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Abstract. This paper introduces a non-cooperative game-theoretic model of se-
guential network formation, in which players propose links and demand payoffs.

Payoff division is therefore endogenous. We show that if the value of networks

satisfies size monotonicity, then each and every equilibrium network is efficient.

The result holds not only when players make absolute participation demands, but
also when they are allowed to make link-specific demands.
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1 Introduction

We analyze the formation process of a cooperation structure (or network) as a
non-cooperative game, where players move sequentially. The main difference
between this paper and the seminal work in this area by Aumann and Myerson
(1988) is that we are interested in situations in which it is impossible to pre-
assign a fixed imputation to each cooperation structure, i.e., situations in which
the distribution of payoffs isendogenous.® Indeed, the formation of interna-
tional cooperation networks, and, more generally, of any market network, occurs
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1 Slikker and Van Den Nouweland (1998) studied a link formation game with endogenous payoff
division but with a simultaneous-move framework.
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through a bargaining process, in which ttiemand of a payoff for participation
is a crucial variable.

The most important theoretical debate stemming from Aumann and Myerson
(1988) is about the potential conflict between efficiency and stability of networks.
In the example of sequential network formation game studied by Aumann and
Myerson the specific imputation rule that they consider (the Myerson value)
determines an inefficient equilibrium network. The implication of their paper is
therefore thanot all fixed allocation rules are compatible with efficiency, even
if the game is sequential. Jackson and Wolinsky (1996) consider value functions
depending on the communication structure rather than on the set of connected
players and demonstrate that efficiency and stability are indeed incompatible
under fairly reasonable assumptions (anonymity and component balancedness)
on the fixed imputation rules. Their approach is axiomatic, and hence their result
does not have direct connections with the Aumann and Myerson result, which was
obtained in a specific extensive form game. The strong conclusion of Jackson
and Wolinsky is thato fixed allocation rule would ensure that at least one
stable graph is efficient for every value functibButta and Mutuswami (1997)
show, on the other hand, that a mechanism design approach (where the allocation
rules themselves are the mechanisms to play with) can help reconcile efficiency
and stability. In particular, they solve the impossibility result highlighted by
Jackson and Wolinsky by imposing the anonimity axiom only on the equilibrium
network. With a similar mechanism design approach, one could probably find
fixed allocation rules that lead to efficient network formation in sequential games
like the one of Aumann and Myerson. However, since in many situations of
market network formation there is no mechanism designer who can select the
“right” allocation mechanism, we are here interested to ask what happens to the
conflict between efficiency and stability discussed above when payoff division is
endogenous.

The main result of this paper is that, if the value function satisfies size
monotonicity (i.e., if the efficient networks connect all players in some way),
then the sequential network formation process with endogenous payoff division
leadsall equilibria to be efficient (Theorem 2). As shown in Example 2, there
exist value functions satisfying size monotonicity for whighallocation rule can
eliminate inefficient equilibria when the game is simultaneous move, nor with
the Jackson and Wolinsky concept of stability. So our efficiency result could
not be obtained without the sequential structure of the game. We will also show
(see Example 3) that the sequential structure alone, without endogenous payoff
division, would not be sufficient.

In the game that we most extensively analyze, we assume that players propose
links and formulate a singl@bsolute demand, representing their final payoff
demand. This is representative of situations such as the formation of economic
unions, in which negotiations are multilateral in nature, and each player (country)
makes an absolute claim on the total surplus from cooperation. We will show

2 See also Jackson and Watts (1996) and Qin (1996).
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that the result that all equilibria are efficient extends to the case in which players
attach to each proposed link a separate payoff demand.

The next section describes the model and presents the link formation game.
Section 3 contains the analysis of the Subgame Perfect Equilibria of the game,
the main results, and a discussion of them. Section 4 presents the extension to
link-specific demands, and Sect. 5 concludes.

2 The model
2.1 Graphs and values

LetN ={1,...,n} be afinite set of players. A graghis a setL of links (non-
directed segments) joining pairs of playersNn(nodes). The graph containing
a link for every pair of players is called complete graph, and is denotegby
The setG of all possible graphs oN is then{g : g C g™ }. We denote byj the
link that joins players andj, so that ifij € ¢ we say thai andj are directly
connected in the grapi For technical reasons, we will say that each player is
always connected to himself, i.e. thatc g for alli € N and allg € G. We
will denote byg +ij the graph obtained adding the linkto the grapty, and by
g — ij the graph obtained removing the linkfrom g.

Let N(g) = {i : 3 € N st.ij € g}. Let n(g) be the cardinality oN(g). A
path in ¢ connectingi; andii is a set of nodegiy, io, ..., ik} € N(g) such that
ipiprr € g forallp=1,... k—1.

We say that the grapl’ C g is a component of g if

1. for alli € N(¢’) andj € N(g’) there exists a path ip’ connecting andj;
2. foranyi € N(¢') andj € N(g), ij € g implies thatij € ¢'.

So defined, a component gfis a maximal connected subgraphgfin what
follows we will use the letteh to denote a component gf(obviously, when all
players are indirectly or directly connected jrthe graphg itself is the unique
component ofg ). Note that according to the above definition, each isolated
player in the graply represents a component @f The set of components gf
will be denoted byC(g). Finally, L(g) will denote the set of links iry.

To each graphy C ¢\ we associate a value by means of the function
G — R.. The real number(g) represents the aggregate utility produced by the
set of agentdN organized according to the graph (or netwotk)We say that
a graphg* is efficient with respect tov if v(¢*) > v(g) Vg C gN. G* (v) will
denote the set of efficient networks relativeito

We restrict the analysis tanonymous and additive value functions, i.e., such
that v(g) does not depend on the identity of the playerdNify) and such that
the value of a graph is the sum of the values of its components.

