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   Introduction 

 What role should the preferences of an investor play in optimal portfolio deci-
sions? If one adds a qualifi er that the optimal portfolio decision concerns the 
very investor whose preferences are under investigation, the question seems triv-
ial. Everyone would answer that preferences are crucial or at least very important 
ingredients, alongside other factors such as the asset menu, the dynamics of invest-
ment opportunities, and the relevant constraints. Modern portfolio theory affi  rms 
that such a question is far from trivial for two reasons: First, various asset alloca-
tion frameworks oft en disregard the role of preferences. Th is omission is oft en 
justifi ed by results in asset pricing theory; for instance by the separation result of 
the celebrated capital asset pricing model (CAPM) implying that, independently 
of preferences, investors ought to simply demand a multiple of the market portfo-
lio. Second, critical diff erences between ex-ante versus ex-post optimal portfolios 
exists, and preferences are oft en downplayed on an ex-ante basis. Strategies that 
seem to be optimal ex-ante may turn gravely disappointing ex-post. Further, strat-
egies that in principle are suboptimal (e.g., ones disregarding the preferences of 
decision makers) may yield ex-post robust performance. Th is chapter investigates 
whether and how preference-based optimal asset allocation models may poten-
tially contribute to producing appealing ex-ante and ex-post performances. 

 Th is chapter mixes the goals and methods of a review of the methodological 
literature with the objective of off ering novel insights on whether and how the 
tools described herein may work in practice. Th e chapter is organized as follows: 
It begins by sett ing up the typical portfolio problem, providing relevant defi ni-
tions and notations. Next, the chapter introduces the main types of preference 
frameworks used in the portfolio literature and, to a lesser extent, in the prac-
tice of applied wealth management, oft en borrowing from microeconomic theory. 
Because various researchers have proposed that Taylor approximations applied to 
the functional representation of standard preferences may replace more complex 
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mathematical constructs, the chapter includes an in-depth discussion of the 
advantages and disadvantages of using Taylor approximations, which emphasize 
the role played by statistical moments (mean, variance, skewness, and kurtosis) 
of either terminal wealth or portfolio returns. Some discussion is then devoted 
to new and exciting developments that have recently occurred at the intersec-
tion between decision theory and portfolio management in the form of frame-
works that emphasize the concepts of robust decisions and ambiguity aversion. 
Providing an illustrative example that aims at investigating some aspects of the 
interaction between preferences and statistical models of investment opportuni-
ties is undertaken. In particular, optimal portfolio decisions are computed under 
regime-switching models that capture various features of time-varying investment 
opportunities.  

  Preliminaries and Defi nitions 

 In the economic literature, a standard practice is to model the choices of eco-
nomic agents among several goods using the concept of a utility function. In 
its cardinal form, a utility function, u( )   , is used to assign a numeric value to 
all possible choices (e.g., bundles of goods) faced by an economic agent. Th ese 
values, oft en referred to as the  utility index , have the property that bundle  r  1  is 
(weakly) preferred to  r  2  if and only if the utility of  r  1  is higher than that of  r  2 , as 
in u u( )r ( )r1 2) (≥    . Th e higher the value of a particular choice, the greater the utility 
derived from that choice. Utility functions can represent a broad set of preference 
orderings. 

 Th e literature on utility functions, such as Elton, Gruber, Brown, and 
Goetzmann (2010), widely explores the precise conditions under which a prefer-
ence ordering can be expressed through a utility function. At least at a super-
fi cial level, the properties of such conditions are usually held to imply several 
things. First, when a utility index is writt en as a function of either the wealth 
or the consumption of an agent, the condition implies that u( )    should be mono-
tonically increasing in its argument(s); this increase is known as the  nonsatiation 
property , meaning that investors always prefer more to less. Second, the con-
ditions necessary for a preference ordering imply that u( )    should be concave, 
which can be proven to be equivalent to risk aversion. Risk aversion involves 
that investors prefer the expected value of a gamble (risky investment) to the 
risky gamble itself. 

 In portfolio theory, investors are faced with a set of choices under uncertainty. 
Diff erent portfolios have diff erent levels of risk, κ , and expected return, μ   , where 
risk may be measured in various ways. Besides variance, examples of alterna-
tive measures of risk are dispersion measures, such as mean absolute deviation 
of portfolio returns or wealth and downside risk measures. Investors are faced 
with the decision of choosing a portfolio from the set of all possible risk-return 
combinations, and obtain diff erent levels of utility from diff erent combinations. 
Th e utility obtained from a risk-return combination is expressed by the utility 
function, implicitly or explicitly capturing preferences in regard to perceived risk 
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Preference Models in Portfolio Construction and Evaluation  233

and expected return. When such dependence is assumed to be explicit, the result 
is Equation 11.1,  

  V ≡U ∂ > ∂ ∂( , ) /U∂ ∂Uμ , μ ∂, /∂U 0∂ <U κ∂U   (11.1)

 where ∂ ∂ >/ μ 0    derives from nonsatiation and ∂ ∂ </ κ 0    from risk aversion. 
Th ese preference representations may be particularly simple and enlightening, 
giving rise to classical derivations, for instance of the CAPM in asset pricing the-
ory. However, in such cases, how this risk-return preference is derived from an 
underlying preference ordering concerning bundles of goods and services under 
uncertainty is oft en unclear. When the agent has simple preference structures 
directly defi ned according to expected risk and returns, a utility function can be 
presented in graphical form by a set of indiff erence curves. 

 More oft en, such dependence is modeled in an indirect, implicit fashion, so 
that the links with the underlying, micro-founded preference ordering are easy 
to formalize, but the analysis tends to be more involved. In this case, the general 
idea is that a rational investor with utility u( )    and initial wealth  W  t  chooses his 
portfolio   γ   t  at time t so as to maximize his expected utility of either of the ter-
minal wealth T periods ahead, as shown in Equation 11.2,  
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 or of the stream of consumption fl ows between  t  and t T   , as shown in Equation 11.3:  
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 (11.3)  

 In both Equations 11.2 and 11.3, the constraint in (i) is the dynamic law of 
motion of wealth (the net of consumption withdrawals in the case of Equation 
11.3). Equation 11.2 illustrates the problem of an investor who commits her ini-
tial wealth  W t   to a vector of weights 

n

N{ }ωt
nωω

=1
 in order to maximize the expected 

utility of her fi nal wealth, u t T( )Wt TWW    , without the possibility of any interim with-
drawals or consumption. Th is is also called a  buy-and-hold problem . Of course, 
most investors are not concerned with the level of wealth for its own sake but 
with the standard of living that their wealth can support. In other words, they 
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consume out of wealth and derive utility from consumption rather than wealth. 
Th erefore, Equation 11.3 illustrates the problem of an investor who selects a vec-
tor of weights, 

n

N

={ }ωt i
nω

1
   , as well as of interim consumption levels Ct i    and who 

does this repeatedly over time to maximize her utility of the fl ow of consumption. 
However, in both equations 11.2 and 11.3, the utility indices play a key role. 

