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Abstract

This paper develops the notion of accuracy for multidimensional experiments to character-
ize the welfare impact of sample selection from a larger presample. Sample selection benefits
or hurts a decision maker according to whether the reverse hazard rate of the data distribu-
tion is log-supermodular—as in location experiments with normal noise—or log-submodular.
Our results characterize situations in which potential sources of selection bias can be exploited,
with broad implications for the choice and design of selected experiments. In strategic settings,
selection arises in equilibrium when the sample is chosen by a biased researcher. Applied to
educational testing, we determine whether allowing an examinee to choose which questions
to answer dominates randomly selecting the same number of questions. We also characterize
when the common-law right of peremptory challenge improves the quality of judgment by
eliminating jurors with extreme views on either side.
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1 Introduction

Empirical and experimental data are often nonrandomly selected, due to choices made by subjects
under investigation or sample inclusion decisions by data analysts.1 Suppose a new treatment is
given to the healthiest patients rather than to random patients in a group. Because of selection,
favorable outcomes are weaker evidence that the treatment is effective. But once the evaluator
adjusts for selection, does inference improve or worsen compared to random assignment? Similar
questions arise in other contexts. For example, when testing a student in an exam, should the
teacher ask questions at random or allow the student to select the most preferred questions out of a
larger batch? When feeding consumer reviews to potential buyers with limited attention, should an
e-commerce platform post random reviews or allow the merchant to cherry-pick them? And how
does the right of peremptory challenge—by which the attorney on each side of a trial can strike
down a number of jurors—affect judgment quality?

These comparisons are all instances of the same issue: assessing the welfare impact of sample
selection in a decision problem. There is an unknown state θ , which may represent the difference
in outcome improvement between two treatments, a student’s ability, or a defendant’s level of guilt.
An evaluator must choose an action—assign a grade, choose a treatment for the next patient, or
decide on a sentence—knowing that marginally increasing the action decreases payoff when θ is
low, and increases it when θ is high. More precisely, we assume that the evaluator has preferences
in the general interval dominance ordered (IDO) class introduced by Quah and Strulovici (2009),
encompassing monotone decision problems (Karlin and Rubin, 1956) and single-crossing prefer-
ences (Milgrom and Shannon, 1994).

The evaluator decides after observing the realization of a statistical experiment, a random vec-
tor X = (X1, . . . ,Xn) whose distribution depends on θ . For instance, Xi may represent a patient’s
outcome under either treatment, a student’s potential performance in a question on a certain topic,
or a juror’s opinion. Our basic question is, in which of the following scenarios does the evaluator
make better decisions:

• Random Experiment. The sample observations are i.i.d. draws from a state-dependent
cumulative distribution function F(·|θ).

• Selected Experiment. The sample observations are selected—possibly strategically, by an-
other party—as the n highest out of k > n presampled i.i.d. draws from F(·|θ).

The impact of selection on the evaluator’s welfare is in general ambiguous. To fix ideas, sup-
pose the evaluator faces a simple hypothesis testing problem: two states θ H > θ L and two actions,
rejection (the correct choice in state θ L) and acceptance (the correct choice in state θ H). In a unidi-
mensional (n = 1) location experiment with noise drawn from a normal distribution F , the sample
observation is normal with mean θ L in the low state and θ H in the high state, as illustrated by the
blue graphs in the left panel of Figure 1. The evaluator’s optimal decision is to accept when the

1For instance, Heckman (1979) refers from the outset to these two sources of selection.
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Figure 1: Selection provides more accurate information with normal noise (left) but less accurate
information with exponential noise (right).

sample observation is above some cutoff x̄. This is the familiar trade-off between the probability
1−F(x̄−θ L) of a false positive (accepting in the low state, FP) and the probability F(x̄−θ H) of
a false negative (rejecting in the high state, FN).2

How does a selected experiment compare? Selection changes the noise distribution to Fk, so
the evaluator observes a random variable distributed according to Fk(x−θ L) in the low state and
Fk(x−θ H) in the high state. This is illustrated by the red graphs in Figure 1. With normal noise,
selection benefits the evaluator: by adopting the (possibly suboptimal) cutoff point ȳL that induces
as many false positives, the evaluator also induces fewer false negatives: Fk(ȳL−θ H)<F(x̄−θ H).
But, as shown in the right panel of Figure 1, exactly the opposite is true with exponential noise:
starting from any cutoff ȳ for the selected experiment, the evaluator can match false positives, while
lowering false negatives, by adopting the cutoff x̄L in the random experiment.

What makes selection beneficial in some cases and harmful in others? To answer this question,
we start from an observation of Lehmann (1988), who pointed out that an equivalent way to for-
mulate the property that ȳL induces as many false positives and fewer false negatives is to say that
the selected experiment is more accurate.3 This means that the cutoff point ȳH inducing as many
false negatives, defined by Fk(ȳH −θ H) = F(x̄−θ H), is larger than ȳL. By adopting the smaller
cutoff ȳL the evaluator necessarily induces more acceptance—and in particular more acceptance in
the high state—than by adopting the larger cutoff ȳH . In effect, this is what happens in the normal
case (and with opposite direction in the exponential case) depicted in Figure 1.

Our first main result identifies a necessary and sufficient condition for a larger presample size
to increase or decrease accuracy in one-dimensional location experiments. Theorem 1 shows that

2A location problem with normal noise, like every other experiment considered in this paper, satisfies the monotone
likelihood ratio property: given any two states, the higher the realization x, the higher the relative odds of the higher
state. This property implies that the evaluator’s optimal decision is increasing in x. With two actions and sample size
n = 1, this simply means choosing the higher action (acceptance) if and only if x is at least as large as some cutoff x̄.

3The latter nomenclature is due to Persico (2000).
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the evaluator welfare monotonically increases in k if the reverse hazard function of the noise distri-
bution, − logF , is logconcave, as with normal or logistic noise. Likewise, welfare monotonically
decreases in k if and only if − logF is logconvex, as with exponential noise. There is only one
case where the evaluator is indifferent to selection: noise drawn from the Gumbel distribution,
F(ε) = exp(−exp(ε)). This is the only distribution with both logconcave and logconvex − logF .
Intuitively, our logconcavity criterion requires that neither the top tail of the distribution should be
thicker than in the Gumbel distribution, nor the bottom tail should be thinner.

To characterize the impact of selection in the general case, with possibly non-additive noise and
any sample size n > 1, we introduce a natural generalization of Lehmann’s (1988) notion of accu-
racy. Our notion allows comparisons between any pair of experiments and shares the basic intuition
with (for n = 1, it reduces to) Lehmann’s (1988). To illustrate, consider two n-dimensional exper-
iments X and Y and again a simple hypothesis testing setup. In experiment X the evaluator again
adopts a cutoff strategy, but now the cutoff is a more complicated object, an (n− 1)-dimensional
hypersurface in Rn.4 Our notion requires a suitably defined cutoff hypersurface that induces as
many false positives in Y as in X to lie below the one inducing as many false negatives. Much like
in the unidimensional case, then, the evaluator must fare better with Y than with X .

Our notion of accuracy is the key technical tool needed to tackle the new issues arising in
the multidimensional case. The main difficulty lies in the fact that sample observations are cor-
related with each other, even conditionally on the state. By disentangling the net value of infor-
mation added by each observation, we can understand when selection adds or subtracts value to
the evaluator’s problem. Our main result, Theorem 2, shows that welfare monotonically increases
or decreases in presample size, according to whether the reverse hazard rate f (x|θ)/F(x|θ) is
log-supermodular or log-submodular. In a location experiment, log-supermodularity reduces to
logconcavity of the noise distribution’s reverse hazard rate f/F . This condition strengthens the
logconcavity criterion in Theorem 1. Intuitively, the noise distribution must be increasingly thin-
ner at the top and thicker at the bottom, compared to the Gumbel distribution.

The analysis in this paper offers new insights to applied research. Selective sampling is typi-
cally viewed exclusively as a threat to the internal or external validity of an experiment. The main
focus in the received literature is on identification issues—how to avoid or at least account for
selection bias. Our results show that properly anticipated selection can have a beneficial impact
on the quality of inference, and characterize precisely when it does, thus identifying a novel role
for selective sampling.5 The results can be used to discriminate situations where selection should
indeed be avoided from those where instead it can be exploited. To a researcher choosing between
two alternative datasets (one characterized by more selection than the other), as well as to a teacher
deciding whether to allow examinee choice, the recommendation is immediate: check the posited
data distribution for the conditions in Theorem 1 or Theorem 2.

4For example, with i.i.d. observations x = (x1, . . . ,xn) from a location experiment with normal noise, the average
observation is a sufficient statistic. In this case, the cutoff hypersurface has the form ∑i xi/n = x̃ for some x̃.

5As we discuss in the conclusion, selection may benefit even an unwary evaluator who does not anticipate it at all.
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As a key advantage of our approach, the criteria we obtain do not depend on the specific
decision problem, but rather hold for all preferences in the general IDO class. We also empha-
size that, while sample selection often arises strategically—as suggested by the applications we
mentioned—our comparative statics hold independently of the specific source of selection.

Our results open the way to new directions in the design of experiments. In a situation where
more selection benefits the evaluator, presample size k is an additional channel of information that
the evaluator can use to economize on sample size n.

Drawing on extreme value theory, we also analyze the impact of extreme selection, when pre-
sample size tends to infinity. Focusing on location experiments, in Theorem 3 we characterize the
noise distributions such that the evaluator obtains the full-information payoff in the limit, and those
such that information in the limit is less than full. As intuition suggests, if the noise distribution has
support bounded above, extreme selection leads to full information—noise becomes concentrated
around its upper bound. In the unbounded case, limit welfare is governed by the hazard rate of the
noise distribution, f (ε)/(1−F(ε)): if and only if the hazard rate is unbounded—as for instance
with normal noise—full information is approached in the limit. Returning to experiment design,
we use Theorem 3 to show that when presampling costs are small, the evaluator always prefers to
tolerate sample selection. We show that this conclusion holds whether presample size is optimally
decided by the evaluator or strategically chosen by a sender.

Finally, our proof techniques suggest a general methodology that seamlessly accommodates
other forms of selection. Before concluding the paper, we apply the general method of proof
developed for Theorem 2 to characterize the impact of sampling from a truncated distribution
(Theorem 4). The welfare impact of this other common type of selection is different in important
cases. For example, with normal or logistic noise maximal selection benefits while truncation
hurts the evaluator. We also analyze median selection, where the evaluator observes the median
observation in a presample (Theorem 5). This analysis, based on a symmetric application of the
argument of proof used for Theorem 2, allows us to derive conclusions for peremptory challenge.

Literature Contribution. Concerns about data selection and manipulation have long been voiced
by the science and medicine literature and have led to important policy responses.6 However, there
are few economic models in the area.7 An early exception is Blackwell and Hodges (1957), who
analyze how an evaluator should optimally design a sequential experiment to minimize selection
bias, a term they coined to represent the fraction of times a strategic researcher is able to correctly
forecast the treatment assignment.8 However, they did not model the information available to the

6See, for example, the analysis of Schulz, Chalmers, Hayes, and Altman (1995) and the CONSORT statement,
http://www.consort-statement.org. See also Allcott (2015) for recent empirical evidence.

7Glaeser (2008) discusses a number of issues in this regard. Di Tillio, Ottaviani, and Sørensen (2017) compare
different types of selection in the context of an illustrative model with binary noise, which violates the logconcavity
assumption maintained in this paper.

8Blackwell and Hodges (1957) argue that selection bias is minimized by a truncated binomial design, according
to which the initial allocations to treatment and control are selected independently with a fair coin, until half of the
subjects are allocated to either treatment or control; from that point on, allocation is deterministic. Efron (1971), in-
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researcher at the assignment stage. The ensuing literature focused on exogenous selection bias and
on how to adjust for it, rather than on its strategic origin and its impact on the quality of inference,
on which we focus. Once we explicitly model information, we characterize situations in which
selection actually benefits the evaluator, contrary to what Blackwell and Hodges (1957) stipulate.

To the literature on stochastic orderings of order statistics, we contribute the characterization of
noise distributions for which the maximum of k i.i.d. draws is more or less dispersed than a random
draw, as explained in Section 3. Building on Lehmann’s (1988) univariate notion of accuracy, we
contribute a tool for comparing general multidimensional experiments with arbitrary correlation
patterns. This tool allows us to nail down the welfare impact of maximal selection and flesh out
the common logic behind the comparison of other forms of selection such as truncation, previously
considered by Goel and DeGroot (1992), as explained in Section 5. Our analysis of extreme
selection in Section 4 offers a novel economic application of the theoretical framework pioneered
by Fisher and Tippett (1928) and Gnedenko (1943) as well as new insights for experiment design.