2.2 The link formation game

We will study a sequential gamg(v), in which agents form links and formulate
payoff demands. In this section we consider the benchmark case in which each
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agent’'s demand consists of a positive real number, representing his demanded
payoff in the game.

In the formulation of the gamd’(v), it will be useful to refer to some
additional definitions. A pre-graph oN is a setA of directed arcs (directed
segments joining two players M). The arc from player to playerj is denoted
by al. The set of arc#\ uniquely induces the graph

g(A) = {ij cgV:a cAandg eA}.

2.2.1 Players, actions, and histories

In the gamel"(v) the set of playersl = {1,...,i,...,n} is exogenously ordered
by the functionp : N — N. We use the notation < j as equivalent te(i) <
p(j). Players sequentially choose actions according to the grd&n actionx;
for playeri is a pair &,d;), wherega; is a vector of arcs sent by to some
subset of players iN\i andd; € [0,D] isi’s payoff demand, wher® is some
positive finite real numbet.

A history x = (X,...,X%y) is a vector of actions for each player k. We
will use the notation (borrowed from Harris 1985)

AiX = (Xg, ..., % 1)

to identify a subgame. We denote Bythe set of possible histories, byX the
set of possible histories before playeand byX; the set of possible actions for
playeri.

2.2.2 From histories to graphs

Players’ actions induce graphs on the Bets follows. Firstly, we assume that

at the beginning no links are formed, i.e., the game starts from the empty graph
g = {0}. The historyx generates the grapf(x) according to the following rule.

Let A(X) = (a,-- -, an) be the arcs sent by the players in the history

— If h is a component of(A(x)) andh is feasible given x, i.e., if

S d < o(h), (1)

ieN(h)

thenh € C(g(x));

— If h is a component of(A(x)) and (1) is violated, thet ¢ C(g(x)) and
i € C(g(x)) for alli € N(h);

— If his not a component of(A(x)), thenh ¢ C(g(x)).

3 Assuming an upper bound on demands is without loss of generality, since one could always set
D = wv(g*) without affecting any of the equilibria of the game.
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In words, the componerit forms as the outcome of the historyif and
only if the arcs sent irx generateh and the demands of the players i(h)
are compatible, in the sense that they do not exceed the value produced by the
componenh.

2.2.3 Payoffs and strategies

The payoff of playei is defined as a function of the history Letting h; (x) €
C(g(x)) denote the component g{x) containingi, playeri gets

Pix)= diif 32 cpp0d < v(hi(x)
0 otherwise.

)

This implies that we allow for free disposal.

A strategy for playei is a functiono; : A X — X;. A strategy profile for
I'(v) is a vector of functionsr = (01, ...,0n). A Subgame Perfect Equilibrium
(henceforth SPE) fof (v) is defined as follows. For any subgarke, let o |\ x
denote the restriction of the strategy profildo the subgame. A strategy profile
o* is a SPE ofl’(v) if for every subgame\;x the profilec* |A\ix represents a
Nash Equilibrium. We will denote by (\x) a SPE path of the subgamex,
i.e., equilibrium continuation histories aftarx. We will only consider equilibria
in pure strategies.

3 Equilibrium

In this section we analyze the set of SPE of the gdnte). We first show that
SPE always exist. We then study the efficiency properties of SPE. Finally, we
illustrate by example what is the role of the two main featureg'@f), namely

the sequential structure and the endogeneity of payoff division, for the efficiency
result.

3.1 Existence of equilibrium

Since the gamd(v) is not finite in the choice of payoff demands, we need to
establish existence of a SPE (see the Appendix for the proof).

Theorem 1. The game I'(v) always admits Subgame Perfect Equilibria in pure
strategies.

3.2 Efficiency properties of equilibria

This section contains the main result of the pajdrthe SPE ofl"'(v) induce
an efficient network. We obtain this result for a wide class of value functions,
satisfying a weak "superadditivity” condition, that we csilte monotonicity. We
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first provide the definition and some discussion of this condition, then we prove
our main result. We then analyze the role of each feature of our game (sequen-
tiality and endogenous payoff division) and of size monotonicity in obtaining
our result, and discuss the latter in the framework of the efficiency-stability de-
bate related to Aumann and Myerson (1988) and Jackson and Wolinsky (1996)
seminal contributions.

Definition 1. Thelinkij iscritical for thegraph g if ij € g and#C(g) > #C (g —
ij).

In words, a link is critical for a graph if by removing it we increase the
number of components. Intuitively, a critical link is essential for the component

it belongs to in the sense that without it that component would split in two
different components.

Definition 2. The value function v satisfies size monotonicity if and only if for all
graphs g and critical linkij € g

v(g) > v(g — ).

Size monotonicity requires that merging components in the “minimal” way
strictly increases the value of the graph. By “minimal” we mean here that such
merging occurs through a single additional link. This condition is trivially satis-
fied when additional links always increase the value of the graph, leading to an
efficient fully connected graph. However, this condition is also compatible with
cases in which “more” communication (more connected players) originates more
value, but, for a fixed set of players that are communicating, this value decreases
with the number of links used to communicate. Value functions exhibiting con-
gestion in the number of links within components satisfy this assumption. The
extreme case is represented by value functions such that the efficient graph con-
sists of a single path connecting all players, or the star graph, with one player
connected with all other players and no other pair of players directly linked (mini-
mally connected graphs). One example that would originate such value functions
is the symmetric connection model studied in Jackson and Wolinsky (1996),
with a cost of maintaining links for each player, which is a strictly convex and
increasing function of the number of maintained links.

