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Abstract. This paper introduces a non-cooperative game-theoretic model of se-
quential network formation, in which players propose links and demand payoffs.
Payoff division is therefore endogenous. We show that if the value of networks
satisfies size monotonicity, then each and every equilibrium network is efficient.
The result holds not only when players make absolute participation demands, but
also when they are allowed to make link-specific demands.
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1 Introduction

We analyze the formation process of a cooperation structure (or network) as a
non-cooperative game, where players move sequentially. The main difference
between this paper and the seminal work in this area by Aumann and Myerson
(1988) is that we are interested in situations in which it is impossible to pre-
assign a fixed imputation to each cooperation structure, i.e., situations in which
the distribution of payoffs isendogenous.1 Indeed, the formation of interna-
tional cooperation networks, and, more generally, of any market network, occurs
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through a bargaining process, in which thedemand of a payoff for participation
is a crucial variable.

The most important theoretical debate stemming from Aumann and Myerson
(1988) is about the potential conflict between efficiency and stability of networks.
In the example of sequential network formation game studied by Aumann and
Myerson the specific imputation rule that they consider (the Myerson value)
determines an inefficient equilibrium network. The implication of their paper is
therefore thatnot all fixed allocation rules are compatible with efficiency, even
if the game is sequential. Jackson and Wolinsky (1996) consider value functions
depending on the communication structure rather than on the set of connected
players and demonstrate that efficiency and stability are indeed incompatible
under fairly reasonable assumptions (anonymity and component balancedness)
on the fixed imputation rules. Their approach is axiomatic, and hence their result
does not have direct connections with the Aumann and Myerson result, which was
obtained in a specific extensive form game. The strong conclusion of Jackson
and Wolinsky is thatno fixed allocation rule would ensure that at least one
stable graph is efficient for every value function.2 Dutta and Mutuswami (1997)
show, on the other hand, that a mechanism design approach (where the allocation
rules themselves are the mechanisms to play with) can help reconcile efficiency
and stability. In particular, they solve the impossibility result highlighted by
Jackson and Wolinsky by imposing the anonimity axiom only on the equilibrium
network. With a similar mechanism design approach, one could probably find
fixed allocation rules that lead to efficient network formation in sequential games
like the one of Aumann and Myerson. However, since in many situations of
market network formation there is no mechanism designer who can select the
“right” allocation mechanism, we are here interested to ask what happens to the
conflict between efficiency and stability discussed above when payoff division is
endogenous.

The main result of this paper is that, if the value function satisfies size
monotonicity (i.e., if the efficient networks connect all players in some way),
then the sequential network formation process with endogenous payoff division
leadsall equilibria to be efficient (Theorem 2). As shown in Example 2, there
exist value functions satisfying size monotonicity for whichno allocation rule can
eliminate inefficient equilibria when the game is simultaneous move, nor with
the Jackson and Wolinsky concept of stability. So our efficiency result could
not be obtained without the sequential structure of the game. We will also show
(see Example 3) that the sequential structure alone, without endogenous payoff
division, would not be sufficient.

In the game that we most extensively analyze, we assume that players propose
links and formulate a singleabsolute demand, representing their final payoff
demand. This is representative of situations such as the formation of economic
unions, in which negotiations are multilateral in nature, and each player (country)
makes an absolute claim on the total surplus from cooperation. We will show

2 See also Jackson and Watts (1996) and Qin (1996).
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that the result that all equilibria are efficient extends to the case in which players
attach to each proposed link a separate payoff demand.

The next section describes the model and presents the link formation game.
Section 3 contains the analysis of the Subgame Perfect Equilibria of the game,
the main results, and a discussion of them. Section 4 presents the extension to
link-specific demands, and Sect. 5 concludes.

2 The model

2.1 Graphs and values

Let N = {1, . . . , n} be a finite set of players. A graphg is a setL of links (non-
directed segments) joining pairs of players inN (nodes). The graph containing
a link for every pair of players is called complete graph, and is denoted bygN .
The setG of all possible graphs onN is then

{
g : g ⊆ gN

}
. We denote byij the

link that joins playersi and j , so that if ij ∈ g we say thati and j are directly
connected in the graphg. For technical reasons, we will say that each player is
always connected to himself, i.e. thatii ∈ g for all i ∈ N and all g ∈ G . We
will denote byg + ij the graph obtained adding the linkij to the graphg, and by
g − ij the graph obtained removing the linkij from g.

Let N (g) ≡ {i : ∃j ∈ N s.t. ij ∈ g}. Let n(g) be the cardinality ofN (g). A
path in g connectingi1 and ik is a set of nodes{i1, i2, . . . , ik} ⊆ N (g) such that
ip ip+1 ∈ g for all p = 1, . . . , k − 1.

We say that the graphg′ ⊂ g is a component of g if

1. for all i ∈ N (g′) and j ∈ N (g′) there exists a path ing′ connectingi and j ;
2. for anyi ∈ N (g′) and j ∈ N (g), ij ∈ g implies thatij ∈ g′.

So defined, a component ofg is a maximal connected subgraph ofg. In what
follows we will use the letterh to denote a component ofg (obviously, when all
players are indirectly or directly connected ing the graphg itself is the unique
component ofg ). Note that according to the above definition, each isolated
player in the graphg represents a component ofg. The set of components ofg
will be denoted byC (g). Finally, L(g) will denote the set of links ing.

To each graphg ⊆ gN we associate a value by means of the functionv :
G → R+. The real numberv(g) represents the aggregate utility produced by the
set of agentsN organized according to the graph (or network)g. We say that
a graphg∗ is efficient with respect tov if v(g∗) ≥ v(g) ∀g ⊆ gN . G∗ (v) will
denote the set of efficient networks relative tov.

We restrict the analysis toanonymous and additive value functions, i.e., such
that v(g) does not depend on the identity of the players inN (g) and such that
the value of a graph is the sum of the values of its components.

2.2 The link formation game

We will study a sequential gameΓ (v), in which agents form links and formulate
payoff demands. In this section we consider the benchmark case in which each
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agent’s demand consists of a positive real number, representing his demanded
payoff in the game.

In the formulation of the gameΓ (v), it will be useful to refer to some
additional definitions. A pre-graph onN is a setA of directed arcs (directed
segments joining two players inN ). The arc from playeri to playerj is denoted
by aj

i . The set of arcsA uniquely induces the graph

g(A) ≡
{

ij ∈ gN : aj
i ∈ A andai

j ∈ A
}

.

