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We consider decision makers who know that payoff relevant ob
servations are generated by a process that belongs to a given
class M , as postulated in Wald (1950). We incorporate this
Waldean piece of objective information within an otherwise sub
jective setting a la Savage (1954) and show that this leads to a
twostage subjective expected utility model that accounts for both
state and model uncertainty.

expected utility | model uncertainty | state uncertainty

Abbreviations: DM, decision maker; SEU, subjective expected utility

Consider a decision maker who is evaluating acts whose outcomes
depend on some verifiable states, that is, on observations (work-

ers’ outputs, urns’ drawings, rates of inflation, and the like). If the
DM believes that observations are generated by some probability
model, two sources of uncertainty affect his evaluation: model un-
certainty and state uncertainty. The former is about the probability
model that generates observations, the latter is about the state that
obtains (and that determines acts’ outcomes).

State uncertainty is payoff relevant and, as such, it is directly rel-
evant for DM’s decisions. Model uncertainty, in contrast, is not pay-
off relevant and its role is instrumental relative to state uncertainty.
Moreover, models cannot always be observed: while in some cases
they have a simple physical description (e.g., urns’ compositions), of-
ten they do not have it (e.g., fair coins). For these reasons, the purely
subjective choice frameworks „a la Savage [1] focus on the verifiable
and payoff relevant state uncertainty. They posit an observation space
S over which subjective probabilities are derived via betting behav-
ior.

In contrast, classical statistical decision theory a la Wald [2] as-
sumes that the DM knows that observations are generated by a prob-
ability model that belongs to a given subset M , whose elements are
regarded as alternative random devices that Nature may select to gen-
erate observations.1 In other words, Wald’s approach posits a model
space M in addition to the observation space S. In so doing, Wald
adopted a key tenet of classical statistics, that is, to posit a set of
possible data generating processes (e.g., Normal distributions with
some possible means and variances), whose relative performance is
assessed via available evidence (often collected with i.i.d. trials)
through maximum likelihood methods, hypothesis testing, and the
like. Though models cannot be observed, in Wald’s approach their
study is key to better understand state uncertainty.

Is it possible to incorporate this Waldean key piece of objective
information within Savage’s framework? Our work addresses this
question and tries to embed this classical datum within an otherwise
subjective setting. Besides its theoretical interest, this question is rel-
evant since in some important economic applications it is natural to
assume, at least as a working hypothesis, that DMs have this kind of
information (see, e.g., Sargent [3]).

Our approach takes the objective information M as a primitive
and enriches the standard Savage framework with this datum: DMs
know that the true model m that generates data belongs to M . Behav-
iorally, this translates into the requirement that their betting behavior
(and so their beliefs) be consistent with M :

m (F ) ≥ m (E) ∀m ∈ M =⇒ xFy % xEy

where xFy and xEy are bets on events F and E, with x ≻ y. We
do not, instead, consider bets on models and, as a result, we do not

elicit prior probabilities on them through hypothetical (since models
are not in general observable) betting behavior. Nevertheless, our ba-
sic representation result, Proposition 1, shows that, under Savage’s
axioms P.1-P.6 and the above consistency condition, acts are ranked
according to the criterion

V (f) =

∫
∆

(∫
S

u (f (s)) dm (s)

)
dµ (m) [1]

where µ is a subjective prior probability on models, whose support
is included in M . We call this representation Classical Subjective
Expected Utility because of the classical Waldean tenet on which it
relies.

The prior µ is a subjective probability that may also reflect some
personal information on models that the DM may have, in addition
to the objective information M . Uniqueness of µ corresponds to the
linear independence of the set M . For example, M is linearly in-
dependent when its members are pairwise orthogonal. Remarkably,
some important time series models widely used in economic and fi-
nancial applications satisfy this condition, as discussed later in the
paper. For this reason, our Wald-Savage setup provides a proper sta-
tistical decision theory framework for empirical works that rely on
such time series.

Each prior µ induces a predictive probability µ̄ on the sample
space S through model averaging:

µ̄ (E) =

∫
∆

m (E) dµ (m) [2]

In particular, setting P = µ̄,

V (f) =

∫
S

u (f (s)) dP (s) [3]

is the reduced form of V , its Subjective Expected Utility (SEU) rep-
resentation „a la Savage. On the other hand, when M is a single-
ton {m}, we have µ̄ = m for all priors µ and we thus get the von
Neumann-Morgenstern Expected Utility representation

V (f) =

∫
S

u (f (s)) dm (s) [4]

where subjective probabilities do not play any role.2 Classical
SEU thus encompasses both the Savage and the von Neumann-
Morgenstern representations.

