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The Partitioned Regression Model

Given the linear model:

y = Xβ+ ε,

Partition X in two blocks two blocks of dimension (Txr) and
(Tx (k� r)) and β in a corresponding way into

�
β1 β2

�
. The

partitioned regression model can then be written as follows

y = X1β1 + X2β2 + ε,
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The Partitioned Regression Model

It is useful to derive the formula for the OLS estimator in the
partitioned regression model. To obtain such results we partition the
‘normal equations’ X0Xbβ = X

0
y as:�

X01
X02

� �
X1 X2

�  bβ1bβ2

!
=

�
X01
X02

�
y,

or, equivalently,�
X01X1 X01X2
X02X1 X02X2

� bβ1bβ2

!
=

�
X01y
X02y

�
. (1)
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The Partitioned Regression Model

System (1) can be resolved in two stages by first deriving an
expression bβ2 as:

bβ2 =
�
X02X2

��1
�

X02y� X02X1bβ1

�
,

and then by substituting it in the first equation of (1) to obtain

X01X1bβ1 + X01X2
�
X02X2

��1
�

X02y� X02X1bβ1

�
= X01y,

from which:

bβ1 =
�
X01M2X1

��1 X01M2y

M2 =
�

I� X2
�
X02X2

��1 X02
�

.
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The Partitioned Regression Model

Note that, as M2 is idempotent, we can also write:

bβ1 =
�
X01M0

2M2X1
��1 X01M0

2M2y,

and bβ1can be interpreted as the vector of OLS coefficients of the
regression of y on the matrix of residuals of the regression of X1 on X2.
Thus, an OLS regression on two regressors is equivalent to two OLS
regressions on a single regressor (Frisch-Waugh theorem).
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The Partitioned Regression Model

Finally, consider the residuals of the partitioned model:

bε = y� X1
bβ1 � X2bβ2,bε = y� X1
bβ� X2

�
X02X2

��1
�

X02y� X02X1bβ1

�
,

bε = M2y�M2X1
bβ1

= M2y�M2X1
�
X01M2X1

��1 X01M2y

=
�

M2�M2X1
�
X01M2X1

��1 X01M2

�
y,

however, we already know that bε = My, therefore,

M =
�

M2�M2X1
�
X01M2X1

��1 X01M2

�
. (2)
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Testing restrictions on a subset of coefficients

In the general framework to test linear restrictions we set r = 0,
R =

�
Ir 0

�
, and partition β in a corresponding way into

�
β1 β2

�
.

In this case the restriction Rβ� r = 0 is equivalent to β1 = 0 in the
partitioned regression model.
Under H0, X1 has no additional explicatory power for y with respect to
X2, therefore:

H0: y = X2β2 + ε, (ε j X1, X2) s N
�

0, σ2I
�

.

Note that the statement

y = X2γ2 + ε, (ε j X2) � N
�

0, σ2I
�

,

is always true under our maintained hypotheses. However, in general
γ2 6= β2.
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Testing restrictions on a subset of coefficients

To derive a statistic to test H0 remember that the general matrix
R (X0X)�1 R0 is the upper left block of (X0X)�1, which we can now
write as (X01M2X1)

�1. The statistic then takes the form

bβ01 (X01M2X1) bβ1
rs2 =

y0M2X1 (X01M2X1)
�1 X01M2y

y0My
T� k

r
� F (T� k, r) .

Given (2), (1) can be re-written as:

y0M2y� y0My
y0My

T� k
r

� F (T� k, r) , (3)

where the denominator is the sum of the squared residuals in the
unconstrained model, while the numerator is the difference between
the sum of residuals in the constrained model and the sum of residuals
in the unconstrained model.

Favero () Interpreting Regression Results -Part II 8 / 19



Testing restrictions on a subset of coefficients

Consider the limit case r = 1 and β1 is a scalar. The F-statistic takes the
form bβ2

1
s2 (X01M2X1)

s F (T� k, r) , under H0,

where (X01M2X1)
�1 is element (1, 1) of the matrix (X0X)�1.

Using the result on the relation between the F and the Student’s
t-distribution: bβ1

s (X01M2X1)
1/2 � t (T� k) under H0.

Therefore, an immediate test of significance of the coefficient can be
performed, by taking the ratio of each estimated coefficient and the
associated standard error.
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The R-squared as a measure of relevance

To illustrate the point let us consider two specific cases of applications
of the CAPM:

�
ri

t � rrf
t

�
= 0.8σmum,t + σiui,t�

rm
t � rrf

t

�
= µm + σmum,t�

ui,t
um,t

�
s n.i.d.

