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Abstract

For the most popular discrete nonparametric models, beyond the Dirichlet process, the

prior guess at the shape of the data generating distribution, also known as base measure,

is assumed to be diffuse. Such a specification greatly simplifies the derivation of analytical

results allowing for a straightforward implementation of Bayesian nonparametric inferential

procedures. However, in several applied problems the available prior information leads natu-

rally to incorporate an atom into the base measure and one is essentially left with the Dirichlet

process as the only tractable choice for the prior. In this paper we fill this gap by considering

the Pitman–Yor process featuring an atom in its base measure. We derive computable expres-

sions for the distribution of the induced random partitions and for the predictive distributions.

These findings allow us to devise an effective generalized Pólya urn Gibbs sampler. Applica-

tions to density estimation, clustering and curve estimation, with both simulated and real

data, serve as an illustration of our results and allow comparisons with existing methodology.

In particular, we tackle a functional data analysis problem concerning basal body temperature

curves.

Keywords: Bayesian Nonparametrics; functional data; Pitman–Yor process; predictive

distribution; random partition; spike and slab base measure.
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1 Introduction

The specification of two-component mixture priors represents the most popular choice in

Bayesian variable selection and when investigating sparsity phenomena. Such mixtures are

commonly referred to as spike and slab priors according to a terminology that was introduced

in Mitchell & Beauchamp (1988), who use a mixture whose components are a degenerate dis-

tribution at 0, referred to as spike, and a diffuse distribution, referred to as slab. The seminal

contribution of George & McCulloch (1993), where a mixture of two normal distributions

with zero mean and different variances is considered, originated a huge literature on the topic.

Further developments, along with an insightful discussion of connections with frequentist pro-

cedures, can be found in Ishwaran & Rao (2005).

The present paper investigates the use of a spike and slab prior specification for Bayesian

nonparametric inference on the clustering structure featured by the data. Among several

possible motivating applications we consider a functional data analysis problem, where the

data represent the basal body temperature (bbt) curves of women in their reproductive age.

The daily bbt of a healthy woman during the menstrual cycle is known to follow a distinctive

biphasic trajectory, which can be described by a specific parametric function of time as

f∗(t) = a+ b
exp{ct}

1 + exp{ct}
(1)

and admits a clear clinical interpretation (see § 4.2). Nonetheless, a number of unhealthy

women may display a far more irregular functional form that does not preserve the nice S–

shape yielded by (1). It is then natural to think of these functional data as being generated

“on average” by a mixture probability distribution having a spike at the functional form in

(1) and a diffuse component that accommodates for irregular bbt behaviour. See Scarpa &

Dunson (2009). In our fully nonparametric framework this idea translates into the use of a

nonparametric prior P̃ whose base measure is a convex linear combination of a point mass

at the function f∗ in (1) and of a diffuse distribution P ∗ on a suitable set of functions, i.e.

E(P̃ ) = ζ δf∗ + (1− ζ)P ∗. Introducing an atom, corresponding to the regular S-shape, in the

base measure allows us to embed useful prior information while maintaining the natural flexi-

bility of the nonparametric approach, which is needed to model the potentially very irregular
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shape of unhealthy women. Motivated by different applications, with real-valued data, Dunson

et al. (2008), MacLehose et al. (2007), Yang (2012) and Barcella et al. (2016) conveniently

adopted a Dirichlet process (DP) with base measure featuring an atom at 0: this allows them

to simultaneously perform clustering and variable selection. In fact, an atom at 0 represents a

natural way to incorporate the belief that some coefficients might be null with positive proba-

bility in the prior. The same construction is used in Suarez & Ghosal (2016) to model wavelet

coefficients of functional data so to induce sparsity. Applications to multiple testing problems

can be found in Bogdan et al. (2008) and in Kim et al. (2009). Among other contributions

proposing testing procedures based on a DP whose base measure is a two-components mixture,

we mention Guindani et al. (2009) and Do et al. (2005). When using the DP, the presence

of the atom in the base measure does not impact the structure of the predictive distributions

because of its conjugacy. Indeed, the predictive distribution can be determined as a linear

functional of the posterior distribution, which is still the distribution of a DP regardless of

the presence of atoms in the base measure P0. However, when P̃ is not a DP an atom in

P0 considerably changes the posterior structure of the process and induces some challenging

technical issues that need to be addressed in order to perform Bayesian inference.

In this work we investigate the distributional properties of the probably most popular gener-

alization of the DP, namely the Pitman–Yor process (Perman et al., 1992; Pitman & Yor, 1997).

We show that, even when an atom is included in the base measure, the process still preserves

a considerable degree of analytical tractability. We derive explicit expressions for the associ-

ated exchangeable partition probability function (EPPF), the predictive distributions and the

distribution of the a priori number of distinct values Kn in an n-sample X(n) = (X1, . . . , Xn).

These expressions represent the building block of a generalized Blackwell McQueen Pólya urn

scheme. The resulting algorithm is then used to carry out an extensive study involving both

scalar and functional data. This empirical analysis uncovers some interesting features of the

models we are considering and allows useful comparisons with possible alternatives available in

the literature. First we assess the different inferential behaviour of Dirichlet and the Pitman–

Yor process based models, when the base measure has an atomic component. Our findings

show that, somehow similarly to what happens in the case of a diffuse base measure (Lijoi

et al., 2007; Jara et al., 2010; De Blasi et al., 2015), models based on the Pitman–Yor pro-
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cess are more flexible and more robust with respect to prior misspecifications on the clustering

structure of the data. Moreover, we compare the Pitman–Yor process, with spike and slab base

measure, with an alternative two-component mixture model defined as a linear combination

of an atomic component and a Pitman-Yor process with diffuse base measure, in the spirit of

Scarpa & Dunson (2009). Finally, we draw a comparison between models whose base measure

is diffuse with models having a fixed atom in the base measure as in (5). The convenience

of an atomic component in the base measure, to reflect prior information, is already pointed

out in existing literature on the DP for the case of scalar data. Here, instead, we consider

functional data in the more general Pitman–Yor setup and evaluate the potential gain in terms

of inferential performance. An atom in the base measure defined on some functional space

turns out to be greatly beneficial in terms of classification of functions.

2 Some preliminaries on random partitions

Since our goal is to study the clustering structure of the data from a Bayesian nonparametric

standpoint, it is natural to consider a discrete random probability measure P̃ and to look at the

exchangeable random partition associated to P̃ . Assume the data Xi | P̃
iid∼ P̃ , for i = 1, . . . , n,

take values in some space X and

P̃ =
∑
j≥1

p̃j δZj (2)

is a discrete random probability measure such that
∑

j≥1 p̃j = 1, almost surely, and the Zj ’s are

independent and identically distributed X-valued random elements with common distribution

P0. Due to the discreteness of P̃ , the n-sample X(n) = (X1, . . . , Xn) induces a partition,

say Ψn, of [n] = {1, . . . , n} such that i and j are in the same partition set when Xi = Xj .

The corresponding probability distribution pr(Ψn = {C1, . . . , Ck}), where Cj for j = 1, . . . , k

are the unique cluster labels, for any k ≤ n, is also known as EPPF. See Pitman (1995).