Reserved for Publication Footnotes

1As Wald [2, p. 1] writes “A characteristic feature of any statistical decision problem is the
assumption that the unknown distribution F (x) is merely known to be an element of a given
class Ω of distributions functions. The class Ω is to be regarded as a datum of the decision
problem.”
2Lucas [4, p. 15] writes that “Muth [5] ... [identifies] ... agents’ subjective probabilities ...
with ‘true’ probabilities, calling the assumed coincidence of subjective and ‘true’ probabilities
rational expectations.” [Italics in the original]. In our setting, this coincidence is modelled by
singleton M and results in the Expected Utility criterion (4).
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In particular, the Savage criterion (3) is what an outside observer,
unaware of datum M , would be able to elicit from DM’s behavior. It
is a much weaker representation than the “structural” one (1), which
is the criterion that, instead, an outside observer aware of M would
be able to elicit. For, this informed observer would be able to focus
on the map µ → µ̄ from priors with support included in datum M to
predictive probabilities. Under the linear independence of datum M ,
by inverting this map the observer would be able to recover prior µ
from the predictive probability µ̄, which can be elicited through stan-
dard methods. The richer Waldean representation (1) is thus summa-
rized by a triple (u,M, µ), with suppµ ⊆ M , while for the usual
Savagean representation (3) is enough a pair (u, P ).

Summing up, though the work of Savage [1] was inspired by
the seminal decision theoretic approach of Wald [2], his purely sub-
jective setup and the ensuing large literature3 did not consider the
classical datum central in Wald’s approach. In this paper we show
how to embed this datum in a Savage setting and how to derive the
richer Waldean representation (1) by only considering choice behav-
ior based on observables. Battigalli et al. [10] use the Wald-Savage
setup of the present paper to study selfconfirming equilibria, while
Cerreia-Vioglio et al. [11] use it to provide a behavioral foundation
of the robustness approach in Macroeconomics pioneered by Hansen
and Sargent [12].

Preliminaries
Subjective expected utility. We consider a standard Savage setting,
where (S,Σ) is a measurable state space and X is an outcome space.
An act is a map f : S → X that delivers outcome f (s) in state S.
Let F be the set of all simple and measurable acts.4

The DM’s preferences are represented by a binary relation % over
F . We assume that % satisfies the classic Savage’s axioms P.1-P.6.
By his famous representation theorem, these axioms are equivalent
to the existence of a utility function u : X → R and a (strongly)
nonatomic finitely additive probability P on S such that the SEU
evaluation V (f) =

∫
S
u (f (s)) dP (s) represents %.5 In this case,

u is cardinally unique and P is unique.
Given any f, g ∈ F and E ∈ Σ, fEg is the act equal to f on

E and to g otherwise. The conditional preference %E is the binary
relation on F defined by f %E g if and only if fEh % gEh for
all h ∈ F . By P.2, the Sure Thing Principle, %E is complete. An
event E ∈ Σ is said to be null if %E is trivial ([1, p. 24]), in the
representation, this amounts to P (E) = 0 (E is null if and only if it
is P -null).

For each nonnull event E, the conditional preference %E satis-
fies P.1-P.6 since the primitive preference does (see, e.g., Kreps [7,
Chapter 10]). Hence, Savage’s Theorem can be stated in conditional
form by saying that % satisfies P.1-P.6 if and only if there is a utility
function u : X → R and a nonatomic finitely additive probability P
on S such that, for each nonnull event E,

VE (f) =

∫
S

u (f (s)) dP (s | E) [5]

represents %E where P (· | E) is the conditional of P given E.

Models, priors, and posteriors.As usual, we denote by ∆ =
∆(S,Σ) the collection of all (countably additive) probability mea-
sures on Σ. Unless otherwise stated, in the rest of the paper all prob-
ability measures are countably additive.

In the sequel, we will consider subsets M of ∆. Each subset
M of ∆ is endowed with the smallest σ-algebra M that makes the
real valued and bounded functions on M of the form m 7→ m (E)
measurable for all E ∈ Σ and that contains all singletons. In the
important special case M = ∆, we write D instead of M.

Probability measures µ on ∆ are interpreted as prior probabili-
ties. The observation of a (non-µ̄-null) event E allows to update prior

µ through the Bayes rule

µ (D | E) =

∫
D
m (E) dµ (m)∫

∆
m (E) dµ (m)

for all D ∈ D, thus obtaining the posterior of µ given E.