 Th e Arrow-Pratt  coeffi  cients of (local) absolute and relative risk aversion are 
two key measures describing the (local) properties of utility functions u t T( )Wt TWW
and/or u t i( )Ct i    , usually abbreviated as CARA ( x ) and CRRA ( x ), respectively. Th ey 
are illustrated in the equations shown in 11.4:  
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  (11.4)  

 where  x  is either terminal wealth Wt TWW     or consumption Ct i   . Th ese properties 
give important insights into the nature and behavior of cardinal utility functions, 
as described in the following: CARA ( x ) is a scaled, normalized measure of an 
individual’s risk aversion in a small neighborhood of her current (initial) wealth 
or consumption. Notice that if ′ >u ( )x 0    and ′′ <u ( )x 0   , as normally required of 
utility functions used in portfolio theory, then CARA ( x )>0. CRRA ( x ), on the 
other hand, is a normalized measure of an individual’s risk aversion in a small 
neighborhood of her current (initial) wealth or consumption per unit of wealth 
or consumption. Because CRRA CARCC ARR x( )x ( )x ⋅CARC AR )x    , when CARA  ( )> 0   , CRRA  
( )> 0   . Pratt  (1964) shows that for a small degree of risk, the CARA  coeffi  cient 
determines the absolute dollar amount that an investor is willing to pay to avoid 
such a small risk. A common view is that CARA  should decrease, or at least not 
increase, with wealth. Instead, CRRA  determines the fraction of wealth than an 
investor will pay to avoid a small risk of a given size relative to wealth. Another 
common belief is that plausible preferences should imply that relative risk aver-
sion should be independent of wealth (LeRoy and Werner, 2001). Moreover, 
Campbell and Viceira’s (2002) discussion of the long-run behavior of most econ-
omies, characterized by substantial growth in real consumption but also by real 
interest rates and consumption-wealth ratios that fail to be trending, is consistent 
with relative risk aversion levels that are independent of wealth. 

 Th is chapter examines relatively simple portfolio selection problems under a 
variety of alternative assumptions concerning the preferences (objectives) of an 
atomistic investor who is not necessarily representative of the market. Th erefore, 
the analysis is of a partial-equilibrium nature. In particular, unless otherwise 
stated, the chapter deals with an investor who has to choose a portfolio com-
prised of  N  risky assets, described by a vector  r   t   of continuously compounded 
returns. If a riskless asset exists, its risk-free yield is denoted as  r  f  and the asset 
is indexed as 0. To keep things simple, the assumption is made not only that 
the riskless asset exists but also that the risk-free rate is constant over time. In 
fact, these assumptions are not far from describing how very–short-term inter-
est rates behave in reality, over the investment horizons of interest in this chap-
ter. Th e investor’s choice is embodied in an ×1    vector, ω [ω ω ω ω0 1ωω ωω 2ωω Nωω  of 
weights, where each weight ωnω     represents the percentage of the  n th asset held 
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Preference Models in Portfolio Construction and Evaluation  235

in the portfolio, and the sum of the weights, including the riskless asset weight 
ω0    must be equal to 1 (i.e., no money should be left  on the table, which derives 
from nonsatiation). Although, in general, short selling (the case in which weights 
can be negative or can exceed 1 is possible. In the illustrations given later, the 
restriction prohibiting short selling is imposed because this is realistic and oft en 
simplifi es numerical optimization when short selling is undertaken.  

  Subjective Expected Utility Preferences: 
Main Functional Classes 

 To get comfortable with the previously described frameworks and concepts, list-
ing the most commonly used assumptions made in the literature about u t T( )Wt TWW
and u t i( )Ct i     and discussing their connections are useful. As a rule, examples are 
provided with explicit reference to the case of utility depending on terminal 
wealth, unless the presentation requires dealing with consumption. 

  AD -HOC  MEAN-VAR IANCE  UT IL I T Y  FUNC T IONS 

 Th e development of the classical theory of fi nance has been characterized by 
using simple but ad-hoc mean-variance (MV) objective functions with structure, 
as shown in Equation 11.5:  

  
MV E Vart T t T≡ E − VarT t[WtWW[ ]WWt TWW TT [ ]Wt TWWWtWW .

1
2

λV   (11.5)

 However, Equation 11.5 does not defi ne a utility function in a technical sense. 
Instead of writing a mapping from either terminal wealth or consumption streams 
into investor’s welfare, Equation 11.5 pins down a mapping between the fi nal 
investor’s objective — say, expected utility — and the fi rst two moments of the dis-
tribution of wealth (i.e., mean and variance). For a long time, this representation 
has been just perceived as a convenient shortcut. Using Equation 11.5 generates 
problems that stem from its lack of microfoundations. For instance, Equation 11.5 
does not allow computing either CARA ( W t  ) or CRRA ( W t  ) and therefore formally 
characterizing MV. However, fi nding interpretations of λ     that assimilate this coef-
fi cient to a CARA  measure is common. Although this interpretation is not for-
mally correct, it is approximately the case under some special assumptions. 

 Interestingly, these remarks concerning Equation 11.5 do not apply to 
Markowitz’s classical risk minimization framework that is sometimes referred 
to as being based on MV, although this labeling may be misguiding. Markowitz 
(1952) argues that for any given level of expected return, μp   , a rational investor 
would choose the portfolio with minimum variance from among the set of all 
possible portfolios, as illustrated in Equation 11.6:  

  
min [ ] ( ) [ ] ( ) .
ω

′ ′[ ] ( )ω [′ μ[ ]E) ′[ ] ( )[[ ω′t t] ( )ω] ω [.( )ω] ω p N;( )(] (ω]] .(ω] i] (μ] p ;( i.. ))i;(μ ;( i
 
  (11.6)
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 Th e set of all possible portfolios that can be constructed is called the  fea-
sible set . MV portfolios are called  mean-variance effi  cient portfolios . Th e set of all 
MV effi  cient portfolios, for diff erent desired levels of expected return, is called 
the  effi  cient fr ontier . Clearly, this algorithm does not lead to selecting a unique 
optimal portfolio but instead to locating the effi  cient frontier, represented by 
the set ˆ  seen as a function of μp   . However, a well-known alternative to 
Markowitz’s risk minimization framework, shown in the optimization problem 
11.6, is to explicitly model the trade-off  between risk and return in the objec-
tive function using a fi ctitious risk-aversion coeffi  cient, λ    , which is commonly 
called the risk-aversion formulation of the effi  cient frontier problem, as shown 
in Equation 11.7:  

  
min [ ] ( ) .

ω
ω [ ] ( )[ ][ ][ ]t t] (] (] N] (((] )(

    (11.7)  

 If λ     is gradually increased from zero to infi nity, and for each increase, the 
optimization problem is solved, the result is that all portfolios along the effi  cient 
frontier can be calculated . Equation 11.7 diff ers from Equation 11.5 in that the 
MV trade-off  is explicitly formulated in terms of the expectation and variance of 
portfolio returns. Although useful in the development of the CAPM, this rela-
tionship cannot represent a benchmark in portfolio choice applications. In fact, 
the objective in Equation 11.7 is even more problematic than the one in Equation 
11.5. When returns are discretely compounded, as in W Wt TWW t T t tWW( (Rt T

p )) ,, ω
where Rt T

p
,     is the total portfolio return (from an investment strategy charac-

terized by ωt) between time  t  and time  T , many researchers oft en plug this 
accounting into Equation 11.5 and obtain an equivalent objective, as shown in 
Equation 11.8:  
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  (11.8)  

 If one further standardizes initial wealth to be 1 and observes that adding a 
constant to the objective of a maximization problem does not change the nature 
of the problem or aff ect the set of controls, then Equation 11.9 results:  

  
MV E VR

t
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t T
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t∝E[ (Rt T[ (R pRt T
p )] (t T[ (R p )],, ,T t t(T t ωVarVar (RtR T

pωt −t )]
1
2

λVV
  

 (11.9)  

 which is a new, ad-hoc objective functional in which the mean and variance are 
no longer defi ned with reference to terminal wealth but directly in terms of port-
folio returns over the horizon [ , ]T,    . However, the absence of a precise microfoun-
dation is simply concealed by the deceivingly intuitive nature of the objective 
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11.9, as defi ning CARA (Rt T
p
,    ) or CRRA (Rt T

p
,    ) remains impossible. An additional 

problem is caused by that fact that because of Equation 11.10,  
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  (11.10)