Relative to work on optimal persuasion following Rayo and Segal (2010) and Kamenica and
Gentzkow (2011), in our strategic presampling game information acquisition is costly and infor-
mation manipulation is naturally constrained by the need of reporting observations selected from
the presample. With sample size n = 1, our sender discloses a single observation, as in the limited-
attention model first proposed by Fishman and Hagerty (1990).9 Thus, we have a signal-jamming
model of equilibrium persuasion through presample collection and then sample selection. The
researcher’s choice of the size k of the presample is akin to the agent’s effort choice in Holm-
ström’s (1999) classic career concern model. The wrinkle here is that this effort results in private
information, which the researcher then uses to select the reported information.

In a complementary approach to modeling conflicts of interest in statistical testing, Banerjee,
Chassang, Monteiro, and Snowberg (2017) propose a theory of an ambiguity-averse researcher fac-
ing an adversarial evaluator; see also Kasy (2016). In another complementary approach, Tetenov
(2016) analyzes an evaluator’s optimal commitment to a decision rule when privately informed
researchers select into costly testing. Instead, we focus on the impact of the sender’s selection on
the welfare of an uncommitted evaluator.

2 Setup

An evaluator chooses an action a ∈ A ⊆ R under uncertainty about a state θ ∈ Θ ⊆ R, where
Θ is either a finite set or a (possibly unbounded) interval. The prior is represented by a density

stead, characterizes the selection bias resulting from a biased coin design, according to which the probability of current
assignment to treatment is higher if previous randomizations resulted in excess balance of controls over treatments.

9See also Henry (2009), Dahm, Gonzàlez, and Porteiro (2009), Felgenhauer and Schulte (2014), Hoffmann, Inderst,
and Ottaviani (2014), and Herresthal (2017) for persuasion models with endogenous information acquisition. Henry
and Ottaviani (2019) analyze a dynamic model of persuasion with costly information acquisition à la Wald (1945),
where information is truthfully reported at the time of application.
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function π(θ) and the payoff function is u : Θ×A→ R. For now we take the action set to be finite
A = {a1, . . . ,aJ} with a1 < .. . < aJ and in Appendix B we give an extension to continuous actions.

Preferences. The family of functions {u(θ , ·)}θ∈Θ is assumed to be an interval dominance ordered
(IDO) family (Quah and Strulovici, 2009). This means that for all states θ

′> θ and actions a′′> a′,

u(θ ,a′′)> (>) u(θ ,a′) =⇒ u(θ ′,a′′)> (>) u(θ ′,a′) (1)

whenever u(θ ,a′′) > u(θ ,a) for all actions a such that a′ 6 a 6 a′′. Equivalently, if action a′′ is
the best action in the interval [a′,a′′]∩A when the state is θ , then the (weak or strict) preference
of a′′ over each action in the interval continues to hold at every higher state θ

′. As pointed out
by Quah and Strulovici (2009), the IDO class includes both single-crossing preferences (Milgrom
and Shannon, 1994) and monotone preferences à la Karlin and Rubin (1956).10

Experiments and Welfare. Before deciding, the evaluator observes the realization of an experi-
ment: a random vector X in Rn having state-dependent distribution G(·|θ) and density g(·|θ) with
monotone likelihood ratio (MLR): if x′ = x then g(x′|θ)/g(x|θ) is increasing in θ .11 An important
consequence of IDO and MLR is that the evaluator can without loss adopt a monotone strategy,
where the action increases in the realization.12 Thus, the evaluator partitions Rn into a sequence
of sets (E1, . . . ,EJ) such that, for all j, the set Ē j = E j ∪ ·· · ∪EJ is an upper set, and chooses a j

when the realization belongs to E j.13 The evaluator welfare,
∫

Θ ∑ j Prθ (X ∈ E j)u(θ ,a j)π(θ)dθ ,
can then be rewritten, summing by parts and disregarding constants, as

U(X) :=
∫

Θ
∑
j<J

Prθ (X ∈ Ē j+1)
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

Example: Simple Hypothesis Testing. The simplest instance of our setup has two states θ H > θ L

and two actions, rejection aL and acceptance aH > aL. The evaluator optimally accepts when
g(x|θ H)/g(x|θ L) > r, where r depends on parameters.14 In the unidimensional case this strategy
takes a familiar form: accept if and only if x > x̄, for some cutoff x̄. In general, with n > 1,
the acceptance region is an upper set Ē. Given this, welfare rewrites (disregarding constants) as

10Single-crossing requires (1) to hold even if u(θ ,a′′) < u(θ ,a) for some a such that a′ 6 a 6 a′′. Monotonicity
requires (1) only for adjacent actions, that is, a′ = a j and a′′ = a j+1 for some j < J, but in addition requires that the
state, say θ j, where the difference u(θ ,a j+1)−u(θ ,a j) changes sign, is increasing in j.

11Here and in the remainder of the paper, given two vectors x = (x1, . . . ,xn) and x′ = (x′1, . . . ,x
′
n), we say that x′ is

larger than x, and write x′ = x, to indicate that x′i > xi for every i.
12By Bayes’ rule, MLR implies that the posterior belief on the state increases with the observed realization x in the

likelihood ratio order—for all x and x′ = x the ratio π(θ |x′)/π(θ |x) increases with θ . Thus, the evaluator cannot lose
by increasing the action in response to a higher realization (Quah and Strulovici, 2009, Theorem 2).

13Recall that E ⊆ Rn is an upper set if it contains every point of Rn that is larger than some point of E.
14The conditional probability of θ H given that X = x equals π(θ H)g(x|θ H)/[π(θ L)g(x|θ L)+π(θ H)g(x|θ H)], that

is, 1/[(π(θ L)/π(θ H))(g(x|θ L)/g(x|θ H))+1]. Thus, the expected payoff difference between acceptance and rejection
is nonnegative if and only if g(x|θ H)/g(x|θ L)> r := [π(θ L)/π(θ H)][u(θ L,aL)−u(θ L,aH)]/[u(θ H ,aH)−u(θ H ,aL).
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−r Prθ L(X ∈ Ē)−Prθ H (X /∈ Ē), a negatively weighted sum of the probability of a false positive
(accepting in θ L) and that of a false negative (rejecting in θ H), with r serving as relative weight.

Selected Experiments. In a typical scenario of statistical decision theory, the evaluator observes
a random sample from a univariate distribution F(·|θ) with density f (·|θ) satisfying MLR. In this
case, G(x|θ) = F(x1|θ) · · ·F(xn|θ), and (for fixed sample size n) welfare depends on the family of
distributions F(·|θ) only. In this paper we are interested in experiments involving selected rather
than random observations. In this scenario, G(·|θ) generally takes a different form, and welfare is
a function of both the family F(·|θ) and an additional parameter depending on the type of selection
we consider. Our main focus is on maximally selected experiments, where X1, X2, . . . , Xn are the
highest, second highest, . . . , nth highest of k > n random draws. Thus, the first observation is
drawn from distribution Fk(·|θ), and for i > 1, conditional on X1 = x1, . . . ,Xi−1 = xi−1, the ith
observation is drawn from distribution Fk−i+1(·|θ) right-truncated at xi−1. Letting < i denote the
indices 1, . . . , i−1 to save on notation, for every x we have

G1(x1|θ) = Fk(x1|θ) and Gi(xi|θ ,x<i) =
Fk−i+1(xi|θ)

Fk−i+1(xi−1|θ)
for all i > 1.15 (2)

We refer to k as the presample size of the experiment, and if k = n we call the experiment
random, because it is informationally equivalent to n random draws from F(·|θ).16 Note that, while
it is natural to think of k as a natural number, a maximally selected experiment X is well defined
for real presample sizes k > n as well. Moreover, the distribution of X changes smoothly with k.
This technical observation will prove useful in the sequel, when comparing selected experiments
with different presample sizes.

Strategic Selection. One motivation for studying selected experiments is that they arise endoge-
nously in strategic settings. In particular, maximal selection is an equilibrium phenomenon when
the sample is provided by a strategic sender with private information on presample data. Consider
the following game: First, the sender privately observes k random draws x1, . . . ,xk from F(·|θ) and
chooses a subset I ⊆ {1, . . . ,k} of size n. Second, the evaluator observes (xi)i∈I and chooses an
action. Assume the sender’s payoff is a strictly increasing function of the evaluator’s action. The
following immediate observation provides a strategic foundation for maximal selection.17

Proposition 0. For all n and k > n there is a Bayes Nash equilibrium where the sender always
chooses maximal selection. Moreover, this is the unique equilibrium where the sender always
selects the same set of order statistics.18

15The corresponding joint density is g(x|θ) = [k!/(k− n)!]Fk−n(xn|θ) f (x1|θ) · · · f (xn|θ). This density satisfies
MLR because log-supermodularity is preserved by integration (see e.g. Proposition 4 in Milgrom, 1981) and products
of log-supermodular functions are log-supermodular.

16Knowing in advance that observations are sorted so that X1 > · · ·> Xn is clearly of no value for the evaluator.
17We use Bayes Nash equilibrium because the sender has private information. On the other hand, the sender reports

observations in the support, so there is no reason to discuss refinements of off-path beliefs.
18There are cases where the sender would wish to reveal the entire presample, which arise when the hidden part
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Comparing Multidimensional Experiments by Accuracy. Our main goal in this paper is to
assess the welfare impact of selection, be it strategic or originating from any other source. This
requires a tool for comparing experiments. In the rest of this section, we develop a natural mul-
tidimensional generalization of Lehmann’s (1988) notion of accuracy. Our notion can be used to
compare any two experiments (not necessarily selected experiments) with the same dimension n.

Let G(t, ·|θ) be a family of state-dependent distributions on Rn parametrized by t ∈ [0,1]
(and each with MLR density) such that, denoting by Prθ (t, ·) the corresponding measure on Rn,
Prθ (t,E) is continuously differentiable with respect to t for all E. Let X(t) denote the correspond-
ing family of experiments. In our application of accuracy to maximal selection, X(0) and X(1) will
be selected experiment with equal sample size n but different presample sizes k and m respectively,
while X(t) will denote the experiment with real presample size tk+(1− t)m.

For all s, t in [0,1] we define ϕs,t(·|θ) : Rn→ Rn as follows: ϕs,t(x1, . . . ,xn|θ) = (z1, . . . ,zn),
where z1, . . . ,zn are defined recursively as

z1 = (G1(t, ·|θ))−1(G1(s,x1|θ)) and zi = (Gi(t, ·|θ ,z<i))
−1(Gi(s,xi|θ ,x<i)) for i > 1. (3)

We say the family X(t) is ordered by accuracy if ϕs,t(x|θ ′)= ϕs,t(x|θ) whenever θ
′ > θ and t > s,

for all x. Note that for n = 1 our definition reduces to Lehmann’s (1988).

Theorem 0. If the family X(t) is ordered by accuracy, then welfare U(X(t)) is increasing in t.

In the unidimensional case this result was proved by Lehmann (1988) for monotone prefer-
ences, by Persico (2000) and Jewitt (2007) for single-crossing preferences, and by Quah and
Strulovici (2009) for IDO preferences. The latter paper assumes that Θ and A are compact and
the distribution of X(t) has the same compact support for all t and in each state. Theorem 0 ex-
tends the result to multidimensional experiments and allows unbounded or non-constant supports
(as is necessarily the case e.g. in location experiments). We prove the theorem, and discuss further
the difference among IDO, single-crossing and monotone preferences, in Appendix B.

The intuition for why accuracy increases welfare is essentially the same as in Lehmann (1988).
Consider a simple hypothesis testing problem, and let Ē be any acceptance set the evaluator may
choose in experiment X(s). Suppose that as the experiment changes to X(t) the evaluator moves
the boundary of the acceptance set, point by point, via the mapping x 7→ ϕs,t(x|θ L). This means
adopting ϕs,t(Ē|θ L) as acceptance set. By definition of the function ϕs,t(·|θ L), in state θ L the
random vector ϕs,t(X(s)|θ L) has the same distribution as X(t). Thus, false positives remain the
same: Prθ L(X(t) ∈ ϕs,t(Ē|θ L)) = Prθ L(X(s) ∈ Ē). False negatives, on the other hand, decrease:
Prθ H (X(t)∈ϕs,t(Ē|θ L))> Prθ H (X(t)∈ϕs,t(Ē|θ H))= Prθ H (X(s)∈ Ē). The equality follows from
ϕs,t(X(s)|θ H) and X(t) having the same distribution in state θ H . The inequality, from Ē being an
upper set—the image of an upper set under an increasing function is smaller than the set itself.

of the presample contains favorable observations. This unraveling effect is well known in the literature on strategic
disclosure, at least since Grossman (1981) and Milgrom (1981). If sample size is exogenously fixed, such unraveling
cannot occur, of course. However, as we shall demonstrate below, even when sample size is endogenous the evaluator
may want to commit not to look at presample data—to strengthen the sender’s incentive to collect enough of it.
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3 Monotone Impact of Selection

In this section we characterize the families of distributions F(·|θ) for which the following mono-
tone comparative statics hold: for fixed sample size n, the larger the presample size, the higher (or
the lower) the evaluator’s welfare.