A finite subset M = {m1, ...,mn} of ∆ is linearly independent
if, given any collection of scalars {α1, ..., αn} ⊆ R,

n∑
i=1

αimi (E) = 0 ∀E ∈ Σ =⇒ α1 = ... = αn = 0. [6]

Two probability measures m and m′ in ∆ are orthogonal (or singu-
lar), written m ⊥ m′, if there exists E ∈ Σ such that m (E) =
0 = m′ (Ec). A collection of models M ⊆ ∆ is orthogonal if its
elements are pairwise orthogonal.

If E ∈ Σ and m (E) = 0 imply m′ (E) = 0, m′ is absolutely
continuous with respect to m and we write m′ ≪ m.

Finally, we denote by ∆na the collection of all nonatomic prob-
ability measures. By the classical Lyapunov Theorem, the range
{(m1 (E) , ...,mn (E)) : E ∈ Σ} of a finite collection {mi}ni=1 of
nonatomic probability measures is a convex subset of Rn.

Representation
Basic result. The first issue to consider in our normative approach is
how DMs’ behavior should reflect the fact that they regard M as a da-
tum of the decision problem. To this end, given a subset M of ∆ say
that an event E is unanimous if m (E) = m′ (E) for all m,m′ ∈ M .
In other words, all models in M assign the same probability to event
E.
Def inition 1. A preference % is consistent with a subset M of ∆ if,
given E,F ∈ Σ, with E unanimous,

m (F ) = m (E) ∀m ∈ M =⇒ xFy ∼ xEy [7]

for all outcomes x ≻ y.
Consistency requires that the DM is indifferent among bets on

events that all probability models in M classify as equally likely. The
next stronger consistency property requires that DMs prefer to bet on
events that are more likely according to all models.
Def inition 2. A preference % is order consistent with a subset M of
∆ if, given E,F ∈ Σ, with E unanimous,

m (F ) ≥ m (E) ∀m ∈ M =⇒ xFy % xEy [8]

for all outcomes x ≻ y.
Both these notions are minimal consistency requirements among

information and preference that behaviorally reveal (to an outside ob-
server) that the DM considers M as a datum of the decision problem.
Notice that order consistency implies consistency since the premise
of (7) implies that also F must be unanimous (this observation also
emphasizes how weak an assumption is consistency).

We can now state our basic representation result, which considers
finite sets M of nonatomic models.
Proposition 1. Let M be a finite subset of ∆na. The following state-
ments are equivalent:

3See Fishburn [6], Kreps [7], and Gilboa [8]. See Jaffray [9] for a different “objective” approach.
4Maps f : S → X such that f (S) is finite and {s ∈ S : f (s) = x} ∈ Σ for all x ∈ X.
5Strong nonatomicity of P means that for each E ∈ Σ and 0 ≤ c ≤ P (E) there exists
F ∈ Σ such that F ⊆ E and P (F ) = c. See [13, p. 141143] for the various definitions
and properties of nonatomicity of finitely additive probabilities.
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(i) % is a binary relation on F that satisfies P.1-P.6 and is order con-
sistent with M ;

(ii) there exist a nonconstant utility function u : X → R and a prior
probability µ on ∆ with suppµ ⊆ M , such that

V (f) =

∫
∆

(∫
S

u (f (s)) dm (s)

)
dµ (m) [9]

represents %.

Moreover, u is cardinally unique for each % satisfying (i), while
µ is unique for each such % if and only if M is linearly independent.

While uniqueness of the utility function u is well known and well
discussed in the literature, uniqueness of the prior µ is an important
feature of this result. In fact, it pins down µ even though its domain
is made of unobservable probability models. Because of the structure
of ∆, it is the linear independence of M – not just its affine indepen-
dence – that turns out to be equivalent to this uniqueness property.
This simple, but useful, fact is well known (see, e.g., Teicher [14]).

Each prior µ : D → [0, 1] induces a predictive probability
µ̄ : Σ → [0, 1] on the sample space through the reduction (2). The
reduction map µ 7→ µ̄ relates subjective probabilities on the space M
of models to subjective probabilities on the sample space S, that is,
prior and predictive probabilities.6 Clearly, (9) implies that

V (f) =

∫
S

u (f (s)) dµ̄ (s) [10]

which is the reduced form of V , its Savage’s SEU form. As observed
in the Introduction, this is the criterion that an outside observer, un-
aware of datum M , would be able to elicit from DM’s behavior. It
is a much weaker representation than the “structural” one (9), which
can be equivalently written as

V (f) =

∫
M

(∫
S

u (f (s)) dm (s)

)
dµ (m)

since suppµ ⊆ M (recall that finite subsets of D are measurable).
This is the criterion that, instead, an outside observer aware of M
would be able to elicit. For, denote by ∆(M) the collection of all
priors µ : D → [0, 1] such that suppµ ⊆ M . The informed observer
would be able to focus on the restriction of the reduction map µ 7→ µ̄
to ∆(M). If M is linearly independent, such correspondence is
one-to-one and thus allows prior identification from the behaviorally
elicited Savagean probability P = µ̄ ∈ ∆ through inversion.