The next lemma formally proves one immediate implication of size mono-
tonicity, i.e., that all players are (directly or indirectly) connected.

Lemma 1. Let v satisfy size monotonicity. All efficient graphs are connected, i.e.,
if g is efficient then C(g) = {¢g} and N(g) = N.

Proof. Consider a graply such thatC(g) = {hy,...,hp}, with p > 1. Then let
i € hpandj € hy (ij ¢ g). The linkij is a critical link according to Definition 1,
so that, by size monotonicity af, we have that(g) < v(g +1ij), implying that
g is not efficient. QED.

We now state our main theorem, proving that size monotonicity is a sufficient
condition forall SPE to be efficient.



Network formation with sequential demands 235

Theorem 2. Let v satisfy size monotonicity. Every SPE of I'(v) leads to an effi-
cient network.

We prove the theorem in two steps. We first prove by an induction argument
in step 1 that if a given history is not efficient and satisfies a certain condition
on payoff demands, then some player has a profitable deviation. Then, in step 2,
we show that if some history such thaty(x) ¢ G* is a SPE, then the condition
on payoff demands introduced in step 1 would be satisfied, which implies that
there exists a profitable deviation froamy history that leads to an inefficient
network.

The proof relies on two lemmas, the first characterizing equilibrium payoffs
and the second characterizing equilibrium graphs.

Lemma 2. Let v satisfy size monotonicity. For any arbitrary history of I'(v),
AmX, the continuation equilibrium payoff for player m, Pn(f (AmX)), is strictly
positive, forallm=1,... n— 1

Proof. Recall thatn is the last player in the order of play and letm < n be

any player moving befora. Consider an arbitrary histoty,x. In order to prove
that the continuation equilibrium payoff is strictly positive for playey let us
show that there exists > 0 such that if playem plays the action, = (af, <),

then it is a dominant strategy for playerto reciprocaten’s arc and form some
feasible componertt with mn € h.

Suppose first that = 0, so that, at the arbitrary histoby,x, playerm chooses

Xm = (am, 0).

We want to show that there cannot be an equilibrium continuation history
f (AmX, Xm) such that, denoting the histofAmX, Xm, f (AmX, Xm)) by X, hn(X) =

mm (i.e., wherem is alone even though she demands 0). Suppose this is the case,
and letx; = (an,dn) be a strategy for playar such thata]" ¢ a,. Let hy(X) be

the component including if this continuation history is played. Denote by

the component obtained by adding the limk to h,(X). By size monotonicity,

v(hn (X)) < v(hy).

If the componenh,(X) is feasible, the componett, is feasible too, for some
demandd, + § > d, of playern.* It follows that it is dominant fom to recip-
rocatem’s arc and get a strictly greater payoff. Roc&nnot be an equilibrium
continuation payoff.

Consider theny(c) = (af, ) with € > 0.

Consider the continuation histor(s) = f (AmX, Xm(€)), with

X(€) = (AmX, Xm(€), T (AmX; Xm(€))) ,

41f hn(AmX, Xm, X) is not feasible, then either there exists some positive derdaridr playern
such that Z di +dj = v(h}) or playern could just reciprocate playen's arc and demand
ieN()\n
ds = v(mn) > O (this last inequality by size monotonicity).
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andx, = (an, dn) such tha" ¢ a,. Let h,(X(¢)) be the component that includes
n givenX(e). Let againh/(¢) = mn U hy(X(¢)). Define

bmin = mino () — 0 (MXE) > 0

where the strict inequality comes form size monotonicity.

Let 0 < € < Omin.

If ha(X(e)) is feasible, therh/(e) is feasible too, for some positive additional
demand of playen. Thus, it is possible for player to demand a strictly higher
payoff thand, (this because < dmin).> Therefore a positive payoff is always
attainable by any playen < n, at any history. QED.

Lemma 3. Let v satisfy size monotonicity. Let x be a SPE history of the game
I'(v). In the induced graph g(x) all players are connected, i.e., C(g(x)) = {g(X)}
and N (g(x)) = N.

Proof. Suppose tha€(g(x)) = {hy,...,h} with k > 1. Let againn be the last
player in the ordering. Note first that there must be some comportgnsuch

thatn ¢ hy, since otherwise the assumption tikat> 1 would be contradicted.
Also, note that by Lemma X being an equilibrium implies thét

> di=w(hy) Vpefl... Kkl

i eN(hp)

Let us then considém, and the last playem in N (h,) according to the ordering
p. Let X () = (am U af}, dm + ), with continuation historyf (AmX, %m (¢)). Let

X(€) = (AmX, Xm (€) , £ (AmX, X (€)))

and lethy(X (¢)) be the component including in g(X (¢)). Suppose first that

mn ¢ h,(X ()) andin € hy(X (¢)) for somei € N(hp). Note first that if some
playerj > mis in h,(X (¢)), then by Lemma 4, (X (¢)) is feasible giverx,,

and since playem is getting a higher payoff than under the actionxy, () is a
profitable deviation for him. We therefore consider the case in which no player
j > misin hy(X (€)), andhn(X (¢)) is not feasible. In this case, it is a feasible
strategy for playen, who is getting a zero payoff unday, to reciprocate only
playerm’s arc and form the componehf, such that, by size monotonicity,

v(hy (€)) > v(hp).

5 If insteadhn (AmX, Xm(em), Xm(em)) is not feasible, then either there exists some positive demand

dj such that Z d; +d} = v(h}(em)) or playern could just reciprocate playen's arc and
P EN(h(em)\n
demandd, = v(mn) — em > O (this last inequality again by size monotonicity).

