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Abstract

This paper develops a notion of multivariate accuracy to characterize the welfare impact
of sample selection from a larger presample. Maximal selection benefits or harms a decision
maker with interval dominance ordered preferences if the reverse hazard rate of the data distri-
bution is log-supermodular, as in location experiments with normal noise, or log-submodular.
Applying the result to auctions, we show that under non-pathological conditions the informa-
tion contained in the winning bids decreases as the number of bidders increases. Exploiting
a connection to extreme value theory, we quantify the limit amount of information when the
presample size goes to infinity, as under perfect competition. In the context of a model of
equilibrium persuasion with costly information, we also derive implications for the optimal
design of selected experiments when selection is made by an examinee, a biased researcher, or
contending sides with the peremptory challenge right to eliminate a number of jurors.
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1 Introduction

Economic data are often nonrandomly selected, due to choices made by subjects under investiga-
tion or sample inclusion decisions by data analysts (see e.g. Heckman, 1979). Are selected data
more or less informative than the same amount of random data? For example, fixing a number
of objects for sale, are the winning bids in a more competitive auction more or less revealing of
market demand? When a new treatment is given to the healthiest patients rather than to random
patients in a group, does inference improve or worsen? When testing a candidate, should the ex-
aminer ask questions at random or allow the candidate to select the most preferred questions out
of a larger batch? And how does the common-law right of peremptory challenge—by which the
attorney on each side of a trial can strike down a number of jurors—affect judgment quality?

These comparisons are one and the same. There is an unknown state θ representing a funda-
mental demand driver, an average treatment effect, or a candidate ability. An evaluator must choose
an action—estimate a parameter, choose a treatment, or assign a grade—knowing that marginally
increasing the action decreases payoff when θ is low and increases it when θ is high. More pre-
cisely, we assume preferences in the general interval dominance ordered (IDO) class introduced by
Quah and Strulovici (2009), encompassing monotone decision problems (Karlin and Rubin, 1956)
and single-crossing preferences (Milgrom and Shannon, 1994). The evaluator acts after seeing the
realization of an experiment, that is, a random vector X = (X1, . . . ,Xn) whose distribution depends
on θ . For instance, Xi may represent a bid in an auction, an outcome under a treatment, a student
potential performance in a question, or a juror opinion. Consider the following two scenarios:

• Random Experiment. The sample observations are i.i.d. draws from a state-dependent cu-
mulative distribution function F(·|θ).
• Maximally Selected Experiment. The sample observations are selected—possibly strategi-

cally, by another party—as the n highest out of k > n presampled i.i.d. draws from F(·|θ).
In which scenario is the expected payoff of the evaluator higher (in every IDO problem)?

The comparison is generally ambiguous. To fix ideas, take a simple hypothesis testing prob-
lem: two states θ H > θ L and two actions, rejection (correct choice in θ L) and acceptance (correct
choice in θ H). With sample size n = 1 and additive noise drawn from a normal distribution F ,
the observation is normal with mean θ L in the low state and θ H in the high state—drawn in blue
in the left-hand panel of Figure 1. The evaluator optimally accepts if and only if the observation
is above some cutoff x̄, the familiar trade-off between the probability 1−F(x̄− θ L) of a false
positive (accepting in the low state, FP) and the probability F(x̄−θ H) of a false negative (reject-
ing in the high state, FN).1 How does a selected experiment compare? Being the maximum of k
i.i.d. draws, the observation now has distribution Fk(x−θ L) in the low state and Fk(x−θ H) in the

1An experiment with additive normal noise, like every other experiment considered in the paper, satisfies monotone
likelihood ratio: given any two states, the higher the realization x, the higher the relative odds of the higher state. This
property implies that the evaluator’s optimal decision is increasing in x. With two actions and sample size n = 1, this
simply means choosing the higher action (acceptance) if and only if x is at least as large as some cutoff x̄.
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Figure 1: Maximal selection provides more accurate information with normal noise (left) but less
accurate information with exponential noise (right).

high state—drawn in red. Maximal selection benefits the evaluator. To see why, note that by adopt-
ing the possibly suboptimal cutoff ȳ defined so as to induce as many false positives, i.e. defined by
Fk(ȳ− θ L) = F(x̄− θ L), the evaluator induces fewer false negatives: Fk(ȳ− θ H) < F(x̄− θ H).
But, as shown in the right-hand panel of Figure 1, with exponential noise maximal selection harms
the evaluator: given any cutoff ȳ for the selected experiment, the evaluator can match false positives
and lower false negatives by adopting cutoff x̄ in the random experiment.

What makes selection beneficial in one case and harmful in the other? More generally, what
is the welfare impact of selection with sample size n > 1 and possibly non-additive noise? To
answer these questions, we start from Lehmann’s (1988) notion of accuracy of an experiment
(with n = 1). To illustrate this notion, consider again the left-hand panel of Figure 1. Suppose
that in the original (random) experiment the evaluator sets the acceptance cutoff at x̄′ rather than
x̄. In the new (selected) experiment ȳ would then match false negatives rather than false positives:
Fk(ȳ−θ H) = F(x̄′−θ H). Thus, false negatives decrease, Fk(ȳ−θ H)< F(x̄−θ H), if and only if
F(x̄′−θ H)< F(x̄−θ H), or simply x̄′ < x̄. If the inequality x̄′ 6 x̄ holds for all possible values of
θ L and θ H and every possible x̄ and corresponding x̄′, the new experiment is more accurate than
the original experiment. Lehmann (1988) shows that more accuracy is necessary and sufficient to
give higher welfare in every decision problem in Karlin and Rubin’s (1956) class.2

To deal with general IDO problems and experiments with sample size n> 1, Section 3 develops
a multidimensional version of accuracy, sharing the basic intuition with (and for n = 1, reducing
to) Lehmann (1988). To illustrate, consider two n-dimensional experiments X and Y and again a
simple hypothesis testing setup. In experiment X the evaluator again adopts a cutoff strategy, but

2An equivalent formulation (adopted e.g. by Persico, 2000, who coined the term accuracy) is the following: the
new experiment is more accurate if, given any cutoff x̄ for the original experiment, letting ȳ be the cutoff that matches
false positives in the new experiment, the cutoff that matches false negatives (denoted by ȳ′ in the figure) is larger than
ȳ. As shown in Jewitt (2007), a unidimensional experiment satisfying monotone likelihood ratio is more accurate than
another if and only if it is Blackwell more informative (Blackwell, 1951, 1953) in simple hypothesis testing problems.
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Base Core Applications
Theorem 0 (accuracy) Theorem 1 (n = 1, location) Proposition 1 (auctions)
Proposition 0 (equilibrium) Theorem 2 (n > 1, general) Proposition 2 (optimal)

Theorem 3 (extreme) Propositions 3, 4 (delegated)
Extensions

Theorem 4 (truncation) Proposition 5 (n = 1, noisy)
Theorem 5 (median) Proposition 6 (n > 1, noisy)

Table 1: Roadmap of results

now the cutoff is a an (n−1)-dimensional hypersurface. The evaluator accepts when the realization
of X lies in the set Ē above the hypersurface.3 Similarly to the unidimensional case, we say Y is
more accurate than X if a suitably defined hypersurface that induces as many false positives under
Y as accepting in Ē does under X , induces as many false negatives as accepting in a set larger
than Ē does under X . Theorem 0 proves that in all IDO problems welfare increases with accuracy,
extending previous results by Persico (2000), Jewitt (2007) and Quah and Strulovici (2009).

Section 4 reports our core results. Theorem 1 identifies a necessary and sufficient condition for
a larger presample size k to increase or decrease accuracy, and hence welfare, in an experiment with
additive noise (called a location experiment) with sample size n = 1. Increasing k monotonically
benefits the evaluator if and only if the reverse hazard function of the noise distribution, − logF ,
is logconcave, as with normal or logistic noise. Likewise, welfare decreases in k if and only if
− logF is logconvex, as with exponential noise. Selection is neutral only in one case: noise drawn
from the Gumbel extreme value distribution, F(ε) = exp(−exp(ε)), the only distribution with both
logconcave and logconvex reverse hazard function. This benchmark case provides intuition for our
result. Deviating from Gumbel, maximal selection not only pushes realizations upward, but also
changes the shape of the distribution. The pushed-up realizations are also more concentrated—
improving accuracy and hence welfare—when the noise distribution is smaller than the Gumbel
distribution in van Zwet’s (1964) convex transform order. This means that noise is a concave
transformation of, and hence has a thinner top tail than, a Gumbel distributed random variable.

Our notion of accuracy is the key tool needed to tackle the new issues arising in the multidimen-
sional case with sample size n > 1. The main difficulty lies in the fact that selected observations
are correlated with each other, even conditionally on the state. By disentangling the net value
of information added by each observation, we can understand when selection adds or subtracts
value. Our main result, Theorem 2, shows that welfare monotonically increases or decreases in
presample size, according to whether the reverse hazard rate f (x|θ)/F(x|θ) is log-supermodular
or log-submodular. In a location experiment, log-supermodularity reduces to logconcavity of the
noise distribution’s reverse hazard rate f/F , strengthening the logconcavity criterion in Theorem 1.

Drawing on extreme value theory, we also quantify the impact of selection when presample

3For example, with i.i.d. observations x = (x1, . . . ,xn) from a location experiment with normal noise, the average
observation is a sufficient statistic. In this case, the cutoff hypersurface has the form ∑i xi/n = x̃ for some x̃.
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size grows unboundedly large. Focusing on location experiments, Theorem 3 shows that an ex-
tremely selected sample gives the evaluator the full information payoff if and only if the hazard
rate of the noise distribution f (ε)/[1−F(ε)] is unbounded—for instance, with normal noise, or
noise distributions with bounded-above support. With less than full information in the limit, wel-
fare converges to the level corresponding to an experiment with scale parameter (proportional to
variance) equal to the inverse of the limit hazard rate—building on Weissman (1978), we report a
closed-form expression for the limit noise distribution.

Turning to applications, our theorems have immediate implications for the role of competition
in aggregating private market information, complementing Wilson (1977) and Milgrom (1979).
Section 5.1 considers an auction in which n identical objects are offered for sale to k symmetric
bidders with interdependent values (Milgrom and Weber, 1982, 2000). As a direct corollary of our
three core results, Proposition 1 characterizes when soliciting an additional bidder has a monotonic
impact on the information revealed by the winning bids. In particular, in non-pathological cases
in which bidders’ signals have log-submodular reverse hazard rate, competition monotonically de-
creases information—overturning received wisdom. Using extreme value theory, we also quantify
the amount of information revealed by the winning bids in the perfectly competitive limit.

Section 5.2 considers a different strategic source of selection, relevant for applications to edu-
cational testing and data collection: sample selection from the presample is delegated to a strategic
sender (examinee or biased researcher) who wants to persuade the evaluator. Maximal selection
arises in equilibrium (Proposition 0). Combining this observation with our core results, we charac-
terize when allowing exam candidates to choose which questions to answer increases the informa-
tiveness of a test. By embedding the model into a potential outcomes framework (Neyman, 1923;
Rubin, 1974) we then derive implications for the welfare impact of subversion of randomization in
control trials (Schulz, 1995).

Taking a design perspective, what is the optimal experiment for the evaluator, when sampling
and presampling are costly and endogenous? Section 5.3 illustrates how the evaluator can use
presample size as an additional information channel, to economize on sample size when selection
is beneficial. With sufficiently small presampling costs and unbounded hazard rate of the noise
distribution, the optimal experiment must feature sample selection (Proposition 2).

We then turn to a general model of equilibrium persuasion with costly information where the
choice of presample size is delegated to the sender. Relative to optimal persuasion (Rayo and
Segal, 2010; Kamenica and Gentzkow, 2011), in our setting information acquisition is costly and
manipulation is constrained by presample data. The choice of presample size is akin to agent effort
in Holmström’s (1999) career concern model.4 The sender’s incentive to collect more presample
data results in additional information that indirectly benefits or harms the evaluator through maxi-
mal selection. Smaller presampling costs strengthen this sender incentive to acquire information.
An evaluator who indirectly benefits from this information can exploit this channel to save on sam-
pling costs, as illustrated by Proposition 3. If instead the sender cannot commit not to disclose all

4See also Glaeser (2008) for a broad discussion of incentives and biases in data collection and analysis.
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information collected, full unraveling arises in equilibrium, with the sender effectively disclosing
the whole presample data as in Grossman (1981) and Milgrom (1981). Similarly to Propositions 2
and 3, under unbounded hazard rate of the noise distribution the evaluator has then an incentive to
block unraveling by committing to a fixed sample size, again to save on sampling costs (Proposi-
tion 4).

The general method of proof developed for Theorem 2 allows us to flesh out the common logic
behind the comparison of other forms of selection such as truncation, previously considered by
Goel and DeGroot (1992). According to Theorem 4, in important cases maximal selection and
truncation lead to very different conclusions. For example, with normal or logistic noise maximal
selection benefits while truncation harms the evaluator. In Section 6 we also analyze median selec-
tion, where the evaluator observes the median observation in a presample (Theorem 5), deriving
conclusions for peremptory challenge. Finally, we extend our results to allow for noisy observation
of presample as well as sample data (Propositions 5 and 6).

2 Setup

An evaluator chooses an action a ∈ A ⊆ R under uncertainty about a state θ ∈ Θ ⊆ R, where Θ

is a finite set or a (possibly unbounded) interval. The prior is represented by a density (or mass)
function π(θ) and the payoff function is u : Θ×A→ R. For now we take the action set to be finite
A = {a1, . . . ,aJ} with a1 < .. . < aJ and in Appendix A we give an extension to continuous actions.

Preferences. The family of functions {u(θ , ·)}θ∈Θ is assumed to be an interval dominance ordered
(IDO) family (Quah and Strulovici, 2009). This means that for all states θ

′ > θ and actions a′ > a,

u(θ ,a′)> (>) u(θ ,a) =⇒ u(θ ′,a′)> (>) u(θ ′,a) (1)

whenever u(θ ,a′) > u(θ ,a′′) for all actions a′′ such that a 6 a′′ 6 a′. Equivalently, if action a′ is
the best action in the interval [a,a′]∩A when the state is θ , then the (weak or strict) preference
of a′ over each action in the interval continues to hold at every higher state θ

′. As pointed out
by Quah and Strulovici (2009), the IDO class includes both single-crossing preferences (Milgrom
and Shannon, 1994) and monotone preferences à la Karlin and Rubin (1956).5

Experiments and Welfare. Before deciding, the evaluator sees the realization of an experiment,
a random vector X in Rn with state-dependent distribution G(·|θ) and density g(·|θ) satisfying
the following two properties. First, the set {x ∈ Rn : g(x|θ) > 0}, denoted by S(X |θ), is an
open, convex set—in particular, S(X |θ) is also the interior of the support of X in state θ . Sec-
ond, increasing the state increases the distribution of X in the likelihood ratio (LR) order,6 im-

5Single-crossing requires (1) to hold even if u(θ ,a′′) < u(θ ,a) for some a such that a′ 6 a 6 a′′. Monotonicity
requires (1) only for adjacent actions, that is, a′ = a j and a′′ = a j+1 for some j < J, but in addition requires that the
state, say θ j, where the difference u(θ ,a j+1)−u(θ ,a j) changes sign, is increasing in j.