Once the EPPF is available, one can determine the predictive distributions associated to the

exchangeable sequence (Xi)i≥1. If the sample X(n) displays k distinct values x∗1, . . . , x
∗
k, then

pr
(
Xn+1 ∈ dx | X(n)

)
= w

(0)
k,n P0(dx) +

k∑
j=1

w
(j)
k,n δx∗j (dx), (3)
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where E(P̃ ) = P0 and the weights {w(j)
k,n : j = 0, 1, . . . , k} can be expressed in terms of the

underlying EPPF. Closed form expressions for predictive distributions in (3) are available for

broad classes of discrete random probability measures under the crucial assumption of P0 being

diffuse. See, e.g., Pitman (2003); Lijoi et al. (2005, 2007); James et al. (2009). Beyond the DP,

the literature on instances, where the assumption of diffuseness of P0 is relaxed, is limited and

essentially confined to theoretical investigations with no actual implementation. James et al.

(2006) consider the class of homogeneous normalized random measures and study the predictive

distribution for grouped data when the base measures has an atomic component. Their work

sheds light on the technical problems arising when considering an atomic component in the base

measure. A related result, confined to the Dirichlet case, can be found in Regazzini (1978). On

the other hand, Sangalli (2006) studies the predictive distribution of Poisson–Kingman models

when the base measure has an atomic component. Although in line of principle the results we

present in this work could be derived from the more general but rather involved expressions

in James et al. (2006) and Sangalli (2006), we opted to present a direct derivation that is

less cumbersome and, importantly, better illustrates the learning mechanism corresponding to

such random measures.

We first recall the definition of the Pitman–Yor process and introduce some notation used

throughout. Let P̃ be as in (2) and assume that (p̃j)j≥1 and (Zj)j≥1 are independent. Then

P̃ is a Pitman–Yor process, P̃ ∼ PY(σ, θ;P0) with σ ∈ [0, 1) and θ > −σ, if the p̃i’s are

constructed according to the following stick-breaking procedure (Perman et al., 1992): p̃1 = V1,

p̃j = Vj
∏j−1
i=1 (1 − Vi), for j ≥ 2, and (Vi)i≥1 is a sequence of independent random variables

with Vi ∼ Beta(1− σ, θ + iσ). For a diffuse P0 the corresponding EPPF equals

pr(Ψn = (C1, . . . , Ck)) = Φ
(n)
k (n1, . . . , nk;σ, θ) =

∏k−1
j=1(θ + jσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1 (4)

where (a)n = Γ(a + n)/Γ(a), for any integer n ≥ 0, nj = card(Cj) are positive integers such

that
∑k

i=1 ni = n. See Pitman (1995). However, if one assumes

P0 = ζ δx0 + (1− ζ)P ∗, (5)

for some x0 ∈ X and diffuse probability measure P ∗ on X, then (4) no longer holds true.
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Before stating the main results in the next section, we highlight a key difference between

P̃ ∼ PY(σ, θ;P0), with P0 as in (5) and the alternative spike and slab prior specification

Q̃ = ζ δx0 + (1− ζ) Q̃∗, (6)

where Q̃∗ ∼ PY(σ, θ;P ∗) and P ∗ is diffuse as in (5). Henceforth, we shall refer to P̃ ∼
PY(σ, θ;P0), with P0 as in (5) as the inner spike and slab model. Similarly, Q̃ as in (6) will be

referred to as outer spike and slab model. It is worth noting that the model with and outer

spike and slab (6) has been used in Scarpa & Dunson (2009) for the special case of Q̃∗ being

a DP. Both processes share the same two–components mixture centering, since it is apparent

that E(Q̃) = E(P̃ ) = P0.

Remark 1 The inner and outer spike and slab models yield structurally different priors. An

interesting comparison can be made when σ = 0, which implies that both Q̃∗ and P̃ are

Dirichlet processes. If one sets ζ ∼ Beta(1, θ), Q̃ can be represented as
∑

j≥0 πj δYj with the

random probability masses πj admitting the same stick–breaking representation characterizing

the weights of a DP. Nonetheless, Q̃ is not a DP since the location associated to the first stick–

breaking weight, namely Y0, equals x0 and therefore the random variables of the sequence

(Yj)j≥0 are not independent and identically distributed. The substantial difference between the

two models can be further appreciated and somehow quantified through the next Proposition,

which shows that the variabilities of P̃ and Q̃ around the shared mean, P0, are different.

Proposition 1 If f : X→ R is any function such that
∫
f2 dP ∗ <∞, then

var
{∫

f dP̃
}
− var

{∫
f dQ̃

}
= ζ(1− ζ)

1− σ
θ + 1

∫
{f(x0)− f}2 dP ∗ ≥ 0. (7)

Hence, the prior uncertainty associated to a Pitman–Yor process with a spike and slab base

measure is larger than the uncertainty induced by an outer spike and slab model. In this

sense, our fully nonparametric prior is less informative and provides more flexibility than the

one used in Scarpa & Dunson (2009). A simple illustration of this finding may be given by

choosing f as an indicator function. If f = 1[0,t], for some t > 0, one obtains the random
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survival functions

S̃P̃ (t) := 1−
∫ ∞

0
1[0,t](x)dP̃ (x) and S̃Q̃(t) := 1−

∫ ∞
0
1[0,t](x)dQ̃(x),

defined as functionals of the inner and the outer spike and slab models P̃ and Q̃, respec-

tively. By setting x0 = 0, S̃P̃ and S̃Q̃ can be conveniently used as nonparametric prior

distributions assigning positive probability to the event occurring at time t = 0, which in

reliability applications may be interpreted as the failure of an item during its production.

Let P ∗ be any diffuse probability measure on R+, and S∗ denote the corresponding sur-

vival function. It is straightforward to show that both models have the same prior guess

E{S̃P̃ (t)} = E{S̃Q̃(t)} = (1− ζ)S∗(t). A direct application of Proposition 1 implies that, for

every t ≥ 0,

var
{
S̃P̃ (t)

}
− var

{
S̃Q̃(t)

}
= ζ(1− ζ)

1− σ
θ + 1

S∗(t),

thus indicating that the random survival function based on the inner spike and slab model P̃

is less concentrated around the prior guess than the one based on the outer spike and slab

model Q̃.

3 Pitman–Yor process with spike and slab base mea-

sure

The following result concerns a Pitman–Yor process having a point mass in its base measure

and provides a closed form expression for its EPPF, denoted as Π
(n)
k (n1, . . . , nk). The expres-

sion is given in terms of generalized factorial coefficients C (nj , i;σ) = 1
i!

∑i
r=0(−1)r

(
i
r

)
(−rσ)nj ;

see Charalambides (2005) for an exhaustive account on their properties. In this section we

assume σ ∈ (0, 1) and note that the Dirichlet case is obtained by suitably taking the limit for

σ → 0.

Theorem 1 The EPPF induced by P̃ ∼ PY(σ, θ;P0), where P0 = ζ δx0 +(1− ζ)P ∗ as in (5),

is

7



Π
(n)
k (n1, . . . , nk) = (1− ζ)k

∏k−1
j=1(θ + jσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1

+ (1− ζ)k−1
k∑
j=1

∏k−2
r=1(θ + rσ)

(θ + 1)n−1

∏
`6=j

(1− σ)n`−1

nj∑
i=1

ζi
(
θ

σ
+ k − 1

)
i

C (nj , i;σ). (8)

A simple rearrangement of (8) yields a nice probabilistic interpretation of the result. To this

end, recall that the posterior distribution of a PY(σ, θ;P0), conditional on a sample of size

n−nj featuring k−1 distinct values x∗1, . . . , x
∗
k−1, all different from the fixed atom x0, is equal

to the law of
k−1∑
i=1

πi,j δx∗i + πk,jP̃k−1 (9)

with P̃k−1 ∼ PY(σ, θ + (k − 1)σ;P0), (π1,j , . . . , πk−1,j) having a (k − 1)-variate Dirichlet

distribution with parameters (n1 − σ, . . . , nj−1 − σ, nj+1 − σ, . . . , nk − σ; θ + (k − 1)σ) and

πk,j = 1 −
∑k−1

i=1 πi,j . Moreover, (π1,j , . . . , πk−1,j) and P̃k−1 are independent. Also note that

the distribution of the number of distinct values Kn ∈ {1, . . . , n}, in a sample of size n from

a PY(σ, θ;P0) process, depends on the parameters (σ, θ, ζ) and for this reason we will use the

notation pr{Kn = k; (σ, θ, ζ)} to identify it. In particular, ζ = 0 corresponds to a diffuse base

measure leading to

pr{Kn = k; (σ, θ, 0)} =

∏k−1
r=1(θ + rσ)

(θ + 1)n−1

C (n, k;σ)

σk
.

