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Abstract: We study the Bayesian solution of a signal-noise problem stated in infinite

dimensional Hilbert spaces. The functional parameter of interest is characterized

as the solution of a functional equation which is ill-posed because of compactness

of the operator appearing in it. We show that the posterior distribution of the

parameter of interest is inconsistent in the frequentist sense. This fact confirms the

eventual frequentist inconsistency in Bayes nonparametric estimation pointed out,

for instance, in Diaconis and Freedman (1986).

Our contribution is to propose a new method to deal with this problem: we regu-

larize the posterior mean and variance by using a Tikhonov regularization scheme.

The resulting distribution is called regularized posterior distribution and we prove

it is consistent in a frequentist sense. Prior inconsistency issues are also discussed.

Key words and phrases: Bayesian estimation of density and regression, functional

data, gaussian priors, inverse problems, posterior consistency, Tikhonov and Hilbert

Scale regularization.

1. Introduction

Let X and Y be two infinite dimensional separable Hilbert spaces over R
and x ∈ X and Ŷ ∈ Y be two Hilbert-valued random functions. We want to

obtain the Bayes estimate of the signal x from the observation Ŷ . The observed

trajectory Ŷ is a linear noisy transformation of x through the statistical model

Ŷ = Kx + U, U ∈ Y (1.1)

where U is a stochastic measurement error and K : X → Y is a known, compact,

linear operator with infinite dimensional range. Its adjoint is denoted with K∗,
then, by definition, K∗ is such that < Kϕ, ψ >=< ϕ,K∗ψ >, ∀ ϕ ∈ X and

ψ ∈ Y. The spaces X and Y are supposed to be Polish, with inner products

and norms both denoted by < ·, · > and || · ||, respectively. We require Polish
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spaces because this guarantees the existence of a regular version of the posterior

distribution of x, even when the dimension of the problem is infinite. As an

example of spaces, we could take X and Y to be both the L2 space. An L2 space,

endowed with a gaussian measure defined on it, is a Polish space, see Hiroshi and

Yoshiaki (1975).

The error term U is an Hilbert-valued gaussian random variable with zero mean

and covariance operator Σn: U ∼ GP(0, Σn), where n can be interpreted as the

sample size. The Hilbert-valued random element x is supposed to induce a gaus-

sian measure on X : x ∼ GP(x0, Ω0), with x0 ∈ X and Ω0 : X → X .

A model of type (1.1) is encountered in many applications in different fields.

For instance, in statistical field, applications are e.g. density and regression esti-

mation or gaussian white noise model; in signal and image processing, example

of applications are image deblurring or extrapolation of a band- or time-limited

signal.

Recovering the solution of (1.1) is known in the literature as solving an inverse

problem and such a problem is said to be well-posed when a unique solution ex-

ists and depends continuously on the data. When one of these requirements fails

to hold we say the inverse problem to be ill-posed. While lack of uniqueness or

existence can be easily dealt with, for instance by adopting a generalized inverse,

the lack of continuity of the solution is more troublesome since it prevents con-

vergence of the recovered solution towards the true one as the noise in the data

Ŷ decreases. The lack of continuity of the solution is due to the inversion of a

compact operator K on an infinite dimensional space Y. The inverse K−1 is not

always defined and not continuous on the whole Y so that some regularization

of this inverse is demanded.

Classical regularization techniques are well developed in the literature, see Kress

(1999). In reverse, in this paper we focus on Bayesian methods for estimating the

solution of the ill-posed inverse problem (1.1). From a Bayesian point of view,

the solution to an inverse problem is the posterior distribution of the quantity

of interest, therefore the ill-posedness linked to the inversion of K is overcome.

This reformulation of an inverse problem as a parameter estimation is due to

Franklin (1970).

The posterior distribution suffers of problems too. Indeed, the infinite dimension
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of the problem prevents the posterior distribution from being consistent in the

frequentist sense. If problem (1.1) was formulated in finite dimensional spaces

then its Bayes solution would be the standard multivariate gaussian posterior

distribution of x given Ŷ and it would be consistent. Otherwise stated, in finite

dimensional inverse problems it is possible to remove the ill-posedness (i.e. the

ill-conditioning of a square matrix, for instance) by incorporating the available

prior information, see Kaipio and Somersalo (2004, Chap.3). This is no longer

true when dimension is infinite since the covariance operator V ar(Ŷ ) is no longer

continuously invertible, so covariance operators do not have the regularization

properties that have in the finite dimensional case. This prevent the posterior

mean from being continuous in Ŷ and then from being a consistent estimator of

x. Hence, the posterior distribution is not consistent.

This problem has been solved in past literature by restricting the space of defini-

tion of Ŷ −Kx0, see Mandelbaum (1984), Prenter and Vogel (1985) and Lehtinen,

Paivarinta and Somersalo (1989). However this solution is not always appropri-

ate since the observed data may not satisfy this restriction.

Our contribution consists in dealing with the lack of continuity of V ar(Ŷ )−1 by

applying a regularization scheme to this inverse. We consider two alternative reg-

ularization schemes. The first one is the classical Tikhonov regularization scheme:

(αnI + V ar(Ŷ ))−1, with I the identity operator on Y and αn > 0 the regular-

ization parameter; the second one is a Tikhonov regularization scheme in the

Hilbert scale induced by the prior covariance operator Ω0: (αnL2s + V ar(Ŷ ))−1,

with L = Ω
− 1

2
0 and s ∈ R. The posterior distribution that results with each of

these regularization schemes is slightly modified and we call it regularized poste-

rior distribution. We analyze its asymptotic properties from a frequentist point

of view and we prove posterior consistency, see Diaconis and Freedman (1986) or

Section 4 for a definition of it. The rate of contraction of the moments of each

regularized posterior distribution are computed and they result to be consider-

ably improved with the second regularization scheme. Moreover, we compute the

rate of contraction of the Tikhonov regularized posterior distribution.

The regularization that we introduce is justified as a regularized projection and

cannot be interpreted as resulting from a prior specification. Another strategy to

deal with the inconsistency of the posterior distribution would be to restrict our
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model to models where K and Σn are linked and where the prior has a specific

form which concentrates to a Dirac measure at a suitable speed. This analysis

has been done in Florens and Simoni (2009) but we consider here the general

case.

The paper is developed as follows. Section 2 characterizes the Bayes experiment

associated to (1.1) and provides some example of application. In Section 3 we

define the regularized posterior distribution for both the regularization schemes;

its consistency is proved in Section 4. All the proofs are given in Appendix A

and numerical simulations are provided in Appendix B.

This paper analyzes the very general case where both operators K and Σn are

known. Extensions to the case where they are unknown require minor modifica-

tions in the proofs of consistency and are treated in Simoni (2009, Chap.1).

2. The Model

2.1 Sampling probability measure and examples

Quantities Ŷ , x and U in equation (1.1) are Hilbert-random variables. Let

F denote the σ-field of subsets of the sample space Y, we endow the measurable

space (Y,F) with the sampling distribution P(Ŷ |x) of Ŷ given x, denoted with

P x and characterized by Assumption 1 below.

Assumption 1. Let P x be a conditional probability measure on (Y,F) given x

such that E(||Ŷ ||2) < ∞, Ŷ ∈ Y. P x is a gaussian measure that defines a mean

element Kx ∈ Y and a covariance operator Σn : Y → Y.

For a characterization of gaussian measures in Hilbert spaces we refer to Baker

(1973) . Assumption 1 implies that the covariance operator Σn is linear, bounded,

nonnegative, selfadjoint and trace-class. A covariance operator needs to be trace-

class in order the associated measure be able to generate trajectories belonging

to an Hilbert space, therefore the covariance operator cannot be proportional to

the identity operator. The fact that Σn is trace-class entails that Σ
1
2
n is Hilbert-

Schmidt (HS, hereafter). HS operators are compact and compactness of Σ
1
2
n

implies compactness of Σn.

The covariance operator Σn is supposed to be known and to decrease to 0 as the

noise in the data Ŷ decreases. The measurement error is in several applications
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inversely linked to the sample size n, then we can write Σn → 0 as n → ∞.