6This means that for all x,x′ ∈Rn and all states θ
′ > θ , letting x∨x′ = (max{x1,x′1}, . . . ,max{xn,x′n}) and x∧x′ =

(min{x1,x′1}, . . . ,min{xn,x′n}), we have g(x∨ x′|θ ′)g(x∧ x|θ)> g(x|θ)g(x′|θ ′).
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plying in particular the monotone likelihood ratio (MLR) property: if θ
′ > θ and x′ = x then

g(x|θ)g(x′|θ ′)> g(x′|θ)g(x|θ ′).7

An important consequence of IDO and MLR is that the evaluator can without loss adopt a
monotone strategy, where the action increases with the realization.8 Thus, recalling that E ⊆ Rn

is an upper set if it contains every point of Rn that is larger than some point of E, the evaluator
partitions Rn into a sequence of sets (E1, . . . ,EJ) such that, for all j, the set Ē j = E j∪·· ·∪EJ is an
upper set, and chooses a j when the realization belongs to E j. The evaluator welfare,

∫
Θ ∑ j Prθ (X ∈

E j)u(θ ,a j)π(θ)dθ , can then be rewritten, summing by parts and disregarding constants, as

U(X) :=
∫

Θ
∑
j<J

Prθ (X ∈ Ē j+1)
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

In the special case of a location experiment, observations have the form Xi = θ + ε i and the
noise vector (ε1, . . . ,εn) is drawn from some distribution G. The distributions G(·|θ) are all shifted
versions of G, with G(x|θ) = G(x1− θ , . . . ,xn− θ) for all θ and x. Here MLR means that the
directional derivative lim∆→0 log[g(ε1 +∆, . . . ,εn +∆)/g(ε1, . . . ,εn)]/∆ of the noise distribution’s
density g is decreasing in ε . With n = 1, this is simply logconcavity of g.

Example: Simple Hypothesis Testing. The simplest instance of our setup has two states θ H > θ L

and two actions, rejection aL and acceptance aH > aL. The evaluator optimally accepts when
g(x|θ H)/g(x|θ L)> r, where r = [π(θ L)/π(θ H)][u(θ L,aL)−u(θ L,aH)]/[u(θ H ,aH)−u(θ H ,aL)].
In the unidimensional case this strategy takes a familiar form: accept if and only if x > x̄, for some
cutoff x̄. In general, with n > 1, the acceptance region is an upper set Ē. Given this, welfare
rewrites (disregarding constants) as −r Prθ L(X ∈ Ē)−Prθ H (X /∈ Ē), a negatively weighted sum of
the probability of a false positive (accepting in θ L) and that of a false negative (rejecting in θ H),
with r serving as relative weight.

Selected Experiments. In a typical scenario of statistical decision theory, the evaluator observes a
random (that is, i.i.d.) sample from a univariate distribution F(·|θ) with density f (·|θ) satisfying
MLR. In this case G(x|θ) = F(x1|θ) · · ·F(xn|θ) and for a fixed sample size n welfare depends on
the family of univariate distributions F(·|θ) only. In this paper we are interested in experiments
involving selected rather than random observations. In this scenario G(·|θ) takes a different form,
and welfare is a function of both the family F(·|θ) and an additional parameter depending on the
type of selection we consider. Our focus is on maximally selected experiments, where X1 > X2 >
· · · > Xn are the highest, second highest, . . . , nth highest of k > n random draws. Thus, the first
observation is drawn from distribution Fk(·|θ), and for i > 1, conditional on X1 = x1, . . . ,Xi−1 =

xi−1 the ith observation is drawn from distribution Fk−i+1(·|θ) right-truncated at xi−1. Letting < i

7Given x = (x1, . . . ,xn) and x′ = (x′1, . . . ,x
′
n) we say x′ is larger than x, and write x′ = x, to mean x′i > xi for all i.

8By Bayes’ rule and MLR, the posterior belief on the state increases with the realization of X in the LR order: for
all θ

′ > θ and all x′ = x in the set ∪θ∈ΘS(X |θ), we have π(θ |x)π(θ ′|x′)> π(θ ′|x)π(θ |x′). Thus, the evaluator cannot
lose by increasing the action in response to a larger realization (Quah and Strulovici, 2009, Theorem 2).
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denote from now on the indices 1, . . . , i−1 to save on notation, for every x we have

G1(x1|θ) = Fk(x1|θ) and Gi(xi|θ ,x<i) = Fk−i+1(xi|θ)/Fk−i+1(xi−1|θ) for all i > 1.9 (2)

We refer to k as the presample size of the experiment, and if k = n we call the experiment random,
because it is informationally equivalent to n random draws from F(·|θ): knowing in advance that
observations are sorted so that X1 > · · · > Xk is clearly of no value for the evaluator. Note that
in the special case of a location experiment we can equivalently view selection as occurring on
noise terms rather than on observations. Thus, with noise distribution F , we assume that F admits
a logconcave density (so that the experiment satisfies LR ordering) and we have Xi = θ + ε i for
all i, with ε1 drawn from Fk and ε i drawn from Fk−i+1(·)/Fk−i+1(ε i−1). Finally, note that the
distributions (2) are well defined for every real k > n and continuously differentiable in k.

3 Multidimensional Accuracy

To assess the welfare impact of selection we develop a natural multidimensional generalization
of Lehmann’s (1988) notion of accuracy. Our notion can be used to compare two experiments
(not necessarily selected experiments) with the same dimension by viewing them as boundary
points of a parametrized family of experiments. Let X(t) be a family of experiments indexed
by t ∈ [0,1], and let G(t, ·|θ) and g(t, ·|θ) be the corresponding state-dependent distributions and
densities. Let Prθ (t, ·) denote the measure on Rn induced by X(t), and assume that for every event
E the function Prθ (·,E) is continuously differentiable. In the application to maximal selection, we
compare selected experiments with presample sizes k and m by viewing them as boundary points
of X(t), the experiment with real presample size tk+(1− t)m.

Given any state θ and pair of indices s, t we define a bijection ϕθ : S(X(t)|θ)→ S(X(s)|θ) as
follows: ϕθ (x1, . . . ,xn) = (z1, . . . ,zn), where z1, . . . ,zn are defined recursively as

z1 = (G1(s, ·|θ))−1(G1(t,x1|θ)) and zi = (Gi(s, ·|θ ,z<i))
−1(Gi(t,xi|θ ,x<i)) for i > 1.10 (3)

By definition, in state θ the random vector ϕθ (X(t)) has the same distribution as X(s). Thus,
suppose that the evaluator accepts in an upper set Ē when testing a simple hypothesis θ = θ L

vs. θ = θ H under X(s). Then the evaluator can achieve the same false positives under X(t) by
(a) accepting when the realization x of X(t) is such that ϕθ L

(x) ∈ Ē. Similarly, the evaluator

9The corresponding joint density is g(x|θ) = [k!/(k− n)!]Fk−n(xn|θ) f (x1|θ) · · · f (xn|θ) and the interior of the
support is S(X |θ) = {x ∈Rn : xθ < xn < · · ·< x1 < xθ}, where xθ and xθ are respectively the infimum and supremum
of the set {x ∈ R : f (x|θ) > 0}. The density is LR-ordered with θ because log-supermodularity is preserved by
integration (Karlin and Rinott, 1980) and products of log-supermodular functions are log-supermodular.

10Note that zi is well defined because x ∈ S(X(t)|θ) implies x<i ∈ S(X<i(t)|θ) and hence z<i ∈ S(X<i(s)|θ). To see
why ϕθ is a bijection (and is therefore invertible), note first that the map x1 7→ z1 is a strictly increasing bijection from
S(X1(t)|θ) onto S(X1(s)|θ). Next, for every i> 1 and x<i ∈ S(X<i(t)|θ) the map xi 7→ zi is a strictly increasing bijection
from S(Xi(t)|θ ,x<i), the interior of the support of Xi(t) conditional on θ and X<i(t) = x<i, onto S(Xi(s)|θ ,z<i), the
interior of the support of Xi(s) conditional on θ and X<i(s) = z<i.
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can match false negatives by (b) accepting when ϕθ H
(x) ∈ Ē. Note that since Ē is an upper set,

if ϕθ H
(·) 5 ϕθ L

(·) then the evaluator accepts more often with strategy (a) than with (b). But
this means that under X(t) strategy (a) gives as many false positives and fewer false negatives,
compared to accepting in Ē under X(s).

This heuristic argument motivates the following definition and provides an intuition for the
result below. (Our argument is heuristic because ϕθ (x) is undefined when x lies outside the set
S(X(t)|θ). Appendix A gives the formal argument.)

Definition. The family of experiments X(t) is ordered by accuracy if ϕθ
′(x)5 ϕθ (x) for all states

θ
′ > θ , all indices t > s, and all x ∈ S(X(t)|θ)∩S(X(t)|θ ′).

Note that the inequality ϕθ
′(·)5 ϕθ (·) is analogous (and for sample size n = 1, reduces) to the

inequality x̄′ 6 x̄ discussed in the introduction: were strategy (a) be such that false negatives rather
than false positives are matched, then the set Ē should be larger—analogous to accepting above x̄′

rather than above x̄. In fact, it is clear that for n = 1 our definition reduces to Lehmann’s (1988).

Theorem 0. If the family X(t) is ordered by accuracy, then welfare U(X(t)) is increasing in t.

In the unidimensional case this result was proved by Lehmann (1988) for monotone prefer-
ences, by Persico (2000) and Jewitt (2007) for single-crossing preferences, and by Quah and
Strulovici (2009) for IDO preferences with Θ and A compact and S(X(t)|θ) constant across all
t and θ . Theorem 0 extends the result to multidimensional experiments and allows unbounded or
non-constant supports (as is necessarily the case e.g. in location experiments). We prove Theo-
rem 0, and discuss further the difference among IDO, single-crossing and monotone preferences,
in Appendix A. The proofs for all other results in the paper are in Appendix B.

Unidimensional Location Experiments: Accuracy and Dispersion. When X(t) is a family of
unidimensional location experiments with noise distributions G(t, ·), we can equivalently appeal to
the notion of dispersion (Bickel and Lehmann, 1979). A univariate distribution G is less dispersed
than another, F , if the quantile difference G−1(·)−F−1(·) is decreasing. Equivalently, G is steeper
than F at corresponding quantiles: g(G−1(·)) > f (F−1(·)). Lehmann (1988) shows that: (a) the
family X(t) is ordered by accuracy (for every possible choice of Θ) if and only if G(t, ·) becomes
less dispersed as t increases; (b) having a less dispersed noise distribution is necessary and suffi-
cient for a location experiment to give higher welfare than another in every decision problem in
Karlin and Rubin’s (1956) class. It follows from (a), (b), and Theorem 0, that a family of unidi-
mensional location experiments is ordered by increasing welfare in every IDO decision problem if
and only if the corresponding noise distributions are ordered by decreasing dispersion.

4 Impact of Maximal Selection

This section characterizes the families of distributions F(·|θ) for which the following monotone
comparative statics hold: for fixed sample size n, the larger the presample size, the higher (or the
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Figure 2: Normal noise: dispersion decreases with presample size (drawn for k = 8 and m = 1).

lower) the evaluator’s welfare. In particular, we answer our basic question as to when a selected
experiment (k > n) improves or decreases welfare compared to a random experiment (k = n).

4.1 Unidimensional Location Experiments

We begin with unidimensional location experiments X = θ + ε , where ε is the highest of k > 1
random draws from a noise distribution F admitting a logconcave density.

Theorem 1. Fixing sample size to n = 1, an increase in presample size k increases (decreases)
welfare in a selected location experiment if the noise distribution’s reverse hazard function− logF
is logconcave (logconvex). Conversely, allowing presample size to be any real number k > 1, if
− logF is not logconcave (logconvex), then there is a payoff function in the IDO class such that
welfare is not increasing (decreasing) in presample size.11

Figure 2 illustrates the proof with normal noise—our main example of welfare-improving max-
imal selection. Based on the equivalence between accuracy and dispersion, given two presample
sizes k > m we ask what makes Fk steeper at any quantile εk than Fm at the corresponding quan-
tile εm defined by Fm(εm) = Fk(εk). By monotonicity of − log(·), equivalently, when is − logFk

steeper at εk than − logFm at εm? Or, when is the base ε ′k− εk below the tangent to − logFk

at εk smaller than the base ε ′m− εm below the tangent to − logFm at εm? Note that − logFk and
− logFm only differ by a multiplicative constant, so we can compute ε ′k−εk also as the base below

11Marshall and Olkin (2007) define the reverse hazard function as logF . Since F ranges between zero and one,
logF is necessarily negative. Our definition uses a minus sign, so that logconcavity of the function makes sense.
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the tangent to − logFm, as displayed in the figure. Given that the base is the inverse of the rate of
decay, ε ′k− εk is smaller than ε ′m− εm whenever − logF decays at an increasing rate, i.e., − logF
is logconcave. When k and m can be any real numbers, εk and εm can be arbitrarily close to each
other, explaining necessity in that case. The argument for logconvex − logF is analogous.

Gumbel Noise. The only noise distribution F such that − logF is both logconcave and logcon-
vex (loglinear) is the Gumbel extreme value distribution, FGum(ε) = exp(−exp(−ε)). Given that
Fk

Gum(ε) = exp(−k exp(−ε)) = FGum(ε − logk), maximal selection inflates noise by a constant
(logk) but does not change the shape of the distribution. Thus, every maximally selected experi-
ment gives the same welfare—with Gumbel noise the reverse hazard function would be exponential
(decaying at constant rate), with equal bases ε ′k− εk = ε ′m− εm.

Restatement in Terms of Convex Transform Order. Given two univariate distributions F and
G, van Zwet (1964) defines F to be smaller than G in the convex transform order, denoted F 6c G,
whenever G−1(F(·)) is convex. Given that F−1

Gum(F(·)) =− log(− logF(·)), Theorem 1’s logcon-
cavity of − logF is equivalent to F 6c FGum. Equivalently, a random variable with logconcave
− logF can be obtained through an increasing and concave transformation F−1(FGum(·)) of a ran-
dom variable with Gumbel distribution. To gain intuition, visualize the random variable F−1 (on
the vertical axis) as an increasing transformation of a Gumbel distributed random variable F−1

Gum
(on the horizonal axis) through a Q–Q plot. Concavity of F−1(FGum(·)) contracts the top tail, thus
making it thinner than the top tail of the Gumbel distribution.

The restatement suggests an intuition for Theorem 1. Maximal selection raises realizations.
The Gumbel distribution has exactly the shape that leaves dispersion unchanged after this opera-
tion. Deviating from Gumbel, dispersion is reduced (increased) when the quantile of the distribu-
tion F is more concave (convex) than the quantile of the Gumbel. Intuitively, concavity contracts
the top tail above any percentile, thus making it thinner than the tail of the Gumbel distribution.
When the tail is thinner (thicker) than Gumbel, the pushed up realizations in the top tail are more
(less) informative than less selected realizations.

Examples of Welfare-Improving and Welfare-Decreasing Maximal Selection. Besides the nor-
mal case, one instance where more selection benefits is with logistic noise, F(ε) = 1/(1+ e−ε);
we prove this and the following claims in Appendix B.2. Our main example of the opposite case,
where− logF is logconvex and hence more selection harms, is exponential noise, F(ε) = 1−e−ε .
More generally, given any a <−1 the distribution F(ε) = exp([(1− exp(−ε))1+a−1]/(1+a)) is
such that− logF is logconvex—the exponential is the special case a→−1. Finally, more selection
harms with Bemmaor’s (1992) shifted Gompertz, F(ε) = (1− exp(−ε −η exp(−ε))), as well as
with the full support distribution F(ε) = exp(1− exp(exp(−ε))) introduced by Noe (2020). Note
also that in all these instances where more selection harms, the noise distribution is asymmetric.
In effect, as shown below, this asymmetry is necessary for maximal selection to be harmful.

Minimal Selection. Theorem 1 has a symmetric counterpart for when the evaluator sees the low-
est rather than the highest draw. Minimal selection increases (decreases) welfare if and only if
the hazard function − log(1−F) is logconcave (logconvex). All results on maximal (as well as
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extreme) selection in the rest of the paper are also applicable to minimal selection, given that if
X1 6 · · · 6 Xn are the n lowest of k random draws from F(x|θ), then −X1 > · · · > −Xn are the n
highest of k random draws from F̃(x|θ) = 1−F(−x|θ).

Fundamental Asymmetry between Beneficial and Harmful Selection. For symmetric distribu-
tions logconcavity (logconvexity) of the hazard function is equivalent to logconcavity (logconvex-
ity) of the reverse hazard function. Thus, an immediate corollary of Theorem 1 is that with normal
or logistic noise an increase in presample size is beneficial under both maximal and minimal se-
lection.

