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Time-Series

Time-series is a sequence

{x1, x2, ..., xT} or {xt} , t = 1, ..., T,

where t is an index denoting the period in time in which x occurs. We
shall treat xt as a random variable; hence, a time-series is a sequence of
random variables ordered in time. Such a sequence is known as a
stochastic process. The probability structure of a sequence of random
variables is determined by the joint distribution of a stochastic process.
The simplest possible probability model for such a joint distribution is:

xt = α + εt, εt ∼ n.i.d.
(
0, σ2

ε

)
,

i.e., xt is normally independently distributed over time with constant
variance and mean equal to α. In other words, xt is the sum of a
constant and a white-noise process. If a white-noise process were a
proper model for financial time-series, forecasting would not be very
interesting as the best forecast for the moments of the relevant time
series would be their unconditional moments.

Carlo Favero and Celso Brunetti Univariate time-series analysis 2 / 47



Better models

The model:

xt = α + εt, εt ∼ n.i.d.
(
0, σ2

ε

)
,

α̂ =
1
T

T

∑
i=t

xt, σ̂2
ε =

T

∑
i=t

1
T
(xt − α̂)2

Reflect the traditional approach to portfolio allocation, but it does not
reflect the data. At high frequency (daily, intra-day) the variance is not
constant and predictable, at low frequency returns are persistent and
predictable. To construct more realistic models, we concentrate on
univariate models first to consider then multivariate models.

Carlo Favero and Celso Brunetti Univariate time-series analysis 3 / 47



Better models
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While the CER gives a plausible representation for the 1-month
returns, the behaviour over time of the YTM of the 10-Year returns
does not resemble at all that of the simulated data.

Carlo Favero and Celso Brunetti Univariate time-series analysis 4 / 47



ARMA modelling

A more general and more flexible class of models emerges when
combinations of εt are used to model xt. We concentrate on a class of
models created by taking linear combinations of the white noise, the
autoregressive moving average (ARMA) models:

AR(1) : xt = ρxt−1 + εt,
MA(1) : xt = εt + θεt−1,
AR(p) : xt = ρ1xt−1 + ρ2xt−2 + ... + ρpxt−p + εt,
MA(q) : xt = εt + θ1εt−1 + ... + θqεt−q,

ARMA(p, q) : xt = ρ1xt−1 + ... + ρpxt−p + θ1εt−1 + ... + θqεt−q.
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An Illustration
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Analysing time-series models

To illustrate empirically all fundamentals we consider a specific
member of the ARMA family, the AR model with drift,

xt = ρ0 + ρ1xt−1 + εt, (1)
εt ∼ n.i.d.

(
0, σ2

ε

)
.

Given that each realization of our stochastic process is a random
variable, the first relevant fundamental is the density of each
observation. In particular, we distinguish between conditional and
unconditional densities.
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Conditional and Unconditional Densities

The unconditional density is obtained under the hypothesis that no
observation on the time-series is available, while conditional densities
are based on the observation of some realization of random variables.
In the case of time-series, we derive unconditional density by putting
ourselves at the moment preceding the observation of any realization
of the time-series. At that moment the information set contains only
the knowledge of the process generating the observations. As
observations become available, we can compute conditional densities.
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Conditional Densities

Consider the AR(1) model. The moments of the density of xt
conditional upon xt−1 are immediately obtained from the relevant
process:

E (xt | xt−1) = ρ0 + ρ1xt−1,
Var (xt | xt−1) = σ2

ε ,
Cov

[
(xt | xt−1) ,

(
xt−j | xt−j−1

)]
= 0 for each j.