3.1 Unidimensional Location Experiments

We begin with the simple case of unidimensional location experiments. This case is of independent
interest and provides a useful starting point for introducing the characterization in the general case.
In a location experiment, the distributions F(·|θ) are all shifted versions of the same distribution F ,
that is, F(x|θ) = F(x−θ) for all θ and x. In this case, MLR means that F , the noise distribution,
admits a logconcave density f , and X = θ + ε , with ε the highest of k > 1 random draws from F .

Theorem 1. Fixing the sample size to n = 1, an increase in presample size increases (decreases)
welfare in a location experiment if the reverse hazard function of the noise distribution,− logF(ε),
is logconcave (logconvex) in ε .19

Proof. Fix two presample sizes k and m, and for every t ∈ [0,1] denote by X(t) the selected
experiment with presample size kt := tk+(1− t)m. The family X(t) is ordered by accuracy if for
s < t the function ϕs,t(x|θ) = (Fkt )−1(Fks(x−θ)

)
+θ is increasing in θ for every x. Taking the

derivative with respect to θ , we must therefore have

ktFkt−1(ϕs,t(x|θ)−θ) f (ϕs,t(x|θ)−θ)> ksFks−1(x−θ) f (x−θ). (4)

Change variable from x to u = Fks(x−θ). Then (4) says that for every u ∈ [0,1] the slope of Fkt

at ϕs,t(x|θ)− θ = (Fkt )−1(u) is greater than the slope of Fks at x− θ = (Fks)−1(u). Applying
the strictly increasing u 7→ λ (u) = − log(− logu) to both Fkt and Fks , this is in turn equivalent to
the slope of λ (Fkt (·)) at ϕs,t(x|θ)−θ being greater than the slope of λ (Fks(·)) at x−θ . But the
transformations are vertical shifts of each other: λ (Fks(·))+ logks = λ (F(·)) = λ (Fkt (·))+ logkt .
Thus, (4) holds for λ (F(·)) convex and k > m (as k > m implies kt > ks and hence ϕs,t(x|θ) > x)
or λ (F(·)) concave and m > k (as m > k implies ks > kt and ϕs,t(x|θ)6 x).

The proof of the theorem is illustrated in Figure 2 for a standard normal noise distribution.
Since the function u 7→ − log(− logu) is strictly convex, welfare increases (because accuracy in-
creases) as the presample size increases from m to k > m.20

Accuracy, Dispersion, and Converse Result. Bickel and Lehmann (1979) define a distribution G
as less dispersed than another distribution F if the quantile difference G−1(u)−F−1(u) is decreas-
ing in u. This notion appeared in our proof of Theorem 1, when we asked whether the slope of Fkt

19Marshall and Olkin (2007) define the reverse hazard function as logF . Since F ranges between zero and one,
logF is necessarily negative. Our definition uses a minus sign, so that logconcavity of the function makes sense.

20The plots are drawn for k = 8 and m = 1. Of course, any k > m > 1 give the same qualitative result.
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Figure 2: Normal unidimensional location experiment: double-log transformation.

is greater than the slope of Fks at corresponding quantiles. Applying the double-log transformation
to both distributions distills out the effect of k and m on their slopes, revealing the key condition
identified in Theorem 1. As shown in Lehmann (1988), for location experiments accuracy and
dispersion are equivalent—a family of location experiments is ordered by accuracy if and only if
the corresponding noise distributions are inversely ordered by dispersion. Finally, Lehmann (1988)
shows that being more accurate is also a necessary condition for a unidimensional experiment to
give higher welfare in every decision problem with Karlin and Rubin’s (1956) monotone payoffs.
This statement of course holds also for IDO payoffs. Thus, if we allow presample size to be a real
rather than a natural number, the converse of Theorem 1 is true.21

Gumbel Noise Distribution. The only noise distribution F such that − logF is both logconcave
and logconvex (i.e. loglinear) is the Gumbel extreme value distribution, F(ε) = exp(−exp(−ε)).
In this case every maximally selected experiment gives the evaluator the same welfare. With
presample size k the noise distribution is Fk(ε)= exp(−k exp(−ε)) =F(ε− logk). Since selection
only inflates noise by a constant (logk), selection has no impact on welfare.

Logistic, Exponential and Shifted Gompertz Noise Distributions. Besides the normal case, one
instance where more selection benefits the evaluator is with logistic noise, F(ε) = 1/(1+e−ε); we
prove this and the following claims in footnotes 30 and 31 below. Our main example of the opposite
case, where − logF is logconvex and hence more selection hurts the evaluator, is exponentially

21If instead we insist on k being a natural number, then with k > m (resp. k < m) the function λ (F(·)) could be
nonconvex (resp. nonconcave) on a short interval, while (4) still holds.
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distributed noise, F(ε) = 1− e−ε .22 Finally, another case where more selection hurts is with
shifted Gompertz noise, F(ε) = (1− e−ε exp(−ηe−ε)).23

Contribution to Stochastic Ordering of Order Statistics. Previous results in the literature on
stochastic ordering of order statistics only covered noise distributions with decreasing hazard rate.
Notably, Khaledi and Kochar (2000, Theorem 2.1) showed that for any distribution with decreasing
hazard rate higher order statistics are more dispersed.24 Given that logconcavity implies increasing
hazard rate by Prekopa’s theorem, the only noise distribution with logconcave density for which
Khaledi and Kochar’s (2000) result applies is the exponential (loglinear) distribution, which has
constant hazard rate.25 The novel characterization in Theorem 1 applies more generally to noise
distributions with logconcave densities.

3.2 General Multidimensional Experiments

Extending our analysis to general (not necessarily location type) experiments with sample size
n > 1 poses two related challenges. First, individual comparisons between order statistics do not
provide our desired characterization. For example, in some cases the evaluator is better off with
maximal selection than with a random experiment, and yet an intermediate order statistic—say,
the second or third highest—is not, in isolation, more informative than a random draw.26 Second,
order statistics are correlated, creating further ambiguity about the marginal value of information
added by a single order statistic.27 Multidimensional accuracy allows us to characterize when and
how this correlation adds or subtracts value to the evaluator’s problem as presample size increases.

Theorem 2. For fixed sample size n > 1, an increase in presample size increases (decreases) wel-
fare if the reverse hazard rate f (·|θ)/F(·|θ) is log-supermodular (log-submodular, with support
of f (·|θ) unbounded above for all θ ), that is, if for all states θ and θ

′ > θ the ratio

f (·|θ ′)/F(·|θ ′)
f (·|θ)/F(·|θ)

is increasing (resp. decreasing).

22More generally, given any a < −1, the distribution F(ε) = exp([(1− exp(−ε))1+a − 1]/(1+ a)) is such that
− logF is logconvex. The exponential distribution is the special case a→−1.

23This distribution was introduced by Bemmaor (1992).
24According to Khaledi and Kochar (2000, Theorem 2.1), if the variables Xi are i.i.d. with decreasing hazard rate,

then Xi:n is less dispersed than X j:m whenever i 6 j and n− i > m− j. Setting i = n = 1 and j = m = k, we have that
the maximum of k i.i.d. variables with decreasing hazard rate is more dispersed than the original variable.

25Theorem 1 also covers distributions with decreasing hazard rate, where − logF is necessarily logconvex.
26We present an instance of this fact after sketching the proof of Theorem 2.
27In the statistical literature on comparisons of multidimensional experiments, Shaked and Tong (1990, 1993) iden-

tify conditions under which an experiment with correlated draws is less informative than an i.i.d. experiment, assuming
equal marginal distributions. Their results do not apply to our context.
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Before discussing the proof of the result, a remark is in order. For location experiments, log-
supermodularity of the reverse hazard rate is the same as logconcavity of the noise distribution’s
reverse hazard rate. This fact immediately implies the following:

Corollary 1. For fixed sample size n > 1, an increase in presample size increases (decreases)
welfare if the reverse hazard rate of the noise distribution, f (ε)/F(ε), is logconcave (logconvex,
with support of f unbounded above) in ε .

The hypotheses in Corollary 1, logconcavity or logconvexity of the reverse hazard rate, are
stronger than the corresponding conditions in Theorem 1.28 Still, the corollary applies to all ex-
amples discussed earlier. Again, the Gumbel distribution is sandwiched between the noise dis-
tributions for which more selection benefits and those for which more selection hurts.29 More
selection benefits with normal or logistic noise, for these distributions have logconcave reverse
hazard rates.30 Finally, more selection hurts with exponential or shifted Gompertz noise.31

General Method of Proof. The proof of Theorem 2, like that of Theorem 1, consists in showing
that a larger presample size increases (or decreases) accuracy. But the assumptions in Theorem 2
afford us a stronger argument, based on a method that is applicable (and we apply, in Section 5)
to other forms of selection and more general comparisons as well. Before sketching a proof of
Theorem 2 we thus find it instructive to present the method in its general form. This will also shed
further light on our notion of accuracy, and provide a couple of simple ways to check for it.

The method builds on two immediate observations. Consider a family of distributions G(t, ·|θ)
and corresponding experiments X(t). Suppose that for each t and θ the variables in X(t) are
associated in the following sense: for each i > 1, conditioning on larger values of X<i(t) induces
a first-order stochastic dominance increase in Xi(t). That is, Gi(t,xi|θ ,x<i) is decreasing in x<i for
all xi. Our first observation is that if association holds then X(t) is ordered by accuracy, provided
that for all t > s and θ

′ > θ , defining z = ϕs,t(x|θ) as in (3), we have

G1(t,z1|θ ′)
G1(s,x1|θ ′)

6 1 and
Gi(t,zi|θ ′,z<i)

Gi(s,xi|θ ′,x<i)
6 1 for all i > 1. (5)

Our second observation is that (5) must hold as long as for every i > 1 the corresponding
ratio is monotonically increasing in xi. Applying the implicit function theorem to z = ϕs,t(x|θ) in

28The reverse hazard function is the right-sided integral of the reverse hazard rate: − logF(ε) =
∫

∞

ε
( f (ε)/F(ε))dε .

Thus, the reverse hazard function inherits logconcavity (and logconvexity, if the support of f is unbounded above) of
the reverse hazard rate (An, 1998, Lemma 3).

29In the Gumbel case, f (ε)/F(ε) = exp(−ε), a loglinear function.
30In the normal case, the reciprocal of the reverse hazard rate, F(ε)/ f (ε) =

∫ x
−∞

eε2/2e−t2/2dt =
∫ 0
−∞

e−u2/2e−uε du,
is logconvex because e−uε is logconvex, and logconvexity is preserved under mixtures (An, 1998, Proposition 3). In
the logistic case, the reverse hazard rate is f (ε)/F(ε) = 1/(eε +1), which is easily seen to be logconcave.

31In the generalized exponential case, f (ε)/F(ε) = (1− e−ε)ae−ε , which is logconvex because a < −1. In the
shifted Gompertz case, the second derivative of log( f (ε)/F(ε)) is positive, having the same sign as e3ε +η(e2ε −1).
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order to compute the derivative of zi with respect to xi for each i, we can write this monotonicity
requirement more revealingly in terms of reverse hazard rates:

gi(t,zi|θ ′,z<i)/Gi(t,zi|θ ′,z<i)

gi(t,zi|θ ,z<i)/Gi(t,zi|θ ,z<i)
>

gi(s,xi|θ ′,x<i)/Gi(s,xi|θ ′,x<i)

gi(s,xi|θ ,x<i)/Gi(s,xi|θ ,x<i)
for all i > 1 (6)

(where the conditioning on x<i and z<i is vacuous when i = 1). We conclude that (6) is a general
sufficient condition for any family X(t) satisfying association to be ordered by accuracy. This
condition goes a long way in characterizing the impact of selection—maximal and otherwise.

Sketch of Proof of Theorem 2. Consider a selected experiment with presample size k from dis-
tribution F(·|θ). Recall from (2) that the first observation has distribution Fk(·|θ) and the ith has
distribution Fk−i+1(·|θ) right-truncated at xi−1. A simple but crucial fact is that the reverse haz-
ard rate of a distribution is unaffected (except for a multiplicative constant) when we take powers
or right-truncate the distribution. In particular, for every i > 1 the reverse hazard rate of the ith
observation is k− i+1 times the reverse hazard rate of a random draw:

(k− i+1)Fk−i(·|θ) f (·|θ)
Fk−i+1(·|θ)

= (k− i+1)
f (·|θ)
F(·|θ)

.

But, taking the ratio between reverse hazard rates at different states θ and θ
′, the multiplicative

constant k− i+ 1 disappears. In other words, with k playing the role of t and another presample
size m < k playing the role of s, condition (6) depends on t and s only through z. Thus, (6) is
simply log-supermodularity of f (·|θ)/F(·|θ), because m < k implies z = x. Order statistics are
associated, so (6) can in fact be used. The argument for the log-submodular case is symmetric.

