 0 and we must use intervals of values)

(gt = () e o=y

n=k is the most probable value of the

e Due to what we did see above the value "
estimate when 0 = ’Z—;k but many other values may have sizable probability so
that, eve if the “true value” is 6 = % it is possible to observe estimates different

than 7%“ with non negligible probability.

19.74 Sampling Variability

e The study of the distribution of the estimate given # is called the study of the
“sampling variability” of the estimate: the attitude of the estimate to change in
different samples and can be done in several different ways.

e For instance, using again our example, we see clearly that there does not exist a
single “sampling distribution” of the estimate as there is one for each value of the
parameter.

e On one hand this is good, because otherwise the estimate would give us quite
poor information about ¢: the information we get from the estimate comes exactly
from the fact that for different values of 6 different values of the estimate are more
likely to be observed.

e On the other it does not allow us to say which is the “sampling distribution” of
the estimate but only gives us a family of such distribution.

19.75 Sampling Variability

e However, even if we do not know the value of the parameter we may study several
aspects of the sampling distribution.
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e For instance, for each # we can compute, given that 6 the expected value of the
estimate for the distribution of the estimate with that particular value of §. In
other words we could compute

i ”4_71’{ (Z) (46)"* (1 — 40)*

and by doing this computation we would see that the result is 6 itself, no matter
which value has 6. So that we say that the estimate is unbiased.

19.76 Sampling Variability

e Again, for each # we can compute the variance of the of the estimate for the
distribution of the estimate with that particular value of 6. That is, we could
compute

Z(nél—nk)z (Z) (40)7F(1 — 40)F — 67 — 46(14; 40)

the “sampling variance” of the estimate, and see that, while this is a function of
0 (whose value is unknown to us) for any value of 6 it goes to 0 when n goes
to infinity. This, joint with the above unbiasedness result, implies (Tchebicev
inequality) that the probability of having

n—=k
4n

€0+

that is: of observing a value of the estimate different than 6 at most of ¢, goes to 1
for ANY ¢ > 0 no matter the value of . This is called “mean square consistency”.

19.77 Sampling Variability

e A curiosity. In typical applications the sampling variance depends on the un-
known parameter(s).

e While any reasonable estimate must have a sampling distribution depending on
the unknown parameter(s) there are cases where tha sampling variance could be
independent on unknown parameter(s).

e For instance, in iid sampling from an unknown distribution with unknown ex-
pected value p and known standard deviation o the usual estimate of u, the
arithmetic mean of the data, has a sampling variance equalt to % which does

not depend on unknown parameters (repeat: we assumed ¢ known).
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19.78 Estimated Sampling Variability

e In the end, if, say we wish for some “number” for the sampling variance when, as
in our case, it depends on the unknown parameter and not the simple formula
%, or some specific distribution in the place of the family of distributions
(7) (40)"7*(1 — 46)* we could “estimate” these substituting in the formula the

e

estimate of 6 to the unknown value 6 = 4—71’“ and get

o V() = w and P(0 = noky = (V) (40)"*(1 — 40)* and always remember to

notice the “hats” on V and P.

19.79 Quantifying Sampling Variability

e Whatever method we use for dealing with sampling variability the point is to
face it

e We could find different procedures for computing our estimate, however, for the
same reason (for each given true value of # many different samples are possi-
ble) any reasonable estimate always a sampling distribution (in reasonable cases
depending on 6), so we would in any case face the same problem:sampling vari-
ability.

e The point is not to avoid sampling variability but to live with it. In order to do
this it is better to follow some simple principles.

e Simple, yes, but so often forgotten, even by professionals, as to create most
problems encountered in practical applications of statistics.

19.80 Principle 1

e The first obvious principle to follow in order to be able to do this is: “do not
forget it”.

e An estimate is an estimate is an estimate, it is not the “true” 6.

e This seems obvious but errors of this kind are quite common: it seems human
brain does not like uncertainty and, if not properly conditioned, it shall try in
any possible way, to wrongly believe that we are sure about something on which
we only posses some clue.
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19.81 Principle 2

The second principle is “measure it”.

An estimate (point estimate) by itself is almost completely useless, it should
always be supplemented with information about sampling variability.

At the very least information about sampling standard deviation should be added.
Reporting in the form of confidence intervals could be quite useful.

This and not point estimation is the most important contribution statistics may
give to your decisions under uncertainty.

19.82 Principle 3

The third principle is “do not be upset by it”.