This is true, for instance when the curve Ŷ is obtained through a mathematical

transformation of an n-sample of finite dimensional observations (like the empir-

ical cumulative distribution function, the empirical characteristic function or the

Nadaraya-Watson estimator of a regression function) or when Ŷ is the sample

mean of functional data (like many examples in signal and image processing).

So, our methodology allows for very general observational schemes.

We stay as general as possible since we do not require that operator Σn be linked

in some way to operator K in the sampling mechanism. If this was the case, then

we could exploit the regularity in operator K and our problem would be greatly

simplified. We have studied this situation in Florens and Simoni (2009).

The Bayes approach that we develop can be used for all the classical examples

where theory of linear inverse problems applies. Statistics and econometrics offer

several examples of applications, see Vapnik (1998) and Carrasco, Florens and

Renault (2007); we develop some of them below.

Example 1: Inverse problems in image science. Let suppose that we observe n

curves Ỹi independently generated from the model

Ỹi = Kx + Ui, Ui ∼ GP(0, Σ).

The empirical mean is then a sufficient statistics for doing inference on x. We

compute Ŷ = 1
n

∑
i Ỹi and we rewrite Ŷ = Kx + U , with U = 1

n

∑
i Ui and

V ar(U) = 1
nΣ. This example is often encountered in image science. The co-

variance operator is usually known in image science, but there exist cases (like

Example 2 below) where Σ is unknown. In this situation we can either estimate

Σ in a frequentist way and develop the asymptotic theory in a similar way as

developed in Simoni (2009, Chap.1) or extend the Inverse-Wishart prior distribu-

tion to covariance operators and develop a fully Bayesian estimation procedure

(this point is in our research agenda).

Example 2: Density estimation. Let X = Y = L2
π([0, 1]) be the spaces of square

integrable functions on [0, 1], integrable with respect to the uniform distribution

π. We want to recover the density f ∈ X associated to the distribution F of

the random variable ξ from an i.i.d. sample (ξ1, . . . , ξn) drawn from F . Let
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F̂n(ξ̄) = 1
n

∑n
i=1 1{ξi ≤ ξ̄}, then f can be obtained by solving the functional

equation

F̂n(ξ̄) =
∫ 1

0
f(u)1{u ≤ ξ̄}du + Un,

The sampling probability P f is inferred from asymptotic properties of the em-

pirical distribution function, so that it is asymptotically a gaussian measure with

mean F and covariance operator Σn = 1
n

∫ 1
0 F (u ∧ v) − F (u)F (v)du. Even if

the error term is only asymptotically gaussian, the estimation method that we

propose remains valid since the gaussianity is only used to construct the estima-

tor and not to prove the result of consistency of the Bayes estimator or of the

posterior distribution.

Example 3: Regression estimation. Let (ξ, w) be a R1+p-valued random vector

with cdf F and L2
F (w) be the space of square integrable functions of w, integrable

with respect to F . We define the regression function of ξ given w as a function

m(w) ∈ L2
F (w).

Let g(w, t) : Rp ×Rp → R be a known function defining an HS integral operator

with respect to (w, t), where t belongs to Rp provided with a suitable probability

measure. Then E(g(w, t)ξ) = E(g(w, t)m(w)), where the expectation is taken

with respect to F , and m(w) is the solution of a linear inverse problem. Take

for simplicity F (ξ|w) unknown and F (·, w) known and suppose to dispose of a

random sample (ξi, wi). Then Ê(g(w, t)ξ) := 1
n

∑n
i=1 g(wi, t)ξi and the statistical

inverse problem becomes Ê(g(w, t)ξ) = E(g(w, t)m(w)) + Un(t). The empirical

process
√

n(Ê(g(w, t)ξ)−E(g(w, t)ξ)) weakly converges toward a zero mean gaus-

sian process and this characterizes the sampling distribution.

Other examples of application are for instance hazard rate function estimation

with right-censored survival data, deconvolution, instrumental regression estima-

tion. A brief development of them can be found in the Appendix B of Chapter

1 of Simoni (2009).

2.2 Prior Specification and Identification

In the following we denote with R(·) the range of an operator and with D(·)
its domain. Let µ denote the prior measure induced by x on the parameter space

X endowed with the σ-field E . We specify a conjugate prior:
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Assumption 2. Let µ be a gaussian measure on (X , E) that defines a mean

element x0 ∈ X and a covariance operator Ω0 : X → X that is trace-class.

Then, E(||x||2) < ∞, ∀x ∈ X and the covariance operator Ω0 is compact. The

covariance operator Ω0 is assumed to be fixed and is not shrinking to 0. This

would be the case, for instance, when Ω0 is an inverse function of the sample

size, as for the Zellner’s g-prior, see Florens and Simoni (2009).

We introduce the Reproducing Kernel Hilbert Space (R.K.H.S. in the follow-

ing) associated to the covariance operator Ω0 and denoted with H(Ω0). Let

{λΩ0
j , ϕΩ0

j }j be the eigensystem of Ω0. We define the space H(Ω0) embedded in

X as:

H(Ω0) = {ϕ : ϕ ∈ X and
∞∑

j=1

| < ϕ,ϕΩ0
j > |2

λΩ0
j

< ∞} (2.1)

and, following Proposition 3.6 in Carrasco, Florens and Renault (2007), H(Ω0) =

R(Ω
1
2
0 ). TheR.K.H.S. is a subset of X that gives the geometry of the distribution

of x. The support of a centered gaussian process, taking its values in an Hilbert

space X , is the closure in X of the R.K.H.S. associated with the covariance

operator of this process (denoted with H(Ω0) in our case). Then, for the prior

distribution, x − x0 ∈ H(Ω0) with µ-probability 1, but, with µ− probability 1,

x− x0 is not in H(Ω0), see van der Vaart and van Zanten (2008a).

We adopt a frequentist perspective for studying our procedure, then we admit

the existence of a true value x∗, of the parameter x, having generated the data

Ŷ and we assume that

Assumption 3. (x∗−x0) ∈ H(Ω0), i.e. there exists δ∗ ∈ X such that (x∗−x0) =

Ω
1
2
0 δ∗.

This assumption is only a regularity condition and it will be exploited for prov-

ing asymptotic results. For instance, when the kernel of Ω0 is the variance of

a standard Brownian motion in C[0, 1], the R.K.H.S. is the space of absolutely

continuous functions f on [0, 1] with at least one square integrable derivative and

such that f(0) = 0, see Carrasco and Florens (2000) and van der Vaart and van

Zanten (2008b).

The discussion just before implies that the prior distribution is not able to gener-

ate a trajectory x that satisfies Assumption 3 or, in other words, the true value x∗



8 JEAN-PIERRE FLORENS AND ANNA SIMONI

having generated Ŷ cannot have been drawn from µ. Anyway, if Ω0 is injective,

even if µ puts zero probability on H(Ω0), this space is dense in X and therefore

µ can generate trajectories as close as possible to the true value x∗. We find a

similar result for a Dirichlet process, in nonparametric probabilities estimation,

in the sense that it puts zero probability mass on absolutely continuous probabil-

ity measures but it is able to generate probability functions close to them. This

kind of problem is known as prior inconsistency and it is due to the fact that,

because of the infinite dimensionality of the parameter space, the support of the

prior can cover only a very ”small” part of it.

From a Bayesian point of view we say that a model is identified if the posterior

distribution completely revises the prior distribution, for what we do not need

to introduce strong assumptions, see Florens, Mouchart and Rolin (1990) Sec-

tion 4.6 for an exhaustive explanation of this concept. Nevertheless, this paper

focuses on the frequentist consistency of the posterior distribution and for that

we need the following assumption for identification (see Section 4 below).

Assumption 4. The operator KΩ
1
2
0 : X → Y is one-to-one on X .

This assumption guarantees continuity of the regularized posterior mean that we

define below.

The classical hypothesis for identification of x in model (1.1) requires that K be

one-to-one. This is a stronger condition since, if Ω
1
2
0 is one-to-one, K one-to-one

implies KΩ
1
2
0 one-to-one, but the reverse is not true. Therefore, frequentist con-

sistency in a Bayesian model requires a weaker identification condition than a

classical model does.