But while more maximal and more minimal selection can both benefit, they cannot both harm.
To see why, observe that a random experiment is informationally equivalent to the following: (i)
two realizations are drawn; (ii) with equal chance the maximum or the minimum of the two is
selected; (iii) the evaluator sees the selected draw, without knowing whether it is the maximum or
the minimum. Now replace (iii) with (iii’) the evaluator sees the selected draw, knowing whether it
is the maximum or the minimum. If more maximal and more minimal selection were both harmful,
the evaluator would be better off with a random experiment than with (i)–(iii’). This is impossible,
because (i)–(iii’) give more information than (i)–(iii).

Paired with Theorem 1 the above argument proves that there exists no noise distribution whose
hazard function and reverse hazard function are both logconvex. In particular, in location experi-
ments with n = 1 and symmetrically distributed noise neither maximal nor minimal selection can
be harmful in every IDO problem.

Contribution to Stochastic Ordering of Order Statistics. The proof of Theorem 1 shows that
F <c FGum is necessary and sufficient for Fk to become less dispersed as k increases. This com-
plete characterization of the impact of maximal selection on dispersion of the highest order statistic
appears to be new to the literature on stochastic orders. The closest result we could find in the lit-
erature, Khaledi and Kochar’s (2000) Theorem 2.1, shows that if F has decreasing hazard rate
then Fk becomes more dispersed as k increases. This result follows as a corollary of our charac-
terization, given that F has decreasing hazard rate if and only if F is larger than the exponential
distribution in the convex transform order, and the exponential distribution is in turn larger than
the Gumbel distribution in this order.12

4.2 General Multidimensional Experiments

Extending our analysis to general (not necessarily location type) experiments with sample size
n > 1 poses a challenge. Since order statistics are correlated, we cannot recover the accuracy
ranking between selected experiments with (the same sample size n, but) different presample sizes
by individually comparing the order statistics in the two experiments. Our multidimensional no-
tion of accuracy allows us to characterize when the correlation structure in a maximally selected

12Since all distributions with logconcave densities have increasing hazard rate by Prekopa’s theorem, the only
distribution with logconcave density for which Khaledi and Kochar’s (2000) result applies is the exponential.
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experiment benefits or harms the evaluator as presample size increases.

Theorem 2. For fixed sample size n > 1, an increase in presample size increases (decreases)
welfare if the reverse hazard rate f (·|θ)/F(·|θ) is log-supermodular (log-submodular, with upper
bound of the support of f (·|θ) independent of θ ), that is, if for all states θ

′ > θ the ratio

f (·|θ ′)/F(·|θ ′)
f (·|θ)/F(·|θ)

is increasing (resp. decreasing).

As noticed by Noe (2020), with two states monotonicity of the reverse hazard ratio is equivalent
to geometric dominance.13

General Method of Proof. The method of proof of Theorem 2 is applicable beyond selected
experiments. Take any family X(t) with respective distributions G(t, ·|θ) and suppose that for all t
and θ the variables in X(t) are conditionally increasing in sequence (CIS, Veinott, 1965): for each
i > 1, conditioning on larger values of X<i(t) induces a first-order stochastic dominance increase
in Xi(t), that is, Gi(t,xi|θ ,x<i) decreases in x<i for all xi. Our method builds on two immediate
observations. The first observation is that a CIS family X(t) is ordered by accuracy if for all s < t
and θ

′ > θ , defining z = ϕθ (x) as in (3), we have

Gi(s,zi|θ ′, z<i)/Gi(t,xi |θ ′, x<i)> 1 for all i > 1 (4)

(the conditioning on x<i and z<i is vacuous when i = 1). To interpret, consider a simple hypothesis
testing problem where the evaluator either observes Xi(s) when already knowing that X<i(s) = z<i,
or observes Xi(t) when already knowing that X<i(t) = x<i. Suppose that the acceptance cutoff is
set at zi in the first experiment. Since X(s) and ϕθ (X(t)) have the same distribution in the low state
θ , setting the cutoff at xi in the second experiment gives as many false positives. By (4), cutoff xi

also gives fewer false negatives—rejection in the high state θ
′ is less likely.

Second, a sufficient condition for (4) is that for each i the ratio is (i) no smaller than one in the
limit as xi grows large and (ii) monotonically decreasing in xi. Continuing with the interpretation,
the cutoff zi reduces false negatives in the limit, and the reduction becomes relatively smaller as
the cutoff xi becomes larger. Applying the implicit function theorem to z = ϕθ (x), we can write
requirement (ii) more revealingly in terms of reverse hazard rates:

gi(s,zi|θ ′,z<i)/Gi(s,zi|θ ′,z<i)

gi(s,zi|θ ,z<i)/Gi(s,zi|θ ,z<i)
6

gi(t,xi|θ ′,x<i)/Gi(t,xi|θ ′,x<i)

gi(t,xi|θ ,x<i)/Gi(t,xi|θ ,x<i)
for all i > 1. (5)

Thus, (5) is a general sufficient condition for any CIS family to be ordered by accuracy. This
condition goes a long way in characterizing the impact of selection—maximal and otherwise.

13According to Noe’s (2020) Theorem 2, monotonicity of the reverse hazard ratio also characterizes when likelihood
ratio dominance (between X drawn from F(·|θ ′) and Y drawn from F(·|θ) with two states θ

′ > θ ) is preserved by
competitive selection (and thus holds also between X |X > Y and Y |Y > X). Remarkably, we find that the same
condition drives the sign of the impact of maximal selection on the welfare of an evaluator with IDO preferences.
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Sketch of Proof of Theorem 2. Recall from (2) that with presample size k the first observation
has distribution Fk(·|θ) and the ith has distribution Fk−i+1(·|θ) right-truncated at xi−1. Powers and
right-truncations only change the reverse hazard rate by a multiplicative constant. In particular, the
reverse hazard rate of the ith observation is k− i+1 times that of a random draw:

(k− i+1)Fk−i(·|θ) f (·|θ)/Fk−i+1(·|θ) = (k− i+1) f (·|θ)/F(·|θ).

Taking the ratio between reverse hazard rates at different states, the constant disappears. In other
words, when X(t) and X(s) are selected experiments with presample sizes kt > ks condition (5)
depends on t and s only through z, and (5) is simply log-supermodularity of f (·|θ)/F(·|θ), because
kt > ks implies z 5 x. Order statistics are CIS, so (5) can in fact be used.14

Positive Exponential Distribution: Neutrality of Maximal Selection. Positive-exponentially
distributed observations, F(x|θ) = eθx for x 6 0 (and θ > 0), are neutral to selection, analogous
to Gumbel noise for location experiments. The reverse hazard rate is log-modular in this case,
because f (x|θ)/F(x|θ) = θ is independent of x. Moreover, the upper bound of the support of
f (·|θ) is x = 0 independently of θ . Thus, by Theorem 2, selection has no impact on welfare.

Connection to Theorem 1. In location experiments, log-supermodularity of the reverse hazard
rate is equivalent to logconcavity of the noise reverse hazard rate. Moreover, the upper bound of
the support of f (·|θ) is independent of θ if and only if it is infinite. Thus, we have:

Corollary 1. For fixed sample size n > 1, an increase in presample size increases (decreases) wel-
fare in a location experiment if the noise distribution’s reverse hazard rate f (·)/F(·) is logconcave
(logconvex, with support of f unbounded above).

Appendix B.2 shows that the hypotheses in Corollary 1, logconcavity or logconvexity of the
reverse hazard rate, are stronger than the corresponding conditions in Theorem 1, yet the corollary
applies to all examples discussed earlier. As before, the Gumbel distribution is sandwiched be-
tween the noise distributions for which more selection benefits and those for which more selection
harms: f (ε)/F(ε) = exp(−ε) is loglinear. More selection benefits with normal or logistic noise
and harms with exponential or shifted Gompertz noise.

4.3 Extreme Selection

Complementing the monotone comparative statics results derived so far, we now analyze extreme
selection, where presample size grows unbounded. The main result here, Theorem 3, characterizes
the corresponding limit welfare. For simplicity, we restrict attention to location experiments.

Our analysis draws on the fundamental result in extreme value theory, which characterizes the
limit distribution of the maximum of k i.i.d. random variables, properly normalized for location and

14Karlin and Rinott (1980) prove that order statistics are multivariate totally positive of order 2. This notion of
positive dependence among random variables, known in economics as affiliation (Milgrom and Weber, 1982), is
stronger than CIS, as shown in Barlow and Proschan (1975).
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scale inflation. Take a noise distribution F and suppose that, for some nondegenerate distribution
F̄ and some sequence of numbers αk > 0 and β k, for every continuity point ε of F̄ we have

Fk(
β k +αkε

)
→ F̄(ε) as k→ ∞.

The fundamental result of extreme value theory says that F̄ must be Gumbel, Extreme Weibull or
Frechet—see e.g. Leadbetter, Lindgren, and Rootzén (1983) for a primer. Our maintained assump-
tion that F has a logconcave density f implies that F̄ is, in fact, either Gumbel or Extreme Weibull,
and always Gumbel if the support of f is unbounded above (Müller and Rufibach, 2008).

Characterization of Limit Welfare. A larger presample induces a first-order stochastic domi-
nance increase in the noise distribution, hence the location normalization sequence β k is growing.
But the evaluator adjusts for any such inflation without effect on welfare. The limit impact of se-
lection therefore hinges on the behavior of the scale normalization sequence αk. If this sequence
converges to zero, noise becomes more and more concentrated around β k and the evaluator per-
fectly learns the state. If instead αk converges to a number α > 0, then an extremely selected
experiment is welfare-equivalent to a random experiment based on F̄(·/α). The limit behavior of
the sequence αk is in turn governed by the limit behavior of the noise distribution’s hazard rate.

Theorem 3. (a) For fixed sample size n > 1, as presample size grows without bound welfare
converges to the full information payoff if and only if the noise distribution has unbounded hazard
rate, that is, letting ε̄ ∈ (−∞,∞] denote the upper bound of the support of f ,

lim
ε→ε̄

f (ε)
1−F(ε)

= ∞. (UHR)

(b) If UHR does not hold (so that, in particular, ε̄ = ∞) then, letting α = limε→ε̄ [1−F(ε)]/ f (ε),
the limit welfare is the welfare from an experiment with noise density

(1/α)exp
[
− exp(−εn/α)− ε1/α−·· ·− εn/α

]
. (6)

In particular, with n = 1, the limit welfare is the welfare from an experiment with Gumbel noise
FGum(·/α) = exp(−exp(−ε/α)).

Pairing this result with Theorem 1, there is monotonic convergence to full information when
noise has logconcave reverse hazard function and satisfies UHR. The hypotheses in Theorems 1
and 3 are overlapping but distinct. For example, UHR holds for normal but not for logistic noise.
Moreover, UHR covers many distributions without logconcave reverse hazard function. First,
UHR holds for all distributions with logconcave density and bounded-above support, e.g. all beta
distributions with logconcave density, including uniform. Second, with unbounded-above support,
beyond normal (or left-truncated normal, which has the same right tail), UHR holds also for all
distributions in the exponential power family f (ε) = [γ/Γ(1/γ)]exp(−|ε|γ) with shape parameter
γ > 1. Strikingly, the Laplace (γ = 1), with exponential right tail, is the only member of this family
with logconcave density for which αk 6→ 0. In this family, the negative impact of selection with
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exponential noise is not robust to extreme selection—an arbitrarily close distribution reverses the
conclusion.

UHR and Unbounded Informativeness. The contribution of Theorem 3 is twofold. First, at a
qualitative level, the result identifies UHR as the necessary and sufficient condition to have full
information under extreme selection. A related notion of unbounded informativeness of a real-
valued signal, familiar in the economics literature since Milgrom (1979), is the following:

sup
x

f (x|θ ′)
f (x|θ)

= ∞ for all θ
′ > θ . (7)

In a location experiment satisfying MLR, which is our setup here, the two notions coincide. To
see this, note that, when f (x|θ) = f (x− θ) and MLR holds, (7) can be also written as follows:
limε→ε̄ f (ε)/ f (ε +c) = ∞ for all c > 0. Clearly, every f with support bounded above satisfies this
condition and, as we have already remarked, UHR. If instead the support is unbounded above, then
the condition limε→ε f (ε)/ f (ε+c)=∞ for all c> 0 is in turn equivalent to− limε→ε̄ f ′(ε)/ f (ε)=
limε→ε̄ f (ε)/[1−F(ε)] = ∞, which is again UHR. The equivalence between UHR and (7) sheds
light on the role of UHR in Theorem 3. Extreme selection pushes the signal toward its upper
bound, and by MLR this is precisely where the signal is arbitrarily precise in identifying the state.

Second, Theorem 3 precisely quantifies the information contained in an extremely selected
sample, also when that information is not full. In a unidimensional experiment the evaluator wel-
fare approaches the level corresponding to a Gumbel experiment with scale parameter (propor-
tional to variance) equal to α , the inverse of the limit hazard rate. More generally, the distribution
in (6) with the same scale parameter α quantifies the limit welfare for any n > 1. This novel result
showcases the power of extreme value theory.

5 Application to Strategic Settings

5.1 Information Aggregation in Auctions

Our characterization of the welfare impact of maximal selection abstracted away from the mecha-
nism generating the data. Market competition for scarce resources naturally results in maximally
selected outcomes—winning bids in an auction are the highest. Through a direct application of
our results, this section characterizes when competition monotonically increases or decreases the
amount of information contained in the winning bids.

Consider k symmetric unit-demand bidders competing in an auction for n < k identical objects.
Bidder i values an object vk,i(θ ,X1, . . . ,Xk) = vk(θ ,Xi,{X j} j 6=i), where vk is a nonnegative, contin-
uous and increasing function, θ a common taste shifter, and Xi bidder i’s private signal. Bidders
have a common prior π(θ) and conditional on θ their signals X1, . . . ,Xk are i.i.d. draws from a
distribution F(·|θ) with MLR density f (·|θ). The auction is either discriminatory, with each of
the n highest bidders receiving an object at a price equal to the submitted bid, or uniform-price,
with each of the n highest bidders receiving an object for a price equal to the highest rejected bid.
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MLR implies that θ ,X1, . . . ,Xk are affiliated random variables (Milgrom and Weber, 1982). Thus,
as shown by Milgrom and Weber (2000), in a symmetric equilibrium of either auction each bidder i
bids according to a continuously differentiable, strictly increasing function bn,k(·).

Taking the point of view of an outside observer who has preferences in the IDO class and
observes only the winning bids, we ask whether the extent of competition, namely k, has a ben-
eficial or harmful impact on the observer welfare. Let B1,k > · · · > Bn,k denote the winning bids.
Since bn,k(·) is strictly increasing, the bidder with the ith highest signal submits the ith highest
bid—letting Xi,k denote the ith highest signal, we have Bi,k = bn,k(Xi,k) for all 1 6 i 6 k. This im-
plies that the experiments (B1,k, . . . ,Bn,k) and (X1,k, . . . ,Xn,k) are informationally equivalent. The
following result is therefore an immediate implication of Theorems 0, 2 and 3.

Proposition 1. (a) If the reverse hazard rate f (·|θ)/F(·|θ) is log-supermodular (log-submodular,
with support of f (·|θ) independent of θ ) then competition increases (decreases) the accuracy of
the winning bids and hence increases (decreases) the observer welfare. (b) Assuming F(x|θ) =
F(x−θ), (i) information is full in the limit k→ ∞ if and only if UHR holds; (ii) if UHR fails, the
observer limit welfare is the welfare from an experiment with noise density (6).

The aggregation of private information by an auction mechanism as the number of bidders
grows unbounded, first studied in Wilson’s (1977) seminal paper, was analyzed by Milgrom (1979)
in a model similar to ours.15 Assuming a single object (n= 1) and a pure common value vk(θ , ·, ·)=
θ drawn from an ordered and nowhere-dense set, Milgrom (1979, Theorem 2) shows that un-
bounded informativeness (7) is necessary and sufficient to have full information in the perfectly
competitive limit k→ ∞. Recalling that UHR is equivalent to (7), Proposition 1.b.i restates Mil-
grom’s result, modulo the slightly different setup. The novel Proposition 1.b.ii quantifies the infor-
mation value of perfect competition when UHR fails.