Var t T
p

t[ (Rt T
p )], ω  has a complicated expression unless one assumes, usually in con-

trast with the data, that the returns on all risky assets are independent over 
time with zero cross-serial correlations. Probably as a result of this simple fact, 
Equation 11.9 has been most oft en employed only aft er sett ing T =1,    when 
Var Vt t t t( )Rt

p ( )+ =1 1t t) t+=ω ωVar( )Vart Var( tt . 
 Both equations 11.5 and 11.9 are frequently used in portfolio management, 

and, at least to some extent, in practice this is because they lead to a closed-
form expression (Fabozzi, Focardi, and Kolm, 2006). For instance, in the case of 
Equation 11.5, Equation 11.11  
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 leads to the fi rst-order conditions ( ) ( )t
f

N t( t NV)) arVV+ ) =1 1N t() +N t) () λV �ω 0  that yield the 
classical MV formula in Equation 11.12:  

  (r ) ( ).�ω t t) ( f
Nr(rt(rr(r−

+
1 1

1 1](r ))(r )r )r(r )     (11.12)

  L INEAR UT IL I T Y 

 Even though the case of linear utility, which is bett er known as maintaining risk-
neutral preferences, can be easily derived from Equation 11.5 by sett ing λ = 0    , 
diff erent than that done in both equations 11.5 and 11.9, linear utility has clean 
microfoundations, as shown in Equation 11.13:  

  u Wlin t T tWW T( )WtWW T ,+ +T tWWT =        (11.13)  

 which implies that E W Elin tWW T tE T[ (ulin )] [ ]WtWW T+ +T tE tWW    , implying that an investor ought to 
simply maximize her expected terminal wealth. Because the case of risk neu-
trality derives from an assumption of preferences for terminal wealth, then 
ulin t T )

yy
W
yy

tWW T ,+ =1 0>  ulin t T =+ )WtWW T+ ,0
pp

 which imply CARA t( )WtWW =    CRRA t( )WtWW = 0   . Even 
though this specifi cation lacks an assumption of risk aversion, much commentary 
about market performance implicitly assumes that a simple, linear objective may 
characterize the behavior of important portions of investors, especially those with 
short-term goals.  
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  QUADR AT IC  UT IL I T Y 

 One of the most traditional assumptions concerning u t T( )Wt TWW     or u t i( )Ct i     is that this 
relationship is a quadratic utility function (Hanoch and Levy, 1970). For instance, 
focusing on the simpler case of no interim consumption yields Equation 11.14:  

  
u W Wquad t T t TWW t TWW( )Wt TWW .WT tWW)T =WW

1
2

2λW
  

 (11.14)  

 In this case, risk aversion holds as uquad t T′′ = − <( )Wt TWW λ 0 but issues exist with 
nonsatiation because u Wquad t T t TWW′ WT tWW= −( )Wt TWW T ,11 λW     which is positive if and only if 
Wt TWW <1/ ,λ  putt ing an upper bound on the domain for wealth levels and there-
fore the portfolio choices. Wt TWW ∗ =1/ λ     is oft en also called the  bliss point  of qua-
dratic utility. Notice that in the case of Equation 11.15, we have  
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  (11.15)  

 which shows that quadratic utility is of a MV type. Even though under quadratic 
utility E Wquad t TWW[ (uquad )]    declines in the variance of terminal wealth, some ambigu-
ity remains over the behavior of E Wquad t TWW[ (uquad )]    as a function of expected termi-
nal wealth, as shown in Equation 11.16:  

  

∂
∂

= −
E W

E
Equad t T+WW

t T+
t T+

[ (uquad )]

[ ]Wt T+WW
[ ]Wt T+WW .1 λE

   
 (11.16)

 Th e expression in Equation 11.16 is positive if and only if E t T[ ]Wt TWW / ,<1 λ ,    which 
means that expected wealth is below the bliss point. However, this issue is only 
an apparent one, as Wt TWW <1/ λ    is suffi  cient for E t T[ ]Wt TWW /<1 λ     to hold, so that 
quadratic utility preferences are truly based on the MV framework. As a result, 
the decomposition in 11.15 indicates the way in which the portfolio objective 
in 11.5 may suff er from an ad-hoc nature. If Equation 11.5 derives from a qua-
dratic utility function, then its functional form is misspecifi ed, because Equation 
11.5 diff ers from Equation 11.15 in the absence of the term −0 2. (5 [ ])(E[ t T++    . 
Additionally, if the objective in 11.5 derives from a quadratic utility function, 
then one should emphasize that this representation is only valid for Wt TWW <1/ λ    , 
something that users of Equation 11.5 oft en forget. 

 As uquad t T( )Wt TWW     has a precise microfoundation, computing CARA  and CRRA  
measures in Equation 11.17 is useful:  
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W
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Preference Models in Portfolio Construction and Evaluation  239

 Clearly, as long as wealth is below the bliss point, CARAquad ( )W > 0   , but 
CARA  is decreasing in wealth so that as wealth approaches the bliss point, then 
 CARA    quad  ( W ) converges to zero from the right, CARAquad ( )W → +0     and the inves-
tor stops being risk averse. Moreover, Equation 11.17 shows that in this case 
CRRA  is decreasing in wealth. Th e fi nding that scaled, normalized risk aversion 
is declining as investors grow wealthier is an unrealistic feature of quadratic pref-
erences, as is the property that utility may be defi ned only below the bliss point. 
In fact, while Equation 11.5 is oft en employed in practice because of the att rac-
tiveness of closed-form expressions such as Equation 11.12, its microfounded 
version in Equation 11.15 is hardly ever used. Th ese relationships imply that the 
microfoundations of the portfolio objective in 11.5 have to be found elsewhere.  

  NEGAT I VE  E XPONENT IAL  UT IL I T Y 

 Th is utility function is as popular as the quadratic utility function, both in its 
own right—for implying a rather realistic constant coeffi  cient of absolute risk 
aversion for small risks—and because it provides an alternative to and more 
compelling microfoundation than Equation 11.5 under the specifi c assumptions 
shown in Equation 11.18:  

  
u Wt T t TWWexpx ( )Wt TWW exp( )WtWWT )T exp(= − −λW

       (11.18)  

 Because u Wt T t TWWexpx ( )Wt TWW exp( )′ WtWWT )T exp(−exp(= λλ     and 
u Wt T t TWWexpx ( )Wt TWW exp( ),′′ WtWWT )T exp(= − −λ2λ

Equation 11.19 results in:  

  
CARA

W
W

C Wt TWW

t TWW quadexpxx ( )W
exp( )

exp( )
( ) ,≡ −

−exp(−
−

=
λ
λ

λWλ CRRAquadλ CRRA ( )W( )WCRRA d (W
2λλ

  
  (11.19)

 which means that CARA  is constant and independent of wealth, with λ     being 
the CARA  coeffi  cient, while CRRA  is monotone, increasing in wealth. Of course, 
this latt er property is unrealistic, and concerns about the usefulness of this utility 
function have stemmed from this CRRA  behavior. 

