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The Lucas’ Tree Model

This is a 'general equilibrium model’ where instead of deriving
properties of the allocation given the prices, Lucas uses the
fundamentals to derive prices.

We will not analyze the general equilibrium aspects of this
model (next sequence of lectures)
We can still derive testable restrictions on prices without

computing the level of prices (e.g., arbitrage)
= Consumption CAPM

Such Predictions are not always supported by the data (e.g.
the Equity Premium Puzzle)



The Lucas’ Tree Model Il

Consider a large number of identical consumers, with v-M-N
utility.

Each agent owns shares of k > 1 productive forever lasting
assets in fixed supply (the trees).

All tree are identical and produce random quantities {d;} of a
single perishable consumption in all time periods (the
dividends). We can consider different type of trees.

There is hence a common shock driving the dividends, which
is uninsurable (aggregate uncertainty)

Agents can trade one bond and one risky asset
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Pricing Assets: The Stochastic Discount Factor

- From the first order conditions we obtain:

u(ct) = Ei[B(l+r)u'(cti)]
peu'(cf) = Ei [B(pes1+ de1) U (cfy1)]
= pt = E¢|(per1+dia) '&Zl,(((;tjl)] = E; [(pt+1 + dit1) SDF1]
‘B /

u v (c
= Et(pry1+deg1) Et w + Cov; (Pt+1 + dia, ﬁu((ct;;l))
t
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- SDF= Stochastic discount factor or ‘pricing kernel’. Same factor
used to price all assets. A risk ‘irrelevant’ if not correlated to SDF

- Define the return of the risky asset: %tdt“ =1+ p¢y1, we get

E: (1+Pt+1)ﬁ((c;t:)l)] = E; [(14_ )ﬁLL’I((C?)l)]Zl

= E: [(0t+1 — re)SDF¢41] = 0.



Asset Pricing Models

Recall the condition

pt = E¢ [(pe+1 + dey1) SDF; 4]

or the condition:

E: [(Pt+1 - rt>SDFt+1] =0

All asset pricing models are based on 'some’ SDF.

All asset pricing models amount to alternative ways to
connecting the stochastic discount factor to the data

Different manipulations to the two above conditions will stress
different implications of the theory, and suggest different
empirical strategies to bring the model to the data

The Consumption Capital Asset Pricing Model (CCAPM), in
its basic form, postulates the presence of a representative
agent and uses its MRS as SDF



Consumption CAPM and the Security Market Line |

@ Since r; is known at t: the previous first order condition can
be rewritten as

Co , SDF, Var: (SDF,
Epert = rot —ovellern SOFe) (— d ”1)>

Vart(SDFt-i-l) Et(SDFt—H)

e Call 'the market’ (m) an asset which is perfectly negatively
correlated with marginal utility, i.e. v'(c};) = —vmei1.

@ Intuitively, this is what drives the movements in aggregate
consumption (aggregate shocks)

o Clearly:

E: [SDF: 1] = —Vu P E: [mey1]

and hence

Covt (pe+1, SDFry1) _ Covi(pey1, mey1)
E: [SDF;1] E[mey1]




Consumption CAPM and the Security Market Line Il

From the FOC we hence have:

COVt (mt+1, SDFt+1) Vart(SDFt+1)
1 E = —
1) e " T Var(SDFisy) E:(SDF¢11)
— Cov; (mt+1, mt+1) ( Vaft(mt+1)>
‘ Vare(me1) Ee(mes1)
Cove (0r+1, Mr+1) < Vaft(mt+1)>
2 E = n+
( ) tO0t+1 t Vart(mH_l) Et<mt+1)
Cove(prs1, Met1)
1 2 E —r = E _
( ) + ( ) = tpt+1 It Vart- (mt+1) ( tMe41 rt)
i Cove(phyymes1) ; : P
Where ' := Var(me) S called 'the Beta' of the asset p’, since

it would be the coefficient of the regression of the excess return of
asset: p; 1 — r: on the excess return of the market: my11 —ry.

Test to CAPM model: identify an asset m that can act as ‘the
market’ and test if all assets in the market can be ‘beta-priced’.