Beyond the limit case, in the auction literature nothing was known about the impact of solic-
iting an additional bidder on the information contained in the winning bids. Proposition 1.a gives
broadly applicable conditions under which competition monotonically improves or worsens the
information contained in the winning bids. First, our result characterizes when information, while
not full in the limit, does improve with competition. Besides location signals with logconcave
reverse hazard rate and bounded hazard rate (e.g. logistic noise), an example is with signals drawn
from a positive exponential distribution F(x|θ) = eθx (for θ > 0 and x 6 0). This is precisely
Wilson’s (1977) example of a case where information is not full in the limit. But it is notably not
an instance where competition worsens information—recall that in this case maximal selection has
no impact on welfare.

Second, while failure of convergence to full information is a possibility already contemplated
(and characterized) in Milgrom (1979), whether competition could actually worsen information
was not known. A natural conjecture could have been that even when information is not full

15Milgrom’s (1979) model is identical to our unidimensional (n = 1) model, apart from the fact that he assumes a
nowhere-dense Θ and does not restrict signals to obey MLR or even be real-valued. The two models become identical
if (in his model) we impose the MLR property on f (·|θ) and (in our model) we assume that Θ is finite.
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in the limit, competition would still tend to improve information. Proposition 1 shows that in
non-pathological cases the opposite is true: under logconvexity of the reverse hazard rate (e.g. lo-
cation type signals with exponential or shifted Gompertz noise) more competition monotonically
decreases the amount of information contained in the winning bids.

Finally, we show that our limit result for uniform-price auctions remains true if instead of
assuming that the observer sees the winning bids we assume that the observer sees the price paid
by the winning bidders, namely the (n+ 1)-highest bid Bn+1,k = bn,k(Xn+1,k). Leadbetter et al.
(1983, Theorem 2.2.2) show that if a pair of sequences β k and αk > 0 makes (X1,k − β k)/αk

converge weakly to a nondegenerate random variable, then the same pair of sequences makes
(Xn+1,k− β k)/αk converge weakly to a nondegenerate random variable. In particular, the limit
distributions of the highest and (n + 1)-highest order statistics, while different, have the same
scale. Thus, by the arguments we used to prove Theorem 3 and the limit result in Proposition 1,
experiment Bn+1,k becomes arbitrarily informative as k→ ∞ if and only if UHR holds.

5.2 Delegated Selection

In the auction setup maximal selection arises from competition among strategic bidders who have
no interest in the decision made by the outside observer. Now we turn to strategic situations in
which the sample data provider cares about the action taken by the evaluator. Maximal selection
results when the sender has an incentive to steer higher actions.

Delegated Selection Game. A strategic sender, privately informed about presample data, is tasked
with sample selection. Taking sample size n and presample size k as given for now, consider the
following delegated selection game. First, the sender privately observes k random draws from
F(·|θ) and chooses a subset of n draws. Second, the evaluator observes the selected draws and
acts. The evaluator has IDO preferences and in every state the payoff of the sender is strictly
increasing in the action of the evaluator. The following observation is immediate.

Proposition 0. For all n and k > n there is a Bayes Nash equilibrium in which for every realization
of the k draws the sender selects the n largest draws, and the evaluator follows the optimal strategy
for the maximally selected experiment with sample size n and presample size k.

We use Bayes Nash equilibrium because the sender has private information. The result follows,
as maximal selection is a best response for the sender to any monotone strategy of the evaluator,
and likewise an evaluator’s best response is monotone by MLR. Note that the equilibrium in the
proposition is not eliminated by refinements, since no report can contradict maximal selection.

Our game constrains the sender to report precisely n data points. If instead the sender is un-
constrained, unraveling occurs in equilibrium, as it is well known in the literature on strategic
disclosure at least since Grossman (1981) and Milgrom (1981). When presample realizations are
such that the action induced by submitting the full presample is larger than every action the sender
can induce by submitting less than k data points, the sender has a strict incentive to disclose the
whole presample. Thus, in the unconstrained game the evaluator behaves as if the entire presample
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were disclosed. However, once sample and presample size are costly and endogenous, Proposi-
tion 4 below shows that even when the sender cannot commit to disclose less than n data points,
the evaluator can value commitment not to look at more than a set sample size.

Examinee Choice. The procedure of agrégation used in France to screen candidates for high
school and university professor positions works as follows: “Candidates draw randomly a couple
of subjects. The candidate is free to choose the subject which pleases him among these two, the
one in which he feels best able to show and highlight his knowledge. He does not have to justify or
comment on his choice.”16 This “give me your best shot” type procedure is commonly adopted in
many other contexts. For example, first-year microeconomics exams at Bocconi require students
to pick and answer only four out of five or two out of three questions presented in the exam.

Consider an examiner who must assign a grade a ∈ A to a candidate of unknown ability θ ∈Θ

after testing the candidate with a number of questions. From the ex ante perspective of the exam-
iner, the performance in any given question is a random variable with distribution F(·|θ), inde-
pendent across questions. Once presented with any question, the candidate perfectly anticipates
the performance in that question, an assumption relaxed in Section 6.3. Assuming that time allows
a test with n questions, should the examiner ask n questions at random or require the candidate
to select n questions from a larger set of k > n questions?17 Combining Proposition 0 with The-
orem 2, we can immediately conclude that examinee choice improves or worsens the quality of
testing depending on log-supermodularity or log-submodularity of f (·|θ)/F(·|θ).

Researcher Bias in Potential Outcomes Framework. Consider a population of individuals and
two alternative treatments—a default, known treatment 0 and a new treatment 1 whose benefit be-
yond the default is unknown. Following Neyman (1923) and Rubin (1974, 1978), let Xt,i denote the
potential outcome of individual i when receiving treatment t ∈ {0,1}. For simplicity, assume for
now that the treatment effect X1,i−X0,i is homogeneous across the population—Section 6 provides
results that can be used to accommodate a more general case. Potential outcomes of individual i
are X0,i = ε i and X1,i = θ + ε i, with ε i drawn from a known F with logconcave density f .

Enter a researcher, who runs a controlled trial with n treated and n untreated individuals,
denoted 1, . . . ,n and n+ 1, . . . ,2n, respectively. Thus, the evaluator observes X1,i = θ + ε i for
i = 1, . . . ,n and X0,i = ε i for i = n+ 1, . . . ,2n. If sample selection and treatment assignment are
random (subject to the equal group size constraint) then ε1, . . . ,ε2n are random draws from F .
Since F is known, the control group adds no information, and the experiment boils down to the
treatment group—a random experiment with sample size n. Suppose instead that the researcher
knows the outcome of treatment 0 for k > 2n individuals, and on this basis (i) selects 2n individu-
als for the experiment and (ii) assigns n individuals to each treatment. An immediate extension of
Proposition 0 gives an equilibrium in which the researcher assigns the individuals with the highest

16Source: Ministère de l’Éducation nationale et de la Jeunesse, https://agreg.org/data/uploads/
rapports/rapport2019.pdf

17Wainer and Thissen (1994) emphasize that it is challenging for examiners to formulate questions of similar ex
ante difficulty. Our assumption that performance is i.i.d. across questions assumes away this effect.
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value of X0 to treatment 1 and those with the lowest value of X0 to treatment 0. Thus, ε1, . . . ,εn

and εn+1, . . . ,ε2n are respectively the n largest and the n smallest of k random draws from F .
How do the two scenarios compare? By Corollary 1, under logconcavity of f/F selection ben-

efits the evaluator directly—the treatment group alone is already more informative, and the control
group can only add information. But it also benefits indirectly. The control group does add infor-
mation under selection, because the untreated outcomes of the untreated individuals, εn+1, . . . ,ε2n,
are correlated with and hence informative about the counterfactual untreated outcomes of the
treated, ε1, . . . ,εn. When f/F is logconvex, the impact of selection is instead ambiguous: the
treatment group alone is less informative than the random experiment, but this negative effect is
partly balanced by the fact that the evaluator observes the control group.

5.3 Experiment Design

In many situations the evaluator has direct or indirect control over both sample and presample size.
Realistically, presampling and sampling each involve a cost in our three leading applications. First,
besides paying for soliciting bids the outside observer of an auction might have to compensate win-
ning bidders unwilling to disclose their bids. Second, for an examiner both preparing and grading
questions consume time and resources. Third, in the application to persuasion through data, the
researcher bears cost for presample collection, and the evaluator spends time and cognitive effort
to receive, verify, and analyze the sample selected by the researcher. Our results characterize when
the evaluator can strategically leverage selection to increase the informativeness of an experiment
and save on sampling cost.

Optimal Presampling. Suppose the evaluator can set both sample size n and presample size k at
increasing costs CS(n) and CP(k), respectively. Let U(k,n) denote the evaluator optimal expected
(gross) payoff in the experiment with presample size k and sample size n. An optimal experiment
format is a pair (k,n) maximizing U(k,n)−CP(k)−CS(n).

Clearly, U(k,n) increases in n and increases or decreases in k according to Theorems 1 and
2 (paired with Proposition 0 if selection is delegated). Thus, if selection harms then the optimal
format features no selection. If selection benefits, the evaluator values sample size but also values
sample selection: n and k are two goods. For a stark example, consider a location experiment
with positive exponential noise. In this case the posterior belief about the state only depends
on the largest observed realization, which for fixed k does not depend on n. As a consequence,
U(k,n) =U(k,1) for every k and n 6 k, hence at the optimum n = 1 and k solves maxk>1[U(k,1)−
CS(1)−CP(k)].

In general, the exact trade-off depends on the specific cost functions and family F(·|θ) under
consideration. But when selection is beneficial and presampling costs are sufficiently small the
evaluator can always exploit selection to economize on sample size. Theorem 3 allows us to push
this intuition further when presampling costs are very small and UHR holds.

Proposition 2. Assume that CS(n) is unbounded and F(x|θ) = F(x−θ) satisfies UHR. There exist
c > 0 and k̄ > 1 such that if CP(k̄)6 c then every optimal format (k,n) is such that k > n.
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The proof of the proposition is based on a simple continuity argument. By the assumption on
sampling costs, the design problem under constraint k = n has an optimal solution (n̄, n̄), and by
Theorem 3 we can choose k sufficiently large that (k,1) gives higher (gross) payoff than (n̄, n̄).

Delegated Presampling. In some strategic settings the evaluator has limited control over presam-
ple size. For example, data collection could be delegated to a biased researcher who can costly
increase the presample size. Presample size would then naturally be unobserved by the evalua-
tor. As we shall see, much of the intuition from optimal presampling carries over to this scenario,
although the evaluator now faces a more delicate trade-off.

Suppose that the evaluator sets the sample size n at cost CS(n) but can only decide whether to
allow selection. By not allowing selection the evaluator obtains U(n,n)−CS(n). Otherwise, the
following delegated presampling game is played. First, the sender privately chooses a presample
size k > n at cost CP(k). Second, the evaluator observes a maximally selected experiment with
sample size n and presample size k and acts. As before, the evaluator has IDO preferences, while
the sender’s (gross) payoff is strictly increasing in the action of the evaluator.

Proposition 3. Assume CS(n) is unbounded and F(x|θ) = F(x− θ) satisfies UHR. There exist
c > 0 and k̄ > 1 such that if CP(k̄) 6 c then in every Bayes Nash equilibrium of the delegated
presampling game with n = 1 the evaluator obtains a higher payoff than by setting any sample size
n > 1 and not allowing selection.

We use Bayes Nash equilibrium here, too, because the choice of k is unobserved. The proof of
Proposition 3 is similar to that of Proposition 2. Given any sample size n, the sender has an incen-
tive to increase k, because this choice is unobserved. But, in equilibrium, the evaluator correctly
anticipates this incentive. Thus, from the perspective of the sender the additional presampling
costs are partly wasted.18 As presample costs become very small, the sender sets an arbitrarily
large presample size, which by UHR benefits the evaluator even when n = 1. Thus, by delegating
presampling the evaluator saves on sampling costs, effectively passing the cost of information to
the sender. Besides proving the proposition, Appendix B.3 shows that an equilibrium always exists
if we allow presample size to be any real number k and CP(k) is convex.

Blocking Unraveling. Finally, can the evaluator benefit by fully delegating the experiment to the
sender? In a full delegation game, the sender either privately or publicly chooses k > 1 at cost
CP(k), observes a presample of k draws, and selects from the presample a sample of any size
n ∈ {1, . . . ,k}. The evaluator pays CS(n), observes the n selected draws, and acts. In an unraveling
Bayesian equilibrium of a full delegation game, the evaluator behaves as if the sender discloses the
whole presample.

Proposition 4. Assume that CS(n) is strictly increasing, CP(k) is convex and unbounded, and
F(x|θ) = F(x−θ) satisfies UHR. There exist c > 0 and k̄ > 1 such that if CP(k̄)6 c then in every

18With Gumbel noise presampling is pure waste. Selection only shifts the noise distribution by a constant, so the
equilibrium distribution over states and actions and hence both parties’ gross payoff are the same as in the random
experiment with equal sample size. Since inference is neutral to selection, presampling costs are completely wasted.
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Bayes Nash equilibrium of the delegated presampling game with n = 1 the evaluator obtains a
higher payoff than in every unraveling equilibrium of the full delegation game.

The logic of the result is similar to Proposition 3. In an unraveling equilibrium the evaluator
gets to see the entire presample—a random experiment, but this time a random experiment with
sample size chosen by the sender. Due to the sender’s lack of commitment not to disclose all data,
in the full delegation game the evaluator ends up bearing a possibly large sample cost. Thus, the
evaluator values commitment to receive only a limited amount of data. When presampling costs
are sufficiently small, committing to a fixed sample size strengthens the sender incentive to collect
enough presample data. It is therefore optimal for the evaluator to block unraveling. The evaluator
does not get to see the entire presample, but this is better than seeing a whole but more expensive
and possibly smaller presample.

Contribution to Literature on Strategic Data Selection. Blackwell and Hodges (1957) analyzed
how an evaluator should optimally design a sequential experiment to minimize selection bias,
a term they coined to represent the fraction of times a strategic researcher is able to correctly
forecast the treatment assignment. Without modeling the information available to the researcher at
the assignment stage, they posited that selection harms the evaluator—our analysis challenges this
presumption.

In a complementary approach, Chassang, Padró i Miquel, and Snowberg (2012) characterize
the design of experiments when outcomes are affected by unobserved actions by experimental
subjects, rather than researchers. Kasy (2016) shows how deterministic assignment rules improve
inference over randomization conditional on covariates. Tetenov (2016) analyzes an evaluator’s
optimal commitment to a decision rule when privately informed researchers select into costly
testing. Banerjee, Chassang, Monteiro, and Snowberg (2020) analyze experiment design by an
ambiguity-averse researcher facing an adversarial evaluator.

More closely, our work relates to the literature on voluntary disclosure and the welfare compar-
ison to mandatory disclosure; see Matthews and Postlewaite (1985), Dahm, Gonzàlez, and Porteiro
(2009), Henry (2009), Polinsky and Shavell (2012), Felgenhauer and Schulte (2014), Henry and
Ottaviani (2019), and Herresthal (2017). In the earliest precursor to our modeling approach, Fish-
man and Hagerty (1990) analyze selective disclosure in a setting with two states, binary signals,
and sample size n = 1.19 The implications we derive for the design of selected experiments hinge
on our novel characterization of the impact of hidden data on the informativeness of the disclosed
evidence.

19Di Tillio, Ottaviani, and Sørensen (2017) compare different types of selection in the potential outcome framework
for an illustrative model with binary noise (violating the logconcavity assumption maintained in this paper). Hoffmann,
Inderst, and Ottaviani (forthcoming) analyze selective disclosure of a single realization of a continuous variable when
the evaluator payoff is equal to the sum of two i.i.d. realizations from the same variable (and thus the state is two-
dimensional, rather than one-dimensional as in the model considered here).
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6 Other Forms of Selection

Maximal (or minimal) selection is but one instance of lack of randomness in a statistical sample.
In this section we discuss other forms of selection.

