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The general framework (deterministic)

V ∗(x0) = sup
{xt+1}∞

t=0

∞

∑
t=0

βtF (xt , xt+1) (1)

s.t. x0 ∈ X

xt+1 ∈ Γ(xt) for all t.

Time invariant function F , and correspondence Γ; β ∈ [0, 1). We
assume Γ to be non empty for all x ∈ X .

Recall that the BPO is equivalent to the possibility of writing the
value function V ∗ as Bellman Functional Equation:

V (x0) = sup
x1∈Γ(x0)

F (x0, x1) + βV (x1), (2)



The Stochastic Optimal Growth Model I

Consider the stochastic version of the optimal growth model:

V ∗(k0, z0) = sup
{kt+1}∞

t=0

E0

[
∞

∑
t=0

βtu (f (kt , zt)− kt+1)

]
s.t. 0 ≤ kt+1 ≤ f (kt , zt), k0 and z0 given.

This model with persistent shocks and non inelastic labor supply
has been used in the Real Business Cycles literature to study the
effects of technological shocks on aggregate variables such as
consumption, investment and employment.

⇒ Next Lessons.



The Stochastic Optimal Growth Model II
The Bellman equation is

V (k , z) = max
0≤k ′≤zf (k)

u(f (k , z)− k ′) + βE
[
V (k ′, z ′) | z

]
Simple case: {zt}∞

t=0 are i.i.d., u(c) = ln c , f (k, z) = zkα,
(δ = 1),

⇒ The optimal policy function is

kt+1 = αβzkα
t

and the value function is

V (k , z) = A(z) +
α

1− βα
ln k .

⇒ Exercise.



Stochastic Dynamic Programming with finite states

Let the set of states be

Z = {z1, z2, ..., zN} .

The Bellman equation is

V (x , zi ) = sup
x ′∈Γ(x ,zi )

F (x , x ′, zi ) + β
N

∑
j=1

πijV (x ′, zj ), ∀i

V(x) = (V (x , z1), ...,V (x , zN)) ⇒ (Vector) Bellman Operator:

(TV)(x) =


supx ′∈Γ(x ,z1) F (x , x ′, z1) + β ∑N

j=1 π1jV (x ′, zj )
...

supx ′∈Γ(x ,zN ) F (x , x ′, zN) + β ∑N
j=1 πNjV (x ′, zj )



Markov Chains I
Transition probabilities:

πij = Pr
{
z ′ = zj | z = zi

}
, i , j = 1, 2, ...,N.

probability of the system to move to state zj when current state is
zi .

πij ≥ 0, and
N

∑
j=1

πij = 1 for i = 1, 2, ...,N,

π belong to the N−dimensional simplex ∆N .

Transition matrix, Markov matrix, or stochastic matrix.

Π =


π11 π12 ... π1N

π21 π22 ... ...
... ... πij ...
πN1 ... ... πNN





Markov Chains II

Probability distribution over the state in period t is

pt =
(
pt1, pt2, ...ptN

)
,

⇒ distribution over the states in period t + 1

ptΠ =
(
pt+1
1 , pt+1

2 , ...pt+1
N

)
,

where pt+1
j = ∑N

i=1 p
t
i πij , j = 1, 2, ...,N.

Example:

p1j =
N

∑
i=1

p0i πij .

Examples: Social mobility, Migration.
p0i = stock of people in period zero, p1j = stock of people in period

one, p0i πij = flow of people moving from state i into state j .



Markov Chains III

If the current state is zi with certainty

⇒ initial (degenerate) distribution pt = ei = (0, ..., 1, ..., 0)

⇒ pt+1 = the i−th row of Π : eiΠ = (πi1, πi2, ...πiN) .

Additivity (Chapman-Kolmogorov Th.):
pt+n = ptΠn = pt(Π ·Π · ...Π).



Stationary Distributions I: Existence

Is there a stationary distribution, that is a probability distribution
p∗ with the property p∗ = p∗Π?

Theorem 18 Given a stochastic matrix Π, there always exists at
least one stationary distribution p∗ such that p∗ = p∗Π.

Proof: Existence requires the solution of the system of equations
p∗(I −Π) = 0, or

(I −Π′)p∗ = 0.

That is, we are done if Π′ admits (at least) one eigenvalue λ = 1
with associated eigenvector p∗. It does because is a stochastic
matrix:

λp∗ = Π′p∗

Q.E.D.



Stationary Distributions II: Uniqueness

When can we say that p∗ is unique?

Theorem 19 Assume that πij > 0 for all i , j = 1, 2, ...N. There
exists a limiting distribution p∗ such that

p∗j = lim
n→∞

π
(n)
ij ,

where π
(n)
ij is the (i , j) element of the matrix Πn. And p∗j are the

unique nonnegative solutions of the following system of equations

p∗j =
N

∑
k=1

p∗kπkj ; or p∗ = p∗Π; and

N

∑
j=1

p∗j = 1.



Proof of Uniqueness

The mapping

TΠ : ∆N → ∆N

TΠp = pΠ

defines a contraction on the (complete) metric space
(
∆N , |·|N

)
where

|x |N ≡
N

∑
i=1

|xi | .

(Exercise) Q.E.D.

Related Concepts

Absorbing, Recurrent, and Transient states

Regular and Ergodic Markov Chains



General Stochastic Dynamic Programming

The Bellman functional equation in the general stochastic case is

V (k , z) = sup
k ′∈Γ(k,z)

F (k, k ′, z) + βE
[
V (k ′, z ′) | z

]
(3)

where z follows a first order Markov Process : A sequence of
random variables {zt}∞

t=0 with the property that the conditional
expectations depend only on the last realization of the process.

The only additional complication is merely technical: We
cannot be sure that the true value function V ∗ is integrable so
it might not solve the Bellman Equation (3).

When z is countable again no problem (Bertsekas, 1976).

In general, we can only state Verification Theorems.

(Feller Property and Continuity)

The policy (feed-back) rule describes a Markovian stochastic
process: k ′ = g(k , z) (Stationary distributions).