2.2.1 Players, actions, and histories

In the gameΓ (v) the set of playersN = {1, . . . , i , . . . , n} is exogenously ordered
by the functionρ : N → N . We use the notationi ≤ j as equivalent toρ(i ) ≤
ρ(j ). Players sequentially choose actions according to the orderρ. An actionxi

for player i is a pair (ai , di ), whereai is a vector of arcs sent byi to some
subset of players inN \i anddi ∈ [0, D ] is i ’s payoff demand, whereD is some
positive finite real number.3

A history x = (x1, . . . , xn ) is a vector of actions for each player inN . We
will use the notation (borrowed from Harris 1985)

λi x ≡ (x1, . . . , xi−1)

to identify a subgame. We denote byX the set of possible histories, byλi X the
set of possible histories before playeri and byXi the set of possible actions for
player i .

2.2.2 From histories to graphs

Players’ actions induce graphs on the setN as follows. Firstly, we assume that
at the beginning no links are formed, i.e., the game starts from the empty graph
g = {∅}. The historyx generates the graphg(x ) according to the following rule.
Let A (x ) ≡ (a1, . . . , an ) be the arcs sent by the players in the historyx .

– If h is a component ofg(A(x )) andh is feasible given x, i.e., if
∑

i∈N (h)

di ≤ v(h), (1)

thenh ∈ C (g(x ));
– If h is a component ofg(A(x )) and (1) is violated, thenh /∈ C (g(x )) and

i ∈ C (g(x )) for all i ∈ N (h);
– If h is not a component ofg(A(x )), thenh /∈ C (g(x )).

3 Assuming an upper bound on demands is without loss of generality, since one could always set
D = v(g∗) without affecting any of the equilibria of the game.
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In words, the componenth forms as the outcome of the historyx if and
only if the arcs sent inx generateh and the demands of the players inN (h)
are compatible, in the sense that they do not exceed the value produced by the
componenth.

2.2.3 Payoffs and strategies

The payoff of playeri is defined as a function of the historyx . Letting hi (x ) ∈
C (g(x )) denote the component ofg(x ) containingi , playeri gets

Pi (x ) = di if
∑

j∈hi (x ) dj ≤ v(hi (x ))
0 otherwise.

(2)

This implies that we allow for free disposal.
A strategy for playeri is a functionσi : λi X → Xi . A strategy profile for

Γ (v) is a vector of functionsσ = (σ1, . . . , σn ). A Subgame Perfect Equilibrium
(henceforth SPE) forΓ (v) is defined as follows. For any subgameλi x , let σ |λi x
denote the restriction of the strategy profileσ to the subgame. A strategy profile
σ∗ is a SPE ofΓ (v) if for every subgameλi x the profileσ∗ |λi x represents a
Nash Equilibrium. We will denote byf (λi x ) a SPE path of the subgameλi x ,
i.e., equilibrium continuation histories afterλi x . We will only consider equilibria
in pure strategies.

3 Equilibrium

In this section we analyze the set of SPE of the gameΓ (v). We first show that
SPE always exist. We then study the efficiency properties of SPE. Finally, we
illustrate by example what is the role of the two main features ofΓ (v), namely
the sequential structure and the endogeneity of payoff division, for the efficiency
result.

3.1 Existence of equilibrium

Since the gameΓ (v) is not finite in the choice of payoff demands, we need to
establish existence of a SPE (see the Appendix for the proof).

Theorem 1. The game Γ (v) always admits Subgame Perfect Equilibria in pure
strategies.

3.2 Efficiency properties of equilibria

This section contains the main result of the paper:all the SPE ofΓ (v) induce
an efficient network. We obtain this result for a wide class of value functions,
satisfying a weak ”superadditivity” condition, that we callsize monotonicity. We
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first provide the definition and some discussion of this condition, then we prove
our main result. We then analyze the role of each feature of our game (sequen-
tiality and endogenous payoff division) and of size monotonicity in obtaining
our result, and discuss the latter in the framework of the efficiency-stability de-
bate related to Aumann and Myerson (1988) and Jackson and Wolinsky (1996)
seminal contributions.

Definition 1. The link ij is critical for the graph g if ij ∈ g and #C (g) > #C (g−
ij ).

In words, a link is critical for a graph if by removing it we increase the
number of components. Intuitively, a critical link is essential for the component
it belongs to in the sense that without it that component would split in two
different components.

Definition 2. The value function v satisfies size monotonicity if and only if for all
graphs g and critical link ij ∈ g

v(g) > v(g − ij ).

Size monotonicity requires that merging components in the “minimal” way
strictly increases the value of the graph. By “minimal” we mean here that such
merging occurs through a single additional link. This condition is trivially satis-
fied when additional links always increase the value of the graph, leading to an
efficient fully connected graph. However, this condition is also compatible with
cases in which “more” communication (more connected players) originates more
value, but, for a fixed set of players that are communicating, this value decreases
with the number of links used to communicate. Value functions exhibiting con-
gestion in the number of links within components satisfy this assumption. The
extreme case is represented by value functions such that the efficient graph con-
sists of a single path connecting all players, or the star graph, with one player
connected with all other players and no other pair of players directly linked (mini-
mally connected graphs). One example that would originate such value functions
is the symmetric connection model studied in Jackson and Wolinsky (1996),
with a cost of maintaining links for each player, which is a strictly convex and
increasing function of the number of maintained links.

The next lemma formally proves one immediate implication of size mono-
tonicity, i.e., that all players are (directly or indirectly) connected.

Lemma 1. Let v satisfy size monotonicity. All efficient graphs are connected, i.e.,
if g is efficient then C (g) = {g} and N (g) = N .

Proof. Consider a graphg such thatC (g) = {h1, . . . , hp}, with p > 1. Then let
i ∈ h1 andj ∈ h2 (ij /∈ g). The link ij is a critical link according to Definition 1,
so that, by size monotonicity ofv, we have thatv(g) < v(g + ij ), implying that
g is not efficient. QED.

We now state our main theorem, proving that size monotonicity is a sufficient
condition forall SPE to be efficient.
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Theorem 2. Let v satisfy size monotonicity. Every SPE of Γ (v) leads to an effi-
cient network.