6 Note that there cannot be any equilibrium where the last player demands something unfeasible:
since in every equilibrium the last player obtains a zero payoff, one could think that she could then
demand anything, making the complete graph unfeasible, but this would entail a deviation by one
of the previous players, who would demandess, in order to make join in the continuation
equilibrium. Thus, the unique equilibrium demand of plages O.
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If £ is small enough we get
v(hy (€)) — v(hp) >

which implies that reciprocating only playen's arc and demandingl, =
v(hy, (€)) — v(hp) — € > 0 is a profitable deviation for player.

Thus, we can restrict ourselves to the case in whitk h,(X (¢)) for all
i € N(hp). Let hy, (¢) be obtained by adding the linfan to h,(X (¢)). By size
monotonicity

v (M) — v (M(X (£))) > O.
Let also
Omin = |21>||3 [v () () — v (ha(R (€)))] > 0.

Consider a demand such that 0< ¢ < dmin. As in the proof of Lemma 2, we
claim that if playerm demands:, then it is dominant for playen to recipro-
cate playem’s link and form the componertt/(¢). Note first that, given that

0 < em < dmins If hn(X (¢) is feasible, them/,(¢) is feasible for some positive ad-
ditional demand (w.r.td,) of playern. If insteadh, (X (¢) was not feasible, then
playern would be getting a zero payoff, and this would be strictly dominated
by reciprocatingn’s arc and getting a payoff of

[v (hn(€)) — v (Ma(X ()] — ¢
which, again by the fact that < dmin, is strictly positive. QED.
Proof of Theorem 2.
Step 1. Induction argument.

Induction Hypothesis (H): Let x be an arbitrary history such tha(x) ¢ G*.
Let m be the first player in the ordering such that there is ng* such that (1)
Am+1X* = AmsaX and (2)g(x*) € G*. Let x be such that

Zdi <wv(g (X)) — Z d.
i=1

i=m+1

Then there exists some> 0 and actionx;, = (aj, dm +¢) that induce a con-
tinuation historyf (Amx, ;) such that, denoting by* the history dmx, X3, f

(X, X)), 9(x*) € G andé & = u(g(x")).

(H) true for player n: Let x, = (a,,d,). Let playerm, as defined in (H), be
n. In words, this means that could still induce the efficient graph by de-
viating to some other action. Formally, there exist some afsand a de-

mand d/; such thatg(xl,...,xn_l,a;‘,dg) € G* and, therefore, such that

v (g (X, %a-1,85,d7)) > v(g(x)). By (H)

S 6 <u(g()

i=1
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and by size monotonicity all players are connected; (rxl,...,xn_l,a,;*,drq).
These two facts imply that player can induce the efficient graph and demand
d} = dn +&n with

en=[v(g9") —v(g(x))] >0

(H) true for player m + 1 implies (H) true for player m: Suppose again that
is an inefficient history and thah is the first player inx such that the action
am is not compatible with efficiency in the sense of assumption (H).d;ebe
some action compatible with efficiency and ket () = (&, dm +¢). Let also
f (Amx,x;;(s)) represent the corresponding continuation history, ah¢) =
(AmX, %5 (€) . (AmX, %1 (€)) ). We need to show that there exists- 0 such that
g (X* (€)) € G*. Note first that in the historx* (¢), the first playerk such that
a is not compatible with efficiency must be such tkat m. Since by (H)

Zdl <wv(g(X)— Z di

i=m+1
there exists am > 0 such that
m—1
D di+dnte <v( Z di.
i=1 i=m+1

Thus, if playerm playsxg; (¢), player(m + 1) faces a history(Amx,x:;1 (5)) that
satisfies the inductive assumption (H). Suppose now that played ] optimally
plays some actio®y.1 such that no efficient graph is compatible (in the sense of
assumption (H)) with the histoffAmX, Xm (€) , Xm+1). Then, by (H) we know there
would be a deviation for playemn{+ 1), contradicting the assumption that.,

is part of the continuation history &hn,X, Xm (€)). Thus, we know that player
(m+ 1) will optimally play some strategy;;,, such that the continuation history

f ((AmX, Xm (€) ,%}+1)) induces a feasible efficient graph.

Step 2. We now show that the induction argument can be applied to each can-

didate SPE historx of I'(v) such thatv(g(x)) < v(g*) (which we want to rule

out). This is shown to imply that the first player (such that there does not exist

x* such that\m+1x* = AmeaXx ando (g (x*)) = v(g*)) has a profitable deviation.
Note first that by Lemma 3 i is a SPE history then all players are connected.

This, together with Lemma 2, directly implies that

S =v(g()

i=1
or, equivalently, that

Zd| =v (9 (X)) — Z d;

i=m+1
foralm=1....n It foIIows that the induction argument can be applied to
all inefficient SPE histories to conclude that the first player whose action is
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not compatible with efficiency in the sense of assumption (H) has some action
Xm (€) = (aj, dm + €) such that > 0 and such that the induced graplx* (c)) €
G* is feasible, where, as usual; () = (AmX, % (€),f (AmX, X5 (€))). Since
g (x* (¢)) is feasible, then the actioxy, (¢) represents a deviation for player,
proving the theorem. QED.

The efficiency theorem extends to the case in which the order of play is
random, i.e., in which each mover only knows a probability distribution over
the identity of the subsequent mover. This is true because the value function
is assumed to satisfy anonymity. Another important remark about the role of
the order of play regards the asymmetry of equilibrium payoffs: for any given
order of play the equilibrium payoffs are clearly asymmetric, since the last mover
always obtains 0. However, & ante all orders of play have the same probability,
then the expected equilibrium payoff EXP; (g(x(p)))) = % Yi.