Simple algebra, then, leads to the following result.

Corollary 1 The EPPF of P̃ ∼ PY(σ, θ;P0) with P0 as in (5) can be represented as

Π
(n)
k (n1, . . . , nk) = (1− ζ)k Φ

(n)
k (n1, . . . , nk;σ, θ) + (1− ζ)k−1

k∑
j=1

(θ + (k − 1)σ)nj
(θ + n− nj)nj

× Φ
(n−nj)
k−1 (n1, . . . , nj−1, nj+1, . . . , nk;σ, θ)

nj∑
i=1

ζi pr{Knj = i; (σ, θ + (k − 1)σ, 0)}, (10)

with Φ
(n)
k (n1, . . . , nk;σ, θ) defined as in (4).
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The first summand on the right-hand side of (10) corresponds to the case where none of

the k partition sets is identified by x0, its probability being (1 − ζ)k. The second sum-

mand corresponds to the case where one of the partition sets is at x0. The probabilis-

tic interpretation works as follows. For any j = 1, . . . , k: (i) with probability equal to

Φ
(n−nj)
k−1 (n1, . . . , nj−1, nj+1, . . . , nk;σ, θ) a partition of n − nj observations into k − 1 groups

is generated through the diffuse component of the base measure; (ii) conditional on the k − 1

clusters generated by n−nj observations through the diffuse component, {θ+(k−1)σ}nj/(θ+

n− nj)nj is the probability that the remaining nj observations are generated by P̃k−1 in (9),

which is the only component containing x0; (iii) conditional on having nj observations gener-

ated by P̃k−1 and equal to x0, i of them are from the base measure and, if we label them as

if they generate separate clusters, the remaining nj − i are assigned to any of these i labeled

groups. In other terms, according to (iii), it is as if the nj observations are further split into i

“fictitious” sub-clusters all identified by x0.

Having derived a closed form expression for the EPPF, it is now possible to obtain the

distribution of the number of distinct values Kn in X(n), for any vector of parameters (σ, θ, ζ),

with ζ ∈ [0, 1].

Theorem 2 If Xi | P̃
iid∼ P̃ , for i = 1, . . . , n, and P̃ ∼ PY(σ, θ;P0), with P0 as in (5), the

probability distribution of the number of distinct values Kn in X(n) equals

pr{Kn = k; (σ, θ, ζ)} = (1− ζ)k pr{Kn = k; (σ, θ, 0)}

+ (1− ζ)k−1
n−k+1∑
r=1

(
n

r

)
(θ + (k − 1)σ)r

(θ + n− r)r
pr{Kn−r = k − 1; (σ, θ, 0)}

×
r∑
i=1

ζi pr{Kr = i; (σ, θ + (k − 1)σ, 0)}. (11)

The predictive distributions associated to the exchangeable sequence (Xi)i≥1 directed by

P̃ ∼ PY(σ, θ;P0), with P0 as in (5), can also be readily obtained from the corresponding

EPPF. Suppose the observed sample X(n) displays k distinct values x∗1, . . . , x
∗
k with respective

frequencies n1, . . . , nk.
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Theorem 3 Let Xi | P̃
iid∼ P̃ , for i = 1, . . . , n, and P̃ ∼ PY(σ, θ;P0), with P0 as in (5). The

corresponding predictive distribution is given by:

(i) if x0 6∈ {x∗1, . . . , x∗k}

pr(Xn+1 ∈ A | X(n)) =
θ + kσ

θ + n
P0(A) +

1

θ + n

k∑
j=1

(nj − σ) δx∗j (A);

(ii) if x0 = x∗j , for some j = 1, . . . , k,

pr(Xn+1 ∈ A | X(n)) = (1− ζ)
θ + (k − 1)σ

θ + n

∑nj
i=1 ζ

i C (nj , i;σ)
(
θ
σ + k

)
i∑nj

i=1 ζ
i C (nj , i;σ)

(
θ
σ + k − 1

)
i

P ∗(A)

+
1

θ + n

∑nj+1
i=1 ζi C (nj + 1, i;σ)

(
θ
σ + k − 1

)
i∑nj

i=1 ζ
i C (nj , i;σ)

(
θ
σ + k − 1

)
i

δx∗j (A) +
1

θ + n

∑
`6=j

(n` − σ) δx∗` (A).

Note that the predictive distribution for case (i) coincides with the well-known ones of the

Pitman–Yor case with diffuse base measure. Moreover, if ζ = 0 in (5), the predictive distribu-

tion reduces to that of case (i), as required. Analogously it is easy to see that with ζ = 0 in

(5) the EPPF in Theorem 1 reduces to that of the non-atomic case in (4). Theorem 3 provides

the basic ingredients for devising the Pólya urn type algorithm that will be used in § 4 and

whose details are provided in the Appendix.

4 Illustration

4.1 Synthetic data

The previous results pave the way to a straightforward implementation of the inner spike and

slab nonparametric model to a number of applications of interest. In §4.2 we will focus on a

real data application concerning the analysis of functional data. However, we need to further

investigate distributional properties of the inner spike and slab model. This will be achieved

through the use of synthetic data in the present section.
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For P̃ ∼ PY(σ, θ;P0) with P0 a diffuse probability measure, there is an extensive literature

aimed at investigating the effects of σ on posterior inferences for the Pitman–Yor process and

allied nonparametric priors (see Lijoi et al., 2007; Jara et al., 2010; De Blasi et al., 2015).

Here, we aim at understanding whether these features are preserved when one allows the base

measure P0 of the Pitman–Yor process to have an atom. To this end we perform a simulation

study with R = 100 replicated samples of size n = 50, 100 so to mimic a quality control

application. In these context a given random element X is supposed to have a precise nominal

value and the goal of the analysis is to assess whether the nominal value is plausible or not

on the basis of an observed random sample X(n) of X. We assume that the measurements of

Xi, with i = 1, . . . , n, are taken with a measuring instrument with known precision. Data are

simulated from a location-scale mixture of Gaussian kernels, i.e.

g0(X) =
5∑

h=1

πhφ(X;mh, t
−1
h ),

where φ(.;m, t−1) is the normal density with mean m and precision t. We further set m1 = 0

and t−1
1 =0.04 as the nominal value of X and the variance of the measuring instrument,

respectively. The values of the remaining parameters are reported in the Appendix. Data are

analyzed assuming

Xi | (µi, τi)
ind∼ N(µi, τ

−1
i ), (µi, τi) | P̃

iid∼ P̃ , P̃ | ζ ∼ PY(σ, θ;P0).