The structural representation (9) is a version of Savage’s repre-
sentation that may be called Classical SEU since it takes into account
Waldean information, with its classical flavor.7 In place of the usual
SEU pair (u, P ) the representation is now characterized by a triple
(u,M, µ), with suppµ ⊆ M . According to the Bayesian paradigm,
the prior µ quantifies probabilistically the DM’s uncertainty about
which model in M is the true one. This kind of uncertainty is some-
times called (probabilistic) model uncertainty or parametric uncer-
tainty.

In the Introduction, we observed that when datum M is a sin-
gleton the Classical SEU criterion (9) reduces to the von Neumann-
Morgenstern Expected Utility criterion (4), which is thus the special
case of Classical SEU that corresponds to singleton data. In contrast,
when M is nonsingleton but the support of a prior µ is a singleton,
say suppµ = {m′} ⊆ M , then it is the DM’s personal information
that prior µ reflects which leads him to a predictive that coincides
with m′. In this case,

V (f) =

∫
∆

(∫
S

u (f (s)) dm (s)

)
dδm′ (m) =

∫
S

u (f (s)) dm′ (s)

is a Savage’s SEU criterion.

Support. In Proposition 1 the support of the prior is included in M ,
i.e., suppµ ⊆ M . In fact, because of consistency models are as-
signed positive probability only if they belong to datum M . But,
the DM may well decide to disregard some models in M because of
some personal information. This additional information is reflected
by his subjective belief µ,8 with strict inclusion and µ (m) = 0 for
some m ∈ M .

Next we behaviorally characterize suppµ as the smallest subset
of M relative to which % is consistent. These are the models that
the DM believes to carry significant probabilistic information for his
decision problem. In this perspective it is important to remember that
M is an datum of the problem while suppµ is a subjective feature of
the preferences.

We consider a linearly independent M in view of the identifica-
tion result of Proposition 1.
Proposition 2. Let M be a finite and linearly independent subset of
∆na and % be a preference represented as in point (ii) of Proposi-
tion 1. A model m ∈ M belongs to suppµ if and only if % is not
consistent with M \m.

Therefore not only consistency arguments reveal the acceptance
of a datum M , but they also allow to discover what elements of M
are subjectively maintained or discarded.

Variations. We close by establishing the conditional and orthogonal
versions of Proposition 1. We begin with the conditional version,
i.e., with the counterpart of representation (5) under Waldean infor-
mation.
Proposition 3. Let M be a finite subset of ∆na. The following state-
ments are equivalent:

(i) % is a binary relation on F that satisfies P.1-P.6 and is order con-
sistent with M ;

(ii) there exist a nonconstant utility function u : X → R and a prior
µ on ∆ with suppµ ⊆ M , such that

VE (f) =

∫
∆

(∫
S

u (f (s)) dm (s | E)

)
dµ (m | E) [11]

represents %E for all non-µ̄-null events E ∈ Σ.

Moreover, u is cardinally unique for each % satisfying (i), while
µ is unique for each such % if and only if M is linearly independent.

The representation of the conditional preferences %E thus de-
pends on the conditional models m (· | E) : Σ → [0, 1] and on the
posterior probability µ (· | E) : D → [0, 1] that, respectively, update
models and prior in the light of E. Criterion (11) shows how the DM
currently plans to use the information he may gather through obser-
vations to update his inference on the actual data generating process.9

The conditional predictive probability is

µ̄ (F | E) =

∫
∆

m (F | E) dµ (m | E) ∀F ∈ Σ. [12]

and therefore the reduced form of (11) is

VE (f) =

∫
S

u (f (s)) dµ̄ (s | E) . [13]

6Notice that probability measures on S can play two conceptually altogether different roles:
(subjective) predictive probabilities and (objective) probability models.
7Diaconis and Freedman [15] call “classical Bayesianism” the Bayesian approach that con
siders as a datum of the statistical problem the collection of all possibe data generating
mechanisms.
8 In fact, the interpretation of µ is purely subjective, not at all logical/objective a la Carnap and
Keynes.
9As Marschak [16, p. 109] remarked “to be an ‘economic man’ implies being a ‘statistical man’.”
Some works of Jacob Marschak (notably [16], [17], and his classic book [18] with Roy Radner)
have been a source of inspiration of our exercise, as we discuss in [19]. Our work addresses,
inter alia, the issue that he raised in [17], in which he asked how to pin down subjective beliefs
on models from observables. In so doing, our analysis also shows that to study general data
M , possibly linearly dependent, it is necessary to go beyond betting behavior on observables.
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The conditional representations (11) and (13) are, respectively, in-
duced by the primitive representations (9) and (10) via conditioning.