2.3 Construction of the Bayesian Experiment

The relevant probability space associated to (1.1) is the real linear product

space X × Y defined as the set X × Y := {(x, y);x ∈ X , y ∈ Y} with addition,

scalar multiplication and scalar product defined in the usual way. The product

σ-field associated to X × Y is denoted with E ⊗ F and the probability measure

defined on (X ×Y, E ⊗F) is denoted with Π and constructed by recomposing µ

and P x.

The marginal distribution of Ŷ , obtained by integrating out x with respect to

the prior distribution, is denoted with P and its covariance operator is Υyy =
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(Σn+KΩ0K
∗). We denote with Υ the covariance operator associated to Π defined

as Υ(ϕ,ψ) = (Ω0ϕ + Ω0K
∗ψ, (Σn + KΩ0K

∗)ψ + KΩ0ϕ), for all (ϕ,ψ) ∈ X ×Y.

Lemma 1. The covariance operators Υ and Υyy are trace class. In particular,

Υyy trace class is a necessary condition for Υ being trace class.

Next, we state that the joint and predictive probabilities, Π and P , are gaussian.

Theorem 1.

(i). Under Assumptions 1 and 2, the joint measure Π on (X × Y, E ⊗ F) is

gaussian with mean function mxy = (x0,Kx0) ∈ X × Y and covariance

operator Υ.

(ii). Let P be a gaussian measure on (Y,F) with mean function my = Kx0 in

Y and covariance operator Υyy. Then, P is the marginal distribution on

(Y,F) associated to the joint gaussian measure Π defined in (i).

The aim of this paper will be to determine the inverse decomposition of Π

into the marginal P and the posterior distribution µŶ , the conditional distribu-

tion of x given Ŷ . Existence of this inverse decomposition is ensured if a regular

version of the posterior probability exists.

3. Bayes solution of the ill-posed inverse problem

Due to the infinite dimension of problem (1.1), application of Bayes theorem

is not evident and in computing the posterior distribution three points require

a particular attention: (i) the existence of a regular version of the conditional

probability on E given F , (ii) the fact that it is a gaussian measure and (iii)

continuity of the posterior mean and posterior consistency.

(i). The conditional probability on E given F exists and it is unique since it is

the projection on a closed convex subset of L2(X × Y), where L2(X × Y) is the

Hilbert space of random variables defined on X × Y that are square integrable

with respect to Π. A conditional probability is called regular if there exists a

transition probability characterizing it. The existence of such a transition for µŶ

is guaranteed by Jirina Theorem if the space (X ×Y) is Polish, see Neveu (1965).

(ii). By slightly modifying the proof given in Section 2.2 of Mandelbaum (1984)

it is easy to show that µŶ is gaussian since the associated characteristic function
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takes the form

E(ei<x,h>|Ŷ ) = ei<AŶ +b,h>− 1
2
<(Ω0−AKΩ0)h,h>, h ∈ X .

Then, x|Ŷ has mean: AŶ + b, and variance V = Ω0 − AKΩ0. The func-

tion b := (I − AK)x0 is recovered from E(x) = E(E(x|Ŷ )) and A is charac-

terized by exploiting the definition of covariance operator, for which we have

< Cov(Ŷ , x)ϕ,ψ >=< (Σn+KΩ0K
∗)A∗ϕ,ψ >, ∀ϕ ∈ X , ψ ∈ Y and Cov(Ŷ , x) =

KΩ0 is a component of operator Υ determined in Theorem 1. Hence, A : Y → X
is solution of

A(Σn + KΩ0K
∗)ψ = Ω0K

∗ψ, ψ ∈ Y (3.1)

and then A = Ω0K
∗(Σn + KΩ0K

∗)−1.

(iii). This expression for A is not well-defined since (Σn +KΩ0K
∗) is a compact

operator with infinite range so that its inverse is not continuous on the whole Y
and the posterior mean is not continuous in Ŷ . Thus, the posterior mean and the

posterior distribution are inconsistent in the frequentist sense (but consistency in

the Bayes sense is still verified). Actually, Bayes approach to (1.1), by changing

the nature of the problem, changes the nature of the ill-posedness. Here, we have

to deal with the ill-posedness in the inverse problem (3.1) that characterizes the

inconsistency of the posterior distribution. Diaconis and Freedman (1986) stress

that posterior inconsistency is frequent in nonparametric Bayes experiments.

Past literature on Bayesian inverse problems, see Mandelbaum (1984) and Lehti-

nen, Paivarinta and Somersalo (1989), proposed, as strategy to solve this problem

of non-continuity, to restraint the space of the observable Ŷ . It was implicitly

assumed that Ŷ belongs to R(Σn + KΩ0K
∗) or to a subspace of it. We do

not wish to make this kind of restriction since we admit any trajectory Ŷ in

R(Σn + KΩ0K∗). Thus, a different strategy, based on Tikhonov regularization,

will be proposed in the next paragraph.

3.1 Tikhonov Regularized Posterior distribution

We propose to solve the problem of unboundedness of A by applying a

Tikhonov regularization scheme to equation (3.1). By abuse of notation, here-

after we use I for denoting the identity operator on both X and Y. We define
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the Tikohnov regularized operator Aα as:

Aα = Ω0K
∗(αnI + Σn + KΩ0K

∗)−1 (3.2)

where αn > 0 is a regularization parameter appropriately chosen such that αn →
0 with n.

We could interpret Aα as the operator that we would obtain if we have considered

the new Bayesian experiment Ŷ = Kx + U + η, with η a further error term

with variance αnI. In this case the sampling distribution would characterize a

covariance operator (αnI + Σn) that is not trace-class so that the trajectories

generated by this distribution would not be in the Hilbert space Y. Even if this

interpretation gives a model that is not well specified in Y, it is interesting since it

could suggest a Bayes method for selecting the regularization parameter through

the specification of a prior distribution on αn.

The regularized versions of b and V , with A replaced by Aα are

bα = (I −AαK)x0,

Vα = Ω0 − Ω0K
∗(αnI + Σn + KΩ0K

∗)−1KΩ0. (3.3)

These regularized objects characterize a new distribution that is gaussian with

mean (AαŶ + bα) and covariance operator Vα; it is trivial to show that Vα is

trace-class. This distribution is called regularized posterior distribution and is

denoted with µŶ
α . It is a new object that we define to be the solution of the

signal-noise problem and that will be shown to be consistent in Section 4. The

idea of regularizing a distribution consists therefore in regularizing the moments

characterizing it. We keep as point estimator of x the regularized posterior mean

Eα(x|Ŷ ) = x0 + Ω0K
∗(αnI + Σn + KΩ0K

∗)−1(Ŷ −Kx0). (3.4)

This estimator is justified since it minimizes the penalized mean squared error

obtained by approximating x by a linear transformation of Ŷ . Otherwise stated,

the bounded linear operator Aα : Y → X is the unique solution to the problem:

Aα = argminA∈B2(Y,X )E||AŶ − x||2 + αn||A||2HS

where ||A||2HS := trA∗A denotes the HS norm, B2(Y,X ) the set of all bounded

operators on Y to X for which ||A||HS < ∞ and for simplicity we have set x0 = 0.
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The penalization is required because otherwise the solution to the minimization

problem would be unbounded.

3.2 Tikhonov regularization in the Prior Variance Hilbert scale (PVHS)

We propose in this subsection an alternative regularization scheme for recov-

ering A. It is a Tikhonov regularization in the Hilbert scale induced by the inverse

of the prior covariance operator, see Engl, Hanke and Neubauer (2000) for general

theory, and it is appealing when we know that x∗ is highly regular, as under As-

sumption 5 (ii) below. Let L = Ω
− 1

2
0 be a densely defined unbounded self-adjoint

strictly positive operator in the Hilbert space X . More clearly, if D(L) denotes

the domain of L, L is a closed operator in X satisfying: D(L) = D(L∗) is dense

in X , < Lx, y >=< x,Ly > for all x, y ∈ D(L), and there exists γ > 0 such that

< Lx, x >≥ γ||x||2 for all x ∈ D(L). The norm ||·||s is defined as ||x||s := ||Lsx||.
The Hilbert Scale Xs induced by L is defined as the completion of the domain of

Ls, D(Ls), with respect to the norm || · ||s, see Krein and Petunin (1966); more-

over Xs ⊆ Xs′ if s′ ≤ s, ∀s ∈ R. Usually, when a regularization scheme in Hilbert

Scale is adopted, the operator L, and consequently the Hilbert Scale, is created

ad hoc. In our case the Hilbert Scale is not created ad-hoc but is suggested by

the prior distribution and this represents a considerable difference and advantage

with respect to standard methods. We make the following Assumption:

Assumption 5.