We prove the theorem in two steps. We first prove by an induction argument
in step 1 that if a given history is not efficient and satisfies a certain condition
on payoff demands, then some player has a profitable deviation. Then, in step 2,
we show that if some historyx such thatg(x ) /∈ G∗ is a SPE, then the condition
on payoff demands introduced in step 1 would be satisfied, which implies that
there exists a profitable deviation fromany history that leads to an inefficient
network.

The proof relies on two lemmas, the first characterizing equilibrium payoffs
and the second characterizing equilibrium graphs.

Lemma 2. Let v satisfy size monotonicity. For any arbitrary history of Γ (v),
λmx, the continuation equilibrium payoff for player m, Pm (f (λmx )), is strictly
positive, for all m = 1, . . . , n − 1.

Proof. Recall thatn is the last player in the order of playρ, and letm < n be
any player moving beforen. Consider an arbitrary historyλmx . In order to prove
that the continuation equilibrium payoff is strictly positive for playerm, let us
show that there existsε > 0 such that if playerm plays the actionxm =

(
an

m , ε
)
,

then it is a dominant strategy for playern to reciprocatem ’s arc and form some
feasible componenth with mn ∈ h.
Suppose first thatε = 0, so that, at the arbitrary historyλmx , playerm chooses
xm = (an

m , 0).
We want to show that there cannot be an equilibrium continuation history
f (λmx , xm ) such that, denoting the history(λmx , xm , f (λmx , xm )) by x̂ , hm (x̂ ) =
mm (i.e., wherem is alone even though she demands 0). Suppose this is the case,
and let ˆxn = (an , dn ) be a strategy for playern such thatam

n /∈ an . Let hn (x̂ ) be
the component includingn if this continuation history is played. Denote byh ′

n

the component obtained by adding the linkmn to hn (x̂ ). By size monotonicity,

v(hn (x̂ )) < v(h ′
n ).

If the componenthn (x̂ ) is feasible, the componenth ′
n is feasible too, for some

demanddn + δ > dn of player n.4 It follows that it is dominant forn to recip-
rocatem ’s arc and get a strictly greater payoff. So ˆx cannot be an equilibrium
continuation payoff.
Consider thenxm (ε) ≡ (an

m , ε) with ε > 0.
Consider the continuation history ˆx (ε) = f (λmx , xm (ε)), with

x̂ (ε) = (λmx , xm (ε), f (λmx , xm (ε))) ,

4 If hn (λm x , xm , x̂ ) is not feasible, then either there exists some positive demandd ′
n for playern

such that
∑

i∈N (h′
n )\n

di + d ′
n = v(h′

n ) or playern could just reciprocate playerm ’s arc and demand

d ′
n = v(mn) > 0 (this last inequality by size monotonicity).
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and x̂n = (an , dn ) such thatam
n /∈ an . Let hn (x̂ (ε)) be the component that includes

n given x̂ (ε). Let againh ′
n (ε) ≡ mn ∪ hn (x̂ (ε)). Define

δmin ≡ min
ε≥0

v
(
h ′

n (ε)
) − v (hn (x̂ (ε)) > 0

where the strict inequality comes form size monotonicity.
Let 0 < ε < δmin.
If hn (x̂ (ε)) is feasible, thenh ′

n (ε) is feasible too, for some positive additional
demand of playern. Thus, it is possible for playern to demand a strictly higher
payoff thandn (this becauseε < δmin).5 Therefore a positive payoff is always
attainable by any playerm < n, at any history. QED.

Lemma 3. Let v satisfy size monotonicity. Let x be a SPE history of the game
Γ (v). In the induced graph g(x ) all players are connected, i.e., C (g(x )) = {g(x )}
and N (g(x )) = N .

Proof. Suppose thatC (g(x )) = {h1, . . . , hk} with k > 1. Let againn be the last
player in the orderingρ. Note first that there must be some componenthp such
that n /∈ hp , since otherwise the assumption thatk > 1 would be contradicted.
Also, note that by Lemma 2,x being an equilibrium implies that6

∑
i∈N (hp )

di = v(hp) ∀p ∈ {1, . . . , k}.

Let us then considerhp and the last playerm in N (hp) according to the ordering
ρ. Let x̂m (ε) =

(
am ∪ an

m , dm + ε
)
, with continuation historyf (λmx , x̂m (ε)). Let

x̂ (ε) = (λmx , x̂m (ε) , f (λmx , x̂m (ε)))

and let hn (x̂ (ε)) be the component includingn in g(x̂ (ε)). Suppose first that
mn /∈ hn (x̂ (ε)) and in ∈ hn (x̂ (ε)) for somei ∈ N (hp). Note first that if some
player j > m is in hn (x̂ (ε)), then by Lemma 2hn (x̂ (ε)) is feasible givenxn ,
and since playerm is getting a higher payoff than underx , the action ˆxm (ε) is a
profitable deviation for him. We therefore consider the case in which no player
j > m is in hn (x̂ (ε)), andhn (x̂ (ε)) is not feasible. In this case, it is a feasible
strategy for playern, who is getting a zero payoff underxn , to reciprocate only
playerm ’s arc and form the componenth ′

n such that, by size monotonicity,

v(h ′
n (ε)) > v(hp).

5 If insteadhn (λm x , xm (εm ), x̂m (εm )) is not feasible, then either there exists some positive demand
d ′

n such that
∑

i∈N (h′
n (εm ))\n

di + d ′
n = v(h′

n (εm )) or playern could just reciprocate playerm ’s arc and

demandd ′
n = v(mn) − εm > 0 (this last inequality again by size monotonicity).

6 Note that there cannot be any equilibrium where the last player demands something unfeasible:
since in every equilibrium the last player obtains a zero payoff, one could think that she could then
demand anything, making the complete graph unfeasible, but this would entail a deviation by one
of the previous players, who would demandε less, in order to maken join in the continuation
equilibrium. Thus, the unique equilibrium demand of playern is 0.
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If ε is small enough we get

v(h ′
n (ε)) − v(hp) > ε

which implies that reciprocating only playerm ’s arc and demandingdn =
v(h ′

n (ε)) − v(hp) − ε > 0 is a profitable deviation for playern.
Thus, we can restrict ourselves to the case in whichin /∈ hn (x̂ (ε)) for all

i ∈ N (hp). Let h ′
n (ε) be obtained by adding the linkmn to hn (x̂ (ε)). By size

monotonicity
v

(
h ′

n (ε)
) − v (hn (x̂ (ε))) > 0.