Orthogonality is a simple, but important, sufficient condition for
linear independence that, as the next section will show, some fun-
damental classes of time series models satisfy. Because of its im-
portance, the following result shows what form the Classical SEU
representation of Proposition 1 takes in this case.
Proposition 4. Let M be a finite and orthogonal subset of ∆na. The
following statements are equivalent:

(i) % is a binary relation on F that satisfies P.1-P.6 and is consistent
with M ;

(ii) there exist a nonconstant utility function u : X → R and a prior
µ on ∆ with suppµ ⊆ M , such that

V (f) =

∫
∆

(∫
S

u (f (s)) dm (s)

)
dµ (m)

represents %.

Moreover, for each % satisfying (i), u is cardinally unique and µ
is unique.

Notice that here consistency suffices and that the prior µ is auto-
matically unique because of the orthogonality of M . In [19] we also
show that a representation with an infinite M can be derived in the
orthogonal case.

The reduction map µ 7→ µ̄ between prior and predictive probabil-
ities is easily seen to be affine. More interestingly, in the orthogonal
case it also preserves orthogonality and absolute continuity.
Proposition 5. Under the assumptions of Proposition 4, two priors
µ and ν on ∆ with support in M are orthogonal (resp., absolutely
continuous) if and only if their predictive probabilities µ̄ and ν̄ on S
are orthogonal (resp., absolutely continuous).

Intertemporal analysis
Setup. Consider a standard intertemporal decision problem where in-
formation builds up through observations generated by a sequence
{Zt} of random variables taking values on observation spaces Zt.
For ease of exposition, we assume that the observation spaces are
finite and identical, each denoted by Z and endowed with the σ-
algebra B = 2Z .

The relevant state space S for the decision problem is the sample
space Z∞ =

∏∞
t=1 Z . Its points are the possible observation paths

generated by the process {Zt}. W.l.o.g., we identify {Zt} with the
coordinate process such that Zt (z) = zt for each z ∈ Z∞.

Endow Z∞ with the product σ-algebra B∞ generated by the ele-
mentary cylinder sets zt = {s ∈ Z∞ : s1 = z1, ..., st = zt}. These
sets are the observables in this intertemporal setting. In particular,
the filtration

{
Bt
}

, where Bt is the algebra generated by the cylin-
ders zt, records the building up of observations. Clearly, B∞ is the
σ-algebra generated by the filtration

{
Bt
}

.
In this intertemporal setting the pair (S,Σ) is thus given by

(Z∞,B∞). The space of data generating models ∆ consists of all
probability measures m on Z∞. The outcome space X has also a
product structure X = C∞, where C is a common instant outcome
space. Acts f : Z∞ → C∞ can thus be identified with the processes
{ft} of their components. When such processes are adapted, the cor-
responding acts are called plans (here ft (s) = ft (s1, ..., st) is the
outcome at time t if state s obtains). By Proposition 3, the conditional
version of the Classical SEU representation at zt is:

Vzt (f) =

∫
∆

(∫
Z∞

u (f (s)) dm
(
s | zt

))
dµ
(
m | zt

)
[14]

where m
(
· | zt

)
and µ

(
· | zt

)
are, respectively, the conditional

model and the posterior probability given the observation history
zt. Under standard conditions, the intertemporal utility function
u : C∞ → R in (14) has a classic discounted form u (c1, ..., ct, ...) =∑∞

τ=1 β
τ−1υ (cτ ), with subjective discount factor β ∈ [0, 1] and

bounded instantaneous utility function υ : C → R.

Stationary case. The next known result (e.g., [21, p. 39]) shows
that models are orthogonal in the fundamental stationary and ergodic
case, which includes the standard i.i.d. setup as a special case.
Proposition 6. A finite collection M of models that make the process
{Zt} stationary and ergodic is orthogonal.