3.3 Discussion

In this section we want to discuss our result in the framework of the recent
literature debate on the possibility of reconciling efficiency and stability in the
process of formation of networks. As we pointed out in the introduction, this
debate has been initiated by two seminal papers: Aumann and Myerson (1988)
have shown that if the Myerson value is imposed as a fixed imputation rule, then
forward looking players forming a networks through sequential link formation
can induce inefficient networks. The value function they consider is obtained
from a traditional coalitional form game. Jackson and Wolinksy (1996) obtained
a general impossibility result considering value functions that depend on the
communication structure rather than only on the set of connected players. This
incompatibility has been partially overcome by Dutta and Mutuswami (1997) who
show that it disappears if component balancedness and anonymity are required
only on stable networks.

We first note that thesize monotonicity requirement of Theorem 2 in the
present paper is compatible with the specific value function for which Jackson
and Wolinsky show that no anonymous and component balanced imputation rule
exists such that at least one stable graph is efficient. In this sense, we can conclude
that in our game the aforementioned conflict between efficiency and stability does
not appear. Since however imputation rules of the type considered by Dutta and
Mutuswami allow for efficient and stable networks, our game can be considered
as another way to overcome that conflict.

The real novelty of our efficiency result is therefore the fact diasubgame
perfect equilibria of our game are efficient. In the rest of this section we will
show that both the sequential structure of the game and the endogeneity of the
final imputation rule are "tight” conditions for the result, as well as the size
monotonicity requirement. Indeed, we first show that relaxing size monotonicity
generates inefficient equilibria. We then construct a value function for which all
fixed component balanced and anonymous imputation rules generate at least one
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inefficient stable graph in the sense of Jackson and Wolinsky. The same is shown
for a game of endogenous payoff division in which agents move simultaneously.

We finally show that sequentiality alone does not generate our result, since no
fixed component balanced and anonymous imputation rule exists such that all
subgame perfect equilibria are efficient.

3.3.1 Eliminating size monotonicity

The next example shows that if a value functiomoes not satisfy size mono-
tonicity, then the SPE of '(v) may induce an inefficient network.

Example 1. Consider a four-player game with the following value function:

v(h) = 9if N(h)=N

vth) = 8if #N(h)=3and #L(h) = 2;
v(h) = 5if #N(h)=2;

v(h) = 0 otherwise.

The efficient network is one with two separate links. We show that the higtory
such that

X = ((a127af‘7af),3)
X2 = ((3%733733%3)
X3 = ((a§, a3), 3)

Xa = (aj,0)

is a SPE of the gamé&'(v), leading to the inefficient graph (123 34).

1. Player 4: given that at the historpyx we haved; +d, +d; = 9, player 4
optimally reciprocates the arc of player 3.

2. Player 3: sending jus®3 or aj or both, would let player 3 demand at most
d; = 2; forming a link just with player 4 would allow player 3 to demand
at mostdz = 3, since player 4 would have at that node the outside option of
going with the first two movers.

3. Player 2. If d, > d; = 3, then player 3 has the outside option of just
reciprocating the arc of player 1 and demahd= 3. Thus,d, > 3 is not
a profitable deviation for player 2. In terms of arcs, note first that if player
2 sends just] thend, < 2, given thatd; = 3. Suppose now that player 2
sends arcs only to 1 and 4 demandig= 3 +e¢. In this case player 3 would
react by sending an arc just to player 4, demandinge3-+ (¢ > § > 0),
which 4 would optimally reciprocate.

4. Player 1: We just check that player 1 could not demaid= 3+¢ > 3. If he
does, then player 2 can “underbid” by a smgllas in the argument above,
so that player 3 and/or 4 would always prefer to reciprocate links with player
2.
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This example has shown that when size monotonicity is violated then ineffi-
cient equilibria may exist. The intuition for the failure of Theorem 2 wheis
not size monotonic can be given as follows. By Lemma 1, under size monotonic-
ity all efficient graphs are connected (though not necessarily fully connected).
It follows that the gains from efficiency can be shared among all players in
equilibrium (since efficiency requires all players to belong to the same compo-
nent). When size monotonicity fails, however, the efficient graph may consist of
more than one component. It becomes then impossible to share the gains from
efficiency among all players, since side payments across components are not
allowed in the gamd’(v). It seems reasonable to conjecture that it would be
possible to conceive a game form allowing for such side payments and such that
all equilibria are efficient even when size monotonicity fails.

3.3.2 The role of sequentiality

The next example displays a value function satisfying size monotonicity, and
serves the purpose of demonstrating the crucial role of the sequential structure of
our game for the result thall equilibria are efficient. In fact, neither using the
stability concept of Jackson and Wolinsky, nor with a simultaneous move game,
it is possible to eliminate all inefficient equilibria.

Example 2. Consider a four-player game with the following value function:

v(h) =1 if #N (h) = 2;
2 if#N(h) =3;
20 if #N(h) =4 and #L; = 2 Vi;
24 ifh=g";

4  otherwise.

This value function satisfies size monotonicity, and the only two connected
networks with value greater than 4 are the complete graph and the one where
each player has two links.

Let us first show that the inefficient network with value equal to 20 is stable,
in the sense of Jackson and Wolinsky (1996),every allocation rule satisfying
anonymity and component balancedness. To see this, note that in such network
anonymity implies that each player would receive 5, which is greater than any-
thing achievable by either adding a new link or severing one @. Along the
same line it can be proved that the complete (efficient) graph is stable.

