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The Lucas’ Tree Model

This is a ’general equilibrium model’ where instead of deriving
properties of the allocation given the prices, Lucas uses the
fundamentals to derive prices.

We will not analyze the general equilibrium aspects of this
model (next sequence of lectures)

We can still derive testable restrictions on prices without
computing the level of prices (e.g., arbitrage)
⇒ Consumption CAPM

Such Predictions are not always supported by the data (e.g.
the Equity Premium Puzzle)



The Lucas’ Tree Model II

Consider a large number of identical consumers, with v-M-N
utility.

Each agent owns shares of k ≥ 1 productive forever lasting
assets in fixed supply (the trees).

All tree are identical and produce random quantities {dt} of a
single perishable consumption in all time periods (the
dividends). We can consider different type of trees.

There is hence a common shock driving the dividends, which
is uninsurable (aggregate uncertainty)

Agents can trade one bond and one risky asset

max
{ct ,bt+1,st+1}

E0

∞

∑
t=0

βtu(ct) s.t. NPGC and

ct +
bt+1

1 + rt
+ ptst+1 ≤ bt + (pt + dt) st ; s0, b0 given.



Pricing Assets: The Stochastic Discount Factor
- From the first order conditions we obtain:

u′(c∗t ) = Et

[
β(1 + rt)u

′(c∗t+1)
]

ptu
′(c∗t ) = Et

[
β (pt+1 + dt+1) u′(c∗t+1)

]
⇒ pt = Et

[
(pt+1 + dt+1)

βu′(c∗t+1)

u′(c∗t )

]
= Et [(pt+1 + dt+1) SDFt+1]

= Et (pt+1 + dt+1)Et
βu′(c∗t+1)

u′(c∗t )
+ Covt

(
pt+1 + dt+1,

βu′(c∗t+1)

u′(c∗t )

)
.

- SDF= Stochastic discount factor or ‘pricing kernel’. Same factor
used to price all assets. A risk ‘irrelevant’ if not correlated to SDF

- Define the return of the risky asset: pt+1+dt+1

pt
= 1 + ρt+1, we get

Et

[
(1 + ρt+1)

βu′(c∗t+1)

u′(c∗t )

]
= Et

[
(1 + rt)

βu′(c∗t+1)

u′(c∗t )

]
= 1

⇒ Et [(ρt+1 − rt)SDFt+1] = 0.



Asset Pricing Models

Recall the condition

pt = Et [(pt+1 + dt+1) SDFt+1]

or the condition:

Et [(ρt+1 − rt)SDFt+1] = 0

All asset pricing models are based on ’some’ SDF.

All asset pricing models amount to alternative ways to
connecting the stochastic discount factor to the data

Different manipulations to the two above conditions will stress
different implications of the theory, and suggest different
empirical strategies to bring the model to the data

The Consumption Capital Asset Pricing Model (CCAPM), in
its basic form, postulates the presence of a representative
agent and uses its MRS as SDF



Consumption CAPM and the Security Market Line I

Since rt is known at t: the previous first order condition can
be rewritten as

Etρt+1 = rt +
Covt (ρt+1, SDFt+1)

Vart(SDFt+1)

(
−Vart(SDFt+1)

Et(SDFt+1)

)

Call ’the market’ (m) an asset which is perfectly negatively
correlated with marginal utility, i.e. u′(c∗t+1) = −νmt+1.

Intuitively, this is what drives the movements in aggregate
consumption (aggregate shocks)

Clearly:

Et [SDFt+1] = −ν
β

u′(c∗t )
Et [mt+1]

and hence

Covt (ρt+1, SDFt+1)

Et [SDFt+1]
=

Covt(ρt+1, mt+1)

Et [mt+1]
.



Consumption CAPM and the Security Market Line II
From the FOC we hence have:

(1) Etmt+1 = rt +
Covt (mt+1, SDFt+1)

Vart(SDFt+1)

(
−Vart(SDFt+1)

Et(SDFt+1)

)
= rt +

Covt (mt+1, mt+1)

Vart(mt+1)

(
Vart(mt+1)

Et(mt+1)

)
(2) Etρt+1 = rt +

Covt (ρt+1, mt+1)

Vart(mt+1)

(
Vart(mt+1)

Et(mt+1)

)
(1) + (2)⇒ Etρt+1 − rt =

Covt(ρt+1, mt+1)

Vart (mt+1)
(Etmt+1 − rt)

Where βi := Covt (ρit+1,mt+1)
Vart (mt+1)

is called ’the Beta’ of the asset ρi , since

it would be the coefficient of the regression of the excess return of
asset: ρit+1 − rt on the excess return of the market: mt+1 − rt .