Given the prior information on the nominal value and on the precision of the measuring

instrument, the base measure P0 is specified so to assign positive mass to the pair (m1, t1) and

thus is a mixture of a point mass and a diffuse density, and precisely

P0 = ζδ(m1,t1) + (1− ζ)P ∗,

where P ∗ is normal-gamma. In order to also learn the proportion of observations that can

be suitably modeled by the spike in (m1, t1), we further assume that ζ has a uniform prior

between zero and one. The analysis is repeated with different choices of σ and θ. Specifically

we take σ ∈ {0, 0.25, 0.5, 0.75} and we fix θ using the results of Theorem 2 so to have a prior

expected number of mixture components equal to 3 or 15 thus corresponding, respectively,
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E(Kn) σ n = 50 n = 100

3

0 3.14 3.04

0.25 3.40 3.35

0.50 4.13 3.94

0.75 5.71 4.68

15

0 11.99 11.33

0.25 11.49 10.21

0.50 10.50 8.07

0.75 8.42 5.58

Table 1: Posterior number of mixture components for location-scale mixture simulation experi-

ment.

to an under- and over-estimation of the true number of components. Details on the values

of θ and on the Markov chain Monte Carlo sampling algorithm employed to sample from the

posterior distribution of the parameters are reported in the Appendix. The results, displayed

in Table 1, are coherent with the findings in the case of nonparametric mixtures with non-

atomic base measures (Lijoi et al., 2007; De Blasi et al., 2015). Specifically, for larger values

of σ, the estimated number of mixture components is closer to the true value. This nicely

showcases the effectiveness of the additional model flexibility conveyed by σ in overcoming

possible prior misspecifications. The numerical estimates are reported in Table 1 with the

largest Monte Carlo standard errors being equal to 0.75 and 1.25 for the first and last four

rows, respectively.

The second simulation experiment compares the inner and outer spike and slab models in

terms of estimation of the proportion of observations allocated to the spike component. A

straightforward application of Proposition 1 with f = 1{x0}, shows that the variance of the

random mass assigned by the inner model to the atom x0 is larger than the variance of the

corresponding mass assigned by the outer model, the difference being equal to ζ(1 − ζ)(1 −
σ)/(θ + 1). This difference suggests that the inner spike and slab model should provide more

robust posterior inference on the proportion of observations allocated to the spike, when ζ is
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σ n = 50 n = 100

Inner

0 0.43 0.41

0.25 0.42 0.40

0.50 0.41 0.39

0.75 0.42 0.39

Outer

0 0.50 0.49

0.25 0.49 0.49

0.50 0.49 0.49

0.75 0.49 0.49

Table 2: Posterior proportion of subjects allocated to the spike for location-scale mixture simu-

lation experiment.

fixed and its value misspecified. In order to check this we consider exactly the same simulated

data as in the first experiment and keep x0 = (m1, t1). For both the inner and the outer

models, we fix ζ = 0.8 instead of assigning it a uniform prior. Given that the true value is

0.4, this amounts to a strong misspecification. For every value of σ ∈ {0,0.25,0.5,0.75} we set

the parameter θ in both models so that the prior expected number of components is equal to

5, the true number of components in our simulations. Details on how we set θ are reported

in the Appendix. The results displayed in Table 2 show that the inner spike and slab model

is clearly superior than the outer model in overcoming possible prior misspecifications. The

largest Monte Carlo standard error in Table 2 is 0.08.

The third simulation experiment aims at highlighting the benefit of the inclusion of the

spike in the base measure when there is supporting prior information. In fact, one might be

tempted to think that the flexibility of the Pitman–Yor process alone is enough to detect the

spike and assign sufficient posterior mass to it. Our simulation study shows that this is not

the case. We simulate R = 50 datasets that mimic the characteristics of the bbt functional

data of our motivating application. The daily bbt of a healthy woman is known to follow a

distinctive biphasic trajectory that can be described, in simplified terms, as a function of time
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t as

f(t) =
et

1 + et
. (12)

Unhealthy women, however, tend to exhibit far more irregular curves’ shapes. For each dataset,

we simulate n = 50 functional data from the following data generating process

Xit | fi
ind∼ N(fi(t), σ

2), fi
iid∼ P, P =

5∑
j=1

δf∗j πj ,

where f∗1 is exactly (12) and π1 = 0.4. The remaining curves f∗j , for j = 2, . . . , 5, and values

of the parameters are reported in the Appendix. Data are analyzed assuming

Xit | fi
ind∼ N(fi(t), σ

2), fi | P̃
iid∼ P̃ , P̃ | ζ ∼ PY(σ, θ;P0)

with two different specifications for P0, which will be assumed as being either a mixture of a

point mass at (12) and a diffuse measure over the space of functions, or a plain non-atomic

measure. For both choices of P0 we set σ = 0.5 and fix θ so to have the same prior expected

number of mixture components. Additional details on the prior specification and posterior

computation are reported in the Appendix.

The results highlight the benefits of including the spike in the prior specification. Ignoring

prior information concerning a prevalent functional form for the data and consequently using

a diffuse base measure, leads to a significant worsening of the inferences. This can be deduced,

for example, from the posterior clustering structure and, in particular, from the binary classi-

fication of a subject into a cluster with or without biphasic shape. For the model with spike

and slab P0 this corresponds to checking if a subject belongs to the cluster represented by the

fixed atom. For the model with diffuse P0, we label as “biphasic” the cluster in which the

majority of the data coming from (12) are clustered. The numerical results are reported in

Table 3, with the largest Monte Carlo error for the global accuracy being equal to 0.07. The

significantly better performance in terms of accuracy and false positives rates provides clear

evidence in favor of the spike and slab specification of P0.

Another appealing inferential implication of the spike and slab base measure specification

is that the subject specific posterior functional means are more precise for the subjects coming

from (12). Figure 1 displays the estimated functional mean and 90% pointwise posterior

14



Spike and slab base measure Diffuse base measure

Accuracy 0.834 0.747

False Positive 0.305 0.557

False Negative 0.072 0.049

Table 3: Confusion matrix for the third simulation experiment.

credible bands for two subjects having true mean equal to (12). The functional mean and

limits of the credible bands are estimated with the empirical mean and empirical quantiles

of order 0.05, 0.95, determined through the Markov chain Monte Carlo iterations. The plots

refer to one of the R = 50 datasets, though qualitatively similar results can be found in almost

any replicate. Panel (a) concerns a subject classified in the true cluster with the spike and

slab model more than 99.9% of the Markov chain Monte Carlo iterations. In such a case, as

the cluster’s shape is not estimated but fixed, there is no credible band around the continuous

line. In contrast, for the model without spike the curve’s shape clearly cannot coincide with

(12) since it is estimated from the data and it is worth noting that this estimate is erratic on

the left and right part of the domain. Panel (b) concerns a borderline subject classified as

biphasic in the 85% of the Markov chain Monte Carlo iterations for the spike and slab model

and only in the 60% of the iterations for the non-atomic model. This leads to wider credible

bands in both cases.

4.2 Basal body temperature functional data

As previously mentioned our motivating application is concerned with functional data analysis.

Specifically we study a dataset on daily measurements of bbt consisting of 1118 non-conception

cycles from n = 157 women in the Verona center of the Colombo & Masarotto (2000) study.