Similarly, even if we allow payoff division to be endogenous, a simultaneous
move game would always have an equilibrium profile leading to the inefficient
network with value equal to 20. To see this, consider a simultaneous move game
where every player announces at the same time a set of arcs and a demand
(keeping all the other features of the game aslifv)). Consider a strategy
profile in which every player demands 5 and sends only two arcs, in a way that
every arc is reciprocated. It is clear that any deviation in terms of arcs (less
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or more) induces a network with value 4, and hence the deviation cannot be
profitable.

On the other hand, given the sequential structure/'¢f), the inefficient
networks are never equilibria, and the intuition can be easily obtained through
the example above: callingthe strategy profile leading to the inefficient network
discussed above, the first mover can deviate by sending all arcs and demanding
more than 5, since in the continuation game he expects the third arc will be
reciprocated and the complete graph will be formed.

3.3.3 The role of endogenous payoff division

Having shown the crucial role of sequentiality, the next task is to show the
relevance of the other innovative aspectiofv), namely, endogenous payoff
division. Consider a gamé’(v,Y) that is like I'(v) but for the fact that the
action space of each player only includes the set of possible arcs he could send,
and no payoff demand can be made. The imputation Yu(ef the type consid-

ered in Jackson and Wolinsky 1996) determines payoffs for each network. We
can now show by example that there are some value functions that satisfy size
monotonicity for which no allocation rule satisfying anonymity and component
balancedness can eliminate all inefficient networks from the set of equilibrium
outcomes off (v, Y).

Proposition 1. There exists value functions satisfying size monotonicity and such
that every fixed imputation rule Y satisfying anonymity and component balanced-
ness induces at least one inefficient equilibriumin the associated sequential game
I'(w,Y).

Proof. By Example.

Example 3. Consider a three-player gamg(v,Y) with the following value
function?

v(12) = wv(23)=v(13) = 1;
v(12,23) = v(13,12) =v(13,23) = 1 +¢ > 1;
v(12,13,23) = 1

Given anonymity ofY, the only payoff distribution if the complete graph
forms isPi(gN) = 3. Similarly, if h = ij, then bothi andj must receive;. If
h = (ij, jk), then let us calk the payoff toi andk andy the payoff to the pivotal

player,j, with (2x +y = 1 +¢). Let ¢ be small, so thatj® < 3.

1. Ify> % the first mover cannot send one arc only. If he sends an arc only
to the second mover, then player 2's best response is to send two arcs and
gety; if he sends an arc to the third mover only, the second mover does the

7 This value function was used in Jackson and Wolinsky (1996) to get their impossibility result
under the axiomatic approach discussed in the previous section.
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same, and the third mover gstsSo, if the first mover sends only one arc his
payoff is 1*‘—2‘3’ < % By sending both arcs, player 1 would end up forming
the complete graph and obtaini@ which makes the complete graph an
equilibrium network.

2. 1fy < % note that there always exists an equilibrium continuation history
leading to the graph (12) if player 1 sends the arc only to player 2. Thus, if
X < % player 1 cannot get as much ésnn any other network, and sending
an arc only to player 2 will therefore be an equilibrium strategy. If on the
contraryx > % there could be an incentive for player 1 to form the efficient
graph and gek. However, it can be easily checked that in this case, the
following strategy profile is an equilibrium:

oy = af
o2 (af, af) = (a3,85)
oy = o2 (af) = (a3, 83)
o2 (af) = (a3)
o3 (a?,a?,a3,a3) =03 (aZ,ad,a3) =03 (af,a3) = a3
oy = o3 (aZ,a?,ad) = a2

o3 (a},a3,a)) = o3 (af,al) = a3
o3 (af,a}) = o3 (a?,a},a3) = 03 (a?,a3) = (af,a3) .

In words, there are optimal strategies that support the pair (12) as a SPE
equilibrium. QED.

4 Link-specific demands

Consider now a variation of the gamgj(v), which differs fromI"(v) in that
players can attach payoff demands on each arc they send, rather than demanding
just one aggregate payoff from the whole component. Pladgedemandd; is

a vector of real positive numbers, one for each arc sent in the vactoie
describe how payoffs depend on historiesIif{(v) on the basis of the formal
description of the gamé’(v):

1. The feasibility condition given in (1) is replaced by:
> > d <wh); ®)
i€N(h)j:ijeh

2. The payoff for player in the componenh € C(g(x)) is given by

Pi)= Yjagend if L)) #0 4
0 otherwise

(instead of (2)). In words, the payoff for playerfrom history x would be
equal to the sum of the link-specific demands madeé by the members of
her component whom she is directly linked to.
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The same efficiency result as the one obtained in Theorem 2 can be obtained
for the gamel; (v). Proofs are found in the appendix.

Lemma 4. Let v satisfy size monotonicity. Let A,x be an arbitrary history of the
game I (v). Then Pi(f (Anx)) > Oforalli =1,...,n—1.

Lemma 5. Let v satisfy size monotonicity. Let x be a SPE history of the game
I'1(v). Intheinduced graph g(x) all players are connected, i.e., C(g(x)) = {g(x)}
and N (g(x)) = N.

Theorem 3. Let v satisfy size monotonicity. Every SPE of I'1(v) leads to an effi-
cient network.

5 Conclusions

This paper provides an important result for all the situations in which a com-
munication network forms in the absence of a mechanism designer: if players
sequentially form links and bargain over payoffs, the outcome is an efficient net-
work. This result holds as long as disaggregating componeéatthe removal

of “critical” links lowers the aggregate value of the network. In other words,
efficiency arises whenever more communication is good, at least when it is ob-
tained with the minimal set of links. We have shown this result by proving that
all the subgame perfect equilibria of a sequential link formation game, in which
the relevant players demand absolute payoffs, lead to efficient networks. On the
other hand, endogenous payoff division is not sufficient to obtain optimality when
the optimal network has more than one component. Allowing for link-specific
demands we obtain identical results.