By Proposition 4, if % satisfies P.1-P.6 and is consistent with
a finite collection M of nonatomic, stationary and ergodic models,
then there is a cardinally unique utility function u and a unique
prior µ, with suppµ ⊆ M , such that (14) holds. Its reduced form
V (f) =

∫
Z∞ u (f (s)) dµ̄ (s) features a predictive probability µ̄

which is stationary (exchangeable in the special i.i.d. case).
Since a version of Proposition 6 holds also for collections of ho-

mogenous Markov chains, we can conclude that time series models
widely used in applications satisfy the orthogonality conditions that
ensure the uniqueness of prior µ. The Wald-Savage setup of this
paper provides a statistical decision theory framework for empirical
works that rely on such time series (as it is often the case in the Fi-
nance and Macroeconomics literatures).

Under these orthogonality conditions, there is full learning. For-
mally, denoting by

Wzt (f) =

∫
∆

(∫
Z∞

∞∑
τ=t

βτ−tυ (fτ (s)) dm
(
s | zt

))
dµ
(
m | zt

)
the continuation value at zt of any act f and by m′ ∈ M the true
model, it can be shown that∣∣∣∣∣Wzt (f)−

∫
Z∞

∞∑
τ=t

βτ−tυ (fτ (s)) dm
′ (s | zt

)∣∣∣∣∣→ 0

for m′ almost every z in Z∞. As observations build up, DMs learn
and eventually behave as SEU DMs who know the true model that
generates observations. Classical SEU thus provides a proper de-
cision theoretic setting where to frame the common justification of
rational expectations that “with a long enough historical data record,
statistical learning will equate objective and subjective probability
distributions.” 10 Further intertemporal results are studied in [19]
(the working paper version of this paper), which we refer the inter-
ested reader to.

Appendix: proofs and related analysis
Let M be a subset of ∆(S,Σ), a probability measure P ∈ ∆(S,Σ)
is said to be a predictive of a prior on M (or to be M -representable)
if and only if there exists µ ∈ ∆(M,M) such that P = µ̄. If in
addition such µ is unique, then P is said to be M -identifiable (see
[14]).

We state the next result for any M since the proof for the finite
case is only slightly simpler. We say that a subset M of ∆(S,Σ) is
measure independent if, given any signed measure γ : M → R,∫

M

m (E) dγ (m) = 0 ∀E ∈ Σ =⇒ γ = 0.

If M is finite, measure independence reduces to usual notion (6) of
linear independence.
Lemma 1. Let M ⊆ ∆(S,Σ). The following statements are equiv-
alent:

10Sargent and Williams [20, p. 361].
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(i) every predictive of a prior on M is M -identifiable;
(ii) the map µ 7→ µ̄ from ∆(M,M) to ∆(S,Σ) is injective;

(iii) M is measure independent.

Proof The equivalence of (i) and (ii) is trivial.

(iii) implies (ii) If µ1, µ2 ∈ ∆(M,M) are such that µ̄1 = µ̄2 =
P , then µ1 − µ2 is a signed measure on M and∫

M

m (E) d (µ1 − µ2) (m)

=

∫
M

m (E) dµ1 (m)−
∫
M

m (E) dµ2 (m)

= P (E)− P (E) = 0 ∀E ∈ Σ.

Since M is measure independent, it follows that µ1 − µ2 = 0, i.e.,
µ1 = µ2.

(ii) implies (iii) Assume, per contra, that M is not measure inde-
pendent. Then, there is a signed measure γ on M such that

γ ̸= 0 and
∫
M

m (E) dγ (m) = 0 ∀E ∈ Σ. [15]

By the Hahn-Jordan Decomposition Theorem, γ = γ+ − γ− where
γ+ and γ− are, respectively, the positive and negative part of γ. By
(15),

0 =

∫
M

m (S) dγ (m) =

∫
M

1Mdγ = γ (M) = γ+ (M)−γ− (M) .

Since γ ̸= 0, this implies that γ+ (M) = γ− (M) = 1/k > 0. Then
kγ+, kγ− ∈ ∆(M,M), kγ+ ̸= kγ− (else γ = 0), and, by (15),
for each E ∈ Σ

0 = k

∫
M

m (E) dγ (m) =

∫
M

m (E) d
(
kγ+ − kγ−) (m)

=

∫
M

m (E) dkγ+ (m)−
∫
M

m (E) dkγ− (m)

= kγ+ (E)− kγ− (E) .

Therefore kγ+ = kγ− negating injectivity. �

Lemma 2. If M ⊆ ∆(S,Σ) is finite, then

M = 2M = σ (m 7→ m (E) : E ∈ Σ) .

Moreover, the map ν 7→ ν̄ from ∆(M) to ∆(S,Σ) is injective if and
only if M is linearly independent.
Proof The equality M = 2M follows from the fact M contains all
singletons. Next we show that σ (m 7→ m (E) : E ∈ Σ) contains all
singletons. Notice that if p ̸= q in M , there exists Epq ∈ Σ such that
p (Epq) ̸= q (Epq). Then for each p ∈ M ,

{p} = {m ∈ M : m (Epq) = p (Epq) ∀q ∈ M}

is a finite intersection of σ (m 7→ m (E) : E ∈ Σ)-measurable sets
and so it is measurable too.