 When using expected utility as an objective in portfolio optimiza-
tion, u t Texpx ( )Wt TWW     fails to yield particularly enlightening insights, such as 
E W Et TWW t T[ (u )] [exp( )Wt TWW ],expx tET )] [exp( WtWWW  because the convexity of the exponential 
function prevents the claim that E Wt T t TWW[exp( )t p( [E ]).WtWWT )T ] p( [E)Wt TWW ] exp( E)W TW ])T ] exp(     However, 
when Wt TWW     has a lognormal distribution, the function in Equation 11.20 results 
from the properties of the moment-generating function of terminal wealth:  

  
E W Wt T t TWW t TWW[exp( )t p( [E ])ex [Varpxx ] .⎛

⎝
⎞
⎠WT tWW)T ] p( [E)Wt TWW ] exp( E)W TW ])T ] exp( λ1

2
2λ

  
  (11.20)  

 Because the standard features of convex optimization ensure that when λ > 0,
then choosing ωt  to maximize −E Wt T+WW t[ (u ( ))]expx ω  is identical to maximizing 
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− ln [ ( ( ))].expxE[− t T+ tω( (−− Wt T+WW1  Th us, maximizing the function in Equation 11.21,  

   
− +ln E E= VarVVt T+ t tE T t t T+ t[ (− ( ( ))] [ (+W +WW T )] [ (Wt T+WW )],expx Wt+WW +(− u− ( λV−ωt )] ω1 1

2     (11.21)  

 delivers the same optimal weights as the maximization of the original expected 
utility functional E Wt TWW[ (u )]expx . In turn, for any given choice of weights wwww t    , it 
follows that the expression in Equation 11.22,  

  
Wt TWW t t t Tt t TT t ( )t t ii

T
+tt =

( )t ( ) pp,ω=)tt exp(exp( ′ ( t ttt(rt Tt TT ) e= xp
 
,   (11.22)  

 has a lognormal distribution (i.e., ln ( )Wt TWW t t) i
N

t i=∑ω))= ′
0 rt  has a normal distri-

bution) if and only if rt irr  has a multivariate normal distribution for all cases of 
i ≥1    . Th erefore, under negative exponential utility, the fact that rt irr  has a multi-
variate, joint normal distribution is suffi  cient to lead to an expected utility func-
tional with a structure identical to Equation 11.5. In that case, the parameter λ
in Equation 11.5 can be interpreted as a constant CARA  coeffi  cient.  

  LOGAR I THMIC  UT IL I T Y 

 As discussed later in this chapter, the case of logarithmic utility corresponds to 
a special limit parameterization of power, known as isoelastic preferences. Th e 
structure of this utility function is shown in Equation 11.23:  

  
u Wt T t TWWlog ( )Wt TWW ln ,WT tWW)T ln=   (11.23)

 which implies u Wt T t TWWlog ( )Wt TWW /′ WT tWW)T /=1  and u t T t Tlog ( )Wt TWW / ,Wt TWW′′
T t)T /WtWW= −1 2  so that the expres-

sions in Equation 11.24 are obtained:  

  
CARA

W
W W

CRRAlog lW W
CRRA og( )WW

/
/

( )W( )W ,≡ −
−

= =CRRAlCRRA ( )W
1

1
1

1
2

  
  (11.24)

 which reveals that a logarithmic utility function implies a monotone decreasing 
CARA  coeffi  cient (i.e., the investor becomes decreasingly risk-averse as she gets 
wealthier) and a constant unit CRRA  coeffi  cient.  

  POWER UT IL I T Y 

 Th is functional generalizes the logarithmic case in the utility function 11.25,  

  
u

W
power t T

t TWW y

( )WtWW T ,+

−

=
−

≠
1

1
1

γ
γ

  
  (11.25)
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 which implies u Wpower t T tWW T
′

+ +T tWW −=( )WtWW T+T
γ  and u Wpower t T tWW T

′′
+ +T tWW − −= −( )WtWW T+T ,γ γ 1  so that expres-

sions in Equation 11.26,  

  
CARA

W
W W

CRRApower pW W
CRRA ower( )WW ( )W( )W ,≡ − − = =CRRA ( )W

− −γ γWW γ
γ 1

  (11.26)  

 confi rm the same properties obtained under logarithmic utility. Yet, in this case, 
all the results concerning CARA  and CRRA  appear to have been scaled by a fac-
tor of γ ≠1   . However, one notable limit result applied to Equation 11.26 leads to.  

  
lim ( ) ln ( ).gγ→ + + +ln

1
W( Wpower t(WW( T t) ln) lnln T t(log WW T

   (11.27)  

 Unless one is ready to resort to some form of approximations, power utility 
preferences, of which the logarithmic case may be simply interpreted as a special 
case for γ →1   , generally do not lead to closed-form expressions for optimal port-
folio weights. Hence, one has to resort to numerical methods to compute optimal 
allocations.  

  EP S TE IN -Z IN  PREFERENCE S 

 Despite the many att ractive features of the power utility model, it has one highly 
restrictive feature, which is that power utility implies that the consumer’s elastic-
ity of intertemporal substitution, ψ    , is the reciprocal of the coeffi  cient of relative 
risk aversion, γ    . Yet, whether these two concepts should be linked so tightly is 
unclear. Risk aversion describes the consumer’s reluctance to substitute consump-
tion across states of the world and is meaningful even in a temporal sett ing. By 
contrast, the elasticity of intertemporal substitution describes the consumer’s will-
ingness to substitute consumption over time and is meaningful even in a deter-
ministic sett ing. Epstein and Zin (1989) off er a more fl exible version of the basic 
power utility model. Th e Epstein-Zin model retains the desirable scale indepen-
dence of power utility (i.e., the fact that CRRA  does not depend on wealth) but 
breaks the link between the parameters ψ     and γ    . In this section, the assumption 
is made that utility is defi ned over a stream of consumption. Th is is the only case 
for which the recursive structure of Epstein-Zin preferences is sensible, because 
defi ning utility over consumption streams drives a wedge between ψ     and γ    . Th e 
Epstein-Zin objective function is defi ned recursively, as shown in Equation 11.28:  

  
Vt tVV ( )Et t

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩⎩⎩

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

− −
( ) VtVV ,

1 1 1
δCtC + ())

γ
θ θ

θ
λ

  
  (11.28)  

 where δ ∈( , )1,     is the subjective discount rate that refl ects the impatience 
of investors and θ γ ψ−( )γ /( / )ψ1)γ /( 1    . When γ ψ1/    , θ =1    and the recursion 
in Equation 11.28 becomes linear, so that it can be solved forward to yield the 
familiar (time-separable) power utility model. 
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 Th e nonlinear recursion in Equation 11.28 is generally diffi  cult to work with 
in consumption/portfolio problems. However, when risky returns are IID (identi-
cally and independently distributed, i.e., investment opportunities are constant), 
then consumption is a constant fraction of wealth and covariance with consump-
tion growth equals covariance with portfolio return. In this case, showing that 
if γ =1,    then θ = 0    is straightforward, so that the standard myopic MV portfolio 
rule in Equation 11.12 results.  

  MOMENT-BA SED APPROX IMAT IONS 

 Both power and, at least under general dynamics for portfolio returns, nega-
tive exponential utility fail to lead to a closed-form solution for optimal portfolio 
weights, while MV preferences do not account for skewness and kurtosis in either 
the (portfolio) return distribution or in interim or terminal wealth under models of 
time-varying predictive densities. To compensate for these weaknesses, a growing 
body of literature that goes back to seminal papers by Arditt i and Levy (1975) and 
Kraus and Litzenberger (1976) has adopted a diff erent approach. Th e key idea of this 
strand of papers is that expanding one of the utility functions (e.g., power utility or 
negative exponential) previously specifi ed is useful to obtain a tractable expression 
that depends only on the fi rst  M  moments of the wealth or portfolio return distribu-
tion. In fact, although in the classical development of fi nancial economics, MV-based 
portfolio selection and performance evaluation have been dominant, some papers 
(Arditt i, 1967; Samuelson, 1970) stress that, unless either asset returns are multi-
variate and normally distributed or utility functions are quadratic, higher moments 
cannot be neglected. Indeed in the 1960s, the literature shows that security returns 
were hardly Gaussian (Fama, 1965). More recently, Harvey and Siddique (2000) 
show that skewness in stock returns is relevant to portfolio selection based on asset 
pricing fundamentals. If asset returns exhibit nondiversifi able coskewness (the cova-
riance between portfolio returns and the variance of market returns), investors must 
be rewarded for coskewness, resulting in increased expected returns. In fact, in 
the presence of positive coskewness, investors may be willing to accept a negative 
return. Guidolin and Timmernann (2008) extend these intuitions to international 
asset allocation applications and derive results that explain why US investors may 
hesitate before aggressively diversifying their equity portfolios internationally. 