Appendix

Proof of Theorem 1. We prove the theorem by showing that every player's max-
imization problem at each subgame has a solution. Using the notation introduced
in the previous sections, we show that for each playeand historyx, there
exists an elementy, € X, maximizingm'’s payoff given the continuation histo-
ries originating at mX, Xn). Since the choice sef;, is given by the product set
Anm x [0, D], where the finite sef\, is the set of vectors of arcs that player
can choose to send to other players in the game, it suffices to show that we can
associate with each vector of arag € A, a maximal feasible demard,(ay).
Suppose not. Then, givea,, Vdy3e > 0 such that ¢, + ¢) is feasible.
This, together with the fact that the set [@] is compact, imply that there exists
some demandi,(an) which is not feasible givera, and which is the limit
contradicting this conclusion.
First, we denote b a continuation history giverag,, dm(am)), and, for all
p, we denote by(p) a continuation history giverag, (dh)). For allp, feasibility
of df implies that playem belongs to some componef such that
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oh®) > S di(p) +db. )
i EN(hR)
We claim that asif, — dm(am) (5) remains satisfied for some componént
Suppose first that there exigtssuch that the componenhf, is the same for all
p > p. We proceed by induction.

Induction Hypothesis: Consider the historx and the historiex(p), p > P,
the history identical tox but for playerm’'s demand which id}. If x is the
best response of playerat the subgame,x(p) for all p > p thenx; is a best
response of playem at \x.

Player n: At the subgame\,x(p) playern can either optimally join a com-
ponent includingm or not join any component including. In the first case, his
payoff by not joiningm’'s component with actiox,(p) is weakly greater than
the one he gets by joining with any actiag(p):

Pa(AnX(P), Xn(p)) > Pn(AnX(p), X (P))

Bringing m’s demand to the limit does not change the above inequality.
In the second case, players payoff is maximized by joining a component
including m with actionX,(p):

Pa(AnX(P), Xn(p)) > Pn(AnX(p), X (P))

We can apply the same limit argument in this case, by noting that at the limit
condition (5) remains satisfied.

True for player k + 1 implies true for player k: Assume that the induction
hypothesis is satisfied for all playets-1, ..., n. Then, the continuation histories
after the subgames,.1x(p) and A\+1x are the same. Playérs optimal choice
X« (p) at \x(p) satisfies the following condition for all, € X:

P (X (P), Xk (),  (AkX(P), Xk ())) = Pic(Mcx (p), X (P), f (X (p), Xk (p)))-

Since we have argued that by the induction hypothesis that

f(AX(P), Xk (P)) = f (AkX, Xk (P));
f(AX(P), % (p)) = F (Akx(P), X« (P)),

we conclude that at the limit

Pk (X, Xk (P), T (X, Xk () > Pic(AiX, %k (p), F (kX (p), Xk (P)))-

This means thaty(p) is still optimal at\«x. Moreover, the feasibility condition
(5) still holds whenever playek was joining a component includingn. This
concludes the induction argument.

The above argument directly implies that if componiitis still feasible at
the limit, so that the demandi,(ay) is itself feasible.

Finally, suppose that there exists posuch that the ComponeltTl‘,'z1 is the
same for allp > p. In this case, since the set of possible components to which
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m can belong to givemy, is finite, for each possible such componéntve can
associate a subsequenpdn(h)}p=1,....c — dm(am). The feasibility condition
applied to each componehtimplies that for allh:

v(h) = " di +dn(h).
ieN(h)
We can apply the above induction argument to this case by considering some con-
verging subsequence, thereby showing that there exists some feasible component
hm induced by the demandi(am). QED.

Proof of Lemma 4. Let n be the last player in the orderingand letm < n.
Consider an arbitrary historymx. We show that there exists a demadiffi > 0
such that if playem plays the actiorx, = (a{T‘],dg) then it is a dominating
strategy for playen to reciprocatean’s arc and form some feasible component
h with mn € h.

For a givendy, > 0, letx, (df) = (af,dn), and consider again the contin-
uation historyx™(dp) = f (AmX, Xm (df)). Let alsox, = (a,,dn)® be a strategy
for playern such thata" ¢ a,. Let h(n,d}) be the component that includes
if X, is played at the history,x (d,?]) andh’(n,df) be the component obtained
by adding the linkmn to h(n, d}). Define

Smin = JE'Q){U (h'(n,dn)) — v (h(n,dy)) } >0,

where the last inequality comes form size monotonicity. Let now @}, < dmin.
Note first that ifh(n, d7) is feasible, them’(n, dy) is feasible for some positive
demandd" of playern. Thus, playem can get a strictly higher payoff than
underx, (this because < dmin). If insteadh(n, d}) is not feasible, then either
there exists some positive demadfl for playern such that

> Yoo d+d =o' (n,dp)

PEN((n,di)\nj:ij €h’(n,dR))

or player n could just reciprocate playem's arc and demand hed" =
v(mn) — df} > 0 (this last inequality again follows from size monotonicity). It
follows that it is dominant fon to reciprocatem’s arc and get a strictly positive
payoff. QED.