Exponential Distribution. Corollary 1 shows that maximal selection has a negative impact in
location experiments with exponential noise. Remarkably, outside the class of location experiments
selection is beneficial when observations, rather than noise terms, are drawn from the exponential
distribution: F(x|θ) = 1− e−x/θ (for x > 0). In this case, for all x and θ

′ > θ we have

f (·|θ ′)/F(·|θ ′)
f (·|θ)/F(·|θ)

=
θ
(
ex/θ −1

)
θ
′(ex/θ

′−1
) ,

which is easily seen to be increasing in x. By Theorem 2, more selection is beneficial in this case.

Intermediate Order Statistics: Unidimensional vs Multidimensional Accuracy. Our notion of
accuracy reveals welfare rankings that are not captured by unidimensional comparisons between
order statistics. Consider, for instance, a location experiment with positive exponential noise:
F(x|θ) = F(x− θ) = exp(x− θ) (for x 6 θ ). Let X be a random draw, and let Y1 and Y2 be
the first and second highest of k draws. By Theorem 1, the evaluator is better off with Y1 than
with X , for − logF(ε)) = −ε is strictly logconcave. However, Y2 and X are not comparable.32

32Letting X(0) =X and X(1) =Y2, the reciprocal of ϕ0,1(·|θ) is log(k exp((k−1)(y−θ))−(k−1)exp(k(y−θ)))+

θ , which is a bell-shaped function of θ .
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But f (ε)/F(ε) = 1 is loglinear and hence satisfies the logconcavity condition in Corollary 1 (but
notably not the logconvexity condition, because of the bounded-above support) so the evaluator is
in fact better off with experiment (Y1,Y2) than with two random draws.

Minimal Selection. Our results have symmetric counterparts for when the evaluator observes
the n smallest rather than largest presample draws. This is equivalent to maximal selection in
the dual problem where states, actions and realizations have reversed sign. Log-supermodularity
(log-submodularity, with support unbounded above) of the reverse hazard rate in the dual problem
is equivalent to log-supermodularity (log-submodularity, with support unbounded below) of the
hazard rate in the original problem. Thus, in location experiments with sample size n = 1 mini-
mal selection increases (decreases) welfare if and only if the hazard function − log(1−F(ε)), is
logconcave (logconvex). In the general case, minimal selection increases (decreases) welfare if
the hazard rate f (·|θ)/[1−F(·|θ)] is log-supermodular (log-submodular, with support of f (·|θ)
unbounded below for every θ ). We report these claims as Theorems 1* and 2* in Appendix A.

3.3 Applications of Maximal Selection

Our results offer criteria for comparing the value of experiments with the same sample size n but
different presample sizes k > m. For example, the evaluator might have to decide between cities
with subject pool of different sizes k and m, and believes subjects in each city self-select into
the experiment by efficient rationing. Theorem 2 provides immediate guidance on which dataset is
better for the evaluator: the first or second according to whether f (·|θ)/F(·|θ) is log-supermodular
or log-submodular. Equivalently, the same conclusion holds when the two datasets are collected
by two independent but strategic researchers (Proposition 0). Next, we discuss other environments
where our setup and results apply.

Application: Treatment Effects. In a location experiment maximal selection on the noise terms
ε1, . . . ,εk is equivalent to maximal selection on the realizations x1, . . . ,xk.33 This immediate obser-
vation allows us to interpret our model in terms of potential outcomes, following Neyman (1923)
and Rubin (1974, 1978). The state θ may represent the homogeneous effect of a treatment, and ε i

an individual’s untreated outcome. Given that the untreated outcome distribution F is known, the
evaluator does not benefit from requiring a control group in a randomized trial. Suppose now that
the experiment is carried out by a strategic researcher who privately observes the untreated out-
come of k > 2n individuals, and on this basis (i) selects 2n individuals and (ii) assigns n individuals
to each treatment. Out of the k presampled individuals, the researcher assigns the n individuals with
the highest value of ε to the treatment group, and the n with the lowest ε to the control group (im-
mediate extension of Proposition 0). By Corollary 1, under logconcavity of f/F selection benefits
the evaluator directly—the treatment group is more informative than without selection. But it also

33In particular, Proposition 0 is robust to a modification of the game where the sender observes (and hence selects
sample units based upon) the noise terms ε1, . . . ,εk rather than the realizations x1, . . . ,xk.
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benefits indirectly—the untreated outcomes of the untreated individuals are correlated with and
hence informative about the counterfactual untreated outcomes of the treated.

Application: Examinee Choice. When testing students, examiners often give examinees the
possibility of picking questions from a larger set of questions. Denote a student’s ability by θ , and
suppose that time permits a test with n questions. The examiner must decide (e.g. as per schoolwide
policy) between the following two off-the-shelf test formats: (i) ask n questions at random; (ii)
present k > n questions and commit to grading only n questions picked by the student. From the
examiner’s perspective, the student’s performance in any given question is a random variable with
distribution F(·|θ).34 The examiner has IDO preferences depending on student’s ability and grade
assigned to the student, whereas the student’s payoff is increasing in the grade. By Theorem 2 and
Proposition 0, the examiner prefers format (i) when f (·|θ)/F(·|θ) is log-submodular, and format
(ii) when f (·|θ)/F(·|θ) is log-supermodular.

Design of Selected Experiments: Optimal Presampling. In some settings the evaluator may not
only know, but also have control over, both sample size n and presample size k. This is the case,
for instance, when a teacher is directly involved in deciding the number of total (k) and required
(n) questions in an exam. The determination of the optimal sample size for a given evaluator
payoff function and sample size cost—say, linear, with marginal cost cS—is standard in statistical
decision theory; see Berger (1985) for a basic treatment. Our results suggest that selection should
be factored in when presampling is possible—say, also at linear cost, with marginal cost cP.

Denoting the evaluator optimal expected (gross) payoff by U(k,n), the optimal experiment for-
mat maximizes U(k,n)− kcP− ncS. Clearly, U(k,n) increases in n and increases or decreases in
k according to Theorems 1 and 2 (paired with Proposition 0 in the strategic case). Thus, under
logconvexity of the noise reverse hazard function or log-submodularity of the data reverse hazard
rate the evaluator trade-off is trivial: no presampling. As long as cP > 0, at the optimal solu-
tion the evaluator must set k = n, and the optimal sample size (equal to presample size) solves
maxn>0[U(n,n)− ncS], where n = 0 corresponds to the no-information payoff.35 The problem
reduces to the standard optimal sample size determination.

When instead selection benefits, the trade-off is nontrivial. The evaluator values sample size
but also values sample selection: n and k are two goods. The exact trade-off depends on both cP

and cS and the specific family of distributions F(·|θ) under consideration. For an extreme example,
in a location experiment with positive exponential noise, U(k,n) =U(k,1) for every k and n 6 k.
The evaluator’s posterior belief about the state only depends on the largest observed realization,
which for fixed k does not depend on n. Thus, at the optimum, sample size is n = 1 and presample
size solves maxk>1[U(k,1)− cS− kcP]. Returning to our application to examinee choice, we next
illustrate the less extreme trade-off arising with normal noise.

34Wainer and Thissen (1994) emphasized the difficulties arising when different examinees’ choices generate subsets
of questions of unequal difficulty. Our assumption that presample data are i.i.d. assumes away this effect.

35That is, the evaluator’s expected payoff at the prior, maxa
∫

Θ
u(θ ,a)π(θ)dθ .
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Figure 3: Welfare as a function of presample and sample size: normal location experiment.

Application: Examinee Choice—Continued. Here cP and cS represent the marginal costs of
preparing and grading questions. Figure 3 illustrates the trade-off with normal noise in the context
of simple hypothesis testing—assessing the (binary) ability of a student by means of a pass-fail
test. The total number of questions (presample size k) is measured on the horizontal axis. The
evaluator gross payoff, normalized so that U(1,1) = 0, on the vertical axis. Each blue function
corresponds to a fixed number of required questions (sample size n) and is increasing in the total
number of questions k, by Theorem 2. Their upper envelope, in black, represents welfare without
examinee choice (k = n). Note that each red segment is shorter than two: starting from any test
format with k = n > 2, the examiner has an incentive to decrease required questions by one, while
increasing total questions by two: U(n+2,n−1)>U(n,n) for every n > 2. Thus, no test format
with k = n > 2 can be optimal if cS > 2cP (or, in a class with N students, if NcS > 2cP).

4 Extreme Selection

Complementing the monotone comparative statics results of Section 3, in this section we analyze
extreme selection, where presample size grows unbounded. The main result here, Theorem 3,
characterizes the corresponding limit welfare. Besides being of independent interest, the theorem
will allow us to derive robust propositions for experiment design. For simplicity, here we restrict
attention to location experiments.

Our analysis draws on the fundamental result in extreme value theory, which characterizes the
limit distribution of the maximum of k i.i.d. random variables, properly normalized for location and
scale inflation. Take a noise distribution F and suppose that, for some nondegenerate distribution
F̄ and some sequence of numbers αk > 0 and β k, for every continuity point ε of F̄ we have

Fk (β k +αkε)→ F̄ (ε) as k→ ∞.
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The fundamental result of extreme value theory says that F̄ must be Gumbel, Extreme Weibull or
Frechet.36 Our maintained assumption that F admits a logconcave density f implies F̄ is, in fact,
either Gumbel or Extreme Weibull, and always Gumbel if the support of f is unbounded above.37

Characterization of Limit Welfare. A larger presample induces a first-order stochastic domi-
nance increase in the noise distribution, hence the location normalization sequence β k is growing.
But the evaluator adjusts for any such inflation without effect on welfare. The limit impact of se-
lection therefore hinges on the behavior of the scale normalization sequence αk. If this sequence
converges to zero, noise becomes more and more concentrated around β k and the evaluator per-
fectly learns the state. Otherwise, we can choose a constant sequence αk = α and an extremely
selected experiment is welfare equivalent to a random experiment based on F̄(·/α). The limit
behavior of αk in turn depends on whether the support of f is bounded or unbounded above. In
the bounded case, necessarily αk→ 0. An extremely selected observation is arbitrarily close to the
upper bound, thus revealing the state. In the unbounded case, the limit behavior of αk instead fur-
ther depends on whether the noise distribution satisfies the unbounded hazard rate (UHR) property:
f (ε)/[1−F(ε)] tends to infinity as ε tends to the upper bound of the support of f .

Theorem 3. In a unidimensional selected location experiment, as presample size grows without
bound welfare converges to the full information payoff if and only if at least one of the following
holds: (i) the support of the noise distribution is bounded above; (ii) the noise distribution satisfies
UHR. If neither holds, then the limit welfare is the welfare from a unidimensional experiment with
Gumbel noise distribution F̄(·/α) = exp(−exp(−ε/α)), where α = limε→∞[1−F(ε)]/ f (ε).38

Pairing this result with Theorem 1, we immediately conclude that welfare monotonically con-
verges to the full information payoff whenever − logF(ε) is logconcave and either (or both) of
conditions (i) and (ii) in Theorem 3 holds. The hypotheses in the two theorems are overlapping but
distinct. For example, UHR holds for normal noise but not for logistic noise. Conditions (i) and (ii)
in Theorem 3 cover some distributions with logconcave reverse hazard function, for instance the
positive exponential. But the conditions also cover many distributions without logconcave reverse
hazard function. For example, in the bounded case, all beta distributions with logconcave density,
including uniform. In the unbounded case, beyond normal (or half-normal, which has the same
right tails), also every distribution in the exponential power family f (ε) = [s/Γ(1/s)]exp(−|ε|s)
with shape parameter s > 1. Strikingly, the Laplace distribution (s = 1), which has exponential
right tails, is the only member of this family for which αk 6→ 0. The negative impact of selection
with exponential noise discussed earlier becomes fragile under extreme selection—an arbitrarily
close exponential power distribution reverses the conclusion; as s approaches 1, however, conver-
gence to full information becomes slower.

36See e.g. Leadbetter, Lindgren, and Rootzén (1983) for a primer on extreme value theory.
37See Müller and Rufibach (2008).
38As we have remarked earlier, logconcavity implies increasing hazard rate, so this limit exists when (ii) is violated.
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Experiment Design with Small Presampling Costs. Theorem 3 has immediate implications
for experiment design when presampling costs are small. As intuition suggests, under optimal
presampling the evaluator exploits selection to economize on sample size. The optimal experiment
format is always characterized by sample selection under either criterion (i) or (ii) in Theorem 3:

Proposition 1. In a location experiment design problem with optimal presampling and noise dis-
tribution having either support bounded above or the UHR property, for every cS > 0 there exist
c̄P > 0 such that if cP 6 c̄P then every optimal experiment format (k,n) is such that k > n.