Test to CAPM model: identify an asset m that can act as ‘the
market’ and test if all assets in the market can be ‘beta-priced’.



The Security Market Line (SML)

Eρi = r + βi (Em− r) + αi

The slope of the SML (the risk premium) is Em− r .
βi is the non-diversifiable risk associated to the asset i
αi is an ‘abnormal’ (compared to the CAPM) return

Figure:



Mean-Standard Deviation Frontier I
Recall again that the pricing formulas imply:

0 = Et [SDFt+1(ρt+1 − rt)].

Hence

Et [ρt+1 − rt ]Et [SDFt+1] = −Corrt(ρt+1, SDFt+1)σt(ρt+1)σt(SDFt+1),

where σt(·) is the standard deviation operator. Since
|Corrt(ρt+1, SDFt+1)| ≤ 1 mean and variance of each asset obey:

|Et [ρt+1 − rt ] | ≤
σt(SDFt+1)

Et [SDFt+1]
σt(ρt+1).

The mean-standard deviation frontier is the set of returns
satisfying the above condition with equality.
The slope of the mean-standard deviation frontier depends on the
(normalized) volatility of the SDF: σt (SDFt+1)

Et [SDFt+1]
(coeff. of variation)



Mean-Standard Deviation Frontier II

It can be describe for any set of assets

When we have a risk free asset the frontier is linear, in general
is a hyperbolic curve

Figure



Sharpe Ratios

Previous condition based on the SDF, which is not observable.

The Sharpe Ratio is the ration between the mean of the excess
return (with respect to r) to standard deviation of an asset

Etρt+1 − rt
σt(ρt+1)

.

From the condition we derived above in the beta model, we have

Etρt+1 − rt
σt(ρt+1)

= −Corrt (ρt+1, SDFt+1)

Et(SDFt+1)
σt(SDFt+1) = −

Corrt (ρt+1, mt+1)

Et(mt+1)
σt(mt+1)

with m the ’market’ portfolio.

Since −Corrt (ρt+1, SDFt+1) ≤ 1, the slope of the mean-standard

deviation frontier σt (SDFt+1)
Et [SDFt+1]

is the largest available Sharpe ratio.



Pricing assets with no Bubbles
Finally, we focus on equilibria such that some asymptotic
conditions on prices are satisfied and get

pt = Et

[
∞

∑
n=0

βnu′(c∗t+n)

u′(c∗t )
dt+n

]

Now use the law of iterate expectations and obtain

1

1 + rt+n
= Et

βu′(c∗t+n+1)

u′(c∗t+n)

we get
pt = Et

[
∞

∑
n=0

dt+n

∏n
k=0 (1 + rt+k)

]

When rt = r we obtain pt = Et

[
∞

∑
n=0

dt+n

(1 + r)n

]



The Equity Premium Puzzle I
Assume CRRA (evidence is for DARA)

u(c) =
c1−γ

1− γ
and β =

1

1 + θ
.

Time dimension : Intertemporal Substitution
Euler’s equation for Bond imposes an upper bound for γ

1 = β(1 + r)

(
c∗t+1

c∗t

)−γ

=
1 + r

1 + θ

(
c∗t+1

c∗t

)−γ

' 1 + r − θ − γgc

or r ' θ + γgc

The remuneration for waiting (r) should compensate impatience
(θ) and the lack of intertemporal consumption smoothing (γgc)
With r = 5%, g = 2%, and θ should be positive (impatience).
Then γ should be less than 2.5 (risk-free rate puzzle)
Recall precautionary savings! But σ2

c ≈ (0.01)2



The Equity Premium Puzzle II: Risk dimension
Recall the first order conditions

Et

[
(ρt+1 − rt)

(
c∗t+1

c∗t

)−γ
]
= 0

or Etρt+1 = rt + γCovt (ρt+1, gc)

Mehra and Prescott (1985) found that in the data the
premium between stock and bond was 6% (Short-Term Debt
(T-Bil) Ert = 1% and Stock Exchange Index (NYSE)
Eρt = 7% period: 1889-1978). With Covariance between g
and ρ of a bit more than 0.002, γ should be at least 25.
(Correlation puzzle)

The equity premium puzzle is sometimes interpreted as a
failure of the complete market model.