Let also
δmin ≡ min

ε≥0

[
v

(
h ′

n (ε)
) − v (hn (x̂ (ε)))

]
> 0.

Consider a demandε such that 0< ε < δmin. As in the proof of Lemma 2, we
claim that if playerm demandsε, then it is dominant for playern to recipro-
cate playerm ’s link and form the componenth ′

n (ε). Note first that, given that
0 < εm < δmin, if hn (x̂ (ε) is feasible, thenh ′

n (ε) is feasible for some positive ad-
ditional demand (w.r.t.dn ) of playern. If insteadhn (x̂ (ε) was not feasible, then
player n would be getting a zero payoff, and this would be strictly dominated
by reciprocatingm ’s arc and getting a payoff of

[
v

(
h ′

n (ε)
) − v (hn (x̂ (ε))

] − ε

which, again by the fact thatε < δmin, is strictly positive. QED.

Proof of Theorem 2.

Step 1. Induction argument.

Induction Hypothesis (H): Let x be an arbitrary history such thatg(x ) /∈ G∗.
Let m be the first player in the orderingρ such that there is nox∗ such that (1)
λm+1x∗ = λm+1x and (2)g(x∗) ∈ G∗. Let x be such that

m∑
i=1

di ≤ v (g (x )) −
n∑

i=m+1

di .

Then there exists someε > 0 and actionx∗
m =

(
a∗

m , dm + ε
)

that induce a con-
tinuation historyf

(
λmx , x∗

m

)
such that, denoting byx∗ the history (λmx , x∗

m , f

(λmx , x∗
m )), g(x∗) ∈ G∗ and

n∑
i=1

d̂i = v(g(x∗)).

(H) true for player n: Let xn = (an , dn ). Let player m, as defined in (H), be
n. In words, this means thatn could still induce the efficient graph by de-
viating to some other action. Formally, there exist some arcsa∗

n and a de-
mand d ′

n such thatg
(
x1, . . . , xn−1, a∗

n , d ′
n

) ∈ G∗ and, therefore, such that
v

(
g

(
x1, . . . , xn−1, a∗

n , d ′
n

))
> v(g(x )). By (H)

n∑
i=1

di ≤ v (g (x ))
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and by size monotonicity all players are connected ing
(
x1, . . . , xn−1, a∗

n , d ′
n

)
.

These two facts imply that playern can induce the efficient graph and demand
d ′

n = dn + εn with
εn =

[
v

(
g∗) − v (g (x ))

]
> 0.

(H) true for player m + 1 implies (H) true for player m: Suppose again thatx
is an inefficient history and thatm is the first player inx such that the action
am is not compatible with efficiency in the sense of assumption (H). Leta∗

m be
some action compatible with efficiency and letx∗

m (ε) =
(
a∗

m , dm + ε
)
. Let also

f
(
λmx , x∗

m (ε)
)

represent the corresponding continuation history, andx∗ (ε) =(
λmx , x∗

m (ε) , f
(
λmx , x∗

m (ε)
))

. We need to show that there existsε > 0 such that
g (x∗ (ε)) ∈ G∗. Note first that in the historyx∗ (ε), the first playerk such that
ak is not compatible with efficiency must be such thatk > m. Since by (H)

m∑
i=1

di ≤ v (g (x )) −
n∑

i=m+1

di

there exists anε > 0 such that

m−1∑
i=1

di + dm + ε < v
(
g∗) −

n∑
i=m+1

di .

Thus, if playerm playsx∗
m (ε), player(m + 1) faces a history

(
λmx , x∗

m (ε)
)

that
satisfies the inductive assumption (H). Suppose now that player (m +1) optimally
plays some actionxm+1 such that no efficient graph is compatible (in the sense of
assumption (H)) with the history(λmx , xm (ε) , xm+1). Then, by (H) we know there
would be a deviation for player (m + 1), contradicting the assumption thatxm+1

is part of the continuation history at(λmx , xm (ε)). Thus, we know that player
(m + 1) will optimally play some strategyx∗

m+1 such that the continuation history
f
((

λmx , xm (ε) , x∗
m+1

))
induces a feasible efficient graph.

Step 2. We now show that the induction argument can be applied to each can-
didate SPE historyx of Γ (v) such thatv(g(x )) < v(g∗) (which we want to rule
out). This is shown to imply that the first playerm (such that there does not exist
x∗ such thatλm+1x∗ = λm+1x andv (g (x∗)) = v(g∗)) has a profitable deviation.

Note first that by Lemma 3 ifx is a SPE history then all players are connected.
This, together with Lemma 2, directly implies that

n∑
i=1

di = v (g (x ))

or, equivalently, that
m∑

i=1

di = v (g (x )) −
n∑

i=m+1

di

for all m = 1, . . . , n. It follows that the induction argument can be applied to
all inefficient SPE histories to conclude that the first player whose action is
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not compatible with efficiency in the sense of assumption (H) has some action
x∗

m (ε) =
(
a∗

m , dm + ε
)

such thatε > 0 and such that the induced graphg (x∗ (ε)) ∈
G∗ is feasible, where, as usual,x∗ (ε) =

(
λmx , x∗

m (ε) , f
(
λmx , x∗

m (ε)
))

. Since
g (x∗ (ε)) is feasible, then the actionx∗

m (ε) represents a deviation for playerm,
proving the theorem. QED.

The efficiency theorem extends to the case in which the order of play is
random, i.e., in which each mover only knows a probability distribution over
the identity of the subsequent mover. This is true because the value function
is assumed to satisfy anonymity. Another important remark about the role of
the order of play regards the asymmetry of equilibrium payoffs: for any given
order of play the equilibrium payoffs are clearly asymmetric, since the last mover
always obtains 0. However, ifex ante all orders of play have the same probability,
then the expected equilibrium payoff isE (Pi (g(x (ρ)))) = v(g∗)

n ∀i .

3.3 Discussion

In this section we want to discuss our result in the framework of the recent
literature debate on the possibility of reconciling efficiency and stability in the
process of formation of networks. As we pointed out in the introduction, this
debate has been initiated by two seminal papers: Aumann and Myerson (1988)
have shown that if the Myerson value is imposed as a fixed imputation rule, then
forward looking players forming a networks through sequential link formation
can induce inefficient networks. The value function they consider is obtained
from a traditional coalitional form game. Jackson and Wolinksy (1996) obtained
a general impossibility result considering value functions that depend on the
communication structure rather than only on the set of connected players. This
incompatibility has been partially overcome by Dutta and Mutuswami (1997) who
show that it disappears if component balancedness and anonymity are required
only on stable networks.