The proof of the proposition uses Theorem 3 to show that there is an experiment format (k,1)
that dominates the format (n,n) uniformly over all n > 1. Since cS > 0, the design problem under
the constraint k = n has an optimal solution (n̄, n̄). Thus, it suffices to choose k sufficiently large
that (k,1) gives higher (gross) payoff than (n̄, n̄), and then send cP to zero. Note that Figure 3
provides an illustration of Proposition 1. In that example, simple hypothesis testing with normal
noise, whenever cP < c̄P = cs/2 the optimal experiment format is always such that k > n.

Design of Selected Experiments: Strategic Presampling. In some strategic settings the sender is
not only in charge of sample selection, but also has the opportunity to privately choose the presam-
ple size. For example, a researcher could choose how much presample data to obtain endogenously,
best-replying to a sample size fixed by the evaluator. Consider a game where in the first stage the
evaluator chooses a sample size n and decides whether sample selection is allowed or not—we
allow this option in order to discuss experiment design. In the second stage, the sender privately
chooses k > n (with k = n if sample selection is not allowed) or opts out of the game. Following
these two stages, if the sender has not opted out, the game proceeds as in Proposition 0. If the
sender does not opt out, payoffs in state θ are u(θ ,a)−nce

S for the evaluator and v(a)−ncs
S− kcP

for the sender, with v(·) strictly increasing. If the sender opts out, the sender’s payoff is zero, while
the evaluator gets the no-information payoff.39 Thus, we again assume that each sample unit costs
cS > 0, but here we allow this cost to be split arbitrarily between sender (who pays cs

S > 0) and
evaluator (who pays ce

S = cS−cs
S > 0). In this scenario, the evaluator can again exploit selection to

save on sample costs, relying on the fact that the sender will indeed choose a large presample size
when this is not too costly—the optimal policy always allows sample selection.

Proposition 2. In a location experiment design problem with strategic presampling and noise
distribution having either support bounded above or the UHR property, for every cS > 0 there exist
c̄P > 0 such that if cP 6 c̄P then it is optimal for the evaluator to allow sample selection.

The proof of this proposition is similar to that of Proposition 1, but the argument is less imme-
diate. First, we use Theorem 3 to find a selected experiment that dominates all random experiments
that are individually rational for both evaluator and sender. Second, we show that, given any pre-
sample size conjectured by the evaluator, the sender’s expected payoff is increasing and concave

39Without loss of generality, we have normalized the sender’s payoff so that it is zero when the evaluator chooses
the no-information optimal action, argmaxa

∫
Θ

u(θ ,a)π(θ)dθ .
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in the actual presample size chosen by the sender. This fact allows us to conclude that every suffi-
ciently small presample cost cP induces a sender’s optimal presample size that is both large enough
and equal to the evaluator’s conjectured presample size.

5 Other Forms of Selection

Maximal (or minimal) selection is but one instance of lack of randomness in a statistical sample.
In this section we discuss two other forms of selection. For each case, we establish a result using
the general method of proof adopted for Theorem 2.

5.1 Truncation

One type of selection that is often relevant involves independent observations from a truncated
distribution. Here we review this kind of selection and contrast it with the form of selection
analyzed earlier. Given a random variable X with distribution F(·|θ) and density f (·|θ) satisfying
MLR, and given two truncation points −∞ 6 a < b < ∞, define the left-truncated variables Ya :=
X |X > a and Yb := X |X > b. Similarly, define the right-truncated variables Wa := X |X 6 a and
Wb := X |X 6 b. By variants of the arguments used in the proof of Theorem 2, we obtain:

Theorem 4. If the hazard rate f (x|θ)/[1−F(x|θ)] is log-supermodular, then more left-truncation
decreases welfare: U(Yb)6U(Ya). If the reverse hazard rate f (x|θ)/F(x|θ) is log-supermodular,
then more right-truncation decreases welfare: U(Wa)6U(Wb).

This result was known for distributions featuring unbounded likelihood ratio and monotone
preferences—see Goel and DeGroot (1992). Our novel proof also covers distributions with bounded
likelihood ratio, as in location experiments with logistic noise. Moreover, our result applies more
generally to IDO preferences.

The theorem compares unidimensional experiments. The extension of the result to an arbitrary
number of independent observations, with exogenous and possibly observation-specific truncation
points, is immediate. This is because combining more accurate mutually independent experiments
(in this case, more accurate unidimensional experiments) results in a more accurate experiment.40

Before discussing the proof of the theorem and its analogy with that of Theorem 2, we contrast
the welfare implications of truncation with those of maximal and minimal selection.

Truncation vs Maximal and Minimal Selection. Left-truncation bears a resemblance to maximal
selection: with both forms of selection, probability mass is moved toward the upper tail of the dis-
tribution. Similarly, right-truncation resembles minimal selection, as both move mass toward the
lower tail. However, the theorem shows that as far as accuracy—and hence welfare—is concerned,

40More precisely, take two families of experiments X(t) and X ′(t), both ordered by accuracy, such that X(t) is
independent of X ′(t). Then (X(t),X ′(t)) is also ordered by accuracy.
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the right analogy to make is different. More left-truncation (moving from Ya to Yb) hurts the evalua-
tor when the hazard rate is log-supermodular, so its impact on welfare is analogous to less minimal
selection (Theorem 1*) rather than to more maximal selection. Similarly, more right-truncation
(moving from Wb to Wa) hurts the evaluator when the reverse hazard rate is log-supermodular, so
its effect is analogous to less maximal selection (Theorem 1). The welfare consequences of the two
types of selection are strikingly different. Take a normal or logistic location experiment. Hazard
rate and reverse hazard rate of the noise distribution are both logconcave, so more maximal or
minimal selection benefits the evaluator (Corollary 1). However, more truncation hurts both ways:
experiments Yb and Wa are respectively worse than the less truncated Ya and Wb.

General Method of Proof—Alternative Version. The proof of the second claim in Theorem 4 is
based on the general method we used for Theorem 2. The proof of the first claim is based on an
alternative version of that method, which we present here (and also use in the proof of Theorem 5
below). First, note that (5) is identical to

1−G1(t,z1|θ ′)
1−G1(s,x1|θ ′)

> 1 and
1−Gi(t,zi|θ ′,z<i)

1−Gi(s,xi|θ ′,x<i)
> 1 for all i > 1. (7)

As before, this holds if for all i > 1 the corresponding ratio is monotonically increasing in xi. But
now the implicit function theorem reveals a role for hazard rates, rather than reverse hazard rates:

gi(t,zi|θ ′,z<i)/[1−Gi(t,zi|θ ′,z<i)]

gi(t,zi|θ ,z<i)/[1−Gi(t,zi|θ ,z<i)]
6

gi(s,xi|θ ′,x<i)/[1−Gi(s,xi|θ ′,x<i)]

gi(s,xi|θ ,x<i)/[1−Gi(s,xi|θ ,x<i)]
for all i > 1. (8)

Condition (8) is another sufficient condition for a family of experiments X(t) satisfying association
to be ordered by accuracy. Remarkably, while (7) and (5) are identical, (8) is not the same as (6).
For example, our main result on maximal selection (Theorem 2), which we proved via (6), cannot
be proved using (8). (Its counterpart for minimal selection, Theorem 2*, can be proved via (8).)

Sketch of Proof of Theorem 4. To establish the second claim in the theorem, we use (8) to prove
that the family of experiments Y (t), where Y (t) = X |X > at and at = b− t(b− a), is ordered by
accuracy. Since left-truncation does not affect the hazard rate of a distribution, the first inequality
in (8), which is all we need given that the experiments Y (t) are unidimensional, is the following:

f (z|θ ′)/
[
1−F(z|θ ′)

]
f (z|θ)/

[
1−F(z|θ)

] 6
f (x|θ ′)/

[
1−F(x|θ ′)

]
f (x|θ)/

[
1−F(x|θ)

]
where z is defined by

F(z|θ)−F(at |θ)
1−F(at |θ)

=
F(x|θ)−F(as|θ)

1−F(as|θ)
.

The inequality follows immediately from log-supermodularity of the hazard rate, because s < t
implies z 6 x. The proof of the first part of the theorem is similar: we use (6) to prove that the
family of experiments W (t), where W (t) = X |X 6 bt and bt = a+ t(b−a), is ordered by accuracy.
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5.2 Median Selection

Finally, we extend our analysis of selection in a new direction, considering central rather than
maximal or minimal selection. Call median selected an experiment with sample size n = 1 where
the evaluator observes the r th highest of k random draws from a distribution F(·|θ), where k is
odd and r = (k+1)/2. This is the random variable with cumulative distribution function given by

F̂(·|θ) =
k

∑
i=r

(
k
i

)
F i(·|θ)[1−F(·|θ)]k−i.

Note that median selection can be viewed as a form of sequential selection: first maximal selection
of the r largest of the k presample observations, then minimal selection of the smallest among the
r maximally selected observations. Our last theorem shows that under monotone preferences à la
Karlin and Rubin (1956) median selection turns out to be beneficial precisely when both maximal
and minimal selection are beneficial.

Theorem 5. Assume that preferences are monotone. If the hazard rate f (·|θ)/[1−F(·|θ)] and
the reverse hazard rate f (·|θ)/F(·|θ) are both log-supermodular, then median selection increases
welfare over a random experiment.

Sketch of Proof of Theorem 5. The proof of the result uses both versions of our general method
of proof. Since the median and random experiment are not ranked by first-order stochastic dom-
inance, neither version alone suffices. To grasp intuition, consider once again simple hypothesis
testing. In the random experiment the evaluator optimally accepts when the observation exceeds
a cutoff x̄. Similarly to maximal selection, when x̄ is below the median of F(·|θ L) the cutoff z̄
defined by F̂(z̄|θ L) = F(x̄|θ L) is larger than x̄. This fact, together with log-supermodularity of
the reverse hazard rate, guarantees that our sufficient condition (6) for accuracy holds, and hence
that (5) holds, that is, F̂(z̄|θ H) 6 F(x̄|θ H). If instead x̄ is above the median of F(·|θ L), then z̄
is smaller than x̄. In this case log-supermodularity of the hazard rate guarantees the alternative
sufficient condition for accuracy, namely (8).

Application: Peremptory Challenge. Theorem 5 has an immediate application to the analysis of
peremptory challenge, a common-law right of the attorneys on each side of a trial to reject a certain
number of jurors. Here we consider the problem of a judge who must order a sentence based on
the opinion of one juror. The judge does not know the defendant’s level of guilt θ , but knows that
conditional on θ the jurors’ estimates are independently distributed according to F(·|θ).41 Assume

41There are few formal analyses of peremptory challenge in law and economics. Flanagan (2015) discusses how
peremptory challenges necessarily increase the probability of biased juries or affect the expected conviction rate.
Schwartz and Schwartz (1996) use a spatial model to highlight the role of peremptory challenge in eliminating jurors
with extreme preferences. Earlier analyses of peremptory challenge appear in Brams and Davis (1978) and in Roth,
Kadane, and Degroot (1977) and Degroot and Kadane (1980), who analyze optimal strategies for sequential processes
of elimination. In all these models, jurors’ opinions are uncorrelated with and hence uninformative about guilt, that is,
in the language of this paper, F(·|θ) does not depend on θ .
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that both the prosecuting attorney—the one who desires the judge to take higher actions—and the
defense attorney—the one who desires the judge to take smaller actions—each has the right to
strike down (k−1)/2 jurors from an initial set of k jurors. Assume that both attorneys anticipate
each juror i’s opinion of the defendant’s level of guilt. Proposition 0 immediately generalizes to
this two-sender setup: as long as the judge adopts a monotone strategy, the prosecuting attorney
will strike down the (k−1)/2 jurors with the lower opinions, while the defense attorney will strike
down the (k−1)/2 jurors with the higher opinions.42 This implies that peremptory challenge leads
the judge to decide based on the opinion of the juror with the median opinion. Theorem 5 provides
a prior-free criterion to assess whether peremptory challenge provides the judge with more or less
accurate information, relative to a randomly chosen juror.

6 Conclusion

Our analysis assumes that the evaluator perfectly predicts the extent of selection, for example
because selection is under the evaluator’s control, or because the sender’s preferences and presam-
pling costs are known. This is the most optimistic scenario when evaluating the impact of selection.
Relaxing this assumption, we can consider scenarios where the evaluator may be uncertain about
the presample size k, or even fail altogether to anticipate any selection.

Uncertain Selection. In some settings, assuming the evaluator is uncertain about presample size k
may be natural. For instance, uncertainty arises with strategic sample selection when the evaluator
does not know precisely the sender’s preferences. Such uncertainty tends to harm the evaluator,43

and this can be an important caveat in some contexts. But our main results are only partly over-
turned by uncertainty. First, our results are robust to small amounts of uncertainty—the evaluator
can behave as if k is known, and expected payoffs are continuous in k. Second, when selection
strictly benefits an evaluator who perfectly anticipates k, it can also strictly benefit under nontrivial
uncertainty about k. For example, in simple hypothesis testing with a normal basic noise distribu-
tion, sample size n = 1 and equal chance of k = 1 and k = 2, the evaluator fares strictly better than
in a random experiment in the realistic case where the evaluator a priori strongly favors rejection.