Results of decision may upset you even under certainty. This is obviously much
more likely when chance is present even if probabilities are known.

We are at the third level: no certainty, chance is present, probability are unknown!

The best statistics can only guarantee an efficient and logically coherent use of
available information.

It does not guarantee Luck in “getting the right estimates” and obviously it cannot
guarantee that, even if probabilities are estimated well something very unlikely
does not happen! (And no matter what, People shall always expect, forgive the
joke, that what is most probable is much more likely than it is probable).

19.83 The Questions of Statistics

This long discussion should be useful as an introduction to the statistical problem:
why we need to do inference and do not simply use probability?
what can we expect from inference?

Now let us be a little more precise.
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19.84 Statistical Model

e This is made of two ingredients.

e The first is a probability model for a random variable (or more generally a random
vector, but here we shall consider only the one dimensional case).

e This is simply a set of distributions (probability functions or densities) for the
random variable of interest. The set can be indexed by a finite set of numbers
(parameters) and in this case we speak of a parametric model. Otherwise we
speak of a non parametric model.

e The second ingredient is a sampling model that is: a probabilistic assessment
about the joint distribution of repeated observation on the variable of interest.

e The simplest example of this is the case of independent and identically distributed
observations (simple random sampling).

19.85 Specification of a Parametric Model

e Typically a parametric mode is specified by choosing some functional form for
the probability or density function (here we use the symbol P for both) of the
random variable X say: X ~» P(X;0) and a set of possible values for  : § € O(in
the case of a parametric model).

e Sometimes we do not fully specify P but simply ask, for instance, for Xto have
a certain expected value or a certain variance.

19.86 Statistic

e A fundamental concept is that of “estimate” or “statistic”. Given a sample: X
and estimate is simply a function of the sample and nothing else: T'(X).

e In other words it cannot depend on unknowns the like of parameters in the model.

Once the sample is observed the estimate becomes a number.

19.87 Parametric Inference

e When we have a parametric model we typically speak about “parametric infer-
ence”’, and we are going to do so here.

e This may give the false impression that statistician are interested in parameter
values. S
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e sometimes this may be so but, really, statisticians are interested in assessing
probabilities for (future) values of X, parameters are just “middlemen” in this
endeavor.

19.88 Different Inferential Tools
e Traditionally parametric inference is divided in three (interconnected) sections:
e Point estimation;
e Interval estimation;

e Hypothesis testing.

19.89 Point Estimation

e In point estimation we try to find an estimate T'(X) for the unknown parameter
0 (the case of a multidimensional parameter is completely analogous).

e In principle, any statistic could be an estimate, so we discriminate between good
and bad estimates by studying the sampling properties of these estimates.

e In other words we try to asses whether a given estimate sampling distribution
(that is, as we did see before, the probability distribution of the possible values
of the statistic as induced by the probabilities of the different possible samples)
enjoys or not a set of properties we believe useful for a good estimate.

19.90 Unbiasedness

e An estimate T'(X) is unbiased for 0 iff Ep(T(X)) = 6, V0 € O. In order to
understand the definition (and the concept of sampling distribution) is important
to realize that, in general, the statistic T" has a potentially different expected value
for each different value of 6 (hence each different distribution of the sample).

e What the definition ask for is that this expected value always corresponds to the
0 which indexes the distribution used for computing the expected value itself.

19.91 Mean Square Error
e We define the mean square error of an estimate 1" as: MSEy(T) = Eo((T — 0)?)

e Notice how, in this definition, we stress the point that the M SFE is a function of
0 (just like the expected value of T').
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We recall the simple result:
Ey((T = 0)*) = Es((T — Eo(T) + Eo(T) — 0)*) =
= Ey((T — Eo(T))* + (Eo(T) — 0)*

where the first term in the sum is the sampling variance of the estimate and the
second is the “bias”.

Obviously, for an unbiased estimate, M SE and sampling variance are the same.

19.92 Mean Square Efficiency

Suppose we are comparing two estimates for 0, say: T; and T5.

We state that T} is not less efficient than 75 if and only if MSEy(Ty) < MSEy(T5)
Vo € O.

As is the case of unbiasedness the most important point is to notice the “for all”
quantifier (V).

This implies, for instance, that we cannot be sure, given two estimates, whether
one is not worse than the other under this definition.

In fact it may well happen that mean square errors, as functions of the parameter
“cross”, so that one estimate is “better” for some set of parameter values while
the other for a different set.

In other words, the order induced on estimates by this definition is only partial.