6.1 Truncation

One type of selection that is often relevant involves independent observations from a truncated
distribution. Here we review this kind of selection and contrast it with the form of selection
analyzed earlier. Given a random variable X with distribution F(·|θ) and density f (·|θ) satisfying
MLR, and given two truncation points −∞ 6 a < b < ∞, define the left-truncated variables Ya :=
X |X > a and Yb := X |X > b. Similarly, define the right-truncated variables Wa := X |X 6 a and
Wb := X |X 6 b. By variants of the arguments used in the proof of Theorem 2, we obtain:

Theorem 4. If the hazard rate f (x|θ)/[1−F(x|θ)] is log-supermodular, then more left-truncation
decreases welfare: U(Yb)6U(Ya). If the reverse hazard rate f (x|θ)/F(x|θ) is log-supermodular,
then more right-truncation decreases welfare: U(Wa)6U(Wb).

Goel and DeGroot (1992) proved Theorem 4 for UHR distributions and monotone preferences.
Their proof relies on UHR, which our different proof strategy shows to be inessential. Our result
also applies more generally to IDO preferences. Meyer (2017) proves a related result and applies
it to the comparison of the performance of sequential and simultaneous assignment protocols.

Theorem 4 compares unidimensional experiments. The extension to an arbitrary number of
independent observations, with exogenous and possibly observation-specific truncation points, is
immediate. This is because combining more accurate mutually independent experiments results in
a more accurate experiment: if two families X(t) and X ′(t) are both ordered by accuracy and X(t)
is independent of X ′(t) for every t, then (X(t),X ′(t)) is also ordered by accuracy.

Truncation vs Maximal and Minimal Selection. Like maximal selection, left-truncation moves
probability mass toward the upper tail of the distribution. Similarly, minimal selection as well as
right truncation move mass toward the lower tail. However, Theorem 4 shows that in terms of
welfare the right analogy to make is different. More right-truncation (from Wb to Wa) harms when
the reverse hazard rate is log-supermodular, so its effect is analogous to less maximal selection
(Theorem 1). Similarly, more left-truncation (from Ya to Yb) harms when the hazard rate is log-
supermodular, so its impact is analogous to less minimal selection. The welfare consequences
are strikingly different. With normal or logistic noise, hazard rate and reverse hazard rate are
both logconcave, so both more maximal and more minimal selection are beneficial (Corollary 1).
However, more truncation harms both ways: Yb and Wa are respectively worse than Ya and Wb.

6.2 Median Selection

Finally, we extend our analysis of selection in a new direction, considering central rather than
maximal or minimal selection. Call median selected an experiment with sample size n = 1 where
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the evaluator observes the r th highest of k random draws from a distribution F(·|θ), where k is
odd and r = (k+1)/2. This is the random variable with cumulative distribution function given by

F̂(·|θ) =
k

∑
i=r

(
k
i

)
F i(·|θ)[1−F(·|θ)]k−i.

Theorem 5. (a) If the hazard rate f (·|θ)/[1−F(·|θ)] and the reverse hazard rate f (·|θ)/F(·|θ)
are both log-supermodular, then median selection increases welfare over a random experiment in
every monotone problem. (b) A random experiment cannot increase welfare over a median selected
experiment in every simple hypothesis testing problem.

Thus, median selection is beneficial when both maximal and minimal selection are beneficial.
But without any assumptions on the hazard rates (other than MLR, assumed throughout) a random
experiment cannot be more accurate than a median selected experiment—another manifestation of
the fundamental asymmetry between beneficial and harmful selection highlighted earlier.

Peremptory Challenge. The common-law right of peremptory challenge allows the attorneys on
each side of a trial to reject a certain number of jurors. Consider a judge who must order a sentence
based on the opinion of one juror. The judge knows that conditional on the defendant’s level of
guilt θ the jurors’ estimates are independently distributed according to F(·|θ).20 The prosecuting
attorney—desiring the judge to take higher actions—and the defense attorney—desiring the judge
to take smaller actions—have the right to strike down (k− 1)/2 jurors each from an initial set of
k jurors. Both attorneys anticipate each juror’s opinion of the defendant’s level of guilt. Proposi-
tion 0 immediately generalizes to this two-sender setup: as long as the judge adopts a monotone
strategy, the prosecuting attorney will strike down the (k− 1)/2 jurors with the lower opinions,
while the defense attorney will strike down the (k− 1)/2 jurors with the higher opinions. This
immediately follows from the fact that, given any strategy of the defense (prosecuting) attorney,
by eliminating the jurors with the highest (lowest) opinions the prosecuting (defense) attorney
induces a first-order stochastic dominance increase (decrease) in the realization observed by the
judge. Thus, peremptory challenge leads the judge to decide based on the opinion of the median
juror. Theorem 5 provides a prior-free criterion to assess whether peremptory challenge provides
the judge with more accurate information, relative to a randomly chosen juror.

20There are few formal analyses of peremptory challenge in law and economics. Flanagan (2015) discusses how
peremptory challenges necessarily increase the probability of biased juries or affect the expected conviction rate.
Schwartz and Schwartz (1996) use a spatial model to highlight the role of peremptory challenge in eliminating jurors
with extreme preferences. Earlier analyses of peremptory challenge appear in Brams and Davis (1978) and in Roth,
Kadane, and Degroot (1977) and Degroot and Kadane (1980), who analyze optimal strategies for sequential processes
of elimination. In all these models, jurors’ opinions are uncorrelated with and hence uninformative about guilt, that is,
in the language of this paper, F(·|θ) does not depend on θ .
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6.3 Noisy Selection

The results obtained so far assume that selection occurs directly on the variable observed by the
evaluator. In some applications it is natural to consider also a more general setup, where selec-
tion operates indirectly through a concomitant variable unobserved by the evaluator. Focusing on
location experiments, here we assume the evaluator observes Xi = θ + ε i but selection occurs on
the concomitant variable Yi = θ + δ i. Thus, the evaluator observes Xi when Yi ranks among the n
highest in a presample of k units—for concreteness, imagine the evaluator observing the weight of
the n tallest in a group of k > n individuals.

In order to investigate the impact of selection in this more general setup, we must specify a
model relating the concomitant noise terms δ i and the noise terms ε i. We posit a linear model
ε i = cδ i + γ i with c > 0 and we assume that δ 1, . . . ,δ k are i.i.d. draws from Fδ , while the added
noise terms γ1, . . . ,γk are independent of δ 1, . . . ,δ k and identically (not necessarily independently)
drawn from Fγ . Note that if c = 0 then Xi depends on Yi only through θ and hence selection is
clearly irrelevant—the further dependence added through noise (c 6= 0) is necessary for selection
to have impact.21 With c = 1 and Fγ degenerate at γ = 0 we recover our baseline setup.

Unidimensional Experiments. The conclusion of Theorem 1 extends seamlessly. If the added
noise density is logconcave, maximal selection benefits or harms under the same conditions, ap-
plied to the concomitant noise distribution.

Proposition 5. Assume that the added noise distribution Fγ has a logconcave density. Fixing
sample size to n= 1, an increase in presample size increases (decreases) welfare if the concomitant
noise reverse hazard function − logFδ (·) is logconcave (logconvex).

The proof of the proposition exploits the equivalence between accuracy and dispersion in uni-
dimensional location experiments (Lehmann, 1988). As shown in the proof of Theorem 1, when
− logFδ (·) is logconcave (logconvex) a larger presample size reduces (increases) dispersion in the
location experiment with noise distribution Fδ . The dispersive order is closed under multiplication
by a constant and convolution with an independent variable having a logconcave density (Lewis
and Thompson, 1981). Since the added noise is independent of concomitant noise and identically
distributed across the presample, a larger presample size will also reduce (increase) dispersion in
the experiment actually observed by the evaluator.

Multidimensional Experiments. Extending the conclusion of Corollary 1 is considerably more
complicated. Even though the noise terms γ1, . . . ,γk are identically distributed, their variation can
make the sample units’ ranking in terms of δ values different from their ranking in terms of ε

values—an issue that cannot arise in a unidimensional experiment. Assuming a presample-wide
common value γ1 = · · ·= γk eliminates this variation, allowing us to extend Corollary 1.

21The assumption c > 0 is without loss; the case c < 0 is covered by redefining δ i to be −δ i, with distribution
1−Fδ (−δ i).
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Proposition 6. Assume the added noise distribution Fγ has a logconcave density and γ1 = · · ·= γk.
For fixed sample size n > 1, an increase in presample size increases (decreases) welfare if the
concomitant noise distribution’s reverse hazard rate fδ (·)/Fδ (·) is logconcave (logconvex, with
support of fδ unbounded above).

The proof of this result is based on a simple intuition. No matter how large n or k are, or how
little the dispersion of Fδ is, all the evaluator can hope to learn about is θ + γ1 rather than θ . Con-
sidering the auxiliary problem where the state is θ + γ1, the conditions in the theorem characterize
when a more selected experiment is more or less informative in that problem (Corollary 1, plus the
fact that the reverse hazard rate of a linear transformation of a random variable with logconcave
reverse hazard rate is again logconcave). Since Fγ has a logconcave density, the state θ + γ1 in
the auxiliary problem is in turn informative about the state θ in the original problem, so the same
conditions characterize the impact of selection in the original model, too.

Noisy Delegated Selection. Proposition 0 also extends to the setup of this section. Consider the
noisy delegated selection game: the sender privately observes Yi = θ +δ i for each unit i in a set of
k units and on this basis selects n units; the evaluator observes Xi = θ + ε i = θ + cδ + γ i for each
selected unit and takes an action. Assuming that γ i has a logconcave density, in this game there
is a Bayes Nash equilibrium in which the sender selects the n units with the largest Y values, and
the evaluator’s strategy is monotone in the observed X values. Maximal selection on Y is in turn
a best response for the sender—compared to any other strategy, it induces a first-order stochastic
dominance increase in the X values observed by the evaluator.

Examinee Choice and Researcher Bias with Noise. Pushing our strategic applications in a nat-
ural direction, the results in this section cover realistic cases in which sender and evaluator have
asymmetric information: the sender observes (and selects sample units based on) a variable Y , the
evaluator observes X for the selected units. To illustrate this extension in the examinee choice
setting, suppose that if candidate ability is θ then, ex ante, examiner and candidate view the per-
formance in any given question i as normal random variables Xi = θ +εe,i and Yi = θ +δ i, respec-
tively. Let σ2

ε and σ2
δ

denote the variances of ε i and δ i, and ρ their correlation coefficient. Letting
c = ρσ ε/σδ denote the coefficient of the regression of ε on δ , and γ i = ε i−cδ i the corresponding
error term (which is orthogonal to δ i), we have ε i = cδ i + γ i, as posited in our model. Note that
while we call γ i an added noise term, the precision of the evaluator observations also depends on
c. In the examinee choice example, suppose Xi and Yi are imperfect signals of the candidate true
performance Zi = θ +η i so that ε i = η i + ε̃ i and δ i = η i + δ̃ i. The candidate observes the true
performance more or less well than the evaluator according to whether c < ρ or c > ρ .

Noisy Median Selection. Suppose that the evaluator observes Xi for the unit i with the rth highest
value of Y in a presample of k = 2r+ 1 units. By the arguments in the proof of Theorem 5 and
again by Lewis and Thompson’s (1981) result, this experiment improves welfare over a random
experiment when the concomitant noise has both a logconcave hazard rate fδ (·)/[1−Fδ (·)] and
a logconcave reverse hazard rate fδ (·)/Fδ (·). Thus, Theorem 5 also generalizes (for location
type signals) to the model of this section. This result covers, for example, peremptory challenge
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scenarios in which lawyers have private information about juror bias but are less or more informed
than the judge about how the juror will vote.

6.4 Uncertain Selection and Beyond

Our analysis assumes that the evaluator knows the presample size. In more realistic scenarios the
evaluator may be uncertain about presample size or even fail to anticipate any selection.

Uncertain Selection. In some settings, assuming the evaluator is uncertain about presample size k
may be natural. For instance, uncertainty arises with strategic sample selection when the evaluator
does not know precisely the sender’s preferences. Our results on beneficial selection are robust
to small amounts of uncertainty—the evaluator can behave as if k is known, and expected pay-
offs are continuous in k. But more sizeable uncertainty tends to harm the evaluator, an important
caveat. This is particularly evident in a location experiment with Gumbel noise; anticipated selec-
tion leaves the evaluator indifferent, so any uncertainty on k makes the evaluator strictly worse off.
A characterization of the impact of uncertain selection remains an open problem.

Unanticipated Selection. Consider an unwary evaluator who wrongly anticipates a smaller pre-
sample size than true. This evaluator is clearly worse off than a rational evaluator. More inter-
estingly, if a rational evaluator benefits from selection then it is ambiguous whether the unwary
evaluator gains or loses when the true presample size is larger than expected. Consider simple
hypothesis testing with noise distribution F symmetric around zero, so that F(ε) = 1−F(−ε).
Let x̄ be the optimal acceptance cutoff when k = 1. Selection with k = 2 changes the welfare of an
unwary evaluator who maintains the cutoff at x̄ as follows:

−π(θ L)
[
F(x̄−θ L)−F2(x̄−θ L)

]︸ ︷︷ ︸
increase in false positives

[
u(θ L,a1)−u(θ L,a2)

]
+π(θ H)

[
F(x̄−θ H)−F2(x̄−θ H))︸ ︷︷ ︸

reduction in false negatives

[
u(θ H ,a2)−u(θ H ,a1)

]
. (8)

In the important benchmark case of equipoise, the evaluator is a priori indifferent between
accepting and rejecting, that is, π(θ L)[u(θ L,a1)−u(θ L,a2)] = π(θ L)[u(θ H ,a2)−u(θ H ,a1)], and
hence x̄ = (θ L+θ H)/2. By symmetry, F(x̄−θ L)+F(x̄−θ H) = 1, so the loss from the increase in
false positives exactly offsets the gain from the reduction in false negatives—the expression in (8)
is zero, so the unwary evaluator is indifferent between no selection and selection with k = 2. In fact,
the first order derivative of the expression in (8) with respect to x̄ is positive at x̄ = (θ L +θ H)/2,
so the unwary evaluator strictly benefits from selection when x̄ is slightly above (θ L + θ H)/2,
that is, when the evaluator would reject at the prior. Going beyond this example, it is easy to
see that the impact of selection on an unwary evaluator can be also negative. For example, as
k→ ∞ the unwary evaluator accepts with probability converging to one—with payoff converging
to π(θ L)u(θ L,a2)+π(θ H)u(θ H ,a2), at most equal to the no-information payoff.
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A Accuracy and Welfare

In this appendix we prove Theorem 0 and provide an extension of the result to the continuous-
action case. The case of preferences satisfying Karlin and Rubin’s (1956) monotonicity affords us
a much simpler argument, so we find it instructive to start with an independent proof for this case.
After discussing the difficulty with single-crossing and IDO preferences we provide a proof for the
general IDO case. Both proofs rely on Lemma 3 below.

Before proceeding to Lemma 3 we need to establish two preliminary results.

Lemma 1. Fix an experiment X and for every state θ let S̄(X |θ) denote the smallest upper set
containing S(X |θ). Then S̄(X |θ) is decreasing (in the sense of set inclusion) in θ .

Proof. Suppose by contradiction that for some θ
′ > θ and x ∈ S̄(X |θ ′) we have x /∈ S̄(X |θ). By

definition of S̄(X |θ ′) there exists x′ ∈ S(X |θ ′) such that x = x′. Note that since S̄(X |θ) is an upper
set and x /∈ S̄(X |θ), we also have x′ /∈ S̄(X |θ). Now pick any x′′ ∈ S(X |θ). Since x′∧ x′′ 5 x′ and
x′ /∈ S̄(X |θ), it follows that x′∧x′′ /∈ S(X |θ), that is, g(x′∧x′′|θ) = 0.22 The LR ordering of X with
respect to the state now gives the contradiction:

g(x′∧ x′′|θ)︸ ︷︷ ︸
=0

g(x′∨ x′′|θ ′)> g(x′′|θ)︸ ︷︷ ︸
>0

g(x′|θ ′)︸ ︷︷ ︸
>0

.