As shown in panel (a) of Figure 2, the bbt curve trajectory over time of healthy women in

reproductive age follows a biphasic trajectory that can be described by (12) or, more in general,
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Figure 1: Posterior functional means for two subjects having true mean equal to (12): continuous

red lines correspond to the model spike and slab base measure, whereas dashed cyan lines to the

model with non-atomic base measure. Shaded areas depict the posterior pointwise 90% credible

bands. panel (a) corresponds to a subject clearly belonging to (12), panel (b) to a “borderline”

case.

by the parametric function of time t

f(t; τ1, τ2, λ, ω) = τ1 + τ2

(
exp{ t−λω }

1 + exp{ t−λω }

)
. (13)

The representation in (13) is particularly convenient, since the parameters have a clear clinical

interpretation. For example τ1 represents the value of hypothermia during the follicular phase

of the cycle, λ can be interpreted as the moment of ovulation, (τ1 + τ2) is the level that the

bbt reaches after the sharp increase, controlled by ω, which happens just before the ovulation.

In contrast, unhealthy women tend to have different curve’s shapes as shown, for example, in

panel (b) of Figure 2.
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The nonparametric model with spike and slab base measure perfectly fits the present setup:

it allows to assign prior positive mass to curves with the peculiar healthy women’s shape, and at

the same time, to account for abnormal deviations from this standard shape via an extremely

flexible nonparametric functional data mixture model. The same dataset has been previously

analyzed by Scarpa & Dunson (2009), with similar goals but a rather different approach: as

formalized in (6), they rely on a parametric model with possible nonparametric contaminations,

rather than a fully nonparametric model with an informative prior specification.

Let nij denote the duration of cycle j = 1, . . . , ni of woman i = 1, . . . , N . For every

t = 1, 2, . . . , nij , the bbt Xij(t) is observed. We assume that the measurements Xij(t) can be

modelled as

Xij(t) = τ1ij + τ2ijfij

(
t−λij
ωij

)
+ εij(t), (14)

where εij(t) are independent measurement errors modeled as εij(t) ∼ N(0, σ2), and fij is a

smooth random function with prior

fij | P̃
iid∼ P̃ , P̃ | ζ ∼ PY(θ, σ;P0).

where P0 has a spike and slab structure of the type

P0 = ζδf0 + (1− ζ)P ∗,

f0(t) = et/(1 + et) represents the biphasic curve and P ∗ is a non-atomic probability measure

on a function space. The almost sure discreteness of the Pitman–Yor process induces ties,

with positive probability, among the fij ’s. We denote these atoms by f∗h for h = 1, . . . , k.

As probability measure on the function space we consider the prior induced by a B-spline

basis expansion, namely

g ∼ P ∗, g(t) = B(t)Tβ, β ∼MVN(β0,Σ0),

with B(.) denoting the B-splines basis, MVN(m,V ) the multivariate normal distribution with

mean vector m and variance matrix V , and β a finite vector of basis coefficients. The Bayesian
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specification of the model is then completed by eliciting prior distributions for all the remaining

parameters that we assume independent. We let

(τ1ij , τ2ij) ∼ N(αi,Ω), αi ∼ N(α0, R)

λij ∼ U(bij + 10, bij + 20), ωij ∼ Ga(1/2, 1),

1/σ2 ∼ Ga(1/2, 1/2), ζ ∼ U(0, 1),

(15)

where bij denotes the first day after bleeding for cycle i of woman j, U(a, b) denotes the

uniform distribution over (a, b) and Ga(c, d) stands for the gamma distribution with expected

value c/d. For simplicity Ω, R, and Σ0 are identity matrices while α0 and β0 are vectors

of suitable dimensions of zeroes. Note that the specifications in (15) allow to model within-

and between-woman heterogeneity thanks to the presence of the woman specific parameters

αi. The parameters of the Pitman–Yor process are set equal to θ = 1 and σ =0.25, while a

uniform prior on ζ, the prior proportion of cycles belonging to the parametric atom, is assumed

in order to allow the model to learn this feature from the data.

Posterior sampling is performed with the Gibbs sampler described in the Appendix. Its

derivation, for the parametric part, is straightforward and follows standard results on linear

regression and spline interpolation. For the nonparametric part, the sampler is obtained by

using the results of § 3. We perform our analysis by running the algorithm for 8,000 iterations

and discarding the first 3,000 as burn in. Convergence was assessed by visual inspection of the

traceplots which provided no evidence against it.

The posterior probability of being allocated to the biphasic component f0 was greater than

50% for 94.09% of the cycles under study. The posterior mean of ζ is 0.9283 with 95% quantile

based posterior credible interval equal to (0.9097, 0.9450).

Panel (a) of Figure 2 displays the pointwise posterior mean and 95% credible bands for a

biphasic cycle of a healthy woman. For this observation, as for all observations falling in the

biphasic cluster, we can perform inference on important features such as, for instance, the day

of ovulation and the level of the low and high plateau for the first cycle. The corresponding

posterior distributions are depicted in Figure 3.

The cycles that do not fit the biphasic pattern are clustered in separate groups by our

model. More specifically, the posterior median number of clusters is equal to 4 with first and
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Figure 2: Panels (a) and (b) report the bbt data for two cycles along with pointwise posterior

means and 95% credible bands.

third quartiles equal to 4 and 5, respectively. These are potentially abnormal or related to

unhealthy women. Panel (b) of Figure 2 shows an example.

Appendix A: Proofs

A.1 Proof of Proposition 1

One may proceed along the same lines as in Proposition 1 in James et al. (2006) and show

that for a Pitman–Yor process H̃ with parameters (σ, θ) and any type of base measure H0, i.e.

diffuse or atomic or combinations thereof, one has

var
{∫

f dH̃
}

=
1− σ
θ + 1

{∫
f2 dH0 −

(∫
f dH0

)2}
.

Specializing this for P̃ and Q̃ as in the statement yields (7). �
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Figure 3: Panels (a), (b), and (c) display the estimated posterior distributions of the day of

ovulation, the level of the low and high plateau for the cycle in the left panel of Figure 2.

A.2 Proof of Theorem 1

In order to prove the result we resort to an alternative construction of the Pitman–Yor process

that makes use of completely random measures and is more convenient when the goal is to

derive distributional properties. See Lijoi & Prünster (2010) for a review of nonparametric

priors using completely random measures as unifying concept. To this end, recall that a

completely random measure is a random measure µ̃ on X such that, for any collection of

pairwise disjoint subsets A1, . . . , Ak of X, and k ≥ 1, the random variables µ̃(A1), . . . , µ̃(Ak)

are mutually independent. For homogeneous and (almost surely) finite completely random

measures without fixed points of discontinuity, which are of interest here, the Laplace functional

is of the form

E
{

e−
∫
X
f(x) µ̃(dx)

}
= exp

{
−
∫
R+×X

(
1− e−sf(x)

)
ρ(s) ds cP0(dx)

}
(16)

for any f : X → R+ with ρ(s) cP0(dx) the Lévy intensity characterizing µ̃. The σ-stable

completely random measure (Kingman, 1975) is identified by setting ρ(s) = σs−1−σ/Γ(1−σ),

for some σ ∈ (0, 1) and let Pσ denote its probability distribution. The construction of the
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Pitman–Yor process, due to Pitman & Yor (1997), is then as follows. For any θ ≥ 0, introduce

another probability measure Pσ,θ, which is absolutely continuous with respect to Pσ and such

that
dPσ,θ
dPσ

(m) =
Γ(θ + 1)

Γ(θ/σ + 1)
m−θ(X). (17)

The resulting random measure µ̃σ,θ with distribution Pσ,θ is almost surely discrete while not

completely random. Moreover, P̃ = µ̃σ,θ/µ̃σ,θ(X) is a Pitman–Yor process P̃ ∼ PY(σ, θ;P0).

