
Appendix

To derive the affine bond pricing formulas and yield curve equations, consider the case

with prices of risk λt =
[
λ1
t

λ2
t

]�
. (Note that equation (9) can be obtained from (10) by

setting the prices of risk to zero.) There are two ways to derive thes formulas. First, we can

construct a risk-neutral probability measure under which the risk-neutral pricing formula (7)

holds. Second, we can start from the Euler equation E [d (mtFt)] = 0.

Risk-neutral probability

Under the risk-neutral probability measure, the process B∗ which solves dB∗

t
= dBt+λtdt

is a Brownian motion. By solving for dBt and inserting this expression into the AR(1)

dynamics of the factors (6) , we get
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The price of the τ -period bond is equal to

P
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,
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where the expectation operator E∗ uses the risk-neutral probability measure. Since the

vector x = (x1, x2)
ᵀ is Markov, this expectation is a function of the state today xt. Thus,

the bond price is a function

P
(τ)
t = F (xt, τ )

of the state vector xt and time-to-maturity τ . The Feynman-Kac formula says that F solves

the partial differential equation
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with terminal condition F (x, 0) = 1.

We guess the solution

F (xt, τ ) = exp (A (τ ) +B (τ ) · xt) (16)

which means that
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Insert these expressions into the partial differential equation and get
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Matching coefficients results in
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The boundary conditions are

A (0) = 0

B (0) = 02×1.

The solution to these ODE’s are
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(17a)
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We can plug these solutions into the yield equation
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Euler equation approach

The Euler equation is

P
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and the instantaneous equation is

E [d (mtFt)] = 0. (19)
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The bond price is a function F (x, τ ) and we can apply Ito’s Lemma

dF = µFdt+ σFdBt,

where the drift and volatility of F are given by
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Again, guess the exponential-affine solution (16) and insert the expressions into (20), we get
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Matching coefficients, we get the ordinary differential equations:

A′ (τ ) =
2∑

i=1

Bi (τ ) (κiθi − σiλ
i

0) +
1

2
Bi (τ)

2
σ2
i

1 = −B′

1 (τ )−B1 (τ ) (κ1 + σ1λ
1
1)

1 = −B′

2 (τ )−B2 (τ ) (κ2 + σ2λ
2
1).

18



From this expression, we can see that we get the coefficients (17a) with risk neutral parame-

ters
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