19.93 Meaning of Efficiency

If an estimate is T} satisfies this definition wrt another estimate 75, this means (use
Tchebicev inequality and the above decomposition of the mean square error) that it
shall have a bigger (better: not smaller) probability of being “near” 6 for any value of
this parameter, than T5.

19.94 Mean Square Consistency

Here we introduce a variation. Up to now properties consider only fixed sample
sizes. here, on the contrary, we consider the sample size n as a variable.

Obviously, since an estimate is defined on a given sample, this new setting requires
the definition of a sequence of estimates and the property we are about to state
is not a property of an estimate but of a sequence of estimates.
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19.95 Mean Square Consistency

e A sequence {T,} of estimates is termed “mean square consistent if and only if
lim MSEy(T,) =0, V0 € ©.

n—oo

e You should notice again the quantifier on the values of the parameter.

e Given the above decomposition of the M SFE the property is equivalent to the
joint request: lim Ey(7},) = 6,V0 € © and lim Vy(T,,) =0, V0 € O.
n—oo n—oo

e Again, using Tchebicev, we understand that the requirement implies that, for
any given value of the parameter, the probability of observing a value of the
estimate in any given interval containing # goes to 1 if the size of the sample goes
to infinity.

19.96 Methods for Building Estimates

We could proceed by trial and error: this would be quite time consuming. better
to devise some “machinery” for creating estimates which can reasonably expect to be
“good” in at least some of the above defined senses.

19.97 Method of Moments

e Suppose we have a iid (to be simple) sample X from a random variable X dis-
tributed according to some (probability or density) P(X;60) 6 € Owhere the
parameter is, in general, a vector of k components.

e Suppose, moreover, X has got, say, n moments F(X™) with m =1,...,n.

e In general we shall have E(X™) = g,,(0) that is: the moments are functions of
the unknown parameters.

19.98 Estimation of Moments

e Now, under iid sampling, it is very easy to estimate moments in a way that is, at
least, unbiased and mean square consistent (and also, under proper hypotheses,
efficient).

e In fact the estimate: E(X™) = > ic1..n X™/n that is: the m—th empirical
moment is immediately seen to be unbiased, while its MSE (the variance, in this
case) is @ which (if it exists) obviously goes to 0 if the size n of the sample

goes to infinity.
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19.99 Inverting the Moment Equation

e The idea of the method of moment is simple. Suppose for the moment that 0 is
one dimensional.

e Choose any ¢, and suppose it is invertible (if the model is sensible, this should
be true. Why?).

e Estimate the correspondent moment of order m with the empirical moment of the

same order and take as an estimate of # the function 8, = I (imr X /1).

e In the case of k parameter just solve with respect to the unknown parameter a
system on k£ equation connecting the parameter vector with £ moments estimated
with the corresponding empirical moments.

19.100 Problems

e This procedure is intuitively alluring. However we have at least two problem.
The first is that any different choice of moments is going to give us, in general,
a different estimate (consider for instance the negative exponential model and
estimate its parameter using different moments).

e The Generalized Method of Moments tries to solve this problem(do not worry!
this is something you may ignore, for the moment).

e The second is that, while empirical moments under iid sampling are, for instance,
unbiased estimates of corresponding theoretical moments, this is usually not true
for method of moments estimates. This is due to the fact that the g, we use are
typically not linear.

e Under suitable hypotheses we can show that method of moments estimates are
means square consistent but this is usually all we can say.

19.101 Maximum Likelihood

e Maximum likelihood method (one of the many inventions of Sir R. A. Fisher: the
creator of modern mathematical statistics and modern mathematical genetics).

e Here the idea is clear if we are in a discrete setting (i.e. if we consider a model
of a probability function).

e The first step in the maximum likelihood method is to build the joint distribution
of the sample.

e In the context described above (iid sample) we have P(X;60) =[], P(X;;0).
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e Now, observe the sample and change the random variables in this formulas (X;)
into the corresponding observations (z;).

e The resulting P(z;6) cannot be seen as a probability of the sample (the proba-
bility of the observed sample is, obviously, 1), but can be seen as a function of ¢
given the observed sample: L,(0) = P(z;6).