Given this, the proof amounts to determining

E
{∫

Xk
P̃n1(dx1) .s P̃nk(dxk)

}
(18)

for any k-tuple of positive integers n1, . . . , nk such that
∑k

i=1 ni = n, and integrating variables

such that x1 6= .s 6= xk. By virtue of Fubini’s theorem and the definition of the Pitman–Yor

process, (18) equals

Γ(θ + 1)

Γ(θ/σ + 1)

1

Γ(θ + n)

∫
Xk

∫ ∞
0

uθ+n−1E
{

e−uµ̃σ,0(X)
k∏
j=1

µ̃
nj
σ,0(dxj)

}
du, (19)

where µ̃σ,0 denotes the σ-stable completely random measure. Let us focus on the determination

of E{
∏k
j=1 P̃

nj (dxj)}, i.e. the inner integral in (19). If none of the xj ’s equals x0, only the

diffuse component P ∗ of P0 contributes to the integral and the integrand boils down to the

known expression of the Pitman–Yor process with diffuse base measure, i.e.

E
{ k∏
j=1

P̃nj (dxj)
}
∼=
{ k∏
j=1

(1− ζ)P ∗(dxj)
} σk

(θ + 1)n−1 Γ(θ/σ + 1)

×
∫ ∞

0
uθ+n−1 e−u

σ
{ k∏
j=1

1

Γ(1− σ)

∫ ∞
0

snj−σ−1 e−us
}

du (20)

where each dxj stands for an infinitesimal neighbourhood around xj . Hence, (20) is a first-

order approximation of E{
∏k
j=1 P̃

nj (dxj)} and note that the higher order terms vanish when

computing the integral over Xk in (19). The right-hand side of (20) can be rewritten as

{ k∏
j=1

P ∗(dxj)
} (1− ζ)kσk

{∏k
j=1(1− σ)nj−1

}
(θ + 1)n−1 Γ(θ/σ + 1)

∫ ∞
0

uθ+kσ−1 e−u
σ

du
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=
{ k∏
j=1

P ∗(dxj)
} (1− ζ)k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1

On the other hand, if x0 = xj for some j ∈ {1, . . . , k}, the expected value in the integral in

(19) equals

E
{

e−uµ̃σ,0({x0}) µ̃
nj
σ,0({x0})

}
E
{

e−uµ̃σ,0(X\{x0})
∏
`6=j

µ̃n`σ,0(dx`)
}

(21)

where the factorization follows from the definition of completely random measure. The second

factor on the right-hand side of (21) can be easily evaluated since x` 6= x0 for any ` 6= j and

it, thus, involves only the diffuse component P ∗ of P0, i.e.

E
{

e−uµ̃σ,0(X\{x0})
∏
6̀=j
µ̃n`σ,0(dx`)

}
∼=
{∏
`6=j

P ∗(dx`)
}

× (1− ζ)k−1 e−(1−ζ)ψ(u) u(k−1)σ−n+nj−1σk−1
∏
`6=j

(1− σ)n`−1

and the above approximation is to be interpreted as the one given in (20). As for the first

factor, one has

E
{

e−uµ̃σ,0({x0}) µ̃
nj
σ,0({x0})

}
= (−1)nj

dnj

dunj
e−ζ ψ(u) = e−ζ ψ(u)

nj∑
i=1

ζi ξnj ,i(u)

where ψ(u) =
∫∞

0 (1− e−us) ρ(s) ds and for any n ≥ 1

ξn,i(u) =
1

i!

i∑
j=0

(−1)n−j
(
i

j

)
ψi−j(u)

dn

dun
ψj(u).

Since µ̃σ,0 has intensity σs−1−σ P0(dx)/Γ(1− σ), then ψ(u) = uσ and

ξn,i(u) = uiσ−n
1

i!

i∑
j=0

(
i

j

)
(−1)j(−jσ)n = uiσ−n C (n, i;σ).

Hence

E
{

e−uµ̃σ,0({x0}) µ̃
nj
σ,0({x0})

}
= e−ζ u

σ

nj∑
i=1

ζi uiσ−nj C (nj , i;σ). (22)
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To sum up, the integrand in (19) is a linear combination of the case where x0 6∈ {x1, . . . , xk}
and the case where x0 = xj , for j = 1, . . . , k and it can be represented as follows

E
{ k∏
j=1

P̃nj (dxj)
}
∼=
{

1−
k∑
j=1

δx0(dxj)
}{ k∏

j=1

P ∗(dxj)
} (1− ζ)k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1

+
k∑
j=1

δx0(dxj)

{∏
`6=j P

∗(dx`)
}

(1− ζ)k−1σk−1

(θ + 1)n−1 Γ(θ/σ + 1)

{∏
`6=j

(1− σ)n`−1

}

×
nj∑
i=1

ζi C (nj , i;σ)

∫ ∞
0

uθ+(k−1+i)σ−1 e−u
σ

du

which, as before, is a first-order approximation with vanishing higher order terms, and equals

{
1−

k∑
j=1

δx0(dxj)
}{ k∏

j=1

P ∗(dxj)
} (1− ζ)k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1

+

k∑
j=1

δx0(dxj)

{∏
6̀=j P

∗(dx`)
}

(1− ζ)k−1σk−2

(θ + 1)n−1 Γ(θ/σ + 1)

{∏
`6=j

(1− σ)n`−1

}

×
nj∑
i=1

ζi C (nj , i;σ) Γ
( θ
σ

+ k − 1 + i
)

If we plug this expression in (19), simple algebra yields (8). �

A.3 Proof of Theorem 2

This follows from (10) in Corollary 1 and the fact that

pr{Kn = k; (σ, θ, 0)} =
1

k!

∑
∆k,n

(
n

n1 .s nk

)
Φ

(n)
k (n1, . . . , nk;σ, θ)

where ∆k,n is the set of all vectors of positive integers (n1, . . . , nk) such that
∑k

i=1 ni = n. �
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A.4 Proof of Theorem 3

Recall that the weights of the predictive distribution in (3), may be determined as follows

w
(0)
k,n =

Π
(n+1)
k+1 (n1, . . . , nk, 1)

Π
(n)
k (n1, . . . , nk)

, w
(j)
k,j =

Π
(n+1)
k (n1, . . . , nj + 1, . . . , nk)

Π
(n)
k (n1, . . . , nk)

.

In view of Theorem 1, if x0 6∈ {x∗1, . . . , x∗k}, then only the first summand on the right-hand

side of (8) is involved in the determination of w
(0)
k,n and w

(j)
k,n, for j = 1, . . . , n. It is clear, now,

that (i) follows and, as expected, it equals the predictive distribution one would have had if P0

were diffuse. On the other hand, if x0 = x∗j for some j = 1, . . . , k, then the second summand

on the right-hand side of (8) determines the predictive weights and simple algebra yields (ii).