Recall that ∆(M) = {ν ∈ ∆(∆(S,Σ)) : ν (M) = 1} while
∆(M,M) is the set of all probability measures µ : 2M → [0, 1].

Let ν1, ν2 ∈ ∆(M). Setting νi (m) = νi ({m}) for all m ∈
M , it follows νi =

∑
m∈M νi (m) δm and ν̄i =

∑
m∈M νi (m)m.

Denote by µi the restriction of νi to M = 2M and notice that
µi =

∑
m∈M νi (m) ∂m ∈ ∆(M,M) where ∂m is the restriction

of δm (defined on D) to M and that µ̄i =
∑

m∈M νi (m)m = ν̄i.

If M is linearly independent, then ν̄1 = ν̄2 implies µ̄1 = µ̄2. By
Lemma 1, µ1 = µ2. Thus ν1 (m) = ν2 (m) for all m ∈ M and
ν1 = ν2. This proves injectivity.

Conversely, if M is not linearly independent, by Lemma 1 there
exist η1 =

∑
m∈M η1 (m) ∂m and η2 =

∑
m∈M η2 (m) ∂m in

∆(M,M) such that η1 ̸= η2 but η̄1 = η̄2. Now, setting λi =∑
m∈M ηi (m) δm ∈ ∆(M) for i = 1, 2, it follows that λ1 ̸= λ2

but λ̄1 = η̄1 = η̄2 = λ̄2. This negates injectivity. �

Proof of Proposition 1 (i) implies (ii) By Savage Representation
Theorem, there are a nonconstant function u : X → R and a unique
(strongly) nonatomic and finitely additive probability P on S such
that setting V (f) =

∫
S
u (f (s)) dP (s),

f % g ⇐⇒ V (f) ≥ V (g) .

By assumption, each m is nonatomic. By the Lyapunov Theorem,
there is a unanimous event E ∈ Σ, say with m (E) = 2−1 for all
m ∈ M . By order consistency, for each F ∈ Σ

m (F ) = m (E) ∀m ∈ M =⇒ P (F ) = P (E) [16]

and

m (F ) ≥ m (E) ∀m ∈ M =⇒ P (F ) ≥ P (E) . [17]

By [22, Theorem 20], P belongs to the convex cone generated by
M , since P (S) = m (S) = 1 for all m ∈ M , then P ∈ coM and
representation (9) holds.

(ii) implies (i) Define P = µ̄. Since each m ∈ M is a
nonatomic probability measure, so is P . By the Savage Represen-
tation Theorem, it follows that % satisfies P.1-P.6. Finally, we show
that % is order consistent with M . Let E,F ∈ Σ and assume
m (F ) ≥ m (E) for each m ∈ suppµ ⊆ M . Then for all out-
comes x ≻ y, normalizing u so that u (x) = 1 = 1 − u (y),
V (xFy) = µ̄ (F ) ≥ µ̄ (E) = V (xEy), and so xFy % xEy.
A fortiori order consistency is satisfied (both with respect to suppµ
and M ).

Moreover, for each % satisfying (i), the cardinal uniqueness of
u and the uniqueness of µ̄ follow from Savage Representation The-
orem. If M is linearly independent, for each % satisfying (i), µ̄ is
unique and Lemma 2 delivers the uniqueness of µ. Conversely, if
M is not linearly independent, by Lemma 2 there exist two different
µ1, µ2 ∈ ∆(M) such that µ̄1 = µ̄2; arbitrarily choose a noncon-
stant u : X → R to obtain a binary relation % satisfying (i) which
is represented both by µ1 and by µ2 (together with u) in the sense of
(ii). �

Proof of Proposition 2 Let m ∈ M . Replicating the last part of the
previous proof, if m does not belong to suppµ then % is consistent
with M \ m. Now assume that % is consistent with M \ m. Take
E ∈ Σ such that m′ (E) = 2−1 for all m′ ∈ M \m, by consistency,
if F ∈ Σ, then

m′ (F ) = m′ (E) ∀m′ ∈ M \m =⇒ µ̄ (F ) = µ̄ (E) .