To derive the moments of the density of xt conditional upon xt−2, we
need to substitute xt−2 from its expression for xt−1:

E (xt | xt−2) = ρ0 + ρ0ρ1 + ρ2
1xt−2,

Var (xt | xt−2) = σ2
ε

(
1 + ρ2

1
)

,

Cov
[
(xt | xt−2) ,

(
xt−j | xt−j−2

)]
= ρ1σ2

ε , for j = 1,
Cov

[
(xt | xt−2) ,

(
xt−j | xt−j−2

)]
= 0, for j > 1.
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Unconditional Densities

Unconditional moments are derived by substituting recursively from
to express xt as a function of information available at time t0, the
moment before we start observing realizations of our process.

E (xt) = ρ0

(
1 + ρ1 + ρ2

1 + ... + ρt−1
1

)
+ ρt

1x0,

Var (xt) = σ2
ε

(
1 + ρ2

1 + ρ4
1 + ... + ρ2t−2

1

)
,

γ (j) = Cov
(
xt, xt−j

)
= ρ

j
1Var (xt) ,

ρ (j) =
Cov

(
xt, xt−j

)√
Var (xt)Var (xt−1)

=
ρ

j
1Var (xt)√

Var (xt)Var (xt−1)
.

Note that γ (j) and ρ (j) are functions of j, known respectively as the
autocovariance function and the autocorrelation function.
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Conditional Densities: An Example

Consider the following MA model

xt = 0.8 + εt + 0.4εt−1

εt ∼ n.i.d.
(
0, σ2

ε

)
State which of the following is correct:
(a) E (xt | xt−1) = 0.8 + εt + 0.4εt−1
(b) E (xt | xt−1) = 0.8 + 0.4εt−1
(c) Var (xt | xt−1) = 1.16σ2

ε

(d) Var (xt | xt−1) = σ2
ε
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Stationarity

A stochastic process is strictly stationary if its joint density function
does not depend on time. More formally, a stochastic process is
stationary if, for each j1, j2, ..., jn, the joint distribution,

f
(
xt, xt+j1 , xt+j2 , xt+jn

)
,

does not depend on t.
A stochastic process is covariance stationary if its two first
unconditional moments do not depend on time, i.e. if the following
relations are satisfied for each h, i, j:

E (xt) = E (xt+h) = µ,
E
(
x2

t
)

= E
(
x2

t+h
)
= µ2,

E
(
xt+ixt+j

)
= µij.
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Stationarity

In the case of our AR(1) process, the condition for stationarity is
|ρ1| < 1. When such a condition is satisfied, we have:

E (xt) = E (xt+h) =
ρ0

1− ρ1
,

Var (xt) = Var (xt+h) =
σ2

ε

1− ρ2
1

,

Cov
(
xt, xt−j

)
= ρ

j
1Var (xt) .

On the other hand, when |ρ1| = 1, the process is obviously
non-stationary:

E (xt) = ρ0t + x0,
Var (xt) = σ2

ε t,
Cov

(
xt, xt−j

)
= σ2

ε (t− j) .
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Stationarity

consider the following model

xt+1 = 0.05 + xt + εt+1

εt+1 ∼ n.i.d.
(
0, σ2

ε

)
State which of the following is correct:
(a) E (xt+5 | xt) = 0.25+ xt
(b) E (xt) = 0.05
(c) Var (xt+5 | xt) = 5σ2

ε

(d) Var (xt+5 | xt) = σ2
ε

(e) E (xt) = 0.05t + x0

Carlo Favero and Celso Brunetti Univariate time-series analysis 14 / 47



Stationarity
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General ARMA processes

The Wold decomposition theorem warrants that any stationary
stochastic process can be expressed as the sum of a deterministic and a
stochastic moving-average component:

xt = εt + b1εt−1 + b2εt−2 + ... + bnεt−n

=
(
1 + b1L + b2L2 + ... + bnLn) εt

= b(L)εt,

Represent the polynomial b(L) as the ratio of two polynomials of
lower order:

xt = b (L) εt =
a (L)
c (L)

εt,

c (L) xt = a (L) εt. (2)

Stationary requires that the roots of c (L) lie outside the unit circle.
Invertibility of the MA component require that the roots of a (L) lie
outside the unit circle.
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General ARMA processes

Consider the simplest case, the ARMA(1,1) process:

xt = c1xt−1 + εt + a1εt−1,
(1− c1L) xt = (1 + a1L) εt.