(i) ||KΩ
1
2
0 x|| ∼ ||Ω

a
2
0 x||, ∀x ∈ X ;

(ii) (x∗ − x0) ∈ Xβ+1, i.e. ∃ ρ∗ ∈ X such that (x∗ − x0) = Ω
β+1

2
0 ρ∗

(iii) 0 < a ≤ s ≤ β + 1 ≤ 2s + a.

Assumption (i) is necessary in order the regularization in Hilbert Scale works. It

means that the specification of the prior distribution is related to the sampling

model, so the prior variance is linked to the sampling model (1.1) and, in par-

ticular, to operator K. This kind of prior specification is not new in Bayesian

literature since it is similar to the Zellner’s g-prior, see Zellner (1986) or Agliari,

Parisetti (1988). Parameter a can be interpreted as the degree of ill-posedness in

the Bayesian experiment. It is usually different than the degree of ill-posedness
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in the classical problem Ŷ = Kx since it is determined by the rate of decreasing

of the spectrum of operator KΩ
1
2
0 and not by that one of K. Therefore, the

prior is specified not only by taking into account the sampling model but also

the degree of ill-posedness of the problem.

Assumption (ii) is known as a source condition; it concerns the regularity of x∗
and it allows to reach a faster speed of convergence of the regularized solution

the larger is β. We have Xβ+1 ≡ R(Ω
β+1

2
0 ) ⊂ R(Ω

1
2
0 ), then Assumption 5 (ii)

implies Assumption 3 and δ∗ ∈ R(Ω
β
2
0 ). The meaning of such an assumption is

that the prior distribution contains information about the regularity of the true

value of x. In fact, parameter β is interpreted as the regularity parameter. These

two remarks stress the fact that we are not taking whatever Hilbert Scale, but

the Hilbert Scale linked to the prior. Either we first choose the Hilbert Scale and

then we use the information contained in it to specify the prior distribution or

we use the information contained in the prior distribution to specify the Hilbert

Scale.

The restriction β + 1 ≥ s means that (x∗ − x0) has to be at least an element of

Xs and it guarantees that the norm ||Lsx|| exists ∀x ∈ Xβ+1. The upper bound

(2s + a) of β is the qualification of this regularization scheme: we can at most

exploit a degree of regularity of (x∗ − x0) equal to (2s + a).

Under Assumption 5, the Tikhonov regularized solution in Xs to equation (3.1)

is:

As = Ω0K
∗(αnL2s + Σn + KΩ0K

∗)−1. (3.5)

The regularized posterior distribution is thus defined similarly as in Section 3.1

with Aα substituted by As and is denoted with µŶ
s . The regularized posterior

mean and variance are

Es(x|Ŷ ) = AsŶ + (I −AsK)x0

Vs = Ω0 −AsKΩ0. (3.6)

This regularization method has the advantage that it permits to better exploit

the regularity of the true function x∗. If x∗ satisfies Assumption 5 (ii), then

Es(x|Ŷ ) satisfies the same regularity, see proof of Theorem 5, while Ea(x|Ŷ )

does not. Moreover, a classical Tikhonov regularization method allows to obtain

a rate of convergence to zero of the regularization bias that is at most of order
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2; on the contrary with a Tikhonov scheme in an Hilbert Scale the smoother the

function x∗ is, the faster the rate of convergence to zero of the regularization

bias will be (up to (2s + a)). We will show in Section 4.1 that Es(x|Ŷ ) reaches

a faster speed of convergence toward x∗.

4. Asymptotic Analysis

In this section we study frequentist asymptotic properties of the regularized

posterior mean and variance. Then, we analyze frequentist consistency of the

regularized posterior distribution. We first consider the Tikhonov regularized

posterior distribution µŶ
α and then, in subsection 4.1, we analyze the moments

of the PVHS-regularized posterior distribution µŶ
s .

Let consider the regularized posterior mean as a point estimator for x∗, as sug-

gested by a penalized squared loss function. We denote with Φβ the β-regularity

space associated to operator KΩ
1
2
0 , i.e. Φβ ≡ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0.

The convergence of ||Eα(x|Ŷ )−x∗|| to 0 in P x∗-probability when n →∞ and the

rate of contraction are stated in the following theorem. We refer to Appendix A

for its proof.

Theorem 2. Under Assumptions 3 and 4, if αn → 0, 1
αn

trΣn → 0 and 1
α3

n
||Σn||2 ∼

Op(1), then ||Eα(x|Ŷ ) − x∗|| → 0 in Px∗-probability. Moreover, if δ∗ ∈ Φβ, for

some β > 0, the MISE is of order

E||Eα(x|Ŷ )− x∗||2 = Op

(
αβ∧2

n +
1
α4

n

||Σn||2α(β+1)∧2
n +

1
αn

trΣn

)
.

The larger β is, the smoother the function δ∗ ∈ Φβ will be and faster the reg-

ularization bias will converge to zero. However, for a Tikhonov regularization

scheme, β cannot be grater than 2 (this is the reason why we bound it by 2

in αβ
n). This is known as saturation effect, see section 4.2 in Engl, Hanke and

Neubauer (2000); then with classical Tikhonov regularization scheme it is useless

to have a function x∗ with a degree of smoothness larger than 2. In the remaining

of this section, even if we do not explicitly write β ∧ 2, it must be understood

that if β > 2 it has to be set at 2.

Condition 1
α3

n
||Σn||2 ∼ Op(1) is sufficient to guarantee that 1

α4
n
||Σn||2α(β+1)∧2

n →
0. If trΣn is of the same order as ||Σn||, for instance trΣn ∼ ||Σn|| ∼ Op( 1

n), then

an αn satisfying αn → 0 and α
3
2
nn → ∞ guarantees convergence to zero of the
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second and third rates in the MISE. Classical conditions for convergence of the

solution of stochastic ill-posed problems are αn → 0 and α2
nn → ∞ (see Vapnik

(1998)). Therefore, we require weaker conditions.

If trΣn ∼ ||Σn||, the fastest global rate of convergence is obtained when αβ
n =

1
αn
||Σn||. Then, the optimal regularization parameter α∗n is proportional to

α∗n ∝ ||Σn||
1

β+1

and the optimal speed of convergence of the MISE is proportional to ||Σn||
β

β+1 .

With the optimal value α∗n, the condition 1
α3

n
||Σn||2 ∼ Op(1) is satisfied for β ≥ 1

2 .

Assuming the trace and the norm of the covariance operator be of the same order

is not really stringent. For instance, in almost all real examples they are both of

order 1
n .

As Corollary 1 below shows, a faster rate of convergence for Eα(x|Ŷ ) can be

obtained if we add more conditions on Σn and on its spectrum.

Corollary 1. If Σn = 1
nΣ, where Σ has the same eigenfunctions as KΩ0K

∗ and

under the assumption that Σ(KΩ0K
∗)−γ is trace-class for γ ∈ [0, 3β−1

2 ∧ 1], then

the optimal rate of E||Eα(x|Ŷ )− x∗||2 is n
− β

β+1−γ and the corresponding optimal

α∗n is proportional to n
− 1

β+1−γ .

We proceed to study the convergence of the regularized posterior variance

operator when it is applied to an element ϕ ∈ X . Furthermore, we compute the

rate of convergence of a restriction of Vα to a subset of its domain.

Theorem 3. Under Assumption 4, if αn → 0 and 1
α3

n
||Σn||2 ∼ Op(1) then

∀ϕ ∈ X , ||Vαϕ|| → 0. Moreover, if the posterior variance is applied to ϕ ∈ X
such that Ω

1
2
0 ϕ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 , for some β > 0, it is of order

||Vαϕ||2 = O(αβ
n +

1
α4

n

||Σn||2α(β+1)∧2
n ).