��
0
0

�
,
�

1 0
0 1

��
µm = 0.0065, σm = 0.054, σ1 = 0.09, σ2 = 0.005

We simulate an artificial sample of 1056 obs.(same length with the
sample July 1926-June2014) observations . µm and σm are calibrated to
match the first two moments of the market portfolio excess returns
over the sample 1926:7-2014:7. The standard errors of the two excess
returns are calibrated to deliver R2 of respectively about .22 and .98.
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The R-squared as a measure of relevance

By running the two CAPM regressions on the artificial sample:

TABLE 3.1: The estimation of the CAPM on artificial data

Dependent Variable
�

r1
t � rrf

t

�
Regressor Coefficient Std. Error t-ratio Prob.�

rm
t � rrf

t

�
0.875 17.48 0.000

R2 0.22 S.E. of regression 0.0076

Dependent Variable
�

r2
t � rrf

t

�
Regressor Coefficient Std. Error t-ratio Prob.�

rm
t � rrf

t

�
0.793 201.86 0.000

R2 0.972 S.E. of regression 0.0000

In both cases the estimated beta are statistically significant and very
close to their true value of 0.8.
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The R-squared as a measure of relevance

Simulate again the processes but introduce at some point a temporary
shift of two per cent in the excess returns in the market portfolio.
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In both experiments the conditional expectation changes of the same
amount but the share of the unconditional variance of y explained by
the regression function is very different, as different are the R2s.
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The partial regression theorem

The Frisch-Waugh Theorem described above is worth more
consideration.
The theorem tells us than any given regression coefficient in the model
E (y j X) = Xβ can be computed in two different but exactly
equivalent ways:
1) by regressing y on all the columns of X,
2) by first regressing the j-th column of X on all the other columns of X,
computing the residuals of this regression and then by regressing y on
these residuals.
This result is relevant in that it clarifies that the relationships pinned
down by the estimated parameters in a linear model do not describe
the connections between the regressand and each regressor but the
connection between the part of each regressor that is not explained by
the other ones and the regressand.
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What if analysis

The relevant question in this case becomes “how much shall y
change if I change Xi?”
The estimation of a single equation linear model does not allow to
anser that question, for a number of reasons.
First, estimated parameters in a linear model can only answer the
question how much shall E (y j X) if I change X? We have seen
that the two questions are very different if the R2 of the regression
is low, in this case a change in E (y j X) may not effect any visible
and relevant effect on y.
Second, a regression model is a conditional expected value
GIVEN X. In this sense there is no space for “changing” the value
of any element in X.
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What if analysis

Any statement involving such a change requires some assumption
on how the conditional expectation of y changes if X changes and
a correct analysis of this requires an assumption on the joint
distribution of y and X.
Simulation might require the use of the multivariate joint model
even when valid estimation can be performed concentrating only
on the conditional model.
Strong exogeneity is stronger than weak exogeneity for the
estimation of the parameters of interest.
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What if analysis

Think of a linear model with know parameters

y = β1x1 + β2x2

What is in this model the effect of on y of changing x1 by one unit
while keeping x2 constant ? Easy β1.
Now think of the estimated linear model:

y =
ˆ
β1x1 +

ˆ
β2x2 +

ˆ
u

Now y is different from E (y j X) and the question "what is in this
model the effect of on E (y j X) of changing x1 by one unit while
keeping x2 constant ?" does not in general make sense.
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What if analysis

Changing x1 keeping x2 unaltered implies that there is zero
correlation among this variables.

But the estimates
ˆ
β1and

ˆ
β2 are obained by using data in which in

general there is some correlation between x1 and x2.
Data in which fluctuations in x1 do not have any effect on x2
would have most likely generated different estimates from those
obtained in the estimation sample.
The only valid question that can be answered using the
coefficients in linear regression is "What is the effect on E (y j X) of
changing the part of each regressors that is orthogonal to the other
ones".
"What if" analysis requires simulation and in most cases a low
level of reduction than that used for regression analysis.
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The semi-partial R-squared

When the columns of X are orthogonal to eache other the total R2

can be exactly decomposed in the sum of the partial R2 due to
each regressor xi (the partial R2 of a regressor i is defined as the R2

of the regression of y on xi).
This is in general not the case in applications with non
experimental data: columns of X are correlated and a (often large)
part of the overall R2 does depend on the joint behaviour of the
columns of X.
However, it is always possible to compute the marginal
contribution to the overall R2 due to each regressor xi, defined as
the difference between the overall R2 and the R2 ot the regression
that includes all columns X except xi. This is called the
semi-partial R2.
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The semi-partial R-squared

Interestingly, the the semi-partial R2 is a simple tranformation of the
t-ratio:

spR2
i =

t2
βi

�
1� R2�
(T� k)

This result has two interesting implications.
First, a quantity which we considered as just a measure of
statistical reliability, can lead to a measure of relevance when
combined with the overall R2 of the regression.
Second, we can re-iterate the difference between statistical
significance and relevance. Suppose you have a sample size of
10000 and you have 10 columns in X and the t-ratio on a coefficient
βi is of about 4 with an associate P-value of the order .01: “very”
statistical significant! The derivation of the semi-partial R2 tells us
that the contribution of this variable to the overall R2 is at most
approximately 16/(10000-10) that is: less than two thousands.
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