Proof of Lemma 5. Suppose tha€ (g(x)) = {hs, ..., h} with k > 1. Let againn

be the last player in the ordering Note first that there must be some component
h, such thatn ¢ h,, since otherwise the assumption that> 1 would be
contradicted. Also, note that by Lemmax being an equilibrium implies that

forallp=1,...,k .
S0 d =u(hy).
ieN(hp)jiij ehy

8 Recall that in gamd(v) dy is a vector, with as many dimensions as the number of arcs sent
by n.
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Let us then considehn, and the last playem in N(h,) according to the order-
ing p. Let Xn (dff) = (amUaf, dm U dh), with continuation historyx {dp) =
f (AmX, %n (df)). Leth(n,dy) be the component includingin g(% (df)). Sup-
pose first thaimn ¢ h(n,d?) andin € h(n,dy) for somei € N(h,). Consider
then the demand
dt < min {d"}.
JE€N(hy)

Let now playerm play dn Suppose that stilin € N(h(n,d")) for somei €
N (hy). Then it would be a profitable deviation for playeto reciprocate the arc
sent bym instead of the arc sent by some other player N(hy), to which a
demandd > df, is attached.

Suppose now thain ¢ N(h(n,dy)) for all i € N(hp). Let h'(n,dy) be
obtained by adding the linkin to h(n, df). By size monotonicity

v (W (n,dR) — v (h(n,d?)) > 0.

Now let
Smin = drr?gé [v (h'(n,dp)) — v (h(n,d7))] >0

Consider now a demand<© d? < dmin- As in the proof of Lemma 4, we claim
that it is dominant for playen to reciprocate playem’s link and form a feasible
component. Note first that, given that<® df, < omin, if h(n,df) is feasible,
thenh(n, dy) is feasible for some positive demam]' of playern. If instead
h(n, d7) was not feasible, then playarwould be getting a zero payoff, and this
would be strictly dominated by reciprocating's arc and getting a payoff of
[v (h(n,dh) — v (h(n,d}))] — di, which, again by the fact that}, < dmin, is
strictly positive. QED.

Proof of Theorem 3. We proceed by first showing by induction, in step 1, that if a
given history is not efficient and satisfies a certain condition on payoff demands,
then some player has a profitable deviation. In step 2 we establish that if a
history x, leading to an inefficient graph, was SPE, then it would have to satisfy
the condition on payoff demands described in step 1, which implies that there
exists a profitable deviation frorany such historyx leading to an inefficient
graph.

Step 1. Induction Argument.

Induction Hypothesis (H): Let x be an arbitrary history such thg(x) ¢ G*.
Let m be the first player in the orderingsuch that there is ng* such that (1)
Am+1X* = Ameax and (2)g(x*) € G*. Let x be such that

m n

SNy d<eey-d > d.

i=1 j:ijeN(h()) i=m+1j:ij eN(h(i))
Then there exists somg, > 0 such that the actiomm (3, dm +£m) induces
a historyxX'=f (AmX, %) such thaty(X) € G* andZZJ iienmay @ = v(g(R).
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(H) true for player n: Let X, = (an,dn). By assumption (H), there exists some
arcsa; such thatg (Ana,a;) € G* and, therefore, such that(g (Ana,a;)) >

v(g(x))- By (H) i
YooY d <o)

i=1 j:ij eN(n(i))

Moreover, by size monotonicity all players are connected tha, a,;“).9 These
two facts imply that playen can induce the efficient graph and demand the
vectord, +en, wWhere

Yoo en=lo(9(naa)) —v(ge))] >0

i EN(g*)ineg*

(H) true for player m + 1 implies (H) true for player m: Suppose again that

is an inefficient history and thah is the first player inx such that the action
am is not compatible with efficiency (in the sense of assumption (H)).djet
be some vector of arcs compatible with efficiency andklets) = (a;;], dm + 5).
Letx*(e) =f (Amx7x,’;] (s)) represent the relative continuation history. We need
to show that there exists > 0 such thatg (x* (¢)) € G*. Note first that in the
history x* (¢) the first playerk such thatay is not compatible with efficiency
must be such that > m. Also, since by (H)

Y d<ogoy-> Y d

i=1 j:ij eN(h(i)) i=m+1j:ij N (h(i)

there exists am, > 0 such that

YOS de Y <o) o> Y 4

i=1 j:ijeN(h(i) jzmi eN(h(m)) i=m+1]:ij eN(h(i)

Thus, if playerm playsx; (em), playerm+ 1 faces a histor)(Amx, X (5m)) that
satisfies the inductive assumption (H). Suppose now that playef optimally
plays some actioRy.1 such that no efficient graph is compatible (in the sense of
assumption (H)) with the historyAmX, X7, (€m) , Xm+1). Then, by (H) we know
there would be a deviation for playen + 1, contradicting the assumption that
Xm+1 is part of the continuation history dt\mx, X, (em)). Thus, we know that
playerm + 1 will optimally play some strategy,,, such that the continuation
history f ((AmX, X3 (em) , X5s1)) induces a feasible efficient graph.

Step 2. We now show that the induction argument can be applied to each SPE
history x of I'>(v) such thatg(x) ¢ G*. This is shown to imply that the first
playerm such that there is ng* such that\n:1xX* = An+1X andg(x*) € G* has

a profitable deviation.

9 \ja constitutes a slight abuse of notation, describing the history of arcs sent before the turn of
playeri.
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Note first that by Lemma 5 i is a SPE history then all players are connected.
This, together with Lemma 4, directly implies that

n

YooY d=v)

i=1 j:ij eN(h(i)
or, equivalently, that
> > d=e->, > d
i=1 j:ijeN(h()) i=m+1j:ij eN(h(i))

for all m = 1,... n. It follows that the induction argument can be applied
to all inefficient SPE histories, to conclude that the first player whose ac-
tion is not compatible with efficiency in the sense of (H), has some action
X5 (em) = (8%, dm +em) such thaten, > 0 and such that the induced graph
g (f (AmX, Xh(em))) € G* is feasible. Sincg (f (AmX,%y,)) is feasible, then the
actionx;, (em) represents a deviation for player, proving the theorem.QED.
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