The Security Market Line (SML)
Eo' =r+p (Em—r)+a

@ The slope of the SML (the risk premium) is Em — r.

o B’ is the non-diversifiable risk associated to the asset i

e &' is an ‘abnormal’ (compared to the CAPM) return
Figure:



Mean-Standard Deviation Frontier |

Recall again that the pricing formulas imply:

0= Et[SDFt+1(Pt+1 - rt)]-

Hence
E; [Pt+1 - ft} E: [SDFH-I] = —Corrt(pH_l, 5DFt+1)(Tt(Pt+1)(Tt(5DFt+1)v

where 0y (+) is the standard deviation operator. Since
| Corri(pt+1, SDFt+1)| < 1 mean and variance of each asset obey:

(Tt(SDFtH)

E — < ——————20, .
| t [pt+1 rt] | — Et {SDFt-‘rl] f(pt-i—l)

The mean-standard deviation frontier is the set of returns
satisfying the above condition with equality.
The slope of the mean-standard deviation frontier depends on the

(normalized) volatility of the SDF: % (coeff. of variation)



Mean-Standard Deviation Frontier Il

@ It can be describe for any set of assets
@ When we have a risk free asset the frontier is linear, in general
is a hyperbolic curve

Figure



Sharpe Ratios
Previous condition based on the SDF, which is not observable.

The Sharpe Ratio is the ration between the mean of the excess
return (with respect to r) to standard deviation of an asset

Eipt11—rt
ot(per1)

From the condition we derived above in the beta model, we have

EtPt+1 — It _ Corrt (pt-‘rlv SDFt+1) COfrt (Pt+1: mt+1)

0t(SDF41) = — or(mey1)

ot(pes1) E:(SDF:y1)

with m the 'market’ portfolio.

Et(mt+1)

Since —Corry (p¢+1, SDF41) < 1, the slope of the mean-standard
Ut(SDFtH)

deviation frontier EL[SDFet]

is the largest available Sharpe ratio.



Pricing assets with no Bubbles

Finally, we focus on equilibria such that some asymptotic

conditions on prices are satisfied and get

n=0 U/ (Ci‘k )

o _E, [Z fwd]

Now use the law of iterate expectations and obtain

1 — EtlBu/(C;("rn-‘rl)
1+ ren u'(ct,)
we get o d
t+n
pr = E
' ' [,,;) [Tk=o (1 + rev)

. o diip
When ry = r we obtain p; = E; —_—
,;) (1+r)"

|



The Equity Premium Puzzle |
Assume CRRA (evidence is for DARA)

cl= 1
U(C):l—’)f and ‘B:m

Time dimension : Intertemporal Substitution
Euler's equation for Bond imposes an upper bound for ¢

i\ 7 1+r (i)
1: 1 t+1 — t-‘rl
Al +r)<c{f> 1+9<c:

~ 14+r—0-—g

or r~ 604 yge

The remuneration for waiting (r) should compensate impatience
(0) and the lack of intertemporal consumption smoothing (ygc)
With r = 5%, g = 2%, and 6 should be positive (impatience).
Then 7 should be less than 2.5 (risk-free rate puzzle)

Recall precautionary savings! But 02 ~ (0.01)?



The Equity Premium Puzzle Il: Risk dimension

Recall the first order conditions

i) !
E; (Pt+1 - rt) - =0
t

or E:pt+1 = re + yCove (P41, 8c)

@ Mehra and Prescott (1985) found that in the data the
premium between stock and bond was 6% (Short-Term Debt
(T-Bil) Ers = 1% and Stock Exchange Index (NYSE)

Ep: = 7% period: 1889-1978). With Covariance between g
and p of a bit more than 0.002, -y should be at least 25.
(Correlation puzzle)

@ The equity premium puzzle is sometimes interpreted as a

failure of the complete market model.

@ Incomplete markets? (Kruger and Lustig, 2006).

@ Perhaps Kreps-Porteus preferences or other non-separabilities?



Lucas’ Objection

No one has found risk aversion parameters of 50 or 100 in the
diversification of individual portfolios, in the level of insurance
deductibles, in the wage premiums associated with occupations
with high earnings risk, or in the revenues raised by state-operated
lotteries. It would be good to have the equity premium resolved,
but | think we need to look beyond high estimates of risk aversion
to do it.