The above equation is equivalent to:

xt =
1 + a1L
1− c1L

εt

= (1 + a1L)
(

1 + c1L + (c1L)2 + ...
)

εt

=
[
1 + (a1 + c1) L + c1 (a1 + c1) L2 + c2

1 (a1 + c1) L3 + ...
]

εt.

Which shows that the ratio of two finite lag polynomials allows us to
model an infinite lag polynomial.
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General ARMA processes

We then have,

Var (xt) =
[
1 + (a1 + c1)

2 + c2
1 (a1 + c1)

2 + ...
]

σ2
ε

=

[
1 +

(a1 + c1)
2

1− c2
1

]
σ2

ε ,

Cov (xt,xt−1) =
[
(a1 + c1) + c1 (a1 + c1) + c2

1 (a1 + c1) + ...
]

σ2
ε

=

[
(a1 + c1) +

c1 (a1 + c1)
2

1− c2
1

]
σ2

ε .

Hence,

ρ (1) =
Cov (xt,xt−1)

Var (xt)

=
(1 + a1c1) (a1 + c1)

1 + c2
1 + 2a1c1

.
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General ARMA processes

For example, suppose c (L) xt = a (L) εt and you want to find
xt = d (L) εt. Parameters in d (L) are most easily found by writing
c (L) d (L) = a (L) and by matching terms in Lj. For an illustration
suppose a (L) = 1 + a1L, c (L) = 1 + c1L. Multiplying out d (L) we have

(1 + c1L)
(
1 + d1L + d2L2 + ...dnLn) = 1 + a1L

Matching powers of L,

d1 = a1 − c1

c1d1 + d2 = 0
c1d2 + d3 = 0

c1dn−1 + dn = 0

xt = εt + (a1 − c1) εt−1 − c1 (a1 − c1) εt−2 + ... (−c1)
n−1 (a1 − c1) εt−n
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Persistence and the linear model

Persistence of time-series destroys one of the crucial properties for
implementing valid estimation and inference in the linear model.
In the context of the linear model

y = Xβ + ε.

The following property is required to implement valid estimation and
inference

E (ε | X) = 0. (3)

Hypothesis (3) implies that

E (εi | x1, ...xi, ..., xn) = 0, (i = 1, ..., n) .

Think of the simplest time-series model for a generic variable y:

yt = a0 + a1yt−1 + εt.

Clearly, if a1 6= 0, then, although it is still true that E (εt | yt−1) = 0,
E (εt−1 | yt−1) 6= 0 and (3) breaks down.
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How serious is the problem?

To assess intuitively the consequences of persistence, we construct a
small Monte-Carlo simulation on the short sample properties of the
OLS estimator of the parameters in an AR(1) process. A Monte-Carlo
simulation is based on the generation of a sample from a known data
generating process (DGP).

First we generate a set of random numbers from a given
distribution (here a normally independent white-noise
disturbance) for a sample size of interest (say 200 observations)
and then construct the process of interest (in our case, an AR(1)
process).
When a sample of observations on the process of interest is
available, then we can estimate the relevant parameters and
compare their fitted values with the known true value.
the Monte-Carlo simulation is a sort of controlled experiment. To
overcome the potential dependence of the set of random numbers
drawn on the sequence of simulated white-noise residuals, the
DGP is replicated many times.
For each replication we obtain a set of estimates, and compute
averages across replications of the estimated parameters, to assess
these averages against the known true values.
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How serious is the problem?

We report the averages across replications in the following figure .
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We note that the estimate of a1 is heavily biased in small samples, but
the bias decreases as the sample gets larger. One can show analytically
that the average of the OLS estimate of a1 is a1

(
1− 2

T

)
.
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Implications

When using time-series models it is of crucial importance

to specify models for stationary series
have available large samples of observations .