�

Appendix B: Model specifications and sampling schemes

The R code used in the paper is available at the github repository

github.com/tonycanale/PitmanYorSpikeAndSlab/

B.1 Blackwell–MacQueen Pólya urn scheme

Before detailing in the next section the specific algorithms we resorted to in our experiments

on simulated and real data, we stress that their main ingredient is represented by the predic-

tive distributions derived in Theorem 3. These can be used to tailor the general Blackwell–

MacQueen Pólya urn scheme for P̃ ∼ PY(σ, θ;P0) with a spike and slab base measure P0

reported below. Let Xi | P̃
iid∼ P̃ , for i = 1, . . . , n. We assume that the distinct values of Xi are

x∗0, x
∗
1, . . . , x

∗
k, where x∗0 represents the atom in the base measure (5). If the distinct values do

not contain the atom, the algorithm below simplifies to a standard Blackwell–MacQueen Pólya

urn scheme. Let furthermore pr(Xi | X\i) be the probability of Xi conditionally on all the

remaining quantities, k\i be the number of distinct values of x∗j labelled from 0 to k\i − 1 and

nj be the number of observations equal to x∗j . Then the induced Blackwell–MacQueen Pólya
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urn scheme is obtained sampling Xi for i = 1, . . . , n, from a multinomial with cell probabilities

pr(Xi = x∗0 | X−i) ∝
1

θ + n− 1

∑n0+1
l=1 ζ lC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

,

pr(Xi = x∗j | X−i) ∝
(nj − σ)

θ + n− 1
, for j = 1, . . . k\i − 1,

pr(Xi = k\i | X−i) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0
l=1 ζ

l C (n0, l;σ)
(
θ/σ + k\i

)
l∑n0

l=1 ζ
i C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

.

B.2 Details on the inner spike and slab location-scale mixture

We now focus attention on the specific examples developed in §4 of the manuscript. The sim-

ulated scalar data of § 4.1 are generated from the following location-scale mixture of Gaussian

0.4φ(0, 0.2) + 0.1φ(−3.5, 1) + 0.1φ(3.5, 1) + 0.2φ(1, 0.8) + 0.2φ(−1, 0.8).

In the first simulation experiment, data are analyzed assuming the inner model with the base

measure

P0 = ζδ(m1,t1) + (1− ζ)P ∗,

where P ∗ is a prior over R×R∗, namely

P ∗(dµ, dτ) = φ(µ;µ0, κτ
−1)×Ga(τ ; a, b) dµdτ, (23)

where µ0 = 0, a = 0.5, b = 2, and κ is set equal to the sample variance of the data. Note

that the latter is parametrized in terms of precision τ = 1/σ2. The prior on ζ is uniform,

ζ ∼ U(0, 1). The analysis is repeated with different choices of σ and θ reported in Table 4

obtained using equation (11).

B.3 Details on the Gibbs sampler for the inner spike and slab

location-scale mixture

Given the above prior specification, in order to perform Markov chain Monte Carlo sampling

from the posterior distribution of the parameters, we use the Gibbs sampler composed by the

following steps.
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θ

E(Kn) σ n = 50 n = 100

3

0 0.72 0.60

0.25 0.13 0.03

0.5 -0.35 -0.40

0.75 -0.71 -0.73

15

0 16.43 9.27

0.25 10.25 4.89

0.5 4.63 1.43

0.75 0.39 -0.44

Table 4: Prior parameters for the simulation experiment.

1. Let S1, . . . , Sn be the current cluster allocation, with Sj = 0 if Xj is allocated to the

cluster of the spike. For i = 1, . . . , n let k\i be the number of distinct values of Sj

labeled from 0 to k\i − 1 and nh is the number of observations belonging to cluster h.

Then allocate the i-th observation to the cluster of the spike, if already occupied, with

probability proportional to

pr(Si = 0 | −) ∝ 1

θ + n− 1

∑n0+1
l=1 ζ lC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

φ(Xi;µ0, τ
−1
0 ),

to one of the existing clusters, different from the spike, with probability proportional to

pr(Si = h | −) ∝ (nh − σ)

θ + n− 1
φ(Xi;µ

∗
h, τ
∗−1
h ), for h = 1, . . . k\i − 1

and finally to a new cluster with probability proportional to

pr(Si = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0
l=1 ζ

l C (n0, l;σ)
(
θ/σ + k\i

)
l∑n0

l=1 ζ
i C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

× φ(Xi;µ∗, τ
−1
∗ ),

where (µ∗, τ∗) are new drawn from P ∗.
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2. Update (µ∗h, τ
∗
h) from its conditional posterior

(µ∗h, τ
∗
h) ∼ N(µ̂h, κ̂hτ

∗−1
h )Ga(âτh , b̂τh)

with

κ̂h = (κ−1 + nh)−1,

µ̂h = κ̂h(κ−1µ0 + nhȳh),

âτh = aτ +
nh
2
,

b̂τh = bτ +
1

2

 ∑
i:Si=h

(Xi − X̄h)2 +
nh

1 + κnh
(X̄h − µ0)2

 .

3. Update ζ ∼ Beta(1 + n0, 1 + n− n0).

B.4 Details on the outer spike and slab location-scale mixture

In the second simulation experiment, we compare the inner and outer models. For the latter

the mixing distribution is defined as

Q̃ = ζ δ(m1,t1) + (1− ζ) Q̃∗,

where Q̃∗ ∼ PY(σ, θ;P ∗) and P ∗ is equal to (23). The analysis is carried out for different

choices of σ and θ as reported in Table 5. The specific values are set so to have the prior

expected number of components equal to 5 and are determined by using (11) for the inner

model and the following result for the outer model.

Proposition 2 Let Kn be the number of distinct values in an exchangeable sampe X(n) from

the outer spike and slab model (6). Then

E (Kn) = 1− (1− ζ)n − θ

σ
+
θ

σ

(θ + σ)n
θn

2F1 (−n,−σ; 1− n− θ − σ; ζ) ,

where 2F1 denotes the Gaussian hypergeometric function.
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Proof. Denote by n0 the number of observations in X(n) that coincide with the atom x0.

Then we have

E (Kn) =
n∑
j=0

(
n

j

)
ζj(1− ζ)n−j E (Kn | n0 = j) .

If K ′n is the number of distinct values in a sample of size n from an exchangeable sequence

governed by Q̃∗, one has

E (Kn | n0 = j) = {1− δ0({j})}+ E(K ′n−n0
| n0 = j)

= {1− δ0({j})}+
θ

σ

{
(θ + σ)n−j

θn−j
− 1

}
.

for any j = 0, 1, . . . , n. Thus we have

E (Kn) =

n∑
j=1

(
n

j

)
ζj(1− ζ)n−j +

θ

σ

n∑
j=0

(
n

j

)
ζj(1− ζ)n−j

{
(θ + σ)n−j

θn−j
− 1

}

= 1− (1− ζ)n − θ

σ
+
θ

σ

n∑
j=0

(
n

j

)
ζj(1− ζ)n−j

(θ + σ)n−j
θn−j

= 1− (1− ζ)n − θ

σ
+
θ

σ

(θ + σ)n
θn

2F1 (−n,−σ; 1− n− θ − σ; ζ) .

�

B.5 Details on the Gibbs sampler for the outer spike and slab

location-scale mixture

Given the above prior specification, to perform Markov chain Monte Carlo sampling from the

posterior distribution of the parameters under the outer spike and slab location-scale mixture

model, we use a Gibbs sampler composed by the following steps.

1. Let S1, . . . , Sn be the current cluster allocation, with Sj = 0 if Xj is allocated to the

cluster of the spike. For i = 1, . . . , n let k\i be the number of distinct values of Sj

labeled from 0 to k\i − 1 and nh is the number of observations belonging to cluster h.
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θ

Model σ n = 50 n = 100

Inner

0 11.86 7.24

0.25 7.11 3.66

0.5 2.90 0.91

0.75 -0.04 -0.52

Outer

0 2.03 1.22

0.25 1.07 0.46

0.5 0.19 -0.17

0.75 -0.52 -0.66

Table 5: Prior parameters for the simulation experiment assuming E(Kn) = 5.