Incomplete markets? (Kruger and Lustig, 2006).

Perhaps Kreps-Porteus preferences or other non-separabilities?



Lucas’ Objection

No one has found risk aversion parameters of 50 or 100 in the
diversification of individual portfolios, in the level of insurance
deductibles, in the wage premiums associated with occupations
with high earnings risk, or in the revenues raised by state-operated
lotteries. It would be good to have the equity premium resolved,
but I think we need to look beyond high estimates of risk aversion
to do it.



The Hansen and Jagannathan (1991) Bound

Recall again, the formula for pricing one-period assets:

pt = Et [SDFt+1(pt+1+dt+1)] ⇐⇒ 0 = Et [SDFt+1(ρt+1− rt)].

where SDFt+1 is the one-period pricing kernel or SDF, and
ρt+1 − rt the excess return of the asset.

For CRRA preferences, SDFt+1 is:

SDFt+1 = β

(
c∗t+1

c∗t

)−γ

The Risk Free rate is the conditional mean of the SDF:

1

1 + rt
= Et [SDFt+1] = Et

[
β

(
c∗t+1

c∗t

)−γ
]

HJ bound the set of SDF that can price a set I of assets:

∀i ∈ I
|Et [ρit+1 − rt ]|

σt(ρit+1)
≤ σt(SDFt+1)

Et [SDFt+1]
≈ γσt(∆ ln c∗t+1) (HJ)



Derivation of HJ Bounds set
They derive the mean variance frontier for discount factors
Suppose we do not have rt and not have or know the SDF
This procedure allows for incomplete markets
If we knew the SDF, we would have

1

Et [SDFt+1]
= 1 + rt .

Recall that we can trace the frontier using Sharpe ratios
For each rt we can compute the largest Sharpe ratios

R̂ (rt) := max
ρi traded

|Et [ρit+1 − rt ]|
σt(ρit+1)

.

This interest rate will be interpreted as the result of
rt =

1
Et [mt+1]

− 1 for a hypothetical SDF mt+1.

To be a valid SDF for I , from (HJ), its variance must solve

σ(mt+1) ≥ σ̂(mt+1) := R̂

(
1

Et [mt+1]
− 1

)
Et [mt+1].



Figure: Slope in Mean-variance Frontiere and HJ bounds



The Equity Premium Puzzle I



Epstein-Zin or Kreps-Porteus
(KP) Preferences



Introduction

One typical assumption when uncertainty is introduced is to
use only one utility. This is based on the assumption that
agents objective over their lifetime is the sum of his expected
utility at each periods.

This makes the objective function additive in the two
dimensional space state-date.

U(c0; c̃1) := u(c0) + E[u(c̃1)],

where we consider c̃1 as a random variable with realization c1.

In this model, the degree of aversion to consumption
fluctuations over time and the degree of aversion to risk are
identical and equal to −u′′/u′.



The Kreps-Porteus (KP) Observation

The model is a direct extension of the additive model shown
before. It is written as

U(c0; c̃1) := u0(c0) + u1(v
−1(Ev(c̃1)));

where u0; u1 and v are three increasing functions.

Let Ce(c̃1) be the certainty equivalent functional. For all
random variables c̃1 it is defined as

v(Ce(c̃1)) ≡ Ev(c̃1).

U can then be rewritten as

U(c0; c̃1) = u0(c0) + u1(Ce(c̃1)).



Formal Interpretation

We see that the lifetime utility is computed by performing two
different operations

First, one computes the certainty equivalent Ce of the future
uncertain consumption c̃1 by using utility function v . This is
done in an a-temporal context. Thus, the concavity of v
measures the degree of risk aversion alone.

Second, one evaluates the lifetime utility by summing up the
utility of the current consumption and the utility of the future
certainty equivalent consumption, using functions u0 and u1.

Because all uncertainty has been removed in this second
operation, the concavity of these two functions are related to
preferences for consumption smoothing over time.



Particular Cases

If v and u1 are identical, we are back to the standard additive
model.

But this model is much richer than the standard additive
model because of its ability to disentangle preferences with
respect to risk and time.

Suppose for example that v is the identity function, but u0

and u1 = u0 are concave. In that case, the agent is willing to
smooth the expected consumption over time, despite he is risk
neutral.

At the opposite side of the spectrum, we can imagine a
risk-averse agent who is indifferent toward (certainty
equivalent) consumption smoothing. This would be the case if
v is concave, but u0 and u1 are linear.