Unanticipated Selection. Consider an unwary evaluator who wrongly anticipates a smaller pre-
sample size than true. The evaluator is clearly worse off by being unwary than being rational.
More interestingly, if a rational evaluator benefits from selection then it is ambiguous whether an
unwary evaluator gains or loses when the true presample size is larger than expected. In an im-
portant benchmark case, we find that the unwary evaluator is exactly indifferent to an increase of
selection from k = 1 to k = 2. Consider simple hypothesis testing and suppose that the evaluator

42This immediately follows from the fact that, given any strategy of the defense (prosecuting) attorney, by elimi-
nating the jurors with the highest (lowest) opinions the prosecuting (defense) attorney induces a first-order stochastic
dominance increase (decrease) in the realization observed by the judge.

43This is particularly evident in a location experiment with Gumbel noise. In this case anticipated selection leaves
the evaluator indifferent, so any uncertainty on k makes the evaluator strictly worse off.
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is a priori indifferent between accepting and rejecting. Assume also a noise distribution F sym-
metric around zero, so that F(ε) = 1−F(−ε). Start from the acceptance cutoff that is optimal in
the random experiment, namely x̄ = (θ L +θ H)/2, and consider how selection with k = 2 affects
an unwary evaluator who maintains the acceptance standard unchanged at x̄. The probability of
acceptance increases in both states, and the resulting change in welfare equals

−π(θ L)
[
F(x̄−θ L)−F2(x̄−θ L)

]︸ ︷︷ ︸
increase in false positives

[
u(θ L,a1)−u(θ L,a2)

]
+π(θ H)

[
F(x̄−θ H)−F2(x̄−θ H))︸ ︷︷ ︸

reduction in false negatives

[
u(θ H ,a2)−u(θ H ,a1)

]
.

By ex ante indifference, (1− p)[u(θ L,a1)−u(θ L,a2)] = p[u(θ H ,a2)−u(θ H ,a1)]. By symmetry,
F(x̄−θ L)+F(x̄−θ H) = 1. It follows that the loss due to the increase in false positives exactly
offsets the gain due to the reduction in false negatives. The unwary evaluator, who anticipates no
selection, is indifferent between no selection and selection with k = 2.

A Proofs

Proof of Proposition 0. Assume without loss of generality that the random vector (X1, . . . ,Xk) is
ordered so that X1 > · · ·> Xk. It suffices to show that given any set of indices 1 6 i1 < · · ·< in 6 k
the random vector (Xi1, . . . ,Xin) satisfies the MLR property, for this implies that the evaluator’s best
response is a monotone strategy, and the maximally selected experiment (X1, . . . ,Xn) stochastically
dominates (Xi1, . . . ,Xin) in each state. The density function of (Xi1, . . . ,Xin) can be written as

cFk−in(xin |θ)
[
F(xin−1 |θ)−F(xn|θ)

]in−in−1−1×·· ·

×
[
F(xi1 |θ)−F(xi2|θ)

]i2−i1−1[1−F(xi1|θ)
]i1−1 f (xi1 |θ) · · · f (xin|θ),

where c is a constant depending on i1, . . . , in and k (see e.g. David and Nagaraja, 2003). Since
log-supermodularity is preserved by integration, and products of log-supermodular functions are
log-supermodular, the result follows.

Proof of Theorem 2. Fix two presample sizes k and m, and for every t ∈ [0,1] denote by X(t)
the selected experiment with presample size kt := tk+(1− t)m. Fix s < t and θ < θ

′, and write
ϕs,t(x|θ) = z and ϕs,t(x|θ ′) = z′ for brevity. As a preliminary observation, note that in state θ the
support of X(t) is the support of f (·|θ), and hence does not depend on t. Thus, as x1 converges to
the upper bound of this support, so does z1. Similarly, for every i = 2, . . . ,n and every xi−1, as xi

converges to xi−1 (its largest possible value), zi converges to zi−1. We must prove that under either
condition in the theorem (m > k and the reverse hazard rate is log-supermodular, or m 6 k and the
reverse hazard rate is log-submodular) for every x we have z′ = z, or equivalently

Fks(z1|θ ′)6 Fks(z′1|θ ′) and Fks−i+1(zi|θ ′)6 Fks−i+1(z′i|θ ′) for i = 2, . . . ,n.
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Plugging the definition of z′, we can rewrite these inequalities as

Fks(z1|θ ′)6 Fkt (x1|θ ′) and
Fks−i+1(zi|θ ′)

Fks−i+1(z′i−1|θ
′)
6

Fkt−i+1(xi|θ ′)
Fkt−i+1(xi−1|θ ′)

for i = 2, . . . ,n.

But, for every i = 2, . . . ,n, if (z′1, . . . ,z
′
i−1) = (z1, . . . ,zi−1) then the denominator of the left-hand

side of the second inequality becomes smaller, and hence the left-hand side of the inequality larger,
if we replace z′i−1 with zi−1. Rearranging terms, we conclude that it suffices to prove that

Fks(z1|θ ′)
Fkt (x1|θ ′)

6 1 and
Fks−i+1(zi|θ ′)
Fkt−i+1(xi|θ ′)

6
Fks−i+1(zi−1|θ ′)
Fkt−i+1(xi−1|θ ′)

for i = 2, . . . ,n. (9)

By the preliminary observation, as x1 tends to the upper bound of the support of the density
associated to F(·|θ), so does z1. Thus, under either condition in the theorem (m > k, or m 6 k and
the support of F(·|θ) is unbounded above), the left-hand side of the first inequality in (9) tends
to a number no greater than one. This implies that the first inequality in (9) holds if the left-hand
side of the inequality increases with x1, that is, differentiating with respect to x1 and dropping the
positive denominator in the derivative,

ksFks−1(z1|θ ′) f (z1|θ ′)
dz1

dx1
Fkt (x1|θ ′)> ktFkt−1(x1|θ ′) f (x1|θ ′)Fks(z1|θ ′). (10)

But, by definition of z,
dz1

dx1
=

ktFkt−1(x1|θ) f (x1|θ)
ksFks−1(z1|θ) f (z1|θ)

.

Plugging the latter in (10) and simplifying, we conclude that the first inequality in (9) holds if

f (z1|θ ′)/F(z1|θ ′)
f (z1|θ)/F(z1|θ)

>
f (x1|θ ′)/F(x1|θ ′)
f (x1|θ)/F(x1|θ)

,

which in turn follows from log-supermodularity (resp. log-submodularity) of the reverse hazard
rate when m > k (resp. m 6 k), because m > k implies z1 > x1 (resp. m 6 k implies z1 6 x1).

Again by the preliminary observation, for every i = 2, . . . ,n and every xi−1, as xi converges to
xi−1, zi converges to zi−1. Thus, as before, under either condition in the theorem the left-hand side
of the second inequality in (9) tends to a number no greater than the right-hand side. The second
inequality in (9) then holds if its left-hand side increases with xi. Differentiating with respect to xi

and simplifying, as before, we obtain

f (zi|θ ′)/F(zi|θ ′)
f (zi|θ)/F(zi|θ)

>
f (xi|θ ′)/F(xi|θ ′)
f (xi|θ)/F(xi|θ)

,

which again follows from log-supermodularity (resp. log-submodularity) of the reverse hazard rate
when m > k (resp. m 6 k), because m > k implies zi > xi (resp. m 6 k implies zi 6 xi).
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Minimal Selection. Call minimally selected an experiment X = (X1, . . . ,Xn) where X1 is the
smallest of k > n random draws from F(·|θ), X2 the second smallest, and so on.44 Consider
the dual problem with state space Θ̃ = {−θ : θ ∈ Θ}, action space Ã = {−a : a ∈ A}, payoff
function ũ(θ̃ , ã) = u(−θ̃ ,−ã), and signal distribution F̃(x̃|θ̃) = 1− F(−x̃| − θ̃), with density
f̃ (x̃|θ̃) = f (−x̃| − θ̃). For location experiments, the cumulative noise distribution is therefore
F̃(ε̃) = 1− F(−ε̃). Having changed sign to both states and actions, the dual problem is also
monotone, and having changed sign to both states and signals, the MLR property holds. Finally,
action a is optimal given a realization x in the original problem if and only if −a is optimal given
realization −x in the dual problem. Since the linear transformation ε 7→ −ε does not change the
logconcavity (or logconvexity) of − log(F̃(·)), this property is equivalent to logconcavity (or log-
convexity) of − log(1−F(·)). Thus, Theorem 1 has the following counterpart:

Theorem 1*. Fixing the sample size to n = 1, an increase in the presample size increases (de-
creases) welfare if and only if the hazard function of the noise distribution, − log(1−F(ε)), is
logconcave (logconvex) in ε .

For general multidimensional experiments, note that the support of f̃ (·|θ̃) is unbounded above if
and only if the support of f (·|− θ̃) is unbounded below. Moreover, the reverse hazard rate satisfies
f̃ (x̃|θ̃)/F̃(x̃|θ̃) = f (−x̃|− θ̃)/[1−F(−x̃|− θ̃)], and the switch of sign in both arguments does not
affect the log-supermodularity (or log-submodularity) of the function. Thus, Theorem 2 has the
following counterpart:

Theorem 2*. For a fixed sample size n > 1, an increase in the presample increases (decreases)
welfare if the hazard rate f (·|θ)/[1−F(·|θ)] is log-supermodular (log-submodular, with support
of f (·|θ) unbounded below for every θ ), that is, if for all states θ and θ

′ > θ the hazard rate ratio

f (·|θ ′)/[1−F(·|θ ′)]
f (·|θ)/[1−F(·|θ)]

is increasing (resp. decreasing).

Proof of Theorem 3. We start by showing that under either condition (i) or (ii) in the theorem we
have αk→ 0 as k→ ∞. Let ε̄ denote the upper bound of the support of f . If ε̄ < ∞ then, as shown
in Müller and Rufibach (2008), the limiting distribution is either extreme Weibull or Gumbel. In
the first case, we can take αk = ε̄−F−1(1−1/k) by Proposition 1.13 in Resnick (2008), whence
αk → 0 follows. In the second case, or, by Lemma 3.5 in Müller and Rufibach (2008), if ε̄ = ∞,
the limiting distribution is Gumbel. It follows from Proposition 1.9 in Resnick (2008) that we can
take αk to be the mean residual life evaluated at εk := F−1(1− 1/k), that is, αk = k

∫
ε̄

εk
ε f (ε)dε.

As shown in Calabria and Pulcini (1987) and Bradley and Gupta (2003), the limiting behavior of

44Thus, in each state θ the support of X is contained in {x ∈ Rn : x1 6 · · · 6 xn}, the conditional cumulative
distribution function of X1 is 1− [1−F(·|θ)]k, and for every i = 2, . . . ,n the cumulative distribution function of Xi

given that X1 = x1, . . . ,Xi−1 = xi−1 is 1− ([1−F(xi |θ)]/[1−F(xi−1|θ)])k−i+1.
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the mean residual life is the same as the limiting behavior of the inverse of the hazard rate.45 Thus,
using the fact that εk→ ε̄ as k→ ∞, we again obtain limk→∞ αk = limε→ε̄ [1−F(ε)]/ f (ε) = 0.

We now show that if αk → 0 then the evaluator’s payoff converges to the full information
payoff, U :=

∫
Θ

maxa u(θ ,a)π(θ)dθ , as k→ ∞. Recall that, by IDO, for every 1 6 j < J there
exists a state θ j such that u(θ ,a j)− u(θ ,a j+1) is nonnegative for θ 6 θ j and nonpositive for
θ > θ j. As we noted in the proof of Theorem 0, one consequence of this observation is that if
θ j < θ j−1 then action a j can be removed from A without affecting the IDO property. Another
consequence is that action a j is never optimal at any state, and hence it is never used under full
information. Thus, we may assume without loss of generality that θ j > θ j−1 for all j > 1. The
full information payoff can then be written, summing by parts, as

U =
∫
Θ

∑
j<J

1{θ>θ j}
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

Fix δ > 0, and let η > 0 be such that∫
Θ

∑
j<J

1{θ j−η6θ<θ j}
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ 6

δ

2
(11)

and, furthermore,

(1−η)
∫
Θ

∑
j<J

1{θ>θ j}
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ >U− δ

2
. (12)

Let ε̄ > 0 be such that F̂(ε̄)− F̂(−ε̄)> 1−η/2, and choose k̂ so that, for all k > k̂,

αkε̄ < η , Fk(αkε̄ +β k)> F̂(ε̄)− η

4
, and Fk(αkε̄ +β k)6 F̂(−ε̄)+

η

4
.