19.102 Maximum Likelihood
e We call this function the “likelihood”.

e It is by no means a probability, either of the sample or of 8, hence the new name.

e The maximum likelihood method suggests the choice, as an estimate of 4, of the
value that maximizes the likelihood function given the observed sample,formally:

0 = arg maxL,(6).
6co

19.103 Interpretation

e If P is a probability (discrete case) the idea of the maximum likelihood method
is that of finding the value of the parameter which maximizes the probability of
observing the actually a posteriori observed sample.

e The reasoning is exactly as in the example at the beginning of this section.

e While for each given value of the parameter we may observe, in general, many
different samples, a set of these (not necessarily just one single sample: many
different samples may have the same probability) has the maximum probability
of being observed given the value of the parameter.

19.104 Interpretation

e We observe the sample and do not know the parameter value so, as an estimate,
we choose that value for which the specific sample we observe is among the most
probable samples.

e Obviously, if , given the parameter value, the sample we observe is not among the
most probable, we are going to make a mistake, but we hope this is not the most
common case and we can show, under proper hypotheses, that the probability of
such a case goes to zero if the sample size increases to infinity.
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19.105 Interpretation

e A more satisfactory interpretation of maximum likelihood in a particular case.

e Suppose the parameter 6 has a finite set (say m) of possible values and suppose
that, a priori of knowing the sample, the statistician considers the probability of
each of this values to be the same (that is 1/m).

e Using Bayes theorem, the posterior probability of a given value of the parameter

given the observed sample shall be:P(6;|z) = % = h(z)L,(0;).

19.106 Interpretation

e In words: if we consider the different values of the parameter a priori (of sample
observation) as equiprobable, then the likelihood function is proportional to the
posterior (given the sample) probability of the values of the parameter.

e So that, in this case, the maximum likelihood estimate is the same as the maxi-
mum posterior probability estimate.

e In this case, then, while the likelihood is not the probability of a parameter
value (it is proportional to it) to maximize the likelihood means to choose the
parameter value which has the maximum probability given the sample.

19.107 Maximum Likelihood for Densities

e In the continuous case the interpretation is less straightforward. Here the like-
lihood function is the joint density of the observed sample as a function of the
unknown parameter and the estimate is computed by maximizing it.

e However, given that we are maximizing a joint density and not a joint probability
the simple interpretation just summarized is not directly available.

19.108 Example (Discrete Case)
Example of the two methods. Let X be distributed according to the Poisson distribu-

tion, that is: P(z;0) = e = 0,1,2,... Suppose we have a simple random sample

x!
of size n.

19.109 Example Method of Moments
e For this distribution all moment exist and, for instance £(X) = 0, F(X?) = 6*>+0
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e If we use the first moment for the estimation of § we have 51 = T but, if we choose
the second moment, we have: 6, = (=1 + /1 + 473)/2 where T3 here indicates
the empirical second moment (the average of the squares).

19.110 Example Maximum likelihood

o f>iTie—nb

e The joint probability of a given Poisson sample is: L,(6) = ], 25 = Tt

e For a given 6 this probability does not depend on the specific values of each
single observation but only on the sum of the observations and the product of
the factorials of the observations.

e The value of 6 which maximizes the likelihood is gml = 7 which coincides with
the method of moments estimate if we use the first moment as the function to
mvert.

19.111 More Advanced Topics

e Sampling standard deviation, confidence intervals, tests, a preliminary comment.

e The following topics are almost not touched in standard USA like undergraduate
economics curricula, and scantly so in other systems.

e They are, actually, very important but only vague notions of these can be asked
to a student as a prerequisite.

e In the following paragraphs such vague notions are shortly described.

19.112 Sampling Standard Deviation and Confidence Intervals

e Asstated above, a point estimate is useless if it is not provided with some measure
of sampling error.

e A common procedure is to report the point estimate joint with some measure
related to sampling standard deviation.

e We say “related” because, in the vast majority of cases, the sampling standard
deviation depends on unknown parameters, hence it can only be reported in an
“estimated” version.
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19.113 Sampling Variance of the Mean

The simplest example is this.

Suppose we have n iid observations from an unknown distribution about which
we only know that it possesses expected value u and variance o (by the way, are
we considering here a parametric or a non parametric model?)

In this setting we know that the arithmetic mean is an unbiased estimate of .

By recourse to the usual properties of the variance operator we find that the
variance of the arithmetic mean is 02 /n.

If (as it is very frequently the case) o? is unknown, even after observing the

sample we cannot give the value of the sampling standard deviation.

19.114 Estimation of the Sampling Variance

We may estimate the numerator of the sampling variance: o?(typically using the
sample variance, with n or better n — 1 as a denominator) and we usually report
the square root of the estimated sampling variance.