Carlo Favero and Celso Brunetti Univariate time-series analysis 23 / 47



The Maximum Likelihood Method

The likelihood function is the joint probability distribution of the
data, treated as a function of the unknown coefficients
The maximum likelihood estimator (MLE) consists of value of the
coefficients that maximize the likelihood function
The MLE selects the value of parameters to maximize the
probability of drawing the data that have been effectively
observed
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MLE of an MA process

Consider an MA process for a return rt+1 :

rt+1 = θ0 + εt+1 + θ1εt

The time series of the residuals can be computed as

εt+1 = rt+1 − θ0 − θ1εt

ε0 = 0

If εt+1 is normally distributed, than we have

f (εt+1) =
1

(2πσ2
ε )

1/2 exp

(
−

ε2
t+1

2σ2
ε

)
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MLE of an MA process

If the εt+1 are independent over time the likelihood function can be
written as follows

f (ε1, ε2, ...εt+1) =
T
Π
i=1

f (εi)

=
T
Π
i=1

1

(2πσ2
ε )

1/2 exp
(
−

ε2
i

2σ2
ε

)

The MLE chooses θ0, θ1, σ2
ε to maximize the probability that the

estimated model has generated the observed data-set. The optimum is
not always found analically, iterative search is the standard method.
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Putting ARMA models at work

There are four main steps in the Box-Jenkins approach:
PRE WHITENING: make sure that the time series is stationary.
MODEL SELECTION: Information criteria are a useful tool to
this end. The Akaike’s information criteria (AIC) and the Schwarz
Bayesian Criterion (SBC) are the most commonly used criteria:

AIC = −2 log(L) + 2(p + q)
SBC = −2 log(L) + log(n)(p + q)

MODEL CHECKING: residual tests. Make sure that residuals are
not autocorrelated and check whether their distribution is normal,
also ex-post evaluation technique based on RMSE and MAE are
implemented (Diebold-Mariano, Giacomini-White).
FORECASTING, the selected model is typically simulated
forward after estimation of the parameters to produce forecasts
for the variable of interests at the relevant horizon.
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Trends

Forecasting using an ARMA models exploits two features of the data:
mean-reversion and persistence.
Unfortunately many financial time series do not feature mean
reversion as they behave like non-stationary time series.
Non-stationarity of time-series is a possible manifestation of a trend.
Consider, for example, the random walk process with a drift:

xt = a0 + xt−1 + εt,
εt ∼ n.i.d.

(
0, σ2

ε

)
.

Recursive substitution yields

xt = x0 + a0t +
t−1

∑
i=0

εt−i,

which shows that the non-stationary series contains both a

deterministic (a0t) and a stochastic
(

t−1
∑

i=0
εt−i

)
trend.
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Integrated Series

An easy way to make a non-stationary series stationary is differencing:

∆xt = xt − xt−1 = (1− L) xt = a0 + εt.

In general, if a time-series needs to be differenced d times to become
stationary, then it is integrated of order d or I(d). Our random walk is
I(1). When the d-th difference of a time-series x, ∆dxt, can be
represented by an ARMA(p, q) model, we say that xt is an integrated
moving-average process of order p, d, q and denote it as
ARIMA(p, d, q).
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Deterministic vs Stochastic Trends

Compare the behaviour of an integrated process with that of a trend
stationary process. Trend stationary processes feature only a
deterministic trend:

zt = α + βt + εt.