Disentangling Risk and Time

TEST: This is your first day of a 3 week summer vacation.

You have already your airplane an so. Ready to leave for the
Maldives. You also know that today the CEO will decide whether
to fire or not your most heated boss.
Do you want to know before coming back from your vacation
whether the boss has been fired or you will just wait to see who is
in the office when your are back to work?



Behavioural Interpretation of the Model I
In the classical case with u1 = v , the timing of the resolution
of the uncertainty does not matter for the consumer.
Suppose that the consumption plan under consideration be
(c0; c̃1); where c̃1 is random. This consumption plan is
completely exogenous and cannot be modified by the agent.
If the realization of c̃1 is NOT expected to be known before
t = 1, the lifetime expected utility would be measured by
u0(c0) + Eu1(c̃1).
Suppose alternatively that the realization of c̃1 is expected to
be known at t = 0, but that we cannot revise the level of
saving after this observation. Conditional to c1 (known); the
lifetime utility is u0(c0) + u1(c1). Ex ante, before knowing the
realized value of c̃1; the expected lifetime utility is

E[u0(c0) + u1(c̃1)] = u0(c0) + E[u1(c̃1)].

Thus, in this case, agents are INDIFFERENT about the
timing of the resolution of the uncertainty.



Behavioural Interpretation of the Model II

With Kreps-Porteus preferences, if c1 is NOT expected to be
known before t = 1, the lifetime utility of the agent is
measured according to u0(c0) + u1(Ce(c̃1)), with
v(Ce(c̃1)) = Ev(c̃1).

On the contrary, suppose that the realization of c1 is observed
at t = 0. Then, because obviously Ce(c̃1) = c1 under
certainty, the lifetime utility conditional to c1 is
u0(c0) + u1(c1); as in the classical case.

Ex ante, the lifetime utility of the agent equals
E[u0(c0) + u1(c̃1)]

This is generally not equal to u0(c0) + u1(Ce(c̃1)). We
conclude that an agent with Kreps-Porteus preferences is in
general NOT INDIFFERENT to the timing of the resolution
of uncertainty



Preferences for Early Resolution of Uncertainty

We say that an agent has preferences for an EARLY resolution
of uncertainty (PERU) if he prefers to observe c1 at date
t = 0 than at t = 1, whatever the distribution of c̃1. This is
the case when

E[u0(c0) + u1(c̃1)] > u0(c0) + u1(Ce(c̃1));

or, equivalently, when

u−11 (Eu1(c̃1)) > Ce(c̃1) = v−1(Ev(c̃1)).

In words, PERU requires that the certainty equivalent be
always larger when using function u1 than when using
function v .

This is true if and only if u1 is LESS CONCAVE than v .



Recursive Utility under Uncertainty

In applications (and the exercise) it is typically assumed that
the decision maker have preferences over uncertain
consumption lotteries which are represented by sequence of
functions Vt defined recursively by

Vt ≡ U(ct ,EtṼt+1)

where U(., .) has the following functional form:

U(c ,EṼ ) ≡

[
(1− β)c1−ρ + β

[
1 + (1− β)(1− γ)(EṼ )

] 1−ρ
1−γ

] 1−γ
1−ρ

− 1

(1− β)(1− γ)
,

with ρ ∈ <+, γ ∈ <+, and β ∈ (0, 1).

One can show that −1/ρ is a measure of constant
intertemporal elasticity of substitution (IES) for deterministic
variations in consumption, and γ is the constant coefficient of
relative risk aversion (CRRA) for static gambles.



The Equity Premium Puzzle II



The Welfare Cost of the Business Cycles

Hp: Log consumption is distributed normally with a trend:

ln ct ∼ N

(
a + gt − 1

2
σ2
c , σ2

c

)
.

Removing variability increase welfare, how much?

E0

[
∞

∑
t=0

(
1

1 + θ

)t ((1 + λ) ct)
1−γ

1− γ

]
=

∞

∑
t=0

(
1

1 + θ

)t (Aegt)1−γ

1− γ
.

λ ≈ 1

2
γσ2

c .

γ ∈ (1, 4) and σc = 0.032 implies λ ≤ 0.002.
- How much by some macroeconomic policy? RBC suggests that
only the 30% of variance in business cycles frequency can be
reduced by demand management policies.
- Krussel and Smith move away from the representative agent