With the optimal α∗n (optimal for Eα(x|Ŷ )), under the conditions in the above

theorem and for β ≥ 1
2 , the rate of ||Vαϕ||2 is ||Σn||

β
β+1 .

We wish to compare the optimal rate of convergence of Eα(x|Ŷ ), called Bayes

estimator hereafter, with the rate of the classical Tikhonov solution of (1.1), i.e.

xα = (αnI +K∗K)−1K∗Ŷ , that is suggested by the classical literature on inverse
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problems and that will be called classical estimator. We refer to Engl, Hanke

and Neubauer (2000) and Carrasco, Florens and Renault (2007) for a review of

the classical method. For simplicity, we set x0 = 0. To make this comparison

possible we have to consider the particular case: Ω0 = c1(K∗K)b, with b > 0 and

c1 a constant of proportionality. In this particular case we show that the fastest

rate of convergence of Eα(x|Ŷ ) is slower than the rate of convergence of xα. The

regularity condition required by the classical method is x∗ ∈ R((K∗K)
b
2 ), for

some b > 0, and the optimal speed of convergence is (trΣn)
b

b+1 , with b ≤ 2 or

b set equal to 2 if b ≥ 2. Therefore, if we choose β in order to have the same

regularity condition, i.e. R((K∗K)
(b+1)β

2 ) = R((K∗K)
b
2 ) and then β = b

b+1 , the

fastest rate of convergence of the Bayes estimator is proportional to (trΣn)
b

2b+1

that is slower than the rate of xα. This result is due to the fact that the Bayes

approach, by changing the nature of the problem, increases the degree of ill-

posedness that is now linked to the rate of decrease of the spectrum of KΩ
1
2
0

and not of K as in the classical problem. However, no comparison can be done

outside this particular form taken by Ω0.

Finally, we analyze frequentist asymptotic properties of the whole regularized

posterior distribution µŶ
α . Following Diaconis and Freedman (1986), we give the

following definition of posterior consistency (also called frequentist consistency)

for a general posterior distribution µŶ on (X , E).

Definition 1. For a given x ∈ X , the pair (x, µŶ ) is consistent if µŶ converges

weakly to δx as n → ∞ under P x-probability or P x-a.s., where δx is the Dirac

measure on x. The posterior probability µŶ is consistent if (x, µŶ ) is consistent

for all x ∈ X .

If (x, µŶ ) is consistent in the previous sense, the Bayes estimate for x is consistent

too. The meaning of this definition is that, for any neighborhood U of the true

parameter x, the posterior probability of the complement of U , Uc, converges

toward zero when n →∞: µŶ (Uc) → 0 in P x-probability, or P x-a.s..

By exploiting the results in Theorems 2 and 3 it is easy to show that, for a

sequence εn with εn → 0, µŶ
α {x ∈ X ; ∀ϕ ∈ X , | < x− x∗, ϕ > | ≥ εn} converges

to 0. However, it is not possible to obtain an uniform convergence and the rate

of contraction depends on the direction ϕ.

A stronger result of posterior consistency is given in the next theorem and it
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requires a further assumption.

Theorem 4. Under the assumptions of Theorem 2 and if there exists a κ > 0

such that
∑

j
<Ω0ϕj ,ϕj>

ρ2κ
j

< ∞, where (ρ2
j , ϕj)j is the eigensystem associated to

Ω
1
2
0 K∗KΩ

1
2
0 , then, for a sequence εn with εn → 0, µŶ

α {x ∈ X ; ||x−x∗|| ≥ εn} → 0

in P x∗-probability. Moreover, if δ∗ ∈ Φβ, for some β > 0, it is of order

µŶ
α {x ∈ X ; ||x− x∗|| ≥ εn} ∼ 1

ε2
n

Op

(
αβ

n +
1
α4

n

||Σn||2α(β+1)∧2
n +

1
αn

trΣn + ακ
)
.

In order to determine the rate of contraction, 1
αn

trΣn must be equated to αβ
n

if κ ≥ β, and to ακ
n otherwise. Then, the rate of contraction of the posterior

distribution is εn = ||Σn||
β∧κ

2(β∧κ+1) .

4.1 Convergence of the PVHS-regularized posterior distribution

We analyze frequentist asymptotic properties of mean and variance of the

PVHS-regularized posterior distribution µŶ
s , under Assumption 5. The rate of

contraction of Es(x|Ŷ ) is faster than that one of Eα(x|Ŷ ) and it is the same as

the rate of the classical solution of (1.1) obtained through a classical Tikhonov

regularization in an Hilbert scale. The attainable speed of convergence is given

in the following theorem that is proved in Appendix A.

Theorem 5. Let Es(x|Ŷ ) and Vs be as in (3.6). Under Assumptions 4 and 5,

||Es(x|Ŷ )− x∗|| and ||Vsϕ|| converge to 0 in P x∗-probability. Moreover,

E||Es(x|Ŷ )−x∗||2 ∼ Op

(
α

β+1
a+s
n +α

1−a
a+s
n trΣn+

1
α2

n

||Σn||2α
β−a
a+s
n +

1
α2

n

||Σn||2trΣnα
1−a
a+s
n

)

and, the restriction of Vs to the subset of ϕ ∈ X such that Ω
1
2
0 ϕ ∈ R(Ω

β
2
0 ), has

the order

||Vsϕ||2 ∼ O
(
α

β+1
a+s
n +

1
α2

n

||Σn||2α
β−a
a+s
n

)
.

The optimal αn (optimal for Es(x|Ŷ )) is α∗n ∝ (trΣn)
a+s
a+β and the corresponding

optimal rate of E||Es(x|Ŷ )−x∗||2 and ||Vsϕ||2 is proportional to (trΣn)
β+1
a+β . With

αn set equal to its optimal values α∗n, the remaining rates goes to zero if β > a+2s
3 .

This constraint is binding with respect to the constraint in Assumption 5 (iii),

i.e. a+2s
3 ≥ s − 1, if a ≥ s − 3. It should be noticed that parameter s, that
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characterizes the norm in the Hilbert scale, does not play any role in the speed

of convergence.

An advantage of the Tikhonov regularization in Hilbert Scale is that we can

obtain rates of convergence for other norms, namely || · ||r for −a ≤ r ≤ β + 1 ≤
a + 2s. The speed of convergence of these norms gives the speed of convergence

of the estimate of the r-th derivative of x.

The rate of convergence can be improved if more assumptions on Σ are satisfied:

Corollary 2. Let (λj , ϕj , ψj) be the singular system of KΩ
s+1
2

0 . If Σn = 1
nΣ,

with Σ having eigenfunctions ψj and under the assumption that Σ(KΩs+1
0 K∗)−γ

is trace-class for γ ∈ [0, 3β−a−2s
2(a+s) ∧ 1], then the optimal speed of E||Es(x|Ŷ ) −

x∗||2 is of order n
− β+1

β+a−γ(a+s) and the corresponding optimal α∗n is proportional

to n
− a+s

β+a−γ(a+s) .

The proof of this Corollary is similar to that one of Corollary 1 and then it is

omitted. It is also possible to have a result for µŶ
s similar to that one in Theorem

4, this result is immediate and then omitted.

Now, we fix x0 = 0 and we want to compare the rate of convergence of ||Es(x|Ŷ )−
x∗||2 to the rate of the classical Tikhonov regularized solution in Xs of (1.1). Such

a solution is xs = (αnL2s+K∗K)−1K∗Ŷ and ||xs−x∗||2 ∼ Op((trΣn)
u

ā+u ), under

the assumptions ||Kx|| ∼ ||L−āx|| and x ∈ Xu for some u ≥ 0, with ā the degree

of ill-posedness, see Section 8.5 in Engl, Hanke and Neubauer (2000). Hence,

it results that ||KΩ
1
2
0 x|| ∼ ||L−āΩ

1
2
0 x|| and, by substituting to L the operator

Ω
− 1

2
0 , this norm is equivalent to ||Ω

ā+1
2

0 x||. Comparison of this assumption to As-

sumption 5 (i) implies that the degree of ill-posedness in the Bayesian problem

is greater than the degree of ill-posedness in the classical problem: a = ā + 1, as

previously stated. Despite of this, if we take the same regularity condition in the

two problems, i.e. x ∈ Xu = Xβ+1 and then β + 1 = u, the rate of convergence

of Es(x|Ŷ ) and of xs are the same.