Remember: this is an estimate of the sampling standard error, hence, it too is
affected by sampling error (in widely used statistical softwares, invariably, we
see the definition “standard deviation of the estimate” in the place of “estimated
standard deviation of the estimate” this is not due to ignorance of the software
authors, just to the need for brevity, but could be misleading for less knowledge-
able software users).

19.115 no Rules

In order to give a direct joint picture of estimate an its (estimated) standard
deviation, no “rules” are often followed by practitioners.

They typically report “intervals” of the form Point Estimate +n Estimated Stan-
dard Deviation. A popular value of n outside Finance is 2, in finance we see value
of up to 6.

A way of understanding this use is as follows: if we accept the two false premises
that the estimate is equal to its expected value and this is equal to the unknown
parameter and that the sampling variance is the true variance of the estimate,
then Tchebicev inequality assign a probability of at least .75 to observations of
the estimate in other similar samples which are inside the ” +20” interval (more
than .97 for the ” 4 60” interval).
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19.116 Confidence Intervals

e A slightly more refined but much more theoretically requiring behavior is that of
computing “confidence intervals” for parameter estimates.

e The theory of confidence intervals typically developed in undergraduate courses
of statistics is quite scant.

e The proper definition is usually not even given and only one or two simple ex-
amples are reported but with no precise statement of the required hypotheses.

19.117 Confidence Intervals

e These examples are usually derived in the context f simple random sampling
(iid observations) from a Gaussian distribution and confidence intervals for the
unknown expected value are provided which are valid in the two cases of known
and unknown variance.

e In the first case the formula is [f + zl_a/ga/\/ﬂ and in the second [E + tn_lyl_a/gﬁ/\/ﬁ]
where 21_,/7 is the quantile in the standard Gaussian distribution which leaves
on its left a probability of 1 — /2 and t,,_1,1_q/2is the analogous quantile for the
T distribution with n — 1 degrees of freedom.

19.118 Confidence Intervals

e With the exception of the more specific choice for the “sigma multiplier” these two
intervals are very similar to the “rule of thumb” intervals we introduced above.

e In fact it turns out that, if « is equal to .05, the z in the first interval is equal to
1.96, and, for n greater than, say, 30, the ¢ in the second formula is roughly 2.

19.119 Hypothesis testing

e The need of choosing actions when the consequences of these are only partly
known, is pervasive in any human endeavor. However few fields display this need
in such a simple and clear way as the field of finance.

e Consequently almost the full set of normative tools of statistical decision theory
have been applied to financial problems and with considerable success, when used
as normative tools (much less success, if any, was encountered by attempts to use
such tools in the description of actual empirical human behavior. But this has
to be expected).
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19.120 Parametric Hypothesis

e Statistical hypothesis testing is a very specific an simple decision procedure. It is
appropriate in some context and the most important thing to learn, apart from
technicalities, is the kind of context it is appropriate for

e Statistical hypothesis. here we consider only parametric hypotheses. Given a
parametric model, a parametric hypothesis is simply the assumption that the
parameter of interest, # lies in some subset Oy € O.

19.121 Two Hypotheses

e In a standard hypothesis testing, we confront two hypotheses of this kind with the
requirement that, wrt the parameter space, they should be exclusive (they cannot
be both true at the same time) and exhaustive (they cover the full parameter
space.

e So, for instance, if you are considering a Gaussian model and your two hypotheses
are that the expected value is either 1 or 2, this means, implicitly, that no other
values are allowed.

19.122 Simple and Composite

e A statistical hypothesis is called “simple” if it completely specifies the distribution
of the observables, it is called “composite” if it specifies a set of possible distri-
butions. the two hypotheses are termed “null” (Hy) hypothesis and “alternative”
hypothesis (H).

e The reason of the names lies in the fact that, in the traditional setting where
testing theory was developed, the “null” hypothesis corresponds to some conser-
vative statement whose acceptance would not imply a change of behavior in the
researcher while the “alternative” hypothesis would have implied, if accepted, a
change of behavior.

19.123 Example

e The simplest example is that of testing a new medicine or medical treatment.

e In a very stylized setting, let us suppose we are considering substituting and
already established and reasonably working treatment for some illness with a
new one.

e This is to be made on the basis of the observation of some clinical parameter in
a population.
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e We know enough as to be able to state that the observed characteristic is dis-
tributed in a given way if the new treatment is not better than the old one and
in a different way if this is not the case.

e In this example the distribution under the hypothesis that the new treatment is
not better than the old shall be taken as the null hypothesis and the other as the
alternative.