The zt process is non-stationary, but the non-stationarity is removed
simply by regressing zt on the deterministic trend. Unlike this, for
integrated processes like (4) the removal of the deterministic trend
does not deliver a stationary time-series. Deterministic trends have no
memory while integrated variables have an infinite one. Both
integrated variable and deterministic trend exhibit systematic
variations, but in the latter case the variation is predictable, whereas in
the other one it is not.
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Testing for Stationarity

There are several statistical tests that can help assessing whether a time
series is stationary. We analyze only two of them:

Dickey-Fuller and Augmented Dickey-Fuller (ADF)
ADF-GLS (GLS: Generalized Least Squared)

The concept of stationarity strongly depends on the sample: different
sub-samples of the same time series may have different characteristics.
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DF Test

Consider a simple AR(1) model

yt = ρyt−1 + εt

a unit root is present if ρ = 1 and the model would be non-stationary.
We can rewrite the model as follows:

(1− L)yt = ∆yt = (ρ− 1)yt−1 + εt = δyt−1 + εt

Testing for a unit root implies testing the null:
H0 : δ = 0 which is equivalent to H0 : ρ = 1
The alternative is: H1 : |ρ| < 1
The test is run over the residual terms rather than the actual data, it is
not possible to use the t-distribution to provide critical values. Critical
values are provided by Dickey-Fuller (Dickey and Fuller, 1979). Note:
The null hypothesis implies a unit root, if a series is stationary the null
should be rejected.
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ADF Test

There are three main versions of the test:

∆yt = δyt−1 + εt

∆yt = α + δyt−1 + εt constant

∆yt = α + βt + δyt−1 + εt constant and trend

The Augmneted Dickey-Fuller is:

∆yt = α + βt + δyt−1 + γ1∆yt−1 + γ2∆yt−2 + ... + γp∆yt−p + εt
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ADF-GLS Test

ADF-GLS is very similar to the ADF but it filters the series (GLS)

ȳt = yt − (
c
T
)yt−1

In other words, ρ = 1− c
T

where T is the number of observations.
This testing procedure dominates other procedures in terms of power.
It demeans and de-trends the series locally to perform a more efficient
estimation of δ.
Standard t-dstribution does not apply (similar to ADF). (See Elliott,
Rothenberg and Stock, 1992).
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Time Series Analysis: Step 1

Plot the data!

Always look at the data as a first step. A visual analysis may provide
valuable information on:

Stationarity (trends, regime switching, etc.)
Special events (outliers) – are they real or errors?
Linkages to economic and finance theory/intuition – the S&P500
declines in recessions while VIX increases
Missing data (real or errors?)
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Time Series Analysis: Step 1
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Time Series Analysis: Step 2

Test for stationarity.

If null is rejected: no need to transform the series
If fail to reject the null: first difference – or log-difference (e.g.
stock returns) or growth rates (e.g. GDP), etc.

Re-start from Step 1 for the transformed series
Re-run tests for stationarity for the transformed series
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Time Series Analysis: Step 2
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Time Series Analysis: Step 2 (cont.)
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Time Series Analysis: Step 3

Summary statistics (conditional and unconditional)
Compute moments: mean, median, standard deviation, skewness
and kurtosis
Test for Normality and plot the distribution
Compute and plot autocorrelation function

The number of lags in the autocorrelation depends on data
frequency
The autocorrelation function is very informative on how to specify
the ARMA model
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Time Series Analysis: Step 3
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Time Series Analysis: Step 3 (cont.)

statistic p.value method data.name
0.958598618005397 8.01600113266016e− 13 Shapiro-Wilk normality test SW

statistic parameter p.value method data.name
56.2513510566111 10 1.84192959773455e− 08 Box-Ljung test LB
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Time Series Analysis: Step 3
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Time Series Analysis: Step 4

ARMA modeling
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Time Series Analysis: Step 5

Diagnostics (conditional and unconditional)

Are the residuals normally distributed?
Test for Normality and plot the distribution

Did we capture all the persistence?
Plot the autocorrelation function of the residuals
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Time Series Analysis: Step 5

statistic p.value method data.name
0.964405292256005 1.06207374907505e− 11 Shapiro-Wilk normality test ARresiduals

statistic parameter p.value method data.name
21.6936001982079 10 0.0167439163223797 Box-Ljung test ARresiduals
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Time Series Analysis: Step 5
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