This confirms the improvement, in terms of speed of convergence, that we have

by using a Tikhonov regularization in the PVHS instead of a classical Tikhonov

regularization. Let consider for instance the particular case Ω0 = (K∗K), then

a = 0, and let impose the same regularity condition in X and in the Hilbert scale

Xs. The regularity condition in Theorem 2 requires that δ∗ ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

c
2 ≡
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R((K∗K)c) for some c > 0, that implies (x∗ − x0) ∈ R((K∗K)c+ 1
2 ). The

regularity condition for the PVHS-regularization is (x∗ − x0) ∈ R(Ω
β+1

2
0 ) ≡

R((K∗K)
β+1

2 ); henceforth the conditions are equal if 2c = β. Taking this value

for β, the optimal rate of convergence of Es(x|Ŷ ), under assumptions of Theorem

5 is (trΣn)
2c+1
2c+2 that is faster than the rate of Eα(x|Ŷ ) (that is proportional to

(trΣn)
c

c+1 ).

Even without restricting to this particular form for Ω0 it is possible to show the

improvement in term of speed of convergence obtained with an Hilbert scale.

To this end, it is sufficient that Assumption 5 (i) holds since it implies the

equivalence ||(Ω
1
2
0 K∗KΩ

1
2
0 )

c
2 v|| ∼ ||Ω

ac
2

0 v||, for some v ∈ X . Then, if we require

equality between Assumption 5 (ii) and the assumption in Theorem 2, we have

||Ω
β
2
0 v|| ∼ ||Ω

ac
2

0 v|| and then β = ac (or β = (ā + 1)c). The optimal Bayesian rate

of convergence with an Hilbert scale is (trΣn)
ac+1
a+ac that is fastest than the Bayes

rate of convergence with a classical Tikhonov: (trΣn)
c

c+1 , ∀c > 0.
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Appendix A

Proof of Lemma 1

Notice that tr(Σn + KΩ0K
∗) = trΣn + tr(KΩ0K

∗). Since Σn is trace class,

we only have to prove that KΩ0K
∗ is trace class. This is trivial to prove if

K is compact. Let (λ̃2
j , ϕ̃j) be the eigensystem associated to K∗K. Then,

tr(KΩ0K
∗) = tr(K∗KΩ0) and by using the definition of trace

tr(K∗KΩ0) =
∑

j

< K∗KΩ0ϕ̃j , ϕ̃j >=
∑

j

λ̃2
j < Ω0ϕ̃j , ϕ̃j >

that is finite since Ω0 is trace class and the spectrum of K∗K is decreasing. Let
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now consider Υ:

Υ =

[
Ω0 Ω0K

∗

KΩ0 Σn + KΩ0K
∗

]
.

Let ej = (e1j , e2j) be a basis in X × Y, the trace of Υ is:

tr(Υ) =
∑

j

< Υej , ej >

=
∑

j

(< Ω0e1j , e1j > + < Ω0K
∗e2j , e1j > + < KΩ0e1j , e2j >

+ < (Σn + KΩ0K
∗)e2j , e1j >).

By the previous part of this proof and since Ω0 is trace-class, the infinite sum of

the first and last terms are finite. We only have to consider the two terms in the

center:
∑

j(< Ω0K
∗e2j , e1j > + < KΩ0e1j , e2j >) = 2

∑
j < Ω

1
2
0 K∗e2j ,Ω

1
2
0 e1j >

and

2
∑

j

< Ω
1
2
0 K∗e2j ,Ω

1
2
0 e1j > ≤ 2

∑

j

||Ω0e1j ||||K∗e2j ||

≤ 2 sup
j
||K∗e2j ||

∑

j

< Ω0e1j , e1j >

that is finite since Ω0 is trace class and K∗ is bounded. The necessity of Υyy

being trace-class to have Υ trace-class is evident and this complete the proof.

Proof of Theorem 1

(i). Let (x̃, ỹ) ∈ X × Y. Assumptions 1 implies that there exist ỹ1 ∈
R(K) and ỹ2 ∈ R.K.H.S.(Σn) such that ỹ = ỹ1 + ỹ2. Therefore, ỹ1 and ỹ2 are

independent and there exists x̃ such that ỹ1 = Kx̃. For all (ϕ,ψ) ∈ X × Y

< (x̃, ỹ), (ϕ,ψ) > = < x̃, ϕ > + < ỹ1 + ỹ2, ψ >

= < x̃, ϕ > + < Kx̃, ψ > + < ỹ2, ψ >

= < x̃, ϕ + K∗ψ > + < ỹ2, ψ >

and < x̃, ϕ + K∗ψ > + < ỹ2, ψ > is normally distributed with mean < x0, ϕ +

K∗ψ > and variance < Ω0(ϕ + K∗ψ), (ϕ + K∗ψ) > + < Σnψ,ψ >. Hence,

we have proved that the joint measure Π on X × Y is gaussian. The mean

mxy is defined through < mxy, (ϕ,ψ) >= EΠ < (x̃, ỹ), (ϕ,ψ) > and since
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< x0, ϕ + K∗ψ >=< (x0, Kx0), (ϕ,ψ) > we get mxy = (x0,Kx0). From the def-

inition of Υ, we get < Υ(ϕ,ψ), (ϕ,ψ) >=< Ω0ϕ,ϕ > + < (Σn + KΩ0K
∗)ψ, ψ >

that concludes the proof.

(ii). Let Q be the projection of Π on (Y,F) with mean function mQ and co-

variance operator RQ. Since Π is gaussian, the projection must be gaussian.

Moreover, ∀ψ ∈ Y, < mQ, ψ >=< mxy, (0, ψ) >=< Kx0, ψ > and

< RQψ, ψ > = < Υ(0, ψ), (0, ψ) >

= < (Ω00 + Ω0K
∗ψ, (Σn + KΩ0K

∗)ψ + KΩ00), (0, ψ) >

= < (Σn + KΩ0K
∗)ψ, ψ > .

Hence, mQ = my and RQ = Υyy. This implies Q ≡ P since there is an unique cor-

respondence between a gaussian measure and its covariance operator and mean

element.

Proof of Theorem 2

For any true value x∗ ∈ X , the Bayes estimation error can be decomposed

as:

Eα(x|Ŷ )− x∗ = Ω0K
∗(αnI + Σn + KΩ0K

∗)−1K(x∗ − x0)

+Ω0K
∗(αnI + Σn + KΩ0K

∗)−1U − (x∗ − x0)

= −
A︷ ︸︸ ︷

[I − Ω0K
∗(αnI + KΩ0K

∗)−1K](x∗ − x0)+ (5.1)

Ω0K
∗[(αnI + Σn + KΩ0K

∗)−1 − (αnI + KΩ0K
∗)−1]K(x∗ − x0)︸ ︷︷ ︸

B
+ Ω0K

∗(αnI + Σn + KΩ0K
∗)−1U︸ ︷︷ ︸

C

.

Term A looks very similar to the regularization bias of the solution of a functional

equation. More clearly, under Assumption 3 and by taking the norm in X :

A = [I − Ω0K
∗(αnI + KΩ0K

∗)−1K]Ω
1
2
0 δ∗

= Ω
1
2
0 [I − Ω

1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 ]δ∗,

E||A||2 ≤ ||Ω
1
2
0 ||2||(I − Ω

1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 )||2||δ||2.

We notice that (I − Ω
1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 ) is equal to [I − (αnI +
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Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗KΩ

1
2
0 ]. The latter is the regularization bias associated to

the regularized solution of the ill-posed inverse problem KΩ
1
2
0 δ∗ = r computed

using Tikhonov regularization scheme. Assumption 4 guarantees identification

of its solution. It converges to zero when αn → 0 and then the norm ||(I −
Ω

1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 )||2 is bounded. Its speed of convergence to zero

depends on the regularity of δ∗ and consequently of (x∗−x0). If δ∗ ∈ Φβ, it is at

most of order αβ
n, see Proposition 3.12 in Carrasco, Florens and Renault (2007).

Then E||A||2 = Op(α
β
n).