 In particular, Samuelson (1970) shows that the possibility of using MV prefer-
ences to approximate any properly defi ned utility function (as discussed by Tsiang, 
1972, and Levy and Markowitz, 1979) extends to all fi nite  M th moment approxi-
mations (obtained by taking a Taylor expansion) and to the generic utility of fi nal 
wealth functions, t T( )Wt TWW    . Th e approximation will work and will generate a sensible 
representation of preferences (for instance, in terms of global nonsatiation and risk 
aversion) only when riskiness is limited in a very precise sense. Assume that the t T
period returns on the  N  risky assets are drawn from a family of compact (small-risk) 
distributions; for instance, a multivariate distribution illustrated in Equation 11.29  

   
F P

r r T
T

r r T
T

r r T
t t T

t Trr f
t Trr f

t Trr N fr N( )t T , ,
T

,, ,T t ,
+tt
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2
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σ
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⎟
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,   (11.29)  
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 such that the condition will do (in other words, this condition will only be suf-
fi cient). Intuitively, compactness implies that as the time horizon vanishes asset 
returns all converge to the riskless rate. Samuelson shows that an  M th moment 
approximation of a utility function u t T( )Wt TWW     has a precision that increases as the 
horizons gets small. Furthermore, given the order of  M  of the approximation in 
Equation 11.30,  

    
lim

T

n
M

m
n

m
w n

M wn

→ +

∂
=

∂
0

ˆ ˆ( )T
( )T∂

( )T
( )T∂    m  = 0, 1,  . . . ,  M  and  n  = 1,  . . . ,  N,   (11.30)  

 where ∂ ∂T Tn
M

n
M( )/( ) (w= n
Mˆ )0 , the apex indicates that an optimal portfolio 

weight has been computed from an  M th order approximation and wn
Mˆ  is the opti-

mizing weight under the utility function u t T( )Wt TWW     Th e implication is that the gain 
in taking expansions that go beyond the simple MV model is that not only portfo-
lio weights but also their overall behavior as a function of the time horizon can be 
bett er approximated the higher that the expansion order  M  is. Th ese local approxi-
mations involving derivatives of the control variable are referred to as being high 
contact. Conversely, notice that the result holds only asymptotically and irrespective 
of the order  m : if  T  is too large even under a high  M , the resulting n

Mˆ  may have 
nothing to do with the correct wnˆ . Samuelson’s paper stresses that two components 
are needed for approximations to work in asset allocation problems: (1) the asset 
returns must be drawn from well-behaved distribution families (such as normals), 
and/or (2) the investment horizon must be very short, in principle infi nitesimal. 

 Tsiang (1972) seems to off er the deepest theoretical background to fi nite-
order Taylor expansions of generally accepted utility functions. Tsiang notes that 
although rigorous, Samuelson’s (1970) asymptotic results could be improved, so 
that risk would be nonnegligible and small enough in a relative sense for Taylor 
approximations (possibly MV analysis) to be suffi  ciently accurate. Finite-order 
Taylor expansions may be applied to utility functions that display these properties, 
provided that the power series converges (equivalently, provided the remainder 
term can be ignored). Tsiang carefully considers this aspect for two classes of util-
ity functions. First, in the case of negative exponentials shown in Equation 11.31,  
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 which gives an approximation to the expected utility in Equation 11.32 of  
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  (11.32)  

 From well-known mathematical results, the series emerging in Equation 11.33  

  
1

1
2

1
6

12 2 3 3+ +λ λ1 2 λλ3 3 +3 3 −h h2λ λλ 1 2− h
M

hM M1 λλ1 M( )1−
!

,    (11.33)  

 converges for all  h s (provided they are fi nite). Th is relationship also guarantees 
that the approximation can be accurate provided  M  is high enough (M →∞   ). In 
particular, Tsiang argues that if λ    is bounded by 1/ [ ]E [t t[[ T+    , then sett ing  M  = 2 
or 3 may be enough. 

 With reference to power utility, and when the approximation is taken around 
ν ≡ +Et t T[ ]+WtWW T    , ν = +Et t T[ ]+WtWW T     as shown in Equation 11.34,  
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  (11.34)  

 Tsiang (1972) shows that the condition | | | [ ]| [ ]| | W[ E [ttWW[ T t]| E t T| ≤+t[WW[  is 
required for the series in Equation 11.35,  
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 (11.35)  

 to converge. In general, convergence is much slower than in the exponen-
tial utility case, and it turns out to depend on  T.  For large values of  T , 
Pr{| [ ]| [ ]}W Wt TWW t t T ]|]| t TWW+ET t t[− [ ]|E ]|t [ ]|Et [ =1 is unlikely to hold (depending on the distri-
bution of asset returns), and as such approximations may not be viable. Moreover, 
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from an asset allocation perspective, Equation 11.34 has the disadvantage of being 
taken around expected time t T    wealth, which depends on a portfolio choice 
that is supposed to be derived endogenously from the maximization of Equation 
11.34, which is a circular reasoning (Kane, 1982). 

 Of course, moment-based expansions developed around points that diff er 
from conditional expected wealth can also be considered. In the case of power 
utility, suppose WtWW =1    and consider a fourth-order Taylor series expansion, such 
as a polynomial approximation arrested to the fourth-term of a standard power 
function Wt TWW − −1 1γ γ/( )γ ( γ > 0 ) around ν ≡ exp( )r Tf     EXPRESSION ν = exp( )r Tf

POSSIBLE (i.e., a 100 percent investment in the riskless asset), as shown in 
Equation 11.36:  
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  (11.36)  

 where ′ −u ( ) ,ν=( ) γ     ′′ −u ( ) ,( )+ν γ= −( ) νγγ γ     ′′′ = −u ( ) ( )+ ,( )+ν γ=( ) γ ν( )+ γ     and 
u′′′′ −( ) ( )+ ( ) ( )+ν γ= −( ) γ γ( )+ ( ν) γ)( +)(    . Expanding the powers of ( )t T     and taking 
the expectation conditional on information up to time  t , one obtains the expres-
sion for a fourth-order approximation in Equation 11.37:  
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 Here, variable defi nitions are shown in the following expressions:  
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   (11.38)

  

 Equation 11.37 has highly intuitive implications: the (conditional) expected 
utility from fi nal wealth increases in Et t T[ ]WtWW T+     and Et t T[ ]WtWW T ,+

3     i.e., the higher the 
expected portfolio returns are and the more skewed to the right the induced dis-
tribution of fi nal wealth is. Th ese are all signed statistics measuring the location 
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of the distribution of fi nal wealth. By contrast, expected utility is a decreasing 
function of even noncentral moments, such as Et t T[ ]WtWW T+

2     and Et t T[ ]WtWW T+
4    , which 

are statistics related to the thickness of the tails of the distribution of time t T
wealth. 