Then allocate the i-th observation to the cluster of the spike, if already occupied, with

probability proportional to

pr(Si = 0 | −) ∝ ζφ(Xi;µ0, τ
−1
0 ),

to one of the existing clusters, different from the spike, with probability proportional to

pr(Si = h | −) ∝ (1− ζ)
nh − σ

θ + n− n0 − 1
φ(Xi;µ

∗
h, τ
∗−1
h ), for h = 1, . . . k\i − 1

and finally to a new cluster with probability proportional to

pr(Si = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− n0 − 1
φ(Xi;µ∗, τ

−1
∗ ),

where (µ∗, τ∗) are new drawn from P ∗.

2. Update (µ∗h, τ
∗
h) from its conditional posterior

(µ∗h, τ
∗
h) ∼ N(µ̂h, κ̂hτ

∗−1
h )Ga(âτh , b̂τh)

with
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• κ̂h = (κ−1 + nh)−1,

• µ̂h = κ̂h(κ−1µ0 + nhȳh),

• âτh = aτ + nh/2,

• b̂τh = bτ + 1/2(
∑

i:Si=h
(Xi − X̄h)2 + nh/(1 + κnh)(X̄h − µ0)2).

B.6 Details on the functional data simulation

The functional data of § 4.1 are generated on an equi-spaced grid of T = 25 points adding

independent random normal noises with fixed variance σ2 = 0.25 to the random functional

means sampled from

P =
5∑
j=1

δf∗j πj ,

where the five f∗j are reported in Figure 4 and

π = (π1, . . . , π5) = (0.4, 0.2, 0.2, 0.1, 0.1).

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
t

f

type
1

2

3

4

5

Figure 4: Functional means for the functional data simulation experiment.
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Data are analysed assuming P ∼ PY(σ, θ;P0) with two different choices for P0: (i) a

mixture of a point mass on (12) and a diffuse measure over the space of functions, (ii) a diffuse

non-atomic base measure. In both cases the diffuse measure is induced by a B-spline basis

expansion, namely

f(t) = B(t)Tβ, β ∼MVN(β0,Σ0),

where B(.) denotes the B-splines basis and β a finite vector of basis coefficients. We specify

the B-splines basis assuming a fixed set of knots at 2, 5, 9, 13, 17, 21, 24. For simplicity, Σ0

is an identity matrix and β0 is a vector of zeroes. In both cases σ = 0.5 while θ = 1 and

θ = 0.178 for first and second prior, respectively.

B.7 Details on the Gibbs sampler for functional data simulation

Given the above prior specification, the Gibbs sampler is composed by the following steps.

1. Let S1, . . . , Sn be the current cluster allocation, with Sj = 0 if the corresponding obser-

vation is allocated to the cluster of the spike. For i = 1, . . . , n let k\i be the number

of distinct values of Sj labeled from 0 to k\i − 1 and nh is the number of observations

belonging to cluster h. Then allocate the i-th observation to the cluster of the spike, if

already occupied, with probability proportional to

pr(Si = 0 | −) ∝ 1

θ + n− 1

∑n0+1
l=1 ζ lC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

T∏
t=1

φ(Xit; f0(t), σ2),

to one of the existing clusters, different from the spike, with probability proportional to

pr(Si = h | −) ∝ nh − σ
θ + n− 1

T∏
t=1

φ(Xit; f
∗
h(t), σ2), for h = 1, . . . k\i − 1

and finally to a new cluster with probability proportional to

pr(Si = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0
l=1 ζ

l C (n0, l;σ)
(
θ/σ + k\i

)
l∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

×
T∏
t=1

φ(Xit; f∗(t), σ
2),
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where f∗ is a new draw from the base measure.

2. Update the cluster baseline functions from the multivariate normal with covariance ma-

trix and mean

Vβh =
(

Σ−1
0 +

nh
σ2
BTB

)−1
mβh = Vβh

Σ−1
0 β0 +

1

σ2

∑
Si=h

BTXi

 .

3. Update σ2 form the conjugate inverse-gamma distribution

1/σ2 ∼ Ga

(
a+

nT

2
, b+

1

2

n∑
i=1

T∑
t=1

(yi(t)− fi(t))2

)
.

4. Update ζ ∼ Beta(1 + n0, 1 + n− n0).

B.8 Computational details on § 4.2

The Gibbs sampler used in § 4.2 is composed by the following steps.

1. For each cycle i of woman j, conditionally on Xij and on λij , ωij , and nij , the model can

be written as simple linear model, that is

Xij(t) = Zijθ + εij(t)

where

Zij =


1 zij(1)

1 zij(2)
...

...

1 zij(nij)

 , zij(t) = fij

(
t− λij
ωij

)
,

meaning that it can be seen as a standard linear regression for each pair (i, j). Hence

the full conditional distribution for τ1ij and τ2ij is (τ1ij , τ2ij)
T ∼ N(a1, V1), where

V1 = (Ω−1 + σ−2ZTijZij)
−1 a1 = V1(Ω−1αi + σ−2ZTijXij).
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2. For each cycle i of woman j, conditionally on Xij and on τ1ij e τ2ij , the model can be

written as

Xij(t) = f̃ij

(
t− λij
ωij

)
+ εij(t)

where f̃ij = τ1ij + τ2ijfij . We then proceed with the following two steps.

• Update the value of λij using direct sampling from the posterior. Given the uniform

prior and that the days are discrete, the full conditional posterior is simply a multi-

nomial with probabilities proportional to the likelihood function.

• Update ωij via Metropolis–Hastings sampling.

3. For each i = 1, . . . , n, sample the woman specific mean αi ∼ N(a2, V2), where

V2 = (R+ niΩ
−1)−1, a2 = V2(Rα+ Ω−1

ni∑
j=1

(τ1ij , τ2ij)
T )

and ni is the total number of cycles for woman i.

4. Update the cluster allocation via Pólya urn sampling. Specifically let S1, . . . , Sn be the

current cluster allocation, with Sj = 0 if the corresponding observation is allocated to

the cluster of the spike. For i = 1, . . . , n let k\i be the number of distinct values of Sj

labeled from 0 to k\i − 1 and nh is the number of observations belonging to cluster h.

Then allocate the i-th observation to the cluster of the spike, if already occupied, with

probability proportional to

pr(Sij = 0 | −) ∝ 1

θ + n− 1

∑n0+1
l=1 ζ lC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

T∏
t=1

φ(Xit; f0(t), σ2),

to one of the existing clusters, different from the spike, with probability proportional to

pr(Sij = h | −) ∝ nh − σ
θ + n− 1

T∏
t=1

φ(Xit; f
∗
h(t), σ2), for h = 1, . . . k\i − 1,

and finally to a new cluster with probability proportional to
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pr(Sij = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0
l=1 ζ

l C (n0, l;σ)
(
θ/σ + k\i

)
l∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

×
T∏
t=1

φ(Xit; f∗(t), σ
2),

where f∗ is a new draw from the base measure.

5. Update the cluster baseline functions f∗h for h = 1, . . . , k−1 from the multivariate normal

with covariance matrix and mean

Vβh =

Σ−1
0 +

1

σ2

∑
Sij=h

τ2
2ijB

T
ijBij

−1

,

mβh = Vβh

Σ−1
0 β0 +

1

σ2

∑
Sij=h

BT
ij(Xij − τ1ij)

 ,

where Bij = B((t− λij)/ωij).

6. Update σ2 form the conjugate inverse-gamma distribution

1/σ2 ∼ Ga

1

2
+

1

2

n∑
i=1

ni∑
j=1

nij ,
1

2
+

1

2

n∑
i=1

ni∑
j=1

nij∑
t=1

(Xij(t)− fij(t))2

 .

7. Update ζ ∼ Beta(1 + n0, 1 + n− n0).
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