If m belongs to suppµ, then

m (F ) =
1

µ (m)

µ̄ (F )−
∑

m′∈M\m

µ
(
m′)m′ (F )


=

1

µ (m)

µ̄ (E)−
∑

m′∈M\m

µ
(
m′)m′ (E)


= m (E)

Since each element of M is nonatomic, by [22, Theorem 20] m ∈
span (M \m), which contradicts the linear independence of M . �
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Proof of Proposition 3 Clearly (ii) of this proposition implies point
(ii) of Proposition 1 which in turn implies (i).

Conversely, (i) of this proposition implies point (ii) of
Proposition 1 which together with (5) implies that VE (f) =∫
S
u (f (s)) dµ̄ (s | E) represents %E for all nonnull E ∈ Σ. But

suppµ (· | E) = {m ∈ suppµ : m (E) > 0} and hence

VE (f) =
1

µ̄ (E)

∫
E

u (f) dµ̄

=
1

µ̄ (E)

∑
m∈suppµ

µ (m)

∫
E

u (f) dm

=
1

µ̄ (E)

∑
m∈suppµ:m(E)>0

µ (m)
m (E)

m (E)

∫
E

u (f) dm

=
∑

m∈suppµ(·|E)

(
µ (m)m (E)

µ̄ (E)

)∫
S

u (f) dm (· | E)

=

∫
∆

(∫
S

u (f (s)) dm (s | E)

)
dµ (m | E)

so that (ii) holds.

The rest follows immediately from Proposition 1. �

Proof of Proposition 4 The proof of (i) implies (ii) of Proposition
1 has to be modified since consistency only yields (16). Then [22,
Theorem 20] only yields that P belongs to the vector subspace gen-
erated by M . In any case, there exists a collection {µ (m)}m∈M of
scalars such that P (E) =

∑
m∈M µ (m)m (E) for all E ∈ Σ.

From P (S) = m (S) = 1 for all m ∈ M , it follows that∑
m∈M µ (m) = 1. Moreover, by orthogonality, there exists a parti-

tion {Em}m∈M of S in Σ such that m (Em) = 1 and m′ (Em) = 0

for all distinct m,m′ ∈ M (see the beginning of the next proof).
Hence, for each m it holds P (Em) = µ (m), and so µ (m) ≥ 0. We
conclude that P ∈ coM again. The rest of the proof is very similar
to that of Proposition 1. �

Proof of Proposition 5 We consider orthogonality and leave absolute
continuity to the reader. Suppose µ ⊥ ν, i.e., there is A ∈ D such

that µ (A) = 1 = ν (Ac). Next we show that there exists a partition
{Em}m∈M of S in Σ such that m (Em) = 1 and m′ (Em) = 0 for
all distinct m,m′ ∈ M .11 Let M = {m1, ...,mn}. For n = 2, the
result is true by definition of orthogonality. Assume n ≥ 3 and the
result holds for n−1. Then there exists a partition {Fi}ni=2 of S in Σ
such that mi (Fi) = 1 for all i, j = 2, ..., n. But m1 ⊥ mi for each
i ̸= 1, hence there is E1i ∈ Σ such that m1 (E1i) = 1 = mi (E

c
1i).

By setting F1 =
∩

i̸=1 E1i and Ei = Ec
1i ∩ Fi we then have

m1 (F1) = 1 and mi (Ei) = 1 for each i ̸= 1. The desired par-
tition is obtained by setting E1 = S \

∪
i ̸=1 Ei.

Set E =
∪

{Em : m ∈ A}. Clearly, E ∈ Σ. Moreover,
m (E) = 1 for all m ∈ A and m′ (E) = 0 for all m′ ∈ Ac. Then,

µ̄ (E) =
∑
m∈M

m (E)µ (m) =
∑
m∈A

m (E)µ (m)

=
∑
m∈A

µ (m) = µ (A) = 1

and

ν̄ (E) =
∑

m′∈M

m′ (E) ν
(
m′) = ∑

m′∈Ac

m′ (E) ν
(
m′) = 0 [18]

which implies µ̄ ⊥ ν̄. As to the converse, suppose µ̄ ⊥ ν̄.
There is E ∈ Σ such that µ̄ (E) = 1 = ν̄ (Ec). Set A =
{m ∈ M : m (E) > 0}. We have A ∈ D since A is finite. It holds

1 = µ̄ (E) =
∑
m∈M

m (E)µ (m) =
∑
m∈A

m (E)µ (m)

≤
∑
m∈A

µ (m) = µ (A) ≤ 1

and so µ (A) = 1. Moreover,

0 = ν̄ (E) =
∑
m∈M

m (E) ν (m) =
∑
m∈A

m (E) ν (m) [19]

whence ν (m) = 0 for all m ∈ A because m (E) > 0. We conclude
that ν (A) = 0 and µ ⊥ ν. �
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