The Hansen and Jagannathan (1991) Bound

@ Recall again, the formula for pricing one-period assets:
pt = E¢[SDFt11(pry1+dip1)] <= 0= E¢[SDFri1(pe+1—rt)].

where SDF; 1 is the one-period pricing kernel or SDF, and
Qt+1 — It the excess return of the asset.
o For CRRA preferences, SDF; .1 is:

i) T
sor -5 (%2)
Ct
@ The Risk Free rate is the conditional mean of the SDF:

1 () ]
¢t

1 + I
HJ bound the set of SDF that can price a set | of assets:

|Et[P£+.1 — r]| < 0¢(SDF¢41)
Ut(P’t+1) ~ E:[SDF;,1]

- Et[SDFt+1] - Et

Viel ~ yor(Alnct,) (HJ)




Derivation of HJ Bounds set

They derive the mean variance frontier for discount factors
Suppose we do not have r; and not have or know the SDF
This procedure allows for incomplete markets
If we knew the SDF, we would have
1
E;[SDF; 4]

Recall that we can trace the frontier using Sharpe ratios
For each r; we can compute the largest Sharpe ratios

:1+rt.

fA?(rt |Et[Pi+1_rt”_

)= max ;
pitraded  0t(04,1)
This interest rate will be interpreted as the result of
re — 1 for a hypothetical SDF m;, 1.

- E¢[meyq]
To be a valid SDF for /, from (HJ), its variance must solve

c(mest) > 6(mest) i= R (Et[;tm _ 1> Ed[mesa).



Figure: Slope in Mean-variance Frontiere and HJ bounds



The Equity Premium Puzzle |
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Figure: Solid line: Hansen-Jagannathan volatility bounds for quarterly returns on the
value-weighted NYSE and Treasury Bill, 1948-2006. Crosses: Mean and standard deviation for
intertemporal marginal rate of substitution for CRRA time separable preferences. The coefficient of

relative risk aversion, -y takes on the values 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and the
discount factor F=0.995.



Epstein-Zin or Kreps-Porteus
(KP) Preferences



Introduction

@ One typical assumption when uncertainty is introduced is to
use only one utility. This is based on the assumption that
agents objective over their lifetime is the sum of his expected
utility at each periods.

@ This makes the objective function additive in the two
dimensional space state-date.

U(co; @) := u(co) + E[u(&)],

where we consider ¢ as a random variable with realization ¢;.

@ In this model, the degree of aversion to consumption
fluctuations over time and the degree of aversion to risk are
identical and equal to —u"/u/'.



The Kreps-Porteus (KP) Observation

@ The model is a direct extension of the additive model shown
before. It is written as

U(co; ¢1) := up(cp) + u1 (v H(Ev(&r)));

where ug; u; and v are three increasing functions.

o Let Ce(&) be the certainty equivalent functional. For all
random variables ¢ it is defined as

v(Ce(&)) = Ev(&).
@ U can then be rewritten as

U(Co; 51) = Uo(Co) + ul(Ce(?:l)).



Formal Interpretation

We see that the lifetime utility is computed by performing two
different operations

First, one computes the certainty equivalent Ce of the future
uncertain consumption & by using utility function v. This is
done in an a-temporal context. Thus, the concavity of v
measures the degree of risk aversion alone.

Second, one evaluates the lifetime utility by summing up the
utility of the current consumption and the utility of the future
certainty equivalent consumption, using functions ug and uj.

Because all uncertainty has been removed in this second
operation, the concavity of these two functions are related to
preferences for consumption smoothing over time.



Particular Cases

If v and uy are identical, we are back to the standard additive
model.

But this model is much richer than the standard additive
model because of its ability to disentangle preferences with
respect to risk and time.

Suppose for example that v is the identity function, but ug
and u; = ug are concave. In that case, the agent is willing to
smooth the expected consumption over time, despite he is risk
neutral.

At the opposite side of the spectrum, we can imagine a
risk-averse agent who is indifferent toward (certainty
equivalent) consumption smoothing. This would be the case if
v is concave, but ug and uq are linear.



Disentangling Risk and Time

TEST: This is your first day of a 3 week summer vacation.