 As for the economic interpretation of the coeffi  cients κ γ3( )γγ     and κ γ4 ( )γγ     in the 
expressions in Equation 11.39, in the former case (with reference to a third-
order Taylor expansion of power utility around expected future wealth Wt TWW    ), 
Kraus and Litzenberger (1976) observe that as long as the bound is imposed, a 
three-moment Taylor expansion has three desirable properties besides the exis-
tence of expected utility: (1) positive marginal utility of wealth, (2) decreasing 
marginal utility (risk aversion), and (3) nonincreasing absolute risk aversion, 
which implies κ γ3 0( )γγ >    . Scott  and Horvath (1980) show that a strictly risk-
averse individual who always prefers more to less and who consistently (i.e., for 
all wealth levels) likes skewness will necessarily dislike kurtosis, κ γ4 0( )γγ <    . Since 
global risk aversion and nonsatiation seem plausible and preference for skewness 
may be obtained under very weak assumptions, assuming kurtosis aversion may 
be justifi ed.  

  MV  PREFERENCE S  A S  A  SPEC IAL  C A SE 

 As a special case of Equation 11.35, one can obtain a MV objective function that 
can be interpreted as a two-moment approximation to a power utility objective, 
the argument of which is time t T     wealth, similarly to that done by Tsiang 
(1972) and Levy and Markowitz (1979) in Equation 11.39:  

  
E W E Et appa t TWW t t T tE t T[ (uau ppa )] ( ) ( ) [ ]WWW T ( ) [ ]Wt TWW .2

0 1
2

+Et t) tWWT )] 0 1)0 ( (1   (11.39)  

 Th is result derives from the fact that E Vt t T t t T[ ]WtWW T ]T[ ]W+T tVarr tT [WtWW= +VarVar ]Wt TWWVarr WtWW { }Et t T[ ]WtWW T+
2 2

, 
implying the following expression:  

 
E W E V E Wt appa t TWW t t T tVarrVV t T t tWW[ (uau ppa )] ( ) ( ) [ ]WWW T ( ) ]T[WtWW[ ]W [2

0 1 +Et tT )] ) tWW0 1) VarVV tVarrVV [WWW0 ( (1′ +++T t t T+Wt] [− Vart ].V
 

  (11.40)  

 Th e expressions in the former equation are defi ned in Equation 11.41,  

κ γ κ γ γ γ γ γ γ γγ
1 1κ γκ 2κκ 1

6
1γ 1 2γ’ ( )γγ )γ( ) ( )γ [ ] [ (γ γ6 3 3γ ) (γ )( )]≡ +κκκ ( )γ = γ [6 γ3γ +γ(γ+
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t t T
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− + +

3 3+ +

3 1+ 1 2+
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( )+1γ γ +1 ( )1+γ 1+ ( )+ 2γ ]

[ (+2 2+2 2 ) (+ )( )] [ ]+ }E [t t[[ T ,,    
 (11.41)  
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 while κ γ2 ( )γγ     has a defi nition identical to Equation 11.38. κ γ′κκ1κ ( )γ  can be shown 
to be positive provided γ     is not too high. However, the sign of κ γ′κκ1κ ( )γ  is hard 
to assess, as it depends on Et t T[ ]WtWW T+     and hence on the portfolio strategy imple-
mented by the investor.   

  Exotic, Nonstandard Preferences 

 A new strand of research that straddles the empirical fi nance, theoretical microeco-
nomics, and portfolio management literatures develops techniques of robust portfolio 
management. Th is work contributes to establishing important connections between 
the role played by preferences in the practice of asset allocation and applications 
of optimal decisions under ambiguity. Traditional models assume the following: 
(1) that investors maximize (subjective) expected utility ([S]EU), (2) that agents 
are perfectly of aware their own preferences, and (3) that investors’ expectations 
are not systematically biased and are made up of rational expectations. However, a 
growing body of empirical evidence suggests that this traditional paradigm does not 
well describe investors’ behavior in that actual choices are incompatible with (S)EU 
predictions. As a result, a new line of research entertains agents whose choices are 
consistent with models that are less restrictive than the standard (S)EU framework 
in the sense that the underlying axioms are less demanding. In this area, particu-
lar att ention has recently been dedicated to ambiguity. Under (S)EU, if preferences 
satisfy certain axioms, numerical utilities and probabilities are used to represent 
decisions under uncertainty by a standard weighted sum of the utilities, where the 
weights are (subjective) probabilities for each of the states. As innocuous as this basic 
principle may seem, a long, rich tradition questions whether it adequately describes 
behavior. Knight (1921) distinguishes risk, or known probability, from uncertainty. 
He suggests that economic returns could be earned for bearing uncertainty but not 
for bearing risk. However, Ellsberg’s (1961) paradox most directly provides the mod-
ern att ack to (S)EU as a descriptive theory. Ellsberg’s thought-provoking article led 
researchers to assemble massive experimental evidence indicating that people gen-
erally prefer the least ambiguous acts. Such a patt ern is inconsistent with Savage’s 
(1954)  sure-thing principle , the axiom by which a state with a consequence common 
to a pair of acts is irrelevant in determining preference between the acts. Th e impli-
cation for portfolio management would be that investors would select optimal port-
folios not only by taking the risk of portfolios into account but also by considering 
their overall uncertainty, which cannot be simply measured as risk. 

 Although a brief survey of this literature follows, a more complete discussion 
is available in textbooks devoting chapters to the topic of robust portfolio deci-
sions, such as Fabozzi et al. (2006), or in papers reviewing applications of ambi-
guity to fi nance, such as Guidolin and Rinaldi (2010). 

  MV  ANALYS I S  UNDER AMBIGUI T Y 

 As previously shown, under the assumption that rtrr  follows a joint multivariate 
normal distribution with known variance-covariance matrix ∑ ≡Var t[ ]tt  and 
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known mean μ ≡ E t[ ]tt , a MV investor will invest using the well-known formula 
in Equation 11.12. Kogan and Wang (2003) extend this result to the case in 
which rtrr  the investor does not have perfect knowledge of the distribution of the 
risky returns; specifi cally, the case in which follows a joint multivariate normal 
distribution with a known variance-covariance matrix and an unknown vector of 
mean returns, μ. Here, the agent displays a special kind of preferences, which 
Gilboa and Schmeidler (1989) call the multiple priors type (MPP). In this clas-
sifi cation, a rational decision maker evaluates expected utility using a multival-
ued set of priors to capture the existence of ambiguity on the distribution of the 
set of random outcomes that may aff ect either the wealth or consumption of the 
investor. In this case, Schmeidler (1989) proves that standard SEU optimization 
may be replaced by max-min problems, in which an investor minimizes her maxi-
mum expected utility with reference to a set of candidate probability measures, 
as defi ned by the multiple priors. Assuming a unique source of information, so 
that the agent is able to derive only a reference joint normal distribution of asset 
returns, f̂ ∼ ∑( , )μ , the set of eff ective priors ℘( )ˆ  is shown in Equation 11.42:  

  
℘ ={ }( ) ,}≤ ≡ˆ

 
  (11.42)

 where η    captures ambiguity aversion (a larger η    means higher aversion). Th e 
investment problem can then be reformulated as a typical max-min problem illus-
trated in Equation 11.43:  

max (aa , (
( )ω ω

W(
q p(

q
f℘ =(

∈℘
f ()) max maa in { [ ( )]} . [

( )
ωu[ W)]} .q=)) =[ω r )r f− +(1N

ˆ .. ωω + )++ f ],
  
  (11.43)

 (under the standard constraint that portfolio weights sum to one, ω ι′ =N 1) 
where W     is fi nal wealth, and the set ℘( )ˆ  constrains the statistical models for 
the vector process  r  to be not too distant from the benchmark f̂ , with maxi-
mum distance given by η   . Lett ing θ μ μ−μ ˆ  be the divergence between one 
of the possible mean vectors under MPP and the vector of expected returns 
under the benchmark model, the problem in Equation 11.43 can be rewritt en 
in Equation 11.44 as  

max maa in ( ( ) ( )) ( ) expx
ω θθθ { }θ θ θ η≤θ θ θ

≡ expxx())r)
θθθθ

E( W(W(( z { }θθ 1 11
2

’ (θ θθ θ θθ (1 1θ θ rθ θ−θθ θθ θ −(θ1θ rθθθθθ −− ,   (11.44)  

 subject to a budget constraint, which is a transformation of the constraint on the 
set of admissible models under the parameter η    into a (multiplicative) factor that 
appears in the objective function. 