For term B we have E||B||2 = ||Ω0K
∗(αnI+Σn+KΩ0K

∗)−1(Σn)(αnI+KΩ0K
∗)−1K(x∗−

x0)||2 and it is less than or equal to

||Ω0K
∗||2||(αnI + Σn + KΩ0K

∗)−1||2||Σn||2||(αnI + KΩ0K
∗)−1K(x∗ − x0)||2

where the first norm is bounded and the second and the third ones areOp( 1
α2

n
) and

Op(||Σn||2) respectively. The last norm can be written as ||(αnI+KΩ0K
∗)−1KΩ

1
2
0 δ∗||2,

and, by using the hypothesis that δ∗ ∈ Φβ

||(αnI +KΩ0K
∗)−1KΩ

1
2
0 δ∗||2 =

1
α2
||α(αnI +KΩ0K

∗)−1KΩ
1
2
0 (Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 ρ||2,

for some ρ ∈ X and it is at least of order 1
α2 αβ+1. As a consequence of

the fact that, with a Tikhonov regularization, a degree of smoothness greater

than or equal to 2 may be useless, we get ||(αnI + KΩ0K
∗)−1K(x∗ − x0)||2 ∼

Op( 1
α2

n
α

(β+1)∧2
n ).

To find speed of convergence of term C we re-write it as:

C = Ω0K
∗[(αnI + Σn + KΩ0K

∗)−1 − (αnI + KΩ0K
∗)−1]U︸ ︷︷ ︸

Ca

+

Ω0K
∗(αnI + KΩ0K

∗)−1U︸ ︷︷ ︸
Cb

.

By standard computation it is trivial to show that E||Ca||2 ∼ Op( 1
α3

n
||Σn||2trΣn)

and E||Cb||2 ∼ Op( 1
αn

trΣn), since E||U ||2 = trΣn. Term E||Ca||2 is negligible

with respect to the terms ||B||2 and E||Cb||2.

Proof of Theorem 3
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By recalling expression (3.3), ∀ϕ ∈ X we can rewrite Vα as

Vαϕ =

D︷ ︸︸ ︷
Ω0 − Ω0K

∗(αnI + KΩ0K
∗)−1KΩ0ϕ+ (5.2)

Ω0K
∗(αnI + KΩ0K

∗)−1KΩ0ϕ− Ω0K
∗(αnI + Σn + KΩ0K

∗)−1KΩ0ϕ︸ ︷︷ ︸
G

.

Since Ω0 is a positive definite self-adjoint operator, it can be decomposed as

Ω0 = Ω
1
2
0 Ω

1
2
0 . Term D is treated as term A in (5.1), so that, if ϕ ∈ X is such

that Ω
1
2
0 ϕ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 , ||Dϕ||2 = Op(α

β
n). Term G can be rewritten as

Ω0K
∗(αnI +Σn +KΩ0K

∗)−1Σn(αnI +KΩ0K
∗)−1KΩ

1
2
0 Ω

1
2
0 ϕ and treated as term

B in (5.1), then ||G||2 = Op( 1
α4

n
||Σn||2α(β+1)∧2

n ).

Proof of Corollary 1

Let consider term Cb in the proof of Theorem 2, i.e. Cb = Ω0K
∗(αnI +

KΩ0K
∗)−1U . The expectation of its norm E||Cb||2 is bounded by ||Ω

1
2
0 ||2E||Ω

1
2
0 K∗(αnI+

KΩ0K
∗)−1U ||2. The first norm is finite and the second one is equal to tr(Σn(αnI+

KΩ0K
∗)−1KΩ0K

∗(αnI + KΩ0K
∗)−1) if Σn and KΩ0K

∗ have the same eigen-

functions. Let Σn = 1
nΣ, ρ2

j denote the eigenvalues of Σ and λ2
j denote the

eigenvalues of KΩ0K
∗, then

E||Cb||2 ≤ ||Ω
1
2
0 ||2

1
n

∑

j

ρ2
jλ

2
j

(αn + λ2
j )2

≤ ||Ω
1
2
0 ||2

1
n

sup
j

( λ2+2γ
j

(αn + λ2
j )2

)∑

j

ρ2
jλ
−2γ
j

∼ Op

( 1
n

αγ−1
n

)

for γ ∈ [0, 1]. The optimal αn is obtained by equating this rate to that one of

term ||A||2 in the proof of Theorem 2; the optimal speed follows. The upper

bound 3β−1
2 of γ ensures that the other term in E||Eα(x|Ŷ )− x∗||2 converges to

zero.

Proof of Theorem 4

By using Chebishev’s Inequality for a sequence εn with εn → 0, we have

µŶ
α {x ∈ X ; ||x− x∗|| ≥ εn} ≤ ||Eα(x|Ŷ )− x∗||2 + tr(Vα(x|Ŷ ))

ε2
n

.
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By Theorem 2 we know that ||Eα(x|Ŷ ) − x∗||2 converges to 0 and we know its

rate of contraction. In order to compute the trace of the variance, we use the

decomposition in (5.2), hence tr(Vα(x|Ŷ )) = tr(D) + tr(G). By using properties

and the definition of the trace function, we get

tr(D) = tr[Ω
1
2
0 (I − Ω

1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 )Ω

1
2
0 ]

= tr[αn(αnI + Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω0]

=
∑

j

αn

αn + ρ2
j

< Ω0ϕj , ϕj >

≤ sup
j

( αnρ2κ
j

αn + ρ2
j

)∑

j

< Ω0ϕj , ϕj >

ρ2κ
j

∼ O(ακ
n)

under the assumption that
∑

j
<Ω0ϕj ,ϕj>

ρ2κ
j

< ∞, where (ρ2
j , ϕj)j is the eigensys-

tem associated to Ω
1
2
0 K∗KΩ

1
2
0 . Then, it converges to 0. The tr(G) is less or equal

to tr(KΩ2
0K

∗(αnI + KΩ0K
∗)−1)tr(Σn(αnI + Σn + KΩ0K

∗)−1) and, in a similar

way as for tr(D), we can prove that tr(G) ∼ O(ακ 1
α trΣn). This concludes the

proof.

Proof of Theorem 5

To prove Theorem 5 we use Corollary 8.22 in Engl, Hanke and Neubauer(2000).

We give a slightly modified version of it:

Corollary 3. Let Xs, s ∈ R, be a Hilbert scale induced by L and let T : X → Y
be a bounded operator satisfying ||x||−a ∼ ||Tx|| on X for some a > 0. Then for

B := TL−s, s ≥ 0 and |ν| ≤ 1 we have ||x||−ν(a+s) ∼ ||(B∗B)
ν
2 x||. Moreover,

R((B∗B)
ν
2 ) = Xν(a+s).

We rewrite the bias Es(x|Ŷ )− x∗ as

Es(x|Ŷ )− x∗ =

K︷ ︸︸ ︷
−[I − Ω0K

∗(αnL2s + KΩ0K
∗)−1K](x∗ − x0)+

Ω0K
∗[(αnL2s + Σn + KΩ0K

∗)−1K − (αnL2s + KΩ0K
∗)−1K](x∗ − x0)︸ ︷︷ ︸

J
+Ω0K

∗(αnL2s + Σn + KΩ0K
∗)−1U︸ ︷︷ ︸

M

.



POSTERIORS IN INVERSE PROBLEMS 25

Then, by using Assumption 5 (ii) E||K||2 ≤ ||Ω
1
2
0 [I−(αnΩ−s

0 +Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗KΩ

1
2
0 ]Ω

β
2
0 ρ∗||2

if Ω0 is such that Ω
1
2
0 K∗(αnL2s + KΩ0K

∗)−1 = (αnΩ−s
0 + Ω

1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗,

i.e. Ω
−s+ 1

2
0 K∗ = Ω

1
2
0 K∗L2s. Let B = KΩ

s+1
2

0 , we rewrite

E||K||2 = ||Ω
s+1
2

0 (I − (αnI + B∗B)−1B∗B)Ω
β−s

2
0 ρ∗||2

= ||Ω
s+1
2

0 (I − (αnI + B∗B)−1B∗B)(B∗B)
β−s

2(a+s) v||2

∼ ||(B∗B)
β+1

2(a+s) αn(αnI + B∗B)−1v||2

∼ Op(α
β+1

(a+s)
n )

where the second line follows from the fact thatR(Ω
β−s

2
0 ) ≡ Xβ−s ≡ R((B∗B)

β−s
2(a+s) ),

by Corollary 3, then Ω
β−s

2
0 ρ∗ = (B∗B)

β−s
2(a+s) v, for some v ∈ X . The third equiva-

lence too follows from Corollary 3. We conclude that E||K||2 ∼ Op(α
β+1
a+s
n ).