You have already your airplane an so. Ready to leave for the
Maldives. You also know that today the CEO will decide whether
to fire or not your most heated boss.

Do you want to know before coming back from your vacation
whether the boss has been fired or you will just wait to see who is
in the office when your are back to work?



Behavioural Interpretation of the Model |

In the classical case with u; = v, the timing of the resolution
of the uncertainty does not matter for the consumer.
Suppose that the consumption plan under consideration be
(co; €1); where € is random. This consumption plan is
completely exogenous and cannot be modified by the agent.
If the realization of & is NOT expected to be known before
t = 1, the lifetime expected utility would be measured by
Uo(Co) + Eul(El).

Suppose alternatively that the realization of &; is expected to
be known at t = 0, but that we cannot revise the level of
saving after this observation. Conditional to ¢; (known); the
lifetime utility is uo(cp) + u1(c1). Ex ante, before knowing the
realized value of ¢;; the expected lifetime utility is

Efuo(co) + u1(e1)] = wo(co) + Efur(&r)].

Thus, in this case, agents are INDIFFERENT about the
timing of the resolution of the uncertainty.



Behavioural Interpretation of the Model Il

o With Kreps-Porteus preferences, if ¢ is NOT expected to be
known before t = 1, the lifetime utility of the agent is
measured according to ug(cg) + u1(Ce(1)), with
v(Ce(&)) = Ev(&).

@ On the contrary, suppose that the realization of ¢ is observed
at t = 0. Then, because obviously Ce(&;) = ¢; under
certainty, the lifetime utility conditional to ¢ is
up(co) 4+ u1(cr); as in the classical case.

o Ex ante, the lifetime utility of the agent equals
Eluo(co) + t1(&1)]

e This is generally not equal to ugp(cp) + u1(Ce(¢1)). We
conclude that an agent with Kreps-Porteus preferences is in
general NOT INDIFFERENT to the timing of the resolution
of uncertainty



Preferences for Early Resolution of Uncertainty

@ We say that an agent has preferences for an EARLY resolution
of uncertainty (PERU) if he prefers to observe ¢; at date
t = 0 than at t = 1, whatever the distribution of &;. This is
the case when

E[uo(co) + u1(E1)] > wo(co) + ur(Ce(@r));
or, equivalently, when
Ul_l(Eul(E‘l)) > Ce(El) = V_l(EV(E‘l)).

@ In words, PERU requires that the certainty equivalent be
always larger when using function u; than when using
function v.

@ This is true if and only if vy is LESS CONCAVE than v.



Recursive Utility under Uncertainty

@ In applications (and the exercise) it is typically assumed that
the decision maker have preferences over uncertain
consumption lotteries which are represented by sequence of
functions V; defined recursively by

Vt = U(Ct, EtVt+1)

where U(.,.) has the following functional form:

-
<

1—p —p

1=p)cP+p1+1-p-7)(EV)]| -1
(1=p)(1—-7)
with p € RT, y € RT, and B € (0,1).
@ One can show that —1/p is a measure of constant
intertemporal elasticity of substitution (IES) for deterministic

variations in consumption, and 7y is the constant coefficient of
relative risk aversion (CRRA) for static gambles.

-

U(c,EV) =
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Figure: Solid line: Hansen-Jagannathan volatility bounds for quarterly returns on the
value-weighted NYSE and Treasury Bill, 1948-200+. Circles: Epstein-Zin preferences with random
walk consumption. Pluses: Epstein-Zin preferences and trend stationary consumption. Crosses:
CRRA time separable preferences. The coefficient of relative risk aversion, v takes on the values 1,
5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and the discount factor 3=0.995.



The Welfare Cost of the Business Cycles

Hp: Log consumption is distributed normally with a trend:

1
Inct~N<a—|—gt—2(7§, Uf).

Removing variability increase welfare, how much?

o[£ () 2] B ()

t=0 t=0

A= %'yaf.
v € (1,4) and 0. = 0.032 implies A < 0.002.
- How much by some macroeconomic policy? RBC suggests that
only the 30% of variance in business cycles frequency can be
reduced by demand management policies.
- Krussel and Smith move away from the representative agent