We first note that thesize monotonicity requirement of Theorem 2 in the
present paper is compatible with the specific value function for which Jackson
and Wolinsky show that no anonymous and component balanced imputation rule
exists such that at least one stable graph is efficient. In this sense, we can conclude
that in our game the aforementioned conflict between efficiency and stability does
not appear. Since however imputation rules of the type considered by Dutta and
Mutuswami allow for efficient and stable networks, our game can be considered
as another way to overcome that conflict.

The real novelty of our efficiency result is therefore the fact thatall subgame
perfect equilibria of our game are efficient. In the rest of this section we will
show that both the sequential structure of the game and the endogeneity of the
final imputation rule are ”tight” conditions for the result, as well as the size
monotonicity requirement. Indeed, we first show that relaxing size monotonicity
generates inefficient equilibria. We then construct a value function for which all
fixed component balanced and anonymous imputation rules generate at least one
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inefficient stable graph in the sense of Jackson and Wolinsky. The same is shown
for a game of endogenous payoff division in which agents move simultaneously.
We finally show that sequentiality alone does not generate our result, since no
fixed component balanced and anonymous imputation rule exists such that all
subgame perfect equilibria are efficient.

3.3.1 Eliminating size monotonicity

The next example shows that if a value functionv does not satisfy size mono-
tonicity, then the SPE ofΓ (v) may induce an inefficient network.

Example 1. Consider a four-player game with the following value function:

v(h) = 9 if N (h) = N

v(h) = 8 if #N (h) = 3 and #L(h) = 2;

v(h) = 5 if #N (h) = 2;

v(h) = 0 otherwise.

The efficient network is one with two separate links. We show that the historyx
such that

x1 =
(
(a2

1 , a3
1 , a4

1), 3
)

x2 =
(
(a1

2 , a3
2 , a4

2), 3
)

x3 =
(
(a2

3 , a4
3), 3

)

x4 = (a3
4 , 0)

is a SPE of the gameΓ (v), leading to the inefficient graph (12, 23, 34).

1. Player 4: given that at the historyλ4x we haved1 + d2 + d3 = 9, player 4
optimally reciprocates the arc of player 3.

2. Player 3: sending justa2
3 or a1

3 or both, would let player 3 demand at most
d3 = 2; forming a link just with player 4 would allow player 3 to demand
at mostd3 = 3, since player 4 would have at that node the outside option of
going with the first two movers.

3. Player 2: If d2 > d1 = 3, then player 3 has the outside option of just
reciprocating the arc of player 1 and demandd3 = 3. Thus,d2 > 3 is not
a profitable deviation for player 2. In terms of arcs, note first that if player
2 sends justa1

2 then d2 ≤ 2, given thatd1 = 3. Suppose now that player 2
sends arcs only to 1 and 4 demandingd2 = 3 +ε. In this case player 3 would
react by sending an arc just to player 4, demanding 3 +ε − δ (ε > δ > 0),
which 4 would optimally reciprocate.

4. Player 1: We just check that player 1 could not demandd1 = 3 +ε > 3. If he
does, then player 2 can “underbid” by a smallδ, as in the argument above,
so that player 3 and/or 4 would always prefer to reciprocate links with player
2.
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This example has shown that when size monotonicity is violated then ineffi-
cient equilibria may exist. The intuition for the failure of Theorem 2 whenv is
not size monotonic can be given as follows. By Lemma 1, under size monotonic-
ity all efficient graphs are connected (though not necessarily fully connected).
It follows that the gains from efficiency can be shared among all players in
equilibrium (since efficiency requires all players to belong to the same compo-
nent). When size monotonicity fails, however, the efficient graph may consist of
more than one component. It becomes then impossible to share the gains from
efficiency among all players, since side payments across components are not
allowed in the gameΓ (v). It seems reasonable to conjecture that it would be
possible to conceive a game form allowing for such side payments and such that
all equilibria are efficient even when size monotonicity fails.

3.3.2 The role of sequentiality

The next example displays a value function satisfying size monotonicity, and
serves the purpose of demonstrating the crucial role of the sequential structure of
our game for the result thatall equilibria are efficient. In fact, neither using the
stability concept of Jackson and Wolinsky, nor with a simultaneous move game,
it is possible to eliminate all inefficient equilibria.

Example 2. Consider a four-player game with the following value function:

v(h) = 1 if #N (h) = 2;

2 if #N (h) = 3;

20 if #N (h) = 4 and #Li = 2 ∀i ;

24 if h = gN ;

4 otherwise.

This value function satisfies size monotonicity, and the only two connected
networks with value greater than 4 are the complete graph and the one where
each player has two links.

Let us first show that the inefficient network with value equal to 20 is stable,
in the sense of Jackson and Wolinsky (1996),for every allocation rule satisfying
anonymity and component balancedness. To see this, note that in such network
anonymity implies that each player would receive 5, which is greater than any-
thing achievable by either adding a new link or severing one (5> 4). Along the
same line it can be proved that the complete (efficient) graph is stable.

Similarly, even if we allow payoff division to be endogenous, a simultaneous
move game would always have an equilibrium profile leading to the inefficient
network with value equal to 20. To see this, consider a simultaneous move game
where every player announces at the same time a set of arcs and a demand
(keeping all the other features of the game as inΓ (v)). Consider a strategy
profile in which every player demands 5 and sends only two arcs, in a way that
every arc is reciprocated. It is clear that any deviation in terms of arcs (less
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or more) induces a network with value 4, and hence the deviation cannot be
profitable.

On the other hand, given the sequential structure ofΓ (v), the inefficient
networks are never equilibria, and the intuition can be easily obtained through
the example above: callingσ the strategy profile leading to the inefficient network
discussed above, the first mover can deviate by sending all arcs and demanding
more than 5, since in the continuation game he expects the third arc will be
reciprocated and the complete graph will be formed.