19.124 Critical Region, Acceptance Region

e The solution to a testing problem Is the partition of the set of possible samples
into two subsets. If the actually observed sample falls in the acceptance region
z € A we are going to accept the null, if it falls in the rejection or critical region
x € C we reject it.

e We assume that the union of the two hypotheses cover the full set of possible
samples (the sample space) while the intersection is empty (they are exclusive).
this is similar to what is asked to the hypotheses wrt the parameter space but
has nothing to do with it.

e The critical region stands to testing theory in the same relation as the estimate
is to estimation theory.

19.125 Errors of First and Second Kind
e Two errors are possible:
1. z € C but the true hypothesis is Hy, this is called error of the first kind;

2. x € A but the true hypothesis is Hy, this is called error of the second kind.

e We should like to avoid these errors, however, obviously, we do not even know
(except in toy situations) whether we are committing them, just like we do not
know how much wrong our point estimates are.

e Proceeding in a similar way as we did in estimation theory we define some measure
of error.

19.126 Power Function and Size of the Errors

e Power function and size of the two errors. Given a critical region C| for each
0 € Oy U O (which sometimes but not always corresponds to the full parameter
space ©) we compute Il (0) = P(xz € C;0) that is the probability, as a function
of #, of observing a sample in the critical region, so that we reject H.
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e We would like, ideally, this function to be near 1 for # € ©; while we would like
this to be near 0 for 8 € ©,.

e We define a@ = supIlo(f) the (maximum) size of the error of the first kind and
(ASSH)

f = sup(l —IIg(f)) the (maximum) size of the error of the second kind.
0€01

19.127 Testing Strategy

e There are many reasonable possible requirements for the size of the two errors
we would the critical region to satisty.

e The choice made in standard testing theory is somewhat strange: we set «a to
an arbitrary (typically small) value and we try to find the critical region that,
given that (or a smaller) size of the error of the first kind, minimize (among the
possible critical regions) the error of the second kind.

e The reason of this choice is to be found in the traditional setting described above.
If accepting the null means to continue in some standard and reasonably success-
ful therapy, it could be sensible to require a small probability of rejecting this
hypothesis when it is true and it could be considered as acceptable a possibly big
error of the second kind.

19.128 Asymmetry

The reader should consider the fact that this very asymmetric setting is not the most
common in applications.

19.129 Some Tests

e One sided hypotheses for the expected value in the Gaussian setting. Suppose we
have an iid sample from a Gaussian random variable with expected value pand
standard deviation o.

e We want to test Hy : p < a against Hy : p > b where a < b are two given
real numbers. It is reasonable to expect that a critical region of the shape:
C:{z : T > k} should be a good one.

e The problem is to find k.
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19.130 Some Tests

e Suppose first ¢ is known. The power function of this critical region is (we use
the properties of the Gaussian under standardization):

T— N k—uj:

Hc(9)=P(£€C;9)=P(E>k;u,0)=1—P(0/\/ﬁS N

k__“)
o/vn

e Where @ is the usual cumulative distribution of the standard Gaussian distribu-
tion.

—1— &

19.131 Some Tests

e Since this is decreasing in p the power function is increasing in p, hence, its
maximum value in the null hypothesis region is for u = a.

e We want to set this maximum size of the error of the first kind to a given value

a so we want: 1 — CID(O_]“/?/‘%) = «a so that Uk/;\/“ﬁ = Z1—a so that k = a+ =214 .

e When the variance is unknown the critical region is of the same shape but k =

a+ %tn—1,1—a where o andt are as defined above.

19.132 Some Tests

The reader should solve the same problem when the hypotheses are reversed and com-
pare the solutions.

19.133 Some Tests

e Two sided hypotheses for the expected value in the Gaussian setting and confi-
dence intervals.

e By construction the confidence interval for 1 (with known variance): [T & z1_q/20/v/1]

contains p with probability (independent on p) equal to 1 — a.

e Suppose we have Hy : u = po and Hy : p # o for some given . The above
recalled property of the confidence interval implies that the probability with
which [Tj: zl_a/za/\/ﬂ contains g, when Hj is true, is 1 — a.
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19.134 Some Tests

e The critical region: C : {z: o & [T+ z1-a20/+/n]} or, that is the same: C :
{g T é [Mo + zl_a/w/\/ﬁ]} has only a probability of rejecting Howhen Hyis
true.

e Build the analogous region in the case of unknown variance and consider the
setting where you swap the hypotheses.
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