In what follows we write S(X |> θ) as an abbreviation for ∪θ
′>θ S(X |θ ′).

Lemma 2. Given any experiment X, the set S(X |> θ)\S(X |θ) is decreasing in θ .

Proof. Suppose by contradiction that for some θ
′ > θ and x ∈ S(X | > θ

′) \ S(X |θ ′) we have
x /∈ S(X |> θ)\S(X |θ). Then x /∈ S(X |θ ′), and there exists θ

′′> θ
′ such that x∈ S(X |θ)∩S(X |θ ′′).

Observe that x ∈ S(X |θ) and x /∈ S(X |θ ′) together imply x /∈ S̄(X |θ ′). To see why, suppose that
x ∈ S̄(X |θ ′). Then there exists x′ ∈ S(X |θ ′) such that x = x′. Thus, by the LR ordering of X ,

g(x∨ x′|θ ′)︸ ︷︷ ︸
=g(x|θ ′)=0

g(x∧ x′|θ)> g(x|θ)︸ ︷︷ ︸
>0

g(x′|θ ′)︸ ︷︷ ︸
>0

,

a contradiction. Since x /∈ S̄(X |θ ′) and θ
′′ > θ

′, we conclude by Lemma 1 that x /∈ S̄(X |θ ′′),
contradicting our earlier conclusion that x ∈ S(X |θ ′′).

Lemma 3. If a family of experiments X(t) is ordered by accuracy and E is an upper set, then for
all t > s the set Ẽ(θ) = ϕ

−1
θ

(
E ∩S(X(s)|θ)

)
∪
(
S(X(t)|> θ)\S(X(t)|θ)

)
is decreasing in θ .

22Recall the notation x∨ x′ = (max{x1,x′1}, . . . ,max{xn,x′n}) and x∧ x′ = (min{x1,x′1}, . . . ,min{xn,x′n}).
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Proof. Fix two states θ
′ > θ . For brevity, write X and Y instead of X(s) and X(t), respectively.

We must show that

ϕ
−1
θ
′ (E ∩S(X |θ ′))∪ (S(Y |> θ

′)\S(Y |θ ′))⊆ ϕ
−1
θ
(E ∩S(X |θ))∪ (S(Y |> θ)\S(Y |θ)).

By Lemma 2, (S(Y |> θ
′)\S(Y |θ ′))⊆ (S(Y |> θ)\S(Y |θ)). Thus, it suffices to prove

ϕ
−1
θ
′ (E ∩S(X |θ ′))⊆ ϕ

−1
θ
(E ∩S(X |θ))∪ (S(Y |> θ)\S(Y |θ)).

But the range of ϕ
−1
θ
′ (·) is S(Y |θ ′), and S(Y |θ ′) ⊆ S(Y | > θ). The above inclusion is therefore

equivalent to the following:

ϕ
−1
θ
′ (E ∩S(X |θ ′))∩S(Y |θ)⊆ ϕ

−1
θ
(E ∩S(X |θ)).

Fix any x′ ∈ E ∩S(X |θ ′), let y = ϕ
−1
θ
′ (x′), and suppose that y ∈ S(Y |θ). Note that y ∈ S(Y |θ ′) by

definition. We have to prove that there exists x ∈ E ∩S(X |θ) such that ϕ
−1
θ
(x) = y. Let x = ϕθ (y),

which is a well defined element of S(X |θ) because y ∈ S(Y |θ). Then x = ϕθ (y) = ϕθ
′(y) = x′,

where the inequality follows from the order by accuracy, given that y ∈ S(Y |θ)∩S(Y |θ ′). Since E
is an upper set and x′ ∈ E, we are done.

A.1 Monotone Preferences

Recall that preferences are monotone in the sense of Karlin and Rubin (1956) if there exist states
θ 1 6 · · · 6 θ J−1 such that for every j < J the difference u(θ ,a j+1)− u(θ ,a j) is nonpositive for
θ 6 θ j and nonnegative for θ > θ j.

Proof of Theorem 0—Monotone Preferences. Let X(t) be a family of experiments ordered by
accuracy. Fix s < t, let (Es

1, . . . ,E
s
J) be the evaluator’s optimal partition of Rn for experiment X(s),

and Ēs
j := Es

j ∪·· ·Es
J . The evaluator welfare is∫
Θ

∑
j<J

Prθ

(
X(s) ∈ Ē j+1(s)

)[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

To prove the result it suffices to exhibit nested sets E ′2 ⊇ ·· · ⊇ E ′J such that, for every j < J and
every state θ , the difference

Prθ (X(t) ∈ E ′j+1)−Prθ (X(s) ∈ Ē j+1(s)) (9)

is nonpositive for θ 6 θ j and nonnegative for θ > θ j. Indeed, this implies that the evaluator can
achieve a higher expected payoff in experiment X(t) by adopting the following strategy: choose a1

when X(t) /∈ E ′2, choose a2 when X(t) ∈ E ′2 \E ′3, and so on. For every j < J and state θ define

Ẽ j+1(θ) = ϕ
−1
θ
(Ē j+1∩S(X(s)|θ))∪ (S(X(t)|> θ)\S(X(t)|θ)).
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Let E ′j+1 = Ẽ j+1(θ j) for every j < J. Since Ē j+1 is decreasing in j, Ẽ j+1(θ) is decreasing in j
and, by Lemma 3, also decreasing in θ . Thus, E ′2 ⊇ ·· · ⊇ E ′J . Moreover, we can rewrite (9) as

Prθ (X(t) ∈ Ẽ j+1(θ j))−Prθ (X(t) ∈ Ẽ j+1(θ)).

For θ 6 θ j the difference is nonpositive, because in this case Ẽ j+1(θ j)⊆ Ẽ j+1(θ). For θ > θ j it
is nonnegative, because then Ẽ j+1(θ j)⊇ Ẽ j+1(θ j).

Note that the above proof does not use the fact that t is a continuous parameter. The family of
experiments X(t) could be indexed in an arbitrary ordered set T rather than the interval [0,1]. This
fact is used in the proof of Theorem 5 in Appendix B.5.

A.2 IDO Preferences

The above proof does not extend immediately to IDO preferences or even only single-crossing
preferences. The IDO property does imply that the difference u(θ ,a j+1)−u(θ ,a j) exhibits single
crossing, but does not require the crossing points θ j to be increasing in j. This makes the sets
Ē ′2, . . . , Ē

′
J non-nested and hence the proposed strategy for experiment X(t) ill-defined.

To deal with this difficulty, we adopt a different strategy of proof, similar in spirit to the argu-
ment used by Jewitt (2007) for single-crossing preferences and unidimensional experiments. Our
proof hinges on a crucial observation: any action a j such that the crossing points θ j and θ j−1 are
not ordered in Karlin and Rubin’s (1956) sense (i.e. such that θ j < θ j−1) can be removed from the
action set without affecting IDO. In particular, we can remove any such action that, in addition, is
not used under the optimal strategy, without affecting the evaluator’s welfare, either.

Besides Lemma 3, the proof of the theorem uses the following:

Lemma 4. Fix a family of experiments X(t), a state θ , two indices s, t, and an upper set E. Define
Ẽ(θ) as in Lemma 3. Fix any x<n ∈ Rn−1. Then the section of Ẽ(θ) corresponding to x<n,
namely the set {x′ ∈ Ẽ(θ) : x′<n = x<n}, is an upper set relative to the section of ∪θ

′∈ΘS(X(t)|θ ′)
corresponding to x<n, namely the set {x′ ∈ Rn : x′<n = x<n and x′ ∈ S(X(t)|θ ′) for some θ

′ ∈Θ}.

Proof. Fix any xn ∈ R such that x = (x<n,xn) ∈ Ẽ(θ) and any x′n > xn such that x′ = (x<n,x′n) ∈
S(X(t)|θ ′) for some state θ

′. We have to prove that x′ ∈ Ẽ(θ). We distinguish three cases:

Case 1: x′ ∈ S(X(t)|θ) and x ∈ S(X(t)|θ). In this case ϕθ (x) and ϕθ (x
′) are both well defined,

and moreover ϕθ (x) ∈ E ∩ S(X(s)|θ) and ϕθ (x
′) ∈ S(X(s)|θ). Since x′ = x and x′<n = x<n, and

given x<n the last coordinate of ϕθ is a strictly increasing function on S(Xn(t)|θ ,x<n), we conclude
that ϕθ (x

′)= ϕθ (x). But E is an upper set and ϕθ (x) ∈ E, so we must also have ϕθ (x
′) ∈ E. We

conclude that ϕθ (x
′) ∈ E ∩S(X(s)|θ), that is, x′ ∈ Ẽ(θ).

Case 2: x′ ∈ S(X(t)|θ) and x ∈ S(X(t)| > θ) \ S(X(t)|θ). This case cannot arise, because
x′ = x, the LR ordering of X(t), and x ∈ S(X(t)|θ ′) for some θ

′ > θ together give the contradiction

g(x|θ)︸ ︷︷ ︸
=0

g(x′|θ ′)> g(x|θ ′)︸ ︷︷ ︸
>0

g(x′|θ)︸ ︷︷ ︸
>0

.
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Case 3: x′ /∈ S(X(t)|θ). In this case we must have x′ ∈ S(X(t)|> θ). Indeed, if x′ /∈ S(X(t)|θ)∪
S(X(t)|> θ) then x′ ∈ S(X(t)|θ ′) for some θ

′ < θ . But x ∈ S(X(t)|θ)∪S(X(t)|> θ), so for some
θ
′′ > θ the LR ordering of X(t) gives the contradiction

g(x′|θ ′′)︸ ︷︷ ︸
=0

g(x|θ ′)> g(x|θ ′′)︸ ︷︷ ︸
>0

g(x′|θ ′)︸ ︷︷ ︸
>0

.

Proof of Theorem 0—IDO preferences. Let {Et
1, . . . ,E

t
J} be the optimal partition of Rn for

experiment X(t), with Ēt
j = Et

j∪·· ·∪Et
J an upper set for all 1 < j 6 J, and action a j chosen when

X(t) ∈ Et
j. Let Prθ (t, ·) denote the measure on Rn induced by X(t). The evaluator welfare is

U(X(t)) =
∫

Θ
∑
j<J

Prθ (t, Ēt
j+1)

[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

Now take any t and u > t in [0,1]. Applying Theorem 2 in Milgrom and Segal (2002), we obtain

U(X(u))−U(X(t)) =
u∫

t

∫
Θ

∑
j<J

∂Prθ (s, Ēs
j+1)

∂ t

[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθds, (10)

and we have to show that the expression in (10) is nonnegative. We do this in four steps.

Step 1—Use IDO to rewrite the payoff difference. We start by rewriting, for each s, the sum-
mation inside the integral in (10), as follows. Recall that, by IDO, for every 1 6 j < J there exists
a state θ j such that the difference u(θ ,a j+1)− u(θ ,a j) is nonpositive for θ 6 θ j and nonnega-
tive for θ > θ j. An immediate consequence of this observation is that for any 1 < j < J such
that θ j < θ j−1, action a j can be removed from A without affecting the IDO property: letting
ũ : Θ×A\{a j}→ R be the restriction of u to Θ×A\{a j}, the family {ũ(θ , ·)}θ∈Θ is again IDO.
By using this fact (repeatedly, if necessary) together with the fact that Ēs

j+1 = Ēs
j when Es

j =∅, we
conclude that for every s there exists a list of indices 1 6 j(s,1)< · · ·< j(s, Is)6 J of some length
Is 6 J, and a list of states θ

s
1, . . . ,θ

s
Is−1, with the following properties. First,

U(X(u))−U(X(t)) =
u∫

t

∫
Θ

∑
i<Is

∂Prθ

(
s, Ēs

j(s,i+1)

)
∂ t

[
u(θ ,a j(s,i+1))−u(θ ,a j(s,i))

]
π(θ)dθds. (11)

Second, for every state θ and 1 6 i < Is,

u(θ ,a j(s,i+1))−u(θ ,a j(s,i))≶ 0 if θ ≶ θ
s
i . (12)

Third, for every 1 6 i < Is−1,

θ
s
i+1 > θ

s
i if Es

j(s,i+1) =∅. (13)
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Step 2—Use order by accuracy to set a lower bound on the payoff difference. For every θ , s,
δ > 0, and i < Is, define

Ẽs
i+1(θ ,δ ) = ϕ

−1
θ

(
Ēs

j(s,i+1)∩S(X(s−δ )|θ)
)
∪
(
S(X(s)|> θ)\S(X(s)|θ)

)
.

By construction, Prθ (s−δ , Ēs
j(s,i+1)) = Prθ (s, Ẽs

i+1(θ ,δ )), and by Lemma 3, Ẽs
i+1(θ ,δ ) is decreas-

ing in θ . It follows that

∂Prθ

(
s, Ēs

j(s,i+1)

)
∂ t

= lim
δ→0

Prθ

(
s, Ēs

j(s,i+1)

)
−Prθ

(
s−δ , Ēs

j(s,i+1)

)
δ

= lim
δ→0

Prθ

(
s, Ēs

j(s,i+1)

)
−Prθ

(
s, Ẽs

i+1(θ ,δ )
)

δ
(14)

≶ lim
δ→0

Prθ

(
s, Ēs

j(s,i+1)

)
−Prθ

(
s, Ẽs

i+1(θ
s
i ,δ )

)
δ

for θ ≶ θ
s
i .

Let Ls
i (θ) denote the right-hand side of (14). From (11), (12) and (14) we obtain

U(X(u))−U(X(t))>
u∫

t

∑
i<Is

∫
Θ

Ls
i (θ)

[
u(θ ,a j(s,i+1))−u(θ ,a j(s,i))

]
π(θ)dθds. (15)

Step 3—Rewrite the lower bound. In this and the next step we prove that, for every s,

∑
i<Is

∫
Θ

Ls
i (θ)

[
u(θ ,a j(s,i+1))−u(θ ,a j(s,i))

]
π(θ)dθ > 0. (16)

The result will then follow from (15) and (16). First note that, since Ēs
j(s,i+1) is an upper set, for

some function x̄s
n : Rn−1→ R∪{−∞,+∞} we have

Prθ

(
s, Ēs

j(s,i+1)
)
=
∫
Rn−1

g<n(s,x<n|θ)
[
1−Gn(s, x̄s

n(x<n)|θ ,x<n)
]
dx<n,

where g<n(s, ·|θ) is the density of (X1(s), . . . ,Xn−1(s)) in state θ . Similarly, by Lemma 4, for every
i < Is, δ > 0 and x<n ∈ Rn−1 there is a function x̄s

n,i(δ , ·) : Rn−1→ R∪{−∞,+∞} such that

Prθ

(
s, Ēs

i+1(θ ,δ )
)
=
∫
Rn−1

g<n(s,x<n|θ)
[
1−Gn(s, x̄s

n,i(δ ,x<n)|θ ,x<n)]dx<n.
23

23The function x̄s
n is such that x<n 7→ inf{xn : (x<n,xn) ∈ Ēs

j(s,i+1)}, while x̄s
n,i(δ , ·) is such that

x<n 7→min
{

inf{xn ∈R : (x<n,xn)∈ϕ
−1
θ

s
i ,s−δ ,s(E∩S(X(s−δ )|θ))}, inf{xn ∈R : (x<n,xn)∈ S(Y (s)|> θ)\S(Y (s)|θ)}

}
.