3.3.3 The role of endogenous payoff division

Having shown the crucial role of sequentiality, the next task is to show the
relevance of the other innovative aspect ofΓ (v), namely, endogenous payoff
division. Consider a gameΓ (v, Y ) that is like Γ (v) but for the fact that the
action space of each player only includes the set of possible arcs he could send,
and no payoff demand can be made. The imputation ruleY (of the type consid-
ered in Jackson and Wolinsky 1996) determines payoffs for each network. We
can now show by example that there are some value functions that satisfy size
monotonicity for which no allocation rule satisfying anonymity and component
balancedness can eliminate all inefficient networks from the set of equilibrium
outcomes ofΓ (v, Y ).

Proposition 1. There exists value functions satisfying size monotonicity and such
that every fixed imputation rule Y satisfying anonymity and component balanced-
ness induces at least one inefficient equilibrium in the associated sequential game
Γ (v, Y ).

Proof. By Example.

Example 3. Consider a three-player gameΓ (v, Y ) with the following value
function:7

v(12) = v(23) =v(13) = 1;

v(12, 23) = v(13, 12) =v(13, 23) = 1 +ε > 1;

v(12, 13, 23) = 1.

Given anonymity ofY , the only payoff distribution if the complete graph
forms is Pi (gN ) = 1

3. Similarly, if h = ij , then bothi and j must receive1
2. If

h = (ij , jk ), then let us callx the payoff toi andk andy the payoff to the pivotal
player,j , with (2x + y = 1 + ε). Let ε be small, so that1+ε

3 < 1
2.

1. If y ≥ 1
2, the first mover cannot send one arc only. If he sends an arc only

to the second mover, then player 2’s best response is to send two arcs and
get y ; if he sends an arc to the third mover only, the second mover does the

7 This value function was used in Jackson and Wolinsky (1996) to get their impossibility result
under the axiomatic approach discussed in the previous section.
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same, and the third mover getsy . So, if the first mover sends only one arc his
payoff is 1+ε−y

2 < 1
3. By sending both arcs, player 1 would end up forming

the complete graph and obtaining13, which makes the complete graph an
equilibrium network.

2. If y < 1
2, note that there always exists an equilibrium continuation history

leading to the graph (12) if player 1 sends the arc only to player 2. Thus, if
x < 1

2, player 1 cannot get as much as1
2 on any other network, and sending

an arc only to player 2 will therefore be an equilibrium strategy. If on the
contraryx ≥ 1

2, there could be an incentive for player 1 to form the efficient
graph and getx . However, it can be easily checked that in this case, the
following strategy profile is an equilibrium:

σ2 = a2
1

σ2 =




σ2
(
a2

1 , a3
1

)
=

(
a1

2 , a3
2

)
σ2

(
a3

1

)
=

(
a1

2 , a3
2

)
σ2

(
a2

1

)
=

(
a1

2

)

σ3 =




σ3
(
a2

1 , a3
1 , a1

2 , a3
2

)
= σ3

(
a2

1 , a3
1 , a1

2

)
= σ3

(
a2

1 , a1
2

)
= a1

3
σ3

(
a2

1 , a3
1 , a3

2

)
= a2

3
σ3

(
a3

1 , a3
2 , a1

2

)
= σ3

(
a3

1 , a3
2

)
= a2

3
σ3

(
a3

1 , a1
2

)
= σ3

(
a2

1 , a1
2 , a3

2

)
= σ3

(
a2

1 , a3
2

)
=

(
a1

3 , a2
3

)
.

In words, there are optimal strategies that support the pair (12) as a SPE
equilibrium. QED.

4 Link-specific demands

Consider now a variation of the game,Γ1(v), which differs fromΓ (v) in that
players can attach payoff demands on each arc they send, rather than demanding
just one aggregate payoff from the whole component. Playeri ′s demanddi is
a vector of real positive numbers, one for each arc sent in the vectorai . We
describe how payoffs depend on histories inΓ1(v) on the basis of the formal
description of the gameΓ (v):

1. The feasibility condition given in (1) is replaced by:
∑

i∈N (h)

∑
j :ij∈h

d j
i ≤ v(h); (3)

2. The payoff for playeri in the componenth ∈ C (g(x )) is given by

Pi (x ) =
∑

j/=i :ij∈h d j
i if L(h(x )) /= ∅

0 otherwise
(4)

(instead of (2)). In words, the payoff for playeri from history x would be
equal to the sum of the link-specific demands made byi to the members of
her component whom she is directly linked to.
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The same efficiency result as the one obtained in Theorem 2 can be obtained
for the gameΓ1 (v). Proofs are found in the appendix.

Lemma 4. Let v satisfy size monotonicity. Let λmx be an arbitrary history of the
game Γ1(v). Then Pi (f (λmx )) > 0 for all i = 1, ..., n − 1.

Lemma 5. Let v satisfy size monotonicity. Let x be a SPE history of the game
Γ1(v). In the induced graph g(x ) all players are connected, i.e., C (g(x )) = {g(x )}
and N (g(x )) = N .

Theorem 3. Let v satisfy size monotonicity. Every SPE of Γ1(v) leads to an effi-
cient network.

5 Conclusions

This paper provides an important result for all the situations in which a com-
munication network forms in the absence of a mechanism designer: if players
sequentially form links and bargain over payoffs, the outcome is an efficient net-
work. This result holds as long as disaggregating componentsvia the removal
of “critical” links lowers the aggregate value of the network. In other words,
efficiency arises whenever more communication is good, at least when it is ob-
tained with the minimal set of links. We have shown this result by proving that
all the subgame perfect equilibria of a sequential link formation game, in which
the relevant players demand absolute payoffs, lead to efficient networks. On the
other hand, endogenous payoff division is not sufficient to obtain optimality when
the optimal network has more than one component. Allowing for link-specific
demands we obtain identical results.

Appendix

Proof of Theorem 1. We prove the theorem by showing that every player’s max-
imization problem at each subgame has a solution. Using the notation introduced
in the previous sections, we show that for each playerm and historyx , there
exists an elementxm ∈ Xm maximizingm ’s payoff given the continuation histo-
ries originating at (λmx , xm ). Since the choice setXm is given by the product set
Am × [0, D ], where the finite setAm is the set of vectors of arcs that playerm
can choose to send to other players in the game, it suffices to show that we can
associate with each vector of arcsam ∈ Am a maximal feasible demanddm (am ).

Suppose not. Then, givenam , ∀dm∃ε > 0 such that (dm + ε) is feasible.
This, together with the fact that the set [0, D ] is compact, imply that there exists
some demanddm (am ) which is not feasible givenam and which is the limit
of some sequence of feasible demands (dp

m )p=1,...,∞. We prove the theorem by
contradicting this conclusion.