 Garlappi, Uppal, and Wang (2007) extend these early results and show how 
to use a confi dence interval framework that appears to be natural in the portfolio 
literature. Th eir starting point is that the parameters of the joint normal density 
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characterizing the ambiguous asset returns  r  have to be estimated. Assuming that 
a time series of length  T  of past asset returns h   t    is available, the conditional den-
sity distribution of returns g t( | )h|  must be derived. Assuming that the returns 
depend on some unknown parameters θ , whose prior is π θ( )θ , the predictive den-
sity g t( | )h|  is g g p dg p( | ) (gg || ) |( | ) ,dh| r |∫gggg p) (pp)) ,, where p t( | )h  is the data posterior. 
If an investor solves the classical MV problem using the predictive density of the 
data, Equation 11.45 emerges:  

  
maxaa g( | )

ω
γrg( | ) rω ω ωγγ′ωω ′ωω∫ || d

1
2

Σ
  

 (11.45)  

 Th e resulting portfolio is of a Bayesian type, taking into full account the 
existence of parameter uncertainty (Barberis, 2000). Th e portfolios in which 
only parameter uncertainty is considered oft en perform poorly out of sample, 
even in comparison to portfolios selected according to some simple ad-hoc rules 
(Miguel, Garlappi, and Uppal, 2009). One reason for this result is that the vector 
of expected asset returns μ  is hard to estimate with any precision. Th is induces 
Garlappi et al. (2007) to introduce ambiguity on the appropriate statistical 
model, as identifi ed here by the vector of expected returns μ . When using MPP, 
the optimization takes the form shown in Equation 11.46:  

  
max maa in ’

1
2

( , )  1=1
ω μ

ω μ’ γω ω μ s.t. ( μ η, ) ω− γω )′ ′( ) η≤)ωω ),ω  s.t. ( ,μ,,(t (ω t ( μ̂
  

 (11.46)  

 where  f  is a vector-valued function and μ̂ is the estimate of μ derived from the 
predictive density g t( | )h| . One can prove that the max-min problem in Equation 
11.46 is equivalent to the simpler maximization problem in Equation 11.47:  

  
max ,aa

ω
ω μ μ γω ω ,γ ′γωωγ′ωω μ μ( )μ μ 1dμμμμ jd

2
Σ

  
  (11.47)

 where μ μˆ adμμ jd  is the adjusted estimated expected return (the adjustment 
has the role of incorporating ambiguity), and defi ne a vector μadμμ jd  to satisfy 
Equation 11.48,  

   
μadjd

N
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NT T T
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1 T
)

T
1 2

2ηη
   

 (11.48)  

 Th e adjustment depends on the precision with which parameters are estimated, 
the length of the data series, and the investor’s aversion to ambiguity ( η ). 

 Additional papers have recently shown that using ambiguity aversion to solve 
realistic, large-scale portfolio problems is possible. Boyle et al. (2009), who study 
the role of ambiguity in determining portfolio underdiversifi cation and the fl ight 
to familiarity episodes, off er the simplest of such papers. Consider a MV portfolio 
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problem in which the asset menu is composed of  N  identical risky assets and one 
riskless asset. Each asset has (unknown) expected excess return μi     and common 
volatility σ    . Using the framework developed by Boyle et al., the authors write the 
optimization problem as shown in Equation 11.49:  

  
max maa in
ω μ

ω′μ γ ω′ ω ′-
2

( )
2Σ

σ22 η
μ

i N„η ωη
i

=′′ N„
ˆ

ˆ
1.   (11.49)  

 Under this specifi cation, the ambiguity problem can be interpreted in terms of 
classical statistical analysis, because by lett ing μ̂i  represent the estimated value of 
the mean return of asset  i  = 1, . . . ,N and σ μ̆i

2     represent the variance of μ̂i , defi ning 
the confi dence interval { / ii

σ η
iμii

σσ
ii

( )i iμi ≤σσ2 2σσ  for expected returns is possible. 
Hence ηi    , is the critical value determining the size of the confi dence interval, 
which can be interpreted as a measure of the amount of ambiguity of the esti-
mate of expected returns. Th e authors fi nd that an investor holds familiar assets 
but balances this investment by also holding a portfolio of all the other assets 
(as advocated by Markowitz 1952), which remains biased toward more familiar 
assets.  

  SMOOTH RECUR S I VE  PREFERENCE S 

 One novel approach to modeling ambiguity in asset allocation decisions exploits 
a generalization of Klibanoff , Marinacci, and Mukerji’s (2005; hereaft er, KMM) 
class of smooth preferences. Th ese authors propose that the ambiguity of a risky 
act or decision can be characterized by a set ℘= { ,..., }P,..., nPP1     of subjectively plausi-
ble cumulative probability distributions. Th ey give the hypothetical example that 
lett ing WjW     denote the random variable distributed as PjP    ,  j  = 1,  . . . ,  n  the decision 
maker, based on her subjective information, associates a distribution  q  1 ,  . . . ,  q   n
over    , where qj    is the subjective probability of PjP     being the true distribution of 
W . Th ey that show that resulting preferences have the following representation:  

  
q u dPdj ju dPdd

j

n

ζ ( )WW ,∫∑ ( )
=1    

 (11.50)  

 where ζ( )    is an increasing real-valued function whose shape describes the inves-
tor’s att itude toward ambiguity. Using Equation 11.50, the decision maker fi rst 
evaluates the expected utility of  W  with respect to all the priors in ℘   : each prior 
PjP     is indexed by  j , so in the end, a set of expected utilities results, each being 
indexed by  j . Th en, instead of taking the minimum of these expected utilities, as 
MPP would, the investor takes an expectation of distorted expected utilities. Th e 
role ζ     of is crucial here: If ζ     were linear, the criterion would simply reduce to (S)
EU maximization with respect to the combination of the  q s representing the prob-
abilities, and the PjP    s, representing the possible distributions. When ζ     is not linear, 
one cannot combine  q s and PjP    s to construct a reduced probability distribution. In 

OUP UNCORRECTED PROOF – REVISES, 09/24/12, NEWGEN

11_HKentBaker_11.indd   25011_HKentBaker_11.indd   250 9/24/2012   6:46:36 PM9/24/2012   6:46:36 PM



Preference Models in Portfolio Construction and Evaluation  251

this event, the decision maker takes the expected ζ    -utility (with respect to  q ) of 
the expected  u -utility (with respect to the  P s). A concave ζ     will refl ect ambigu-
ity aversion, in the sense that it places a larger weight on poor expected  u -utility 
realizations. One important implication of the two-stage approach is that the deci-
sion maker is not forced to be so pessimistic as to select the act that maximizes 
the minimum expected utility as a consequence of the separation between ambi-
guity and her att itude toward ambiguity. In this sense, KMM preferences may 
be interpreted as a smooth extension of Gilboa and Schmeidler’s (1989) classical 
MPP. MPP is a limiting case of Equation 11.50. Up to ordinal equivalence, MPP 
is obtained in the limit as the degree of concavity of ζ     increases without bound. 
Although the type of portfolio problems that have been analyzed so far, assum-
ing simple KMM’s preferences, remain limited, this smooth class will acquire 
increasing weight in the asset allocation literature.   