Then, for each θ ,

Prθ (θ −η +β k 6 X 6 θ +η +β k)> Prθ (θ −αkε̄ +β k 6 X 6 θ +αkε̄ +β k)

= Fk(αkε̄ +β k)−Fk(αkε̄ +β k)

> F̂(ε̄)− η

4
− F̂(−ε̄)− η

4
> 1−η , (13)

so the distribution of X in state θ assigns at least probability 1−η to an η-neighborhood of θ +β k.
Now consider the following strategy for the evaluator: choose a1 if X < θ 1 +β k−η , choose aJ if
X > θ J−1 +β k−η , and for every 1 < j < J, choose a j if θ j−1 +β k−η 6 X < θ j +β k−η . The
corresponding payoff, again using summation by parts, is∫

Θ

∑
j<J

Prθ (X > θ j +β k−η)
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

45The latter two papers assume that the support of f is bounded below. However, for every x such that 0 < F(x)< 1
the hazard rate of distribution F is the same as the hazard rate of the left-truncated distribution F(·)/[1− F(x)].
Furthermore, the two distributions have the same right tails and hence the same limiting distribution F̄ .
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By (11), (12) and (13), this payoff is at least as large as U−δ .
Finally, we show that when both conditions (i) and (ii) in the theorem fail, the limit welfare

is the welfare from an experiment with Gumbel noise. This is immediate, because (as we have
already argued earlier) violation of (i) implies that F̄ is the Gumbel distribution exp(−exp(−ε))

and furthermore that limk→∞ αk = limε→ε̄ [1−F(ε)]/ f (ε) =: α , whereas violation of (ii) implies
α > 0. But then Fk(β k +αε)→ F̄(ε), which means that (after the location normalization β k) the
noise distribution converges weakly to exp(−exp(−ε/α)).

Proof of Proposition 1. Let n̄ = argmaxn>1U(n,n)− (n− 1)cS. Note that n̄ exists because
U(n,n) is bounded above by the evaluator’s full information payoff, U , while cS > 0. Furthermore,
U(n̄, n̄)− (n̄−1)cS <U . By Theorem 3, U(k,1)→U as k→∞. Thus, there exist k̄ > 1 and δ > 0
such that

U(k̄,1)− cS−δ >U(n,n)−ncS for all n > 1. (14)

Letting c̄P = δ/k̄, we obtain the result.

Proof of Proposition 2. Let V (k,n) denote the sender’s expected payoff with presample size k
and sample size n. We start by constructing a sample size n̄ such that if the evaluator does not
allow sample selection, then in equilibrium the evaluator’s payoff is no greater than U(n̄, n̄)− n̄ce

S.
Let

n̄e = arg max
n>1

U(n,n)−nce
S and n̄r = max

{
n > 1 : V (n,n)−ncr

S > 0
}

and note that either n̄e or n̄r must be finite, for cS = ce
S + cr

S > 0 whereas U(n,n) and V (n,n) are
bounded above by Ū and v(aJ), respectively. If both n̄e < ∞ and n̄r < ∞, let n̄ = max{n̄e, n̄r}.
Otherwise, let n̄ = min{n̄e, n̄r}. Note that, in any case,

V (n,n)−ncr
S > 0 =⇒ U(n,n)−nce

S 6U(n̄, n̄)− n̄ce
S, for all n > 1.

Next, we construct a presample size k̄ and a presample cost c̄P such that, if cP 6 c̄P and the
evaluator allows sample selection, then there exists an equilibrium with presample size k > k̄ where
the evaluator’s payoff, U(k,1)−ce

S, is strictly larger than U(n̄, n̄)− n̄ce
S, thus concluding the proof.

By Theorem 3, there exists k̄ > 1 such that

U(k,1)− cS >U(n̄, n̄)− n̄ce
S for all k > k̄. (15)

Now for each k > 1 define c(k) =−
∫

Θ ∑ j<J log(F(x̄ j(k)−θ))Fk(x̄ j(k)−θ)π(θ)dθ , where x̄1(k),
. . . , x̄J−1(k) are the cutoffs defining the evaluator’s optimal strategy when the sample size is n = 1
and the presample size is k. Consider the set C =

{
c(k) : k > k̄

}
. Since c(k)→ 0 as k→ ∞,

we have C = (0, c̄P] for some c̄P > 0. Given any presample cost cP ∈ C and any k̂ > k̄ such that
c(k̂) = cP, the sender’s best response to x̄2(k̂), . . . , x̄J(k̂) when sample selection is allowed is the
optimal solution to

max
k>1

∫
Θ

∑
j<J

[
1−Fk(x̄ j+1(k̂)−θ)

][
v(a j+1)− v(a j)

]
π(θ)dθ − kcP,
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where we used summation by parts and disregarded constants to rewrite the sender’s payoff. The
objective function is concave, since v(a j+1)− v(a j) > 0 and d2[1− Fk(x̄ j+1(k̂)− θ)

]
/dk2 =

−[log(F(x̄ j+1(k̂)− θ))]2Fk(x̄ j+1(k̂)− θ) < 0 for every θ . Since k̂ satisfies the first order con-
dition, namely c(k̂) = cP, we are done.

Proof of Theorem 4. Consider first the family of experiments Y (t), where Y (t) = X |X > at and
at = b− t(b−a). In each state θ the distribution of Y (t) is [F(y|θ)−F(at |θ)]/[1−F(at |θ)], for
y > at . Now fix s < t and consider the function ϕs,t(·|θ), which is defined as follows:

[F(y|θ)−F(as|θ)]/[1−F(as|θ)] = [F(ϕs,t(y|θ)|θ)−F(at |θ)]/[1−F(at |θ)].

for y > as. We must show that if θ
′ > θ then ϕs,t(y|θ ′)> ϕs,t(y|θ) for every y > as, and using the

definition of ϕs,t(·|θ ′) it suffices to show that

[F(y|θ ′)−F(as|θ ′)]/[1−F(as|θ ′)]> [F(ϕs,t(y|θ)|θ ′)−F(at |θ ′)]/[1−F(at |θ ′)].

This inequality holds in the limit as y decreases to the lower bound as, as both sides converge to
one, so we must prove that the ratio between right-hand and left-hand side decreases with y, or

f (y|θ ′)/[1−F(y|θ ′)]
f (y|θ)/[1−F(y|θ)]

>
f (ϕs,t(y|θ)|θ ′)/[1−F(ϕs,t(y|θ)|θ ′)]
f (ϕs,t(y|θ)|θ)/[1−F(ϕs,t(y|θ)|θ)]

.

The latter inequality holds when the hazard rate is log-supermodular, given that ϕs,t(y|θ) 6 y by
the fact that Y (s) first-order stochastically dominates Y (t).

Next, consider the family of experiments W (t), where W (t) = X |X 6 bt and bt = a+ t(b−a).
In state θ the distribution of W (t) is F(w|θ)/F(bt |θ), for w 6 bt . Fix s < t and consider the
function ϕs,t(·|θ) defined as follows: for every w 6 bs,

F(w|θ)/F(bs|θ) = F(ϕs,t(w|θ)|θ)/F(bt |θ).

We must show that if θ
′ > θ then ϕs,t(w|θ ′) > ϕs,t(w|θ) for all w 6 bs. But, by definition of

ϕs,t(·|θ ′), we have F(ϕs,t(w|θ ′)|θ ′)/F(bt |θ ′) = F(w|θ ′)/F(bs|θ ′), so it suffices to show that

F(w|θ ′)/F(bs|θ ′)> F(ϕs,t(w|θ)|θ ′)/F(bt |θ ′).

The inequality holds (with equality) in the limit as w increases to the upper bound bs, because both
sides converge to one. Thus, all we need to prove is that the ratio between the right-hand side and
the left-hand side of the inequality increases with w. Taking derivatives, this condition says that

f (w|θ ′)/F(w|θ ′)
f (w|θ)/F(w|θ)

6
f (ϕs,t(w|θ)|θ ′)/F(ϕs,t(w|θ)|θ ′)
f (ϕs,t(w|θ)|θ)/F(ϕs,t(w|θ)|θ)

.

This holds when the reverse hazard rate is log-supermodular, given that ϕs,t(w|θ)> w by the fact
that W (t) first-order stochastically dominates W (s).
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Proof of Theorem 5. Since payoffs satisfy Karlin and Rubin’s (1956) monotonicity, Theorem 0
holds for families of experiments X(t) where t is an index from an arbitrary ordered set T , as
shown in Appendix B. Thus, in order to prove the theorem it suffices to take T = {0,1}, with X(0)
the random experiment and X(1) the median experiment. The density function of X(1) is

cFr−1(·|θ)[1−F(·|θ)]r−1 f (·|θ),

where c depends only on k. The cumulative distribution and survival functions can be written as

Fr(·|θ)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(·|θ)] j and [1−F(·|θ)]r

r−1

∑
j=0

(
r+ j−1

r−1

)
F j(·|θ),

respectively. For each θ the function ϕ0,1(x|θ) is defined by the equality

F(x|θ) = Fr(ϕ0,1(x|θ)|θ)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(ϕ0,1(x|θ)|θ)] j. (16)

Now fix two states θ
′ > θ and let z = ϕ0,1(x|θ) and z′ = ϕ0,1(x|θ ′) for brevity. Let xm denote the

median of F(·|θ), that is, F(xm|θ) = 1/2. Note that z > x when x 6 xm and z 6 x when x > xm.
Moreover, note that

dz
dx

=
f (x|θ)

cFk(z|θ)[1−F(z|θ)]k f (z|θ)
. (17)

We must show that z′ > z or, equivalently that

Fr(z|θ ′)∑
r−1
j=0
(r+ j−1

r−1

)
[1−F(z|θ ′)] j

F(x|θ ′)
6 1, (18)

which is the same as

[1−F(z|θ ′)]r ∑
r−1
j=0
(r+ j−1

r−1

)
F j(z|θ ′)

1−F(x|θ ′)
> 1. (19)

Suppose first that x 6 xm, so that z > x. Since F(·|θ ′) first-order stochastically dominates
F(·|θ), condition (18) holds at x = xm = z. Thus, it suffices to show that the left-hand side of (18)
increases in x when x 6 z. The derivative of the left-hand side is nonnegative if and only if

cFr−1(z|θ ′)[1−F(z|θ ′)]r−1 f (z|θ ′)dz
dx

F(x|θ ′)−

Fr(z|θ ′)
r−1

∑
j=0

(
r+ j−1

r−1

)
(1−F(z|θ ′)) j f (x|θ ′)> 0

Plugging in (17) and using (16), the latter inequality is the same as

f (z|θ ′)/F(z|θ ′)
f (z|θ)/F(z|θ)

×
[1−F(z|θ ′)]r−1/∑

r−1
j=0
(r+ j−1

r−1

)
[1−F(z|θ ′)] j

[1−F(z|θ)]r−1/∑
r−1
j=0
(r+ j−1

r−1

)
[1−F(z|θ ′)] j︸ ︷︷ ︸

> 1 because F(·|θ)> F(·|θ ′)

>
f (x|θ ′)/F(x|θ ′)
f (x|θ)/F(x|θ)
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which is true by log-supermodularity of the reverse hazard rate, since z > x.
Suppose now that x > xm, so that z 6 x. Since (19) is the same as (18), it holds at x = xm = z, so

it suffices to show that its left-hand side increases in x when x > z. The derivative of the left-hand
side of (19) is nonnegative if and only if

−cFr−1(z|θ ′)[1−F(z|θ ′)]r−1 f (z|θ ′)dz
dx

[1−F(z|θ ′)]r
r−1

∑
j=0

(
r+ j−1

r−1

)
F j(z|θ ′) f (x|θ ′)> 0

Plugging in (17) and using (16), the latter inequality is the same as

f (z|θ ′)/[1−F(z|θ ′)]
f (z|θ)/[1−F(z|θ)]

×
Fr−1(z|θ ′)/∑

r−1
j=0
(r+ j−1

r−1

)
F j(z|θ ′)

Fr−1(z|θ)/∑
r−1
j=0
(r+ j−1

r−1

)
F j(z|θ)︸ ︷︷ ︸

6 1 because F(·|θ)> F(·|θ ′)

6
f (x|θ ′)/[1−F(x|θ ′)]
f (x|θ)/[1−F(x|θ)]

which is true by log-supermodularity of the hazard rate, since z 6 x.

B Accuracy and Welfare

In this appendix we prove Theorem 0 and provide an extension of the result to the continuous-
action case. The case of preferences satisfying Karlin and Rubin’s (1956) monotonicity affords us
a much simpler argument, so we find it instructive to start with an independent proof for this case.
After discussing the difficulty with single-crossing and IDO preferences, we provide a proof for
the general IDO case.