First, we denote byx a continuation history given (am , dm (am )), and, for all
p, we denote byx (p) a continuation history given (am , (dp

m )). For allp, feasibility
of dp

m implies that playerm belongs to some componenthp
m such that
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v(hp
m ) ≥

∑
i∈N (hp

m )
i = m

di (p) + dp
m . (5)

We claim that asdp
m → dm (am ) (5) remains satisfied for some componenthm .

Suppose first that there existsp such that the componenthp
m is the same for all

p ≥ p. We proceed by induction.
Induction Hypothesis: Consider the historyx and the historiesx (p), p ≥ p,

the history identical tox but for playerm ’s demand which isdp
m . If xi is the

best response of playern at the subgameλnx (p) for all p ≥ p thenxi is a best
response of playern at λnx .

Player n: At the subgameλnx (p) playern can either optimally join a com-
ponent includingm or not join any component includingm. In the first case, his
payoff by not joiningm ’s component with actionx n (p) is weakly greater than
the one he gets by joining with any actionxn (p):

Pn (λnx (p), x n (p)) ≥ Pn (λnx (p), xn (p))

Bringing m ’s demand to the limit does not change the above inequality.
In the second case, playern ’s payoff is maximized by joining a component

including m with actionx n (p):

Pn (λnx (p), x n (p)) ≥ Pn (λnx (p), xn (p))

We can apply the same limit argument in this case, by noting that at the limit
condition (5) remains satisfied.

True for player k + 1 implies true for player k : Assume that the induction
hypothesis is satisfied for all playersk +1, . . . , n. Then, the continuation histories
after the subgamesλk+1x (p) andλk+1x are the same. Playerk ’s optimal choice
x k (p) at λk x (p) satisfies the following condition for allxk ∈ Xk :

Pk (λk x (p), x k (p), f (λk x (p), x k (p))) ≥ Pk (λk x (p), xk (p), f (λk x (p), xk (p))).

Since we have argued that by the induction hypothesis that

f (λk x (p), x k (p)) = f (λk x , x k (p));

f (λk x (p), xk (p)) = f (λk x (p), xk (p)),

we conclude that at the limit

Pk (λk x , x k (p), f (λk x , x k (p))) ≥ Pk (λk x , xk (p), f (λk x (p), xk (p))).

This means thatx k (p) is still optimal atλk x . Moreover, the feasibility condition
(5) still holds whenever playerk was joining a component includingm. This
concludes the induction argument.

The above argument directly implies that if componenthp
m is still feasible at

the limit, so that the demanddm (am ) is itself feasible.
Finally, suppose that there exists nop such that the componenth

p
m is the

same for allp ≥ p. In this case, since the set of possible components to which
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m can belong to givenam is finite, for each possible such componenth we can
associate a subsequence{dm (h)}p=1,...,∞ → dm (am ). The feasibility condition
applied to each componenth implies that for allh:

v(h) ≥
∑

i∈N (h)
i = m

di + dm (h).

We can apply the above induction argument to this case by considering some con-
verging subsequence, thereby showing that there exists some feasible component
hm induced by the demanddm (am ). QED.

Proof of Lemma 4. Let n be the last player in the orderingρ and let m < n.
Consider an arbitrary historyλmx . We show that there exists a demanddn

m > 0
such that if playerm plays the actionxm =

(
an

m , dn
m

)
then it is a dominating

strategy for playern to reciprocatem ’s arc and form some feasible component
h with mn ∈ h.

For a givendn
m > 0, let xm

(
dn

m

)
=

(
an

m , dn
m

)
, and consider again the contin-

uation history ˆx
(
dn

m

)
= f

(
λmx , xm

(
dn

m

))
. Let alsoxn = (an , dn )8 be a strategy

for player n such thatam
n /∈ an . Let h(n, dn

m ) be the component that includesn
if xn is played at the historyλn x̂

(
dn

m

)
andh ′(n, dn

m ) be the component obtained
by adding the linkmn to h(n, dn

m ). Define

δmin ≡ min
dn

m>0

{
v

(
h ′(n, dn

m )
) − v

(
h(n, dn

m )
)}

> 0,

where the last inequality comes form size monotonicity. Let now 0< dn
m < δmin.

Note first that ifh(n, dn
m ) is feasible, thenh ′(n, dn

m ) is feasible for some positive
demanddm

n of player n. Thus, playern can get a strictly higher payoff than
underxn (this becauseε < δmin). If insteadh(n, dn

m ) is not feasible, then either
there exists some positive demanddm

n for playern such that
∑

i∈N (h′(n,dn
m ))\n

∑
j :ij∈h′(n,dn

m ))

dj
i + dm

n = v(h ′(n, dn
m ))

or player n could just reciprocate playerm ’s arc and demand herdm
n =

v(mn) − dn
m > 0 (this last inequality again follows from size monotonicity). It

follows that it is dominant forn to reciprocatem ’s arc and get a strictly positive
payoff. QED.

Proof of Lemma 5. Suppose thatC (g(x )) = {h1, . . . , hk} with k > 1. Let againn
be the last player in the orderingρ. Note first that there must be some component
hp such thatn /∈ hp , since otherwise the assumption thatk > 1 would be
contradicted. Also, note that by Lemma 4,x being an equilibrium implies that
for all p = 1, . . . , k ∑

i∈N (hp )

∑
j :ij∈hp

d j
i = v(hp).

8 Recall that in gameΓ2(v) dn is a vector, with as many dimensions as the number of arcs sent
by n.
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Let us then considerhp and the last playerm in N (hp) according to the order-
ing ρ. Let x̂m

(
dn

m

)
=

(
am ∪ an

m , dm ∪ dn
m

)
, with continuation history ˆx

(
dn

m

)
=

f
(
λmx , x̂m

(
dn

m

))
. Let h(n, dn

m ) be the component includingn in g(x̂
(
dn

m

)
). Sup-

pose first thatmn /∈ h(n, dn
m ) and in ∈ h(n, dn

m ) for somei ∈ N (hp). Consider
then the demand

d̂ n
m < min

j∈N (hp )

{
dn

j

}
.

Let now playerm play d̂ n
m . Suppose that stillin ∈ N (h(n, dn

m )) for somei ∈
N (hp). Then it would be a profitable deviation for playern to reciprocate the arc
sent bym instead of the arc sent by some other playeri ∈ N (hp), to which a
demanddn

i > dn
m is attached.