In both cases, we adopt the usual convention that the infimum of the empty set is assumed to be +∞. Our expressions
use the obvious notations gn(−∞|θ ,x<n) = gn(+∞|θ ,x<n) = Gn(−∞|θ ,x<n) = 0 and Gn(+∞|θ ,x<n) = 1.
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Thus,

lim
δ→0

Prθ

(
s, Ēs

j(s,i+1)

)
−Prθ

(
s, Ēs

i+1(θ ,δ )
)

δ
= lim

δ→0

Gn(s, x̄s
n(x<n)|θ ,x<n)−Gn(s, x̄s

n,i(x<n)|θ ,x<n)

δ

= lim
δ→0

Gn(s, x̄s
n(x<n)|θ ,x<n)−Gn(s, x̄s

n,i(δ ,x<n)|θ ,x<n)

x̄s
n(x<n)− x̄s

n,i(δ ,x<n)︸ ︷︷ ︸
=g(s,x<n,x̄s

n(x<n)|θ)

× lim
δ→0

x̄n(x<n)− x̄s
n,i(δ ,x<n)

δ︸ ︷︷ ︸
=:Ks

i (x<n)

.

It follows that
Ls

i (θ) =
∫

∂ Ēs
j(s,i+1)

Ks
i (x<n)g(s,x<n,xn|θ)dxndx<n,

where ∂ Ēs
j(s,i+1) denotes the boundary of Ēs

j(s,i+1), and the expression in (16) can be written as

∑
i<Is

∫
∂ Ē j(s,i+1)

Ks
i (x<n)

∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,i+1))−u(θ ,a j(s,i))

]
π(θ)dθ . (17)

Step 4—Show that the lower bound is nonnegative. Since for every i < Is and δ > 0 the set
Ēs

i+1(θ ,δ ) is decreasing in θ by Lemma 3, for each 1 6 i < Is− 1 such that θ
s
i 6 θ

s
i+1 we have

x̄s
n,i(δ ,x<n) 6 x̄s

n,i+1(δ ,x<n), and hence Ks
i (x<n) > Ks

i+1(x<n), for all x<n. Let i1 < .. . < iHs de-
note the set of indices 1 6 i < Is such that E j(s,i+1)(s) 6= ∅. Then for every 1 6 h < Hs and
i ∈ {ih + 1, . . . , ih+1− 1} we have Ēs

j(s,i) = Ēs
j(s,ih+1)

. Furthermore, at each point on the boundary
∂ Ē j(s,ih+1)(s) the expected payoff from action a j(s,ih+1) is at least as large as the expected payoff
from a j(s,i). Thus, using (13), for every 1 6 h < H(s) we have

∑
ih6 i<ih+1

∫
∂ Ē j(s,i+1)

Ks
i (x<n)

∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,i+1))−u(θ ,a j(s,i))

]
π(θ)dθ

>
∫

∂ Ē j(s,ih+1)

Ks
ih(x<n)

∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,ih+1))−u(θ ,a j(s,ih))

]
π(θ)dθ .

It follows that the expression in (17) is at least as large as

∑
h<Hs

∫
∂ Ē j(s,ih+1)

Ks
ih(x<n)

∫
Θ

g(s,x<n,xn|θ)
[
u(θ ,a j(s,ih+1))−u(θ ,a j(s,ih))

]
π(θ)dθ .

Since E j(s,ih) 6= ∅ and E j(s,ih+1) 6= ∅ for every h < Hs, at each point on the boundary ∂ Ē j(s,ih+1)

the evaluator is indifferent between the actions a j(s,ih) and a j(s,ih+1). Thus, all inner integrals, and
hence all terms in the summation, are zero, and the proof is complete.

A.3 Continuous Actions

To deal with a continuous action set A we make two assumptions. First, we assume payoffs are
continuous and bounded below (e.g. nonnegative). Second, we impose regularity on the family of
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functions {u(θ , ·)}θ∈Θ by assuming that the family of their restrictions to every sufficiently large
but finite subset of actions is also an IDO family. This assumption is automatically satisfied with
single-crossing or monotone preferences.24 Moreover, it allows us to extend Theorem 0 by simply
showing the following: for any fixed experiment X , the constrained welfare the evaluator obtains
when restricted to choosing from a finite subset B of actions converges to the unconstrained welfare
as B becomes large. We do this next.

Let a(·) : Rn→ A be the evaluator’s (unconstrained) optimal strategy. Let J = |B| and denote
by a1 < .. . < aJ the elements of B. Define aB : Rn→ B for the restricted problem as follows:

aB(x) = a1 if a(x)6 a1, aB(x) = a2 if a1 < a(x)6 a2, . . . , aB(x) = aJ if a(x)> aJ−1.

Then for every state θ , every B, and every b in B, we have

Prθ (aB(X)< b)6 Prθ (a(X)< b) and Prθ (aB(X)6 b) = Prθ (a(X)6 b).

Thus, for every Θ′ ⊆Θ,∫
Θ′

Prθ (aB(x)< b)π(θ)dθ 6
∫

Θ′
Prθ (a(x)< b)π(θ)dθ

and ∫
Θ′

Prθ (aB(x)6 b)π(θ)dθ =
∫

Θ′
Prθ (a(x)6 b)π(θ)dθ .

This implies that for every c in the union of the B’s we have

limsup
B

∫
Θ′

Prθ (aB(x)< c)π(θ)dθ 6
∫

Θ′
Prθ (a(x)< c)π(θ)dθ

and
liminf

B

∫
Θ′

Prθ (aB(x)6 c)π(θ)dθ =
∫

Θ′
Prθ (a(x)6 c)π(θ)dθ .

Since Θ′ is arbitrary and we can replace c with any a in A (because the union of the B’s is dense
in A), we conclude that the probability measure on states and actions induced by aB(·) converges
weakly to that induced by a(·). Thus, liminfB EB(u)> E(u), where E and EB are the expectations
with respect to the measures on Θ×A induced by the optimal and B-constrained optimal strategy,
respectively. Since EB(u)6 E(u) for every B, we are done.

B Proofs

B.1 Maximal Selection

Proof of Theorem 1. By Theorem 0 and Theorems 5.1 and 5.2 in Lehmann (1988) it suffices to
show that log(− logF) is concave (convex) if and only if for all real numbers k > m the distribution

24In the continuous case, Karlin and Rubin’s (1956) monotonicity means that every function u(θ ,a) is (i) maximized
at some a(θ) that is increasing in θ , and (ii) decreasing as a moves away from a(θ). Quah and Strulovici (2009) refer
to these preferences as quasi-concave with increasing peaks.
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Fk is less (more) dispersed than Fm, that is, for all εm and εk such that Fk(εk) = Fm(εm),

mFm−1(εm) f (εm)6 (>)kFk−1(εk) f (εk). (18)

Let λ (·) := log(− log(·)) and note that λ (Fk(·)) and λ (Fm(·)) only differ from λ (F(·)) by a
constant: λ (Fk(·))− logk = λ (Fm(·))− logm = λ (F(·)). Differentiating, we obtain

λ
′(Fm(·))mFm−1(·) f (·) = λ

′(Fk(·))kFk−1(·) f (·) = λ
′(F(·)) f (·).

Thus, (18) is equivalent to

λ
′(F(εm)) f (εm)

λ
′(Fm(εm))

6 (>)
λ
′(F(εk)) f (εk)

λ
′(Fk(εk))

.

Since Fk(εk) =Fm(εm) and λ (·) is strictly decreasing, the denominators are negative and coincide,
so the inequality is equivalent to λ

′(F(εm)) f (εm)> (6)λ
′(F(εk)) f (εk). This holds for all εm and

all real k > m if and only if λ (F(·)) is concave (convex), because k > m implies εk > εm.

Proof of Theorem 2. Fix two presample sizes k and m, and for every t ∈ [0,1] denote by X(t)
the selected experiment with presample size kt := tk + (1− t)m. For every state θ , let xθ and
xθ respectively denote the upper bound and the lower bound of the support of f (·|θ). Note that
the support of X(t) in state θ does not depend on t. In particular, S(X(t)|θ) = {x ∈ Rn : xθ >

x1 > · · · > xn > xθ}, and moreover S(Xi(t)|θ ,x<i) = (xθ ,xi−1) for every i > 1 and every x<i ∈
{(x1, . . . ,xi−1) ∈ Ri−1 : xθ > x1 > · · · > xi−1 > xθ}. Fix two indices s < t and two states θ < θ

′,
and write ϕθ (x) = z and ϕθ

′(x) = z′ for brevity. Since the support of X1(t) in state θ does not
depend on t, as x1 converges to xθ , so does z1. Similarly, for every i = 2, . . . ,n and every xi−1, as
xi converges to xi−1, zi converges to zi−1.

We must prove that under either condition in the theorem (k > m and f (·|θ)/F(·|θ) is log-
supermodular, or m > k and f (·|θ)/F(·|θ) is log-submodular with support of f (·|θ) independent
of θ ) for every x ∈ S(X(t)|θ)∩S(X(t)|θ ′) we have the accuracy ordering z′ 5 z, or equivalently

Fks(z1|θ ′)> Fks(z′1|θ ′) and Fks−i+1(zi|θ ′)> Fks−i+1(z′i|θ ′) for i = 2, . . . ,n.

Plugging the definition of z′, we can rewrite these inequalities as

Fks(z1|θ ′)> Fkt (x1|θ ′) and
Fks−i+1(zi|θ ′)

Fks−i+1(z′i−1|θ
′)
>

Fkt−i+1(xi|θ ′)
Fkt−i+1(xi−1|θ ′)

for i = 2, . . . ,n.

For every i = 2, . . . ,n, if (z′1, . . . ,z
′
i−1)5 (z1, . . . ,zi−1) then the denominator of the left-hand side of

the second inequality becomes larger, and hence the left-hand side of the inequality smaller, if we
replace z′i−1 with zi−1 (in other words, order statistics are CIS). Rearranging terms, we conclude
that it suffices to prove that

Fks(z1|θ ′)
Fkt (x1|θ ′)

> 1 and
Fks−i+1(zi|θ ′)
Fkt−i+1(xi|θ ′)

>
Fks−i+1(zi−1|θ ′)
Fkt−i+1(xi−1|θ ′)

for i = 2, . . . ,n. (19)
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Since x1→ xθ implies z1→ xθ , under either condition in the theorem as x1→ xθ the left-hand
side of the first inequality in (19) tends to a number no smaller than one. This implies that the first
inequality in (19) holds if the left-hand side of the inequality decreases with x1. Differentiating
with respect to x1 and dropping the positive denominator in the derivative, we need

ksFks−1(z1|θ ′) f (z1|θ ′)
dz1

dx1
Fkt (x1|θ ′)6 ktFkt−1(x1|θ ′) f (x1|θ ′)Fks(z1|θ ′). (20)

By definition of z,
dz1

dx1
=

ktFkt−1(x1|θ) f (x1|θ)
ksFks−1(z1|θ) f (z1|θ)

.

Plugging this expression in (20) and simplifying, the first inequality in (19) holds if

f (z1|θ ′)/F(z1|θ ′)
f (z1|θ)/F(z1|θ)

6
f (x1|θ ′)/F(x1|θ ′)
f (x1|θ)/F(x1|θ)

,

which in turn follows from log-supermodularity (log-submodularity) of the reverse hazard rate
when k > m (resp. k 6 m), because k > m implies z1 6 x1 (resp. k 6 m implies z1 > x1).

Take any i > 1 now. Recall that for every xi−1, as xi converges to xi−1, zi converges to zi−1.
Thus, as before, under either condition in the theorem the left-hand side of the second inequality
in (19) tends to a number no smaller than the right-hand side. The second inequality in (19) then
holds if its left-hand side decreases with xi. Differentiating with respect to xi and simplifying,

f (zi|θ ′)/F(zi|θ ′)
f (zi|θ)/F(zi|θ)

6
f (xi|θ ′)/F(xi|θ ′)
f (xi|θ)/F(xi|θ)

,

which again follows from log-supermodularity (resp. log-submodularity) of the reverse hazard rate
when k > m (resp. k 6 m), because k > m implies zi 6 xi (resp. k 6 m implies zi > xi).

B.2 Logconcavity of Reverse Hazard Rate and Reverse Hazard Function

The reverse hazard function is the right-sided integral of the reverse hazard rate: − logF(ε) =∫
∞

ε
( f (ε)/F(ε))dε . The reverse hazard function therefore inherits logconcavity (and logconvexity,

if the support of f is unbounded above) of the reverse hazard rate (An, 1998, Lemma 3). Thus,
the hypotheses in Corollary 1 are stronger than the corresponding conditions in Theorem 1; for
example, the reverse hazard function of distribution F(ε) = ε − 1/(1 + e−ε) + log(1 + e−ε) is
logconcave, but the reverse hazard rate is not.25 Still, the examples discussed after Theorem 1—
normal, logistic, generalized exponential, shifted Gompertz—satisfy the hypotheses in the corol-
lary. In the normal case, the reciprocal of the reverse hazard rate, F(ε)/ f (ε) =

∫ x
−∞

eε2/2e−t2/2dt =∫ 0
−∞

e−u2/2e−uεdu, is logconvex because e−uε is logconvex, and logconvexity is preserved under
mixtures (An, 1998, Proposition 3). In the logistic case, the reverse hazard rate f (ε)/F(ε) =

1/(eε +1) is logconcave. With generalized exponential noise, f (ε)/F(ε) = (1− e−ε)ae−ε is log-
convex because a <−1. In the shifted Gompertz case, the second derivative of log( f (ε)/F(ε)) is
positive, having the same sign as e3ε +η(e2ε −1).

25The support of the density f (ε) = (1+ e−ε)−2 is the interval (−∞, ε̄], where ε̄ solves F(ε̄) = 1.
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B.3 Extreme Selection

Proof of Theorem 3. We start by showing that under UHR we have αk→ 0 as k→ ∞. If ε̄ < ∞

then, as shown in Müller and Rufibach (2008), the limiting distribution is either extreme Weibull or
Gumbel. In the first case, by Proposition 1.13 in Resnick (2008) we can set αk = ε̄−F−1(1−1/k),
whence αk→ 0 follows. In the second case, as well as (Müller and Rufibach, 2008, Lemma 3.5) in
the case ε̄ =∞, the limiting distribution is Gumbel. Thus, by Proposition 1.9 in Resnick (2008), we
can set αk to be the mean residual life evaluated at ε̄k := F−1(1−1/k), that is, αk = k

∫
ε̄

ε̄k
ε f (ε)dε.

As shown in Calabria and Pulcini (1987), the limiting behavior of the mean residual life is the
same as the limiting behavior of the inverse of the hazard rate.26 Thus, using the fact that ε̄k→ ε̄

as k→ ∞, we again obtain limk→∞ αk = limε→ε̄ [1−F(ε)]/ f (ε) = 0.
We now show that if αk → 0 then the evaluator’s payoff converges to the full information

payoff, U :=
∫

Θ
maxa u(θ ,a)π(θ)dθ , as k→ ∞. Clearly, if the conclusion holds for n = 1 then a

fortiori it holds for n > 1. Thus, we can assume n = 1. Recall that, by IDO, for every 1 6 j < J
there exists a state θ j such that u(θ ,a j)−u(θ ,a j+1) is nonnegative for θ 6 θ j and nonpositive for
θ > θ j. As we noted in the proof of Theorem 0, this observation implies that if θ j < θ j−1 then a j

can be removed from A without affecting the IDO property. Moreover, a j is never optimal at any
state, so it is never used under full information. Thus, we may assume without loss of generality
that θ j > θ j−1 for all j > 1, and the full information payoff can then be written, summing by parts,
as U =

∫
Θ ∑ j<J 1{θ>θ j}

[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ . Fix δ > 0, and let η > 0 be such that

∫
Θ

∑
j<J

1{θ j−η6θ<θ j}
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ 6

δ

2
(21)

and, furthermore,

(1−η)
∫
Θ

∑
j<J

1{θ>θ j}
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ >U− δ

2
. (22)

Let ε̄ > 0 be such that F̂(ε̄)− F̂(−ε̄)> 1−η/2, and choose k̂ so that, for all k > k̂,

αkε̄ < η , Fk(αkε̄ +β k)> F̂(ε̄)− η

4
, and Fk(αkε̄ +β k)6 F̂(−ε̄)+

η

4
.