In a similar way, for term J we have:

||J || ≤ ||Ω0K
∗(αnL2s + Σn + KΩ0K

∗)−1||||Σn||||(αnL2s + KΩ0K
∗)−1KΩ

1
2
0 δ∗||

where the first norm is of order 1
αn

and

||(αnL2s + KΩ0K
∗)−1KΩ

1
2
0 δ∗|| = ||KΩ

1
2
0 (αnΩ−s

0 + Ω
1
2
0 K∗KΩ

1
2
0 )−1δ∗||

= ||B(αnI + B∗B)−1Ω
s+β
2

0 v||
∼ ||(B∗B)

2s+β+a
2(a+s) (αnI + B∗B)−1v||

∼ Op(
1
αn

α
2s+β+a
2(a+s)

n ).

Thus, E||J ||2 ∼ Op

(
1

α2
n
||Σn||2α

β−a
(a+s)
n

)
. The last term can be decomposed as

M = Ω0K
∗[(αnL2s + Σn + KΩ0K

∗)−1 − (αnL2s + KΩ0K
∗)−1]U︸ ︷︷ ︸

Ma

+

Ω0K
∗(αnL2s + KΩ0K

∗)−1U︸ ︷︷ ︸
Mb

,
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and E||Ma||2 is less or equal then

||Ω0K
∗(αnL2s + KΩ0K

∗)−1||2||Σn||2||(αnL2s + Σn + KΩ0K
∗)−1||2E||U ||2

≤ ||Ω
s+1
2

0 (αnI + Ω
s+1
2

0 K∗KΩ
s+1
2

0 )−1Ω
s+1
2

0 K∗||2||Σn||2||(αnL2s + Σn + KΩ0K
∗)−1||2trΣn

∼ ||(B∗B)
a+2s+1
2(a+s) (αnI + B∗B)−1||2||Σn||2||(αnL2s + Σn + KΩ0K

∗)−1||2trΣn

∼ Op

( 1
α2

n

||Σn||2trΣnα
1−a
a+s
n

)
.

The expectation of the squared norm of the term Mb is:

E||Mb||2 = E||Ω
1
2
0 (αnΩ−s

0 + Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗U ||2

= E||Ω
s+1
2

0 (αnI + B∗B)−1B∗U ||2

≤ ||(B∗B)
2s+a+1
2(a+s) (αnI + B∗B)−1||2E||U ||2

∼ Op(α
1−a

(a+s)
n trΣn).

Thus ||Mb||2 ∼ Op(α
1−a

(a+s)
n trΣn).

Next, we consider the norm of the variance operator Vs applied to an element

ϕ ∈ X such that Ω
1
2
0 ϕ ∈ R(Ω

β
2
0 ). Then, ϕ is such that Ω

s+1
2

0 ϕ ∈ R(Ω
β−s

2
0 ) and we

have the decomposition

Vsϕ =

W︷ ︸︸ ︷
[Ω0 − Ω0K

∗(αnL2s + KΩ0K
∗)−1KΩ0]ϕ

+Ω0K
∗[(αnL2s + KΩ0K

∗)−1 − (αnL2s + Σn + KΩ0K
∗)−1]KΩ0ϕ︸ ︷︷ ︸

Z

.

Computations for ||W|| are similar to that ones for term ||K|| above and com-

putation for ||Z|| to that one for term ||J ||, therefore: ||W||2 ∼ Op(α
β+1
a+s
n ) and

||Z||2 ∼ Op

(
1

α2
n
||Σn||2α

β−a
(a+s)
n

)
. The result follows.

Appendix B: Numerical Simulations

In all the simulations we take the Tikhonov regularized posterior mean

Eα(x|Ŷ ) as point estimator of the solution of the inverse problem (1.1).

Functional equation with a parabola as solution

We take X = Y = L2
π with π the uniform measure on [0, 1]. The data
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generating process is

Ŷ =
∫ 1

0
x(s)(s ∧ t)ds + U, x∗ = −3s2 + 3s (6.1)

U ∼ GP(0, Σn), Σn = n−1

∫ 1

0
exp{−(s− t)2}ds

x ∼ GP(x0, Ω0), x0 = −2.8s2 + 2.8s

Ω0ϕ(t) = ω0

∫ 1

0
exp(−(s− t)2)ϕ(s)ds.

The results are shown in Figure 6.1. In Panels (a), (b) and (c) of this figure we

represent estimation of x∗ by using three different prior means x0 (represented

by the dash-dotted magenta line) and different values for Ω0: x0 = −2.8s2 +

2.8s and Ω0ϕ(t) = 2
∫ 1
0 exp(−(s − t)2)ϕ(s)ds in panel (a), x0 = −2s2 + 2s and

Ω0ϕ(t) = 40
∫ 1
0 ((s∧ t)− st)ϕ(s)ds in panel (b), x0 = −2.22s2 + 2.67s− 0.05 and

Ω0ϕ(t) = 100
∫ 1
0 (0.9(s− t)2−1.9|s− t|+1)ϕ(s)ds in panel (c). The black dotted

line represents the Eα(x|Ŷ ) and the solid red line represents the true function x∗.
The blue dotted line represents the classical solution obtained with a Tikhonov

method. The regularization parameter α has been set to 2.e − 03, the sample

size is n = 1000 and the discretization step is 0.001.

In Panels (a), (b) and (c), results of a Monte Carlo experiment with 100 iterations

are shown. The specification of the prior distribution changes as in the previous

panels. The dotted line represents the mean of the regularized posterior means

obtained for each iteration.

Density Estimation

Let X = Y = L2
π, with π the uniform measure on [−3, 3]. The true density

f∗ is the density of a standard gaussian measure on R. Let ξ1, . . . , ξn be an i.i.d.

sample from f∗ used to estimate the cumulative distribution function F̂ and the

sampling variance Σn (as defined in Example 2). The operator K is known.

The prior mean is f0 = 1√
2πσ

exp{− 1
2σ2 (ξ − θ)2}, the prior variance is Ω0ϕ(t) =

ω0

∫ 3
−3 exp(−(s− t)2)ϕ(s)1

6ds and parameters (σ, θ, ω0) have been differently set

to see the effect of prior changes on the estimated solution. The regularization

parameter αn has been set equal to 0.05 and the sample size is of n = 1000. The

results for different specification of the parameters in the prior distribution are

shown in Figure 6.2. In panels (a) and (d) the true density (continuous black line),
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(a) x0 = −2.8s2 + 2.8s,
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(b) x0 = −2s2 + 2s, Ω0ϕ(t) =

40
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0 ((s ∧ t) − st)ϕ(s)ds
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(c) x0 = −2.22s2 +2.67s−0.05,

Ω0 = 100
∫ 1
0 (0.9(s−t)2−1.9|s−

t| + 1)ds
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(d) x0 = −2.8s2 + 2.8s,

Ω0ϕ(t) = 2
∫ 1
0 exp(−(s −

t)2)ϕ(s)ds
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(e) x0 = −2s2 + 2s, Ω0ϕ(t) =

40
∫ 1
0 ((s ∧ t) − st)ϕ(s)ds
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(f) x0 = −2.22s2 +2.67s−0.05,

Ω0 = 100
∫ 1
0 (0.9(s−t)2−1.9|s−

t| + 1)ds

Figure 6.1: Regularized posterior mean for different prior specifications and comparison with

the classical Tikhonov solution

the prior mean (dotted blue line) and the regularized posterior mean estimator

(dashed-dotted red line) are drawn; panels (b) and (e) show the comparison

between our estimator and the classical Tikhonov solution (dotted blue line).

Panels (c) and (f) represent a sample of curves dawn from the prior distribution

together with the prior mean (continuous line) and the true density (dotted line).
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