B.1 Monotone Preferences

Recall that preferences are monotonic in the sense of Karlin and Rubin (1956) if there exist states
θ 1 6 · · · 6 θ J−1 such that, for every j < J, the difference u(θ ,a j+1)−u(θ ,a j) is nonpositive for
θ 6 θ j and nonnegative for θ > θ j.

Proof of Theorem 0—Monotone Preferences. Let X(t) be a family of experiments ordered by
accuracy. Fix s < t, let (E1(s), . . . ,EJ(s)) be the evaluator’s optimal partition of Rn for experiment
X(s), and Ē j(s) := E j(s)∪·· ·EJ(s). The evaluator’s welfare is∫

Θ

∑
j<J

Prθ

(
X(s) ∈ Ē j+1(s)

)[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

To prove the result it suffices to exhibit nested upper sets Ē ′2 ⊇ ·· · ⊇ Ē ′J such that, for every j < J
and every state θ , the difference

Prθ (X(t) ∈ Ē ′j+1)−Prθ (X(s) ∈ Ē j+1(s)) (20)
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is nonpositive for θ 6 θ j and nonnegative for θ > θ j. Indeed, this implies that the evaluator can
achieve a higher expected payoff in experiment X(t) by adopting the following strategy: choose
a1 when X(t) /∈ Ē ′2, choose a2 when X(t) ∈ Ē ′2 \ Ē ′3, and so on. Define Ē ′j+1 = ϕs,t(Ē j+1|θ j) for
every j < J. Then we can rewrite the difference in (20) as

Prθ (X(t) ∈ ϕs,t(Ē j+1|θ j))−Prθ (X(t) ∈ ϕs,t(Ē j+1|θ)).

For θ 6 θ j the difference is nonpositive, because ϕs,t(·|θ)6 ϕs,t(·|θ j) in this case. For θ > θ j it
is nonnegative, because then ϕs,t(·|θ)> ϕs,t(·|θ j).

Note that the above proof does not use the fact that t is a continuous parameter. The family of
experiments X(t) could be indexed in an arbitrary ordered set T rather than the interval [0,1]. This
fact is used in the proof of Theorem 5.

B.2 IDO Preferences

The above proof does not extend immediately to IDO preferences or even only single-crossing
preferences. The IDO property does imply that the difference u(θ ,a j+1)−u(θ ,a j) exhibits single
crossing, but does not require the crossing points θ j to be increasing in j. This makes the upper
sets D̄′2, . . . , D̄

′
J non-nested and hence the proposed strategy for experiment X(t) ill-defined.

To deal with this difficulty, we adopt a different strategy of proof, similar in spirit to the argu-
ment used by Jewitt (2007) for single-crossing preferences and unidimensional experiments. Our
proof hinges on a crucial observation: any action a j such that the crossing points θ j and θ j−1 are
not ordered in Karlin and Rubin’s (1956) sense (i.e. such that θ j < θ j−1) can be removed from the
action set without affecting IDO. In particular, we can remove any such action that, in addition, is
not used under the optimal strategy, without affecting the evaluator’s welfare, either.

Proof of Theorem 0—IDO preferences. Let {D1(t), . . . ,DJ(t)} be the optimal partition of Rn for
experiment X(t), with D j(t)∪·· ·∪DJ(t) an upper set and action a j chosen when X(t)∈D j(t). Let
Prθ (t, ·) denote the measure on Rn induced by X(t), and define E j(t) =Rn \(D j+1(t)∪·· ·∪DJ(t))
for all t and j < J. Then the evaluator’s welfare is

U(X(t)) =
∫
Θ

∑
j<J

[
1−Prθ (t,E j(t))

][
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

Now take any t and u > t in [0,1]. Applying Theorem 2 in Milgrom and Segal (2002), we obtain

U(X(u))−U(X(t)) =
u∫

t

∫
Θ

∑
j<J

∂Prθ (s,E j(s))
∂ t

[
u(θ ,a j)−u(θ ,a j+1)

]
π(θ)dθds, (21)

and we have to show that the expression in (21) is nonnegative. We do this in four steps.

Step 1—Use IDO to rewrite the payoff difference. We start by rewriting, for each s, the sum-
mation inside the integral in (21), as follows. Recall that, by IDO, for every 1 6 j < J there exists
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a state θ j such that the difference u(θ ,a j)−u(θ ,a j+1) is nonnegative for θ 6 θ j and nonpositive
for θ > θ j. An immediate consequence of this observation is that if θ j < θ j−1 then action a j

can be removed from A without affecting the IDO property.46 By using this fact (repeatedly, if
necessary) together with the fact that E j(s) = E j−1(s) whenever D j(s) = ∅, we conclude that for
every s there exists a list of indices 1 6 j(s,1)< · · ·< j(s, Is)6 J of some length Is 6 J, and a list
of states θ 1(s), . . . ,θ Is(s), with the following properties. First,

U(X(u))−U(X(t)) =
u∫

t

∫
Θ

∑
i<Is

∂Prθ

(
s,E j(s,i)(s)

)
∂ t

[
u(θ ,a j(s,i))−u(θ ,a j(s,i+1))

]
π(θ)dθds. (22)

Second,
u(θ ,a j(s,i))−u(θ ,a j(s,i+1))≷ 0 for θ ≶ θ i(s). (23)

Third,
θ i(s)> θ i−1(s) for all i ∈ {2, . . . , Is} such that D j(s,i)(s) =∅. (24)

Step 2—Use accuracy to set a lower bound on the payoff difference. Take any θ , s and i < Is,
and consider the corresponding derivative appearing inside the summation in (22). We have

∂Prθ

(
s,E j(s,i)(s)

)
∂ t

= lim
δ→0

Prθ

(
s+δ ,E j(s,i)(s)

)
−Prθ

(
s,E j(s,i)(s)

)
δ

= lim
δ→0

Prθ

(
s,ϕs+δ ,s(E j(s,i)(s)|θ)

)
−Prθ

(
s,E j(s,i)(s)

)
δ

(25)

≷ lim
δ→0

Prθ

(
s,ϕs+δ ,s(E j(s,i)(s)|θ i(s))

)
−Prθ

(
s,E j(s,i)(s)

)
δ

for θ ≶ θ i(s).

The second equality follows from the definition of the function ϕs+δ ,s(·|·). The inequality, from
X(s+δ ) being more accurate than X(s) for every δ > 0 (as this means that ϕs+δ ,s(x|θ) is decreas-
ing in θ for every x and δ > 0) and E j(s,i)(s) being a lower set (the complement of an upper set).
Letting L(θ ,s, i) denote the right-hand side of (25), from (22), (23) and (25) we obtain

U(X(u))−U(X(t))>
u∫

t

∫
Θ

∑
i<Is

L(θ ,s, i)
[
u(θ ,a j(s,i))−u(θ ,a j(s,i+1))

]
π(θ)dθds. (26)

Step 3—Rewrite the lower bound. In this and the next step we prove that, for every s,∫
Θ

∑
i<Is

L(θ ,s, i)
[
u(θ ,a j(s,i))−u(θ ,a j(s,i+1))

]
π(θ)dθ > 0. (27)

46That is, letting ũ : Θ×A\{a j} → R denote the restriction of u to Θ×A\{a j}, the family {ũ(θ , ·)}θ∈Θ is again
an IDO family.
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The result will then follow from (26) and (27). First note that, since E j(s,i)(s) is a lower set, for
some function x̄n : Rn−1→ R∪{−∞,+∞} we have

Prθ

(
s,E j(s,i)(s)

)
=
∫

Rn−1

g<n(s,x<n|θ)Gn(s, x̄n(x<n)|θ ,x<n)dx<n,

where g<n(s, ·|θ) is the density of (X1(s), . . . ,Xn−1(s)) in state θ . Similarly, for every δ > 0 and
i < Is there is a function x̄n,i(δ , ·) : Rn−1→ R∪{−∞,+∞} such that

Prθ

(
s,ϕs+δ ,s(E j(s,i)(s)|θ i(s))

)
=
∫

Rn−1

g<n(s,x<n|θ)Gn(s, x̄n,i(δ ,x<n)|θ ,x<n)dx<n.

Taking limits, we conclude that, for every s and i < Is,

L(θ ,s, i) =
∫

∂E j(s,i)(s)

g(s,x<n,xn|θ)
(

lim
δ→0

x̄n,i(δ ,x<n)− x̄n(x<n)

δ

)
︸ ︷︷ ︸

=:K(i,x<n)

dxndx<n,

where ∂E j(s,i)(s) denotes the boundary of E j(s,i)(s). Thus, the expression in (27) can be written as

∑
i<Is

∫
∂E j(s,i)(s)

K(i,x−n)
∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,i))−u(θ ,a j(s,i+1))

]
π(θ)dθ . (28)

Step 4—Show that the lower bound is nonnegative. Since ϕs+δ ,s(θ ,x) is decreasing in θ , for
each i < Is such that θ i(s)6 θ i+1(s) we have x̄n,i(δ ,x<n)> x̄n,i+1(δ ,x<n), and hence K(i,x<n)>
K(i+1,x<n) for all x<n. Let i1 < .. . < iH(s) denote the set of indices i < Is such that D j(s,i)(s) 6=∅.
Then, for every h ∈ {2, . . . ,H(s)} and i ∈ {ih + 1, . . . , ih+1− 1}, at each point in the boundary of
E j(s,ih)(s) the evaluator prefers a j(s,ih+1) to a j(s,i), and hence, using (24),

ih+1−1

∑
i=ih

∫
∂E j(s,ih)

(s)

K(i,x<n)
∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,i))−u(θ ,a j(s,i+1))

]
π(θ)dθ

>
∫

∂E j(s,ih)
(s)

K(ih,x<n)
∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,ih))−u(θ ,a j(s,ih+1))

]
π(θ)dθ .

It follows that the expression in (28) is at least as large as

∑
h<H(s)

∫
∂E j(s,ih)

(s)

K(ih,x<n)
∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,ih))−u(θ ,a j(s,ih+1))

]
π(θ)dθ .

But all terms in this summation are zero, as D j(s,ih)(s) 6= ∅ and D j(s,ih+1)(s) 6= ∅ imply that the
evaluator is indifferent between a j(s,ih) and a j(s,ih+1) at each point in the boundary of E j(s,ih)(s).
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B.3 Continuous Actions

To deal with a continuous action set A we make two assumptions. First, we assume payoffs are
continuous and bounded below (e.g. nonnegative). Second, we impose regularity on the family of
functions {u(θ , ·)}θ∈Θ by assuming that the family of their restrictions to every sufficiently large
but finite subset of actions is also an IDO family. Note that the latter assumption is automatically
satisfied with single-crossing or monotone preferences.47 Moreover, it allows us to extend Theo-
rem 0 by simply showing the following: for any fixed experiment X , the constrained welfare the
evaluator obtains when restricted to choosing from a finite subset B of actions converges to the
unconstrained welfare as B becomes large. We do this next.

Let a(·) : Rn→ A be the evaluator’s (unconstrained) optimal strategy. Let J = |B| and denote
by a1 < .. . < aJ the elements of B. Define aB : Rn→ B for the restricted problem as follows:

aB(x) = a1 if a(x)6 a1, aB(x) = a2 if a1 < a(x)6 a2, . . . , aB(x) = aJ if a(x)> aJ−1.

Then for every state θ , every B, and every b in B, we have

Prθ (aB(X)< b)6 Prθ (a(X)< b) and Prθ (aB(X)6 b) = Prθ (a(X)6 b).

Thus, for every Θ′ ⊆Θ,∫
Θ′

Prθ (aB(x)< b)π(θ)dθ 6
∫

Θ′
Prθ (a(x)< b)π(θ)dθ

and ∫
Θ′

Prθ (aB(x)6 b)π(θ)dθ =
∫

Θ′
Prθ (a(x)6 b)π(θ)dθ .

This implies that for every c in the union of the B’s we have

limsup
B

∫
Θ′

Prθ (aB(x)< c)π(θ)dθ 6
∫

Θ′
Prθ (a(x)< c)π(θ)dθ

and
liminf

B

∫
Θ′

Prθ (aB(x)6 c)π(θ)dθ =
∫

Θ′
Prθ (a(x)6 c)π(θ)dθ .

Since Θ′ is arbitrary and we can replace c with any a in A (because the union of the B’s is dense
in A), we conclude that the probability measure on states and actions induced by aB(·) converges
weakly to that induced by a(·). Thus, liminfBEB(u)> E(u), where E and EB are the expectations
with respect to the measures on Θ×A induced by the optimal and B-constrained optimal strategy,
respectively. Since EB(u)6 E(u) for every B, we are done.

47In the continuous case, Karlin and Rubin’s (1956) monotonicity means that every function u(θ ,a) is (i) maximized
at some a(θ) that is increasing in θ , and (ii) decreasing in a as a moves away from a(θ). Quah and Strulovici (2009)
refer to these preferences as quasi-concave with increasing peaks.
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