Then, for each θ ,

Prθ (θ −η +β k 6 X 6 θ +η +β k)> Prθ (θ −αkε̄ +β k 6 X 6 θ +αkε̄ +β k)

= Fk(αkε̄ +β k)−Fk(αkε̄ +β k)

> F̂(ε̄)− η

4
− F̂(−ε̄)− η

4
> 1−η , (23)

26Calabria and Pulcini (1987) assume that the support of f is bounded below. But for every ε such that 0< F(ε)< 1
the hazard rate of distribution F is the same as the hazard rate of the left-truncated distribution F(·)/[1− F(ε)].
Furthermore, the two distributions have the same right tails, and hence the same limiting distribution F̄ .
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so the distribution of X in state θ assigns at least probability 1−η to an η-neighborhood of θ +β k.
Now consider the following strategy for the evaluator: choose a1 if X < θ 1 +β k−η , choose aJ if
X > θ J−1 +β k−η , and for every 1 < j < J, choose a j if θ j−1 +β k−η 6 X < θ j +β k−η . The
corresponding payoff, again using summation by parts, is∫

Θ

∑
j<J

Prθ (X > θ j +β k−η)
[
u(θ ,a j+1)−u(θ ,a j)

]
π(θ)dθ .

By (21), (22) and (23), this payoff is at least as large as U−δ .
Finally, we show that if UHR fails, limit welfare is the welfare from an experiment with noise

density (6). Failure of UHR implies that ε̄ = ∞ and hence (as established earlier) that F̄ is Gumbel,
with limk→∞ αk = limε→ε̄ [1−F(ε)]/ f (ε) =: α > 0.27 Thus, as shown by Weissman (1978) and
Leadbetter et al. (1983, Theorem 2.3.1), the distribution of the n largest of k draws from F , after
normalizing each draw’s location by β k, converges weakly to a distribution with density (6).

B.4 Applications

Proof of Proposition 2. Let n̄ = argmaxn>1U(n,n)−CS(n)−CP(n). Note that n̄ exists because
U(n,n) is bounded above by the evaluator’s full information payoff, U , while CS(n) is unbounded.
Furthermore, U(n̄, n̄)−CS(n̄)−CP(n̄) < U −CS(1), because CS(n) is increasing. By Theorem 3,
U(k,1)→U as k→ ∞. Thus, there exist k̄ > 1 and c > 0 such that

U(k̄,1)−CS(1)− c >U(n̄, n̄)−CS(n̄)−CP(n̄). (24)

If CP(k̄)6 c then U(k̄,1)−CS(1)−CP(k̄)>U(n̄, n̄)−CS(n̄)−CP(n̄), hence no experiment format
with k = n is optimal.

Proof of Proposition 3. Define n̄ as in the proof of Proposition 2. By Theorem 3, U(k,1)→U as
k→ ∞. Since CS(n) is increasing, there exists k̄ > 1 such that

U(k,1)−CS(1)>U(n̄, n̄)−CS(n̄) for all k > k̄. (25)

Let x̄2(k′), . . . , x̄J(k′) denote the cutoffs the evaluator sets when conjecturing presample size k′.
Given these cutoffs, the expected gross payoff the sender obtains by choosing presample size k
is V (k,k′) :=

∫
Θ ∑ j<J[1−Fk(x̄ j+1(k′))][v(θ ,a j+1)− v(θ ,a j)]π(θ)dθ , where v(θ ,a) denotes the

sender’s payoff function and we used summation by parts and disregarded constants. Thus, going
from k to k+1 the sender incurs marginal cost CP(k+1)−CP(k) and obtains marginal gain

V (k+1,k′)−V (k,k′) =
∫

Θ
∑
j<J

Fk(x̄ j+1(k′))[1−F(x̄ j+1(k′))][v(θ ,a j+1)− v(θ ,a j)]π(θ)dθ > 0.

Pick any c > 0 such that c < V (k+ 1,k)−V (k,k) for all k in the set {1, . . . , k̄}, and suppose that
CP(k̄)6 c for all k. Then, since CP(k) is increasing, CP(k+1)−CP(k)< c for every k < k̄. Thus,
in every Bayes Nash equilibrium the sender chooses k > k̄, and the result follows from (25).

27Logconcavity of f implies increasing hazard rate f/(1−F), so this limit exists when UHR fails.
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Equilibrium Existence in the Delegated Presampling Game. Assume that presample size can
be any real k > 1 and CP(k) is convex and hence, in particular, continuous and unbounded. Since
CP(k) is unbounded, we can without loss restrict the sender’s strategy set to some interval [1, k̂],
e.g. choosing k̂ large enough that

∫
Θ

v(θ ,a1)π(θ)dθ −CP(1)>
∫

Θ
v(θ ,aJ)π(θ)dθ −CP(k̂). Thus,

we can also assume the evaluator strategy set to be the set of optimal monotone strategies for
selected experiments with k ∈ [1, k̂]. Moreover, identifying the optimal strategy for k with k itself,
we obtain a game where the strategy set of each player is the interval [1, k̂] and the evaluator best
response is the identity function. Thus, an equilibrium exists if the sender best response function

k 7→ arg max
k′∈[1,k̂]

∫
Θ

∑
j<J

[
1−Fk(x̄ j+1(k′)−θ)

][
v(θ ,a j+1)− v(θ ,a j)

]
π(θ)dθ −CP(k′)

has a fixed point. (This is a function by the objective function’s strict concavity: CP(k) is con-
vex and, moreover, v(θ ,a j+1)> v(θ ,a j) and d2[1−Fk(x̄ j+1(k̂)−θ)

]
/dk2 =−[log(F(x̄ j+1(k̂)−

θ))]2Fk(x̄ j+1(k̂)−θ)< 0 for every θ .) This follows from Brouwer’s fixed point theorem.

Proof of Proposition 4. By Theorem 3, U(k,1)→U and hence, since CS(n) is strictly increasing,
there exists k̄ such that U −U(k,1) < CS(n)−CS(1) for every k > k̄ and n > 1. As shown in the
proof of Proposition 3, there exists c such that if CP(k̄) 6 c then in every Bayes Nash equilib-
rium of the delegated presampling game the sender must choose k > k̄. Fix such a presampling
cost function, and let n̄ be the corresponding presample size (equal to sample size) chosen by the
sender in an unraveling equilibrium of the full delegation game. The payoff of the evaluator in this
equilibrium is U(n̄, n̄)−CS(n̄)6U−CS(n̄)<U(k,1)−CS(1) for every k > k̄, so we are done.

B.5 Other Forms of Selection

Proof of Theorem 4. Consider first the family of experiments Y (t), where Y (t) = X |X > at and
at = b− t(b−a). In each state θ the distribution of Y (t) is [F(y|θ)−F(at |θ)]/[1−F(at |θ)], for
y > at . Fix s < t and consider the function ϕθ (·), which is defined as follows:

[F(ϕθ (y)|θ)−F(as|θ)]/[1−F(as|θ)] = [F(y|θ)−F(at |θ)]/[1−F(at |θ)],

or equivalently

[1−F(ϕθ (y)|θ)]/[1−F(y|θ)] = [1−F(as|θ)]/[1−F(at |θ)], (26)

for y > at . Now fix two states θ
′ > θ . We must show that ϕθ

′(y)6 ϕθ (y) for every y > at . Using
the definition of ϕθ

′(·), it suffices to show that

[F(y|θ ′)−F(at |θ ′)]/[1−F(at |θ ′)]6 [F(ϕθ (y)|θ ′)−F(as|θ ′)]/[1−F(as|θ ′)],

that is,
[1−F(y|θ ′)]/[1−F(at |θ ′)]> [1−F(ϕθ (y)|θ ′)]/[1−F(as|θ ′)].
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Since ϕθ (y) converges to as as y decreases to the lower bound at , it suffices to prove that the ratio
between right-hand and left-hand side decreases with y. Taking derivatives and using (26), we need

f (ϕθ (y)|θ ′)/[1−F(ϕθ (y)|θ ′)]
f (ϕθ (y)|θ)/[1−F(ϕθ (y)|θ)]

>
f (y|θ ′)/[1−F(y|θ ′)]
f (y|θ)/[1−F(y|θ)]

.

This inequality holds when the hazard rate is log-supermodular because Y (s) first-order stochasti-
cally dominates Y (t) and hence ϕθ (y)> y.

Next, consider the family of experiments W (t), where W (t) = X |X 6 bt and bt = a+ t(b−a).
In state θ the distribution of W (t) is F(w|θ)/F(bt |θ), for w 6 bt . Fix s < t and consider the
function ϕθ (·|), which is defined as follows: for every w 6 bs,

F(ϕθ (w)|θ)/F(bs|θ) = F(w|θ)/F(bt |θ).

We must show that if θ
′ > θ then ϕθ

′,t,s(w) 6 ϕθ (w) for all w 6 bt . Using the definition of
ϕθ
′,t,s(·), it suffices to show that

F(w|θ ′)/F(bt |θ ′)6 F(ϕθ (w)|θ ′)/F(bs|θ ′).

Given that ϕθ (w) converges to bs as w increases to the upper bound bt , it is enough to prove that
the ratio between the right-hand side and the left-hand side of the inequality decreases with w.
Taking derivatives, this condition says that

f (ϕθ (w)|θ ′)/F(ϕθ (w)|θ ′)
f (ϕθ (w)|θ)/F(ϕθ (w)|θ)

6
f (w|θ ′)/F(w|θ ′)
f (w|θ)/F(w|θ)

.

This holds when the reverse hazard rate is log-supermodular, given that ϕθ (w)6 w by the fact that
W (t) first-order stochastically dominates W (s).

Proof of Theorem 5. When payoffs satisfy Karlin and Rubin’s (1956) monotonicity, Theorem 0
holds for families X(t) with t in an arbitrary ordered set T , as shown in Appendix A. Thus, to
prove part (a) it suffices to take T = {0,1}, with X(0) the random experiment and X(1) the median
selected experiment. The density function of X(1) is

cFr−1(·|θ)[1−F(·|θ)]r−1 f (·|θ),

where c depends only on k. The cumulative distribution and survival functions can be written as

Fr(·|θ)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(·|θ)] j and [1−F(·|θ)]r

r−1

∑
j=0

(
r+ j−1

r−1

)
F j(·|θ),

respectively. For each θ the function ϕθ (x) is defined by

F(ϕθ (x)|θ) = Fr(x|θ)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(x|θ)] j. (27)
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Fix two states θ
′ > θ and let z = ϕθ ,1,0(x) and z′ = ϕθ

′(x|θ ′) for brevity. Let xm be the median of
F(·|θ), i.e., F(xm|θ) = 1/2. Note that z 6 x when x 6 xm and z > x when x 6 xm. Moreover,

dz/dx = cFr−1(x|θ)[1−F(x|θ)]r−1 f (x|θ)/ f (z|θ). (28)

We must show that z′ 6 z, or equivalently that

Fr(x|θ ′)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(x|θ ′)] j/F(z|θ ′)6 1, (29)

which is the same as

[1−F(x|θ ′)]r
r−1

∑
j=0

(
r+ j−1

r−1

)
F j(x|θ ′)/1−F(z|θ ′)> 1. (30)

Suppose first that x 6 xm, so that z 6 x. Since F(·|θ ′) first-order stochastically dominates
F(·|θ), condition (29) holds at x = xm = z. Thus, it suffices to show that the left-hand side of (29)
increases in x when x > z. The derivative of the left-hand side is nonnegative if and only if

cFr−1(x|θ ′)[1−F(x|θ ′)]r−1 f (x|θ ′)F(z|θ ′)−

Fr(x|θ ′)
r−1

∑
j=0

(
r+ j−1

r−1

)
(1−F(x|θ ′)) j f (z|θ ′)dz

dx
> 0

Plugging in (28) and using (27), the inequality is the same as

f (x|θ ′)/F(x|θ ′)
f (x|θ)/F(x|θ)

×
[1−F(x|θ ′)]r−1/∑

r−1
j=0
(r+ j−1

r−1

)
[1−F(x|θ ′)] j

[1−F(x|θ)]r−1/∑
r−1
j=0
(r+ j−1

r−1

)
[1−F(x|θ)] j︸ ︷︷ ︸

> 1 because F(·|θ)> F(·|θ ′)

>
f (z|θ ′)/F(z|θ ′)
f (z|θ)/F(z|θ)

which is true by log-supermodularity of the reverse hazard rate, since x > z.
Suppose now that x > xm, so that z > x. Since (30) is the same as (29), it holds at x = xm = z, so

it suffices to show that its left-hand side increases in x when x 6 z. The derivative of the left-hand
side of (30) is nonnegative if and only if

− cFr−1(x|θ ′)[1−F(x|θ ′)]r−1 f (x|θ ′)[1−F(z|θ ′)]

+ [1−F(x|θ ′)]r
r−1

∑
j=0

(
r+ j−1

r−1

)
F j(x|θ ′) f (z|θ ′)dz

dx
> 0.

Plugging in (28) and using (27), the inequality is the same as

f (x|θ ′)/[1−F(x|θ ′)]
f (x|θ)/[1−F(x|θ)]

×
Fr−1(x|θ ′)/∑

r−1
j=0
(r+ j−1

r−1

)
F j(x|θ ′)

Fr−1(x|θ)/∑
r−1
j=0
(r+ j−1

r−1

)
F j(x|θ)︸ ︷︷ ︸

6 1 because F(·|θ)> F(·|θ ′)

6
f (z|θ ′)/[1−F(z|θ ′)]
f (z|θ)/[1−F(z|θ)]
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which is true by log-supermodularity of the hazard rate, since x 6 z.
Turning to the proof of part (b), we exhibit a simple hypothesis testing problem with states

θ
′ > θ where X(1) gives higher welfare than X(0). Let x̄ be such that F(x̄|θ ′) < 1/2 < F(x̄|θ)

and suppose that under X(0) the evaluator sets the cutoff at x̄.28 Then keeping the cutoff at x̄ the
payoff is higher when the experiment changes to X(1). Indeed, F(x̄|θ)> 1/2 implies

Fr(x̄|θ)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(x̄|θ)] j > F(x̄|θ),

while F(x̄|θ ′)< 1/2 implies

Fr(x̄|θ ′)
r−1

∑
j=0

(
r+ j−1

r−1

)
[1−F(x̄|θ ′)] j < F(x̄|θ ′).

Proof of Proposition 5. Let ik = argmax16i6k δ i. By Theorem 0 and Theorems 5.1 and 5.2
in Lehmann (1988) it suffices to prove that if − logFδ (·) is logconcave (logconvex) then the dis-
tribution of cδ ik + γ ik becomes less (more) dispersed as k increases. As shown in the proof of
Theorem 1, this is true for the distribution of cδ ik . By Theorem 8 in Lewis and Thompson (1981),
it is also true for the distribution of cδ ik + γ1, which is the same as the distribution of cδ ik + γ ik .

Proof of Proposition 6. Define θ̂ = θ + γ1 and note that, since γ1 has a logconcave density, the
conditional density of θ̂ given θ satisfies the MLR property. This implies that the posterior belief
π(θ |θ̂) increases with θ̂ in the likelihood ratio order. Thus, defining û(θ̂ , ·) :=

∫
Θ

u(θ , ·)π(θ |θ̂)dθ

for every θ̂ , it follows from Theorem 2 in Quah and Strulovici (2009) that the family of functions
û(θ̂ , ·) is an IDO family. Consider the auxiliary decision problem where the state is θ̂ = θ +γ1, the
payoff function is û(θ̂ , ·), and the selected experiment is (θ̂ +cδ 1, θ̂ +cδ n), where cδ 1 > · · ·> cδ n

are the n highest of k random draws from distribution Fδ (·/c) with density (1/c) fδ (·/c). Clearly,
(1/c) fδ (·/c)/Fδ (·/c) is logconcave (logconvex, with support of (1/c) fδ (·/c) unbounded above)
if and only if fδ (·)/Fδ (·) is logconcave (logconvex, with support of fδ (·) unbounded above), in
which case, by Corollary 1, welfare increases (decreases) in k. The result now follows from the
fact that the payoff from experiment (θ̂ +cδ 1, θ̂ +cδ n) in the auxiliary problem is the same as the
payoff from experiment (θ + cδ 1 + γ1, · · · ,θ + cδ n + γ1) in the original problem.
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