Suppose now thatin /∈ N (h(n, dn
m )) for all i ∈ N (hp). Let h ′(n, dn

m ) be
obtained by adding the linkmn to h(n, dn

m ). By size monotonicity

v
(
h ′(n, dn

m )
) − v

(
h(n, dn

m )
)

> 0.

Now let
δmin ≡ min

dn
m≥0

[
v

(
h ′(n, dn

m )
) − v

(
h(n, dn

m )
)]

> 0.

Consider now a demand 0< dn
m < δmin. As in the proof of Lemma 4, we claim

that it is dominant for playern to reciprocate playerm ’s link and form a feasible
component. Note first that, given that 0< dn

m < δmin, if h(n, dn
m ) is feasible,

then h(n, dn
m ) is feasible for some positive demanddm

n of player n. If instead
h(n, dn

m ) was not feasible, then playern would be getting a zero payoff, and this
would be strictly dominated by reciprocatingm ’s arc and getting a payoff of[
v

(
h ′(n, dn

m )
) − v

(
h(n, dn

m )
)] − dn

m , which, again by the fact thatdn
m < δmin, is

strictly positive. QED.

Proof of Theorem 3. We proceed by first showing by induction, in step 1, that if a
given history is not efficient and satisfies a certain condition on payoff demands,
then some player has a profitable deviation. In step 2 we establish that if a
history x , leading to an inefficient graph, was SPE, then it would have to satisfy
the condition on payoff demands described in step 1, which implies that there
exists a profitable deviation fromany such historyx leading to an inefficient
graph.

Step 1. Induction Argument.

Induction Hypothesis (H): Let x be an arbitrary history such thatg(x ) /∈ G∗.
Let m be the first player in the orderingρ such that there is nox∗ such that (1)
λm+1x∗ = λm+1x and (2)g(x∗) ∈ G∗. Let x be such that

m∑
i=1

∑
j :ij∈N (h(i ))

dj
i ≤ v (g (x )) −

n∑
i=m+1

∑
j :ij∈N (h(i ))

dj
i .

Then there exists someεm > 0 such that the actionx∗
m =

(
a∗

m , dm + εm
)

induces

a history ˆx = f
(
λmx , x∗

m

)
such thatg(x̂ ) ∈ G∗ and

n∑
i=1

∑
j :ij∈N (h(i )) d̂ j

i = v(g(x̂ ).
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(H) true for player n: Let xn = (an , dn ). By assumption (H), there exists some
arcsa∗

n such thatg
(
λna, a∗

n

) ∈ G∗ and, therefore, such thatv
(
g

(
λna, a∗

n

))
>

v(g(x )). By (H)
n∑

i=1

∑
j :ij∈N (h(i ))

dj
i ≤ v (g (x )) ;

Moreover, by size monotonicity all players are connected ing
(
λna, a∗

n

)
.9 These

two facts imply that playern can induce the efficient graph and demand the
vectordn + εn , where

∑
i∈N (g∗):in∈g∗

εi
n =

[
v

(
g

(
λna, a∗

n

)) − v (g (x ))
]

> 0.

(H) true for player m + 1 implies (H) true for player m: Suppose again thatx
is an inefficient history and thatm is the first player inx such that the action
am is not compatible with efficiency (in the sense of assumption (H)). Leta∗

m

be some vector of arcs compatible with efficiency and letx∗
m (ε) =

(
a∗

m , dm + ε
)
.

Let x∗ (ε) ≡ f
(
λmx , x∗

m (ε)
)

represent the relative continuation history. We need
to show that there existsε > 0 such thatg (x∗ (ε)) ∈ G∗. Note first that in the
history x∗ (ε) the first playerk such thatak is not compatible with efficiency
must be such thatk > m. Also, since by (H)

m∑
i=1

∑
j :ij∈N (h(i ))

dj
i ≤ v (g (x )) −

n∑
i=m+1

∑
j :ij∈N (h(i ))

dj
i

there exists anεm > 0 such that

m−1∑
i=1

∑
j :ij∈N (h(i ))

dj
i +

∑
j :mj∈N (h(m))

(
dj

m + εm
)

< v
(
g∗) −

n∑
i=m+1

∑
j :ij∈N (h(i ))

dj
i .

Thus, if playerm playsx∗
m (εm ), playerm + 1 faces a history

(
λmx , x∗

m (εm )
)

that
satisfies the inductive assumption (H). Suppose now that playerm + 1 optimally
plays some actionxm+1 such that no efficient graph is compatible (in the sense of
assumption (H)) with the history

(
λmx , x∗

m (εm ) , xm+1
)
. Then, by (H) we know

there would be a deviation for playerm + 1, contradicting the assumption that
xm+1 is part of the continuation history at

(
λmx , x∗

m (εm )
)
. Thus, we know that

player m + 1 will optimally play some strategyx∗
m+1 such that the continuation

history f
((

λmx , x∗
m (εm ) , x∗

m+1

))
induces a feasible efficient graph.

Step 2. We now show that the induction argument can be applied to each SPE
history x of Γ2(v) such thatg(x ) /∈ G∗. This is shown to imply that the first
playerm such that there is nox∗ such thatλm+1x∗ = λm+1x andg(x∗) ∈ G∗ has
a profitable deviation.

9 λi a constitutes a slight abuse of notation, describing the history of arcs sent before the turn of
player i .
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Note first that by Lemma 5 ifx is a SPE history then all players are connected.
This, together with Lemma 4, directly implies that

n∑
i=1

∑
j :ij∈N (h(i ))

dj
i = v (g (x ))

or, equivalently, that

m∑
i=1

∑
j :ij∈N (h(i ))

dj
i = v (g (x )) −

n∑
i=m+1

∑
j :ij∈N (h(i ))

dj
i

for all m = 1, . . . , n. It follows that the induction argument can be applied
to all inefficient SPE histories, to conclude that the first player whose ac-
tion is not compatible with efficiency in the sense of (H), has some action
x∗

m (εm ) =
(
a∗

m , dm + εm
)

such thatεm > 0 and such that the induced graph
g

(
f
(
λmx , x∗

m (εm )
)) ∈ G∗ is feasible. Sinceg

(
f
(
λmx , x∗

m

))
is feasible, then the

actionx∗
m (εm ) represents a deviation for playerm, proving the theorem.QED.
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