  An Illustrative Application 

 To illustrate the eff ects of preferences on optimal portfolio decisions, provid-
ing an empirical example is useful. Assume the following two experiments: Th e 
fi rst experiment involves calculating optimal weights under a range of alternative 
utility functions (preferences). Such optimal weights are computed over a range 
of alternative scenarios describing the state of the economy, where the state is 
defi ned through the lenses of a simple but powerful two-state Markov switching 
model (henceforth, MSM). Th e second experiment illustrates the power of alter-
native preference frameworks as tools to evaluate performance. To keep things 
simple, a recursive evaluation of three portfolio strategies is undertaken. Th e 
fi rst strategy is the optimal recursive strategy computed under a given preference 
framework. Th e second strategy is an equally weighted strategy (also called 1/ N  
aft er Miguel et al., 2009) that has been shown to be highly performing in spite 
of its complete disregard for any kind of utility optimization. Th e third strategy 
involves deriving the value-weighted market portfolio implied by the CAPM. 
Notice that 1/ N  basically results in a simple 50–50 allocation between stocks 
and cash. Th is result avoids both estimation and model specifi cation errors that 
are implicit when relying on the CAPM. Th e following are the preference frame-
works employed in the examples:

   •     Th e linear utility framework characterizes the behavior of a risk-neutral 
investor.  

  •     Ad-hoc MV preferences are defi ned over portfolio returns.  
  •     Ad-hoc MV preferences are defi ned over terminal wealth.  
  •     Th ree- and four-moment ( M  = 3 and  M  = 4) Taylor expansions approximate 

the expected power utility of terminal wealth as a function of the fi rst three 
and four moments of terminal wealth. In this case, calculations are performed 
around two approximation points, v r Tf     and v Et t1[ ]WtWW    .  

  •     Additional frameworks include:  
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  •     Th e power utility function characterizes the behavior of a risk-averse investor 
with constant relative risk-aversion.  

  •     Th e negative exponential utility function characterizes the behavior of a 
risk-averse investor with constant absolute risk-aversion; entertaining this util-
ity function as a separate framework from the standard MV one is advisable 
when stock returns do not follow an IID Gaussian distribution.  

  •     A KMM smooth ambiguity functional characterized by u t T( )Wt TWW     set to be a 
power utility function and ζ E WtE t TWW( [ (u )])WtE tWW[ (u( )E Wt tWW T[ (uu )]+T     captures 
aversion to ambiguity; the set ℘= { ,..., }P,..., nPP1     of plausible cumulative probabil-
ity distributions is specifi ed to correspond to the set of possible states/scenar-
ios according to the estimated MSM along a grid { }0, 0.1, 0.2, , 1�  with each of 
the regimes being equally weighted.    

 Th is list delivers a total of 10 alternative preference frameworks, in which 
alternative choices of the approximation points  v  are taken into account. In fact, 
each such framework is implemented with three alternative values for the unique 
parameter characterizing the degree of risk aversion:  ζ  = 0.5, 2, and 4 in the case 
of MV and negative exponential utility and γ = 2   , 5, and 10 in the case of power 
utility and KMM. Finally, calculations are performed for four horizons of 1, 3, 
6, and 12 months. Short sales are ruled out throughout. However, calculations 
that are done without imposing the short sales restriction have been performed, 
obtaining results that are qualitatively similar. 

  ECONOME TR IC  E S T IMATE S 

 Monthly data from the Center for Research in Security Prices (CRSP) at 
the University of Chicago from July 1926 through December 2010 on value-
weighted stock returns on the New York Stock Exchange (NYSE), American 
Stock Exchange (AMEX), and NASDAQ markets are employed to estimate two 
alternative statistical models that describe the dynamics of stock returns. Th e 
fi rst model is a simple Gaussian IID model that is consistent with the hypothe-
sis of geometric random walk in (cum dividend) stock index prices and with the 
absence of predictability (robust standard errors are in parenthesis) shown in the 
estimated model 11.51:  

  
r Nt trr t6 1

172
( ,0 ).

[ .0 ]
εt   (11.51)  

 Moreover, a simple, two-state MSM is estimated in model 11.52:  

r S S St tr Sr t tS t+ +StS −1 293 6 3 1
920 0

.tS +1 ( )St1 S− [ . (801
[ .0 ] [ . ]152

)])) ( , ).ε εt tε εε N∼ IID 1,
  (11.52)  

 Regime 1 (St =1   ) is a bear state with negative expected returns and high volatil-
ity, while regime 0 (St = 0   ) is a bull state with positive expected return and moderate 
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equity volatility. Th e estimated persistence on the main diagonal of the transition 
probability matrix is p 11  = 0.984 and p 22  = 0.907. Th ese imply an average duration 
of eleven months for the bear regime and sixty-three months for the bull regime. 
As a result, the ergodic, long-run probabilities (that one would obtain from an infi -
nite sample from the process) of the two regimes are 0.147 and 0.853, respectively. 
Figure 11.1 plots the full-sample, smoothed-state probabilities of the two regimes. 
In the bear state plot, various episodes of declining and turbulent aggregate stock 
prices can be singled out: two spikes corresponding to the Great Depression in the 
1930s, two spikes for the oil shocks of 1974 − 1975 and 1980, and one spike each 
for the crash of late 1987, the Asian crisis of the summer 1998, the dot-com bubble 
crash of 2000 − 2001, and more recently the great fi nancial crisis of 2008 − 2009.      

 Th e reason the MSM is entertained as an alternative statistical framework is 
that dynamic econometric frameworks from this family are well known to capture, 
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 Figure 11.1      Smoothed (full-sample) probabilities from two-state Markov switching 
model. Th ese two plots show the full-sample smooth probabilities derived from a 
two-state Markov switching model in which means, variances, and covariances are 
assumed to be a function of the Markov state.  
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in an intuitive way, the most salient features of the dynamics of investment 
opportunities. MSM also has rich implications for the time variation of means, 
variances, and especially skewness and kurtosis (Timmermann, 2000). Guidolin 
and Timmermann (2008) and Guidolin (2011) provide additional details on the 
role of MSMs in dynamic portfolio selection and estimation. Th ese authors also 
show how to derive closed-form expressions for the fi rst four noncentral moments 
of the time t T     wealth. Guidolin and Timmermann prove that when the risky 
asset return follows a Markov switching process, conditional expectations of the 
type Et i

T
t i[ ( )m rim T
t ir ]trtrr1  can be calculated in a recursive fashion.  

  OP T IMAL PORTFOL IO  WE IGHTS  UNDER ALTERNAT I VE 
SCENAR IOS 

 Table 11.1 reports optimal weights computed under diff erent preferences, risk 
aversion parameters, and investment horizons. Th e optimal allocation to US 
stocks in fi ve representative scenarios has been computed: (1) when at time  t  the 
regime is bull, (2) when it is bear, (3) when the investor is in a state of ignorance 
on the nature of the regime and guesses that each state carries a current prob-
ability equal to its ergodic frequency, (4) when the investor is in such a state 
of ignorance to understand only the presence of two regimes but is unable to 
compute the ergodic frequencies and she att ributes equal probabilities to both, 
and (5) when the investor ignores regimes altogether. Notice that in scenarios 
(1)-(4), even when knowledge of the starting regime is assumed in the scenario 
simulation, this never implies that the regime is known in advance or observable 
at times t +1,    t + 2   , . . . , t T    . Under scenario (5), optimal weights are computed 
assuming (counterfactually) that stock returns are generated by a simpler single 
state, Gaussian IID model, when only one regime is possible at all times.      

 Independent of the preference framework for low risk aversion (i.e.,  ς  = 0, 0.5, 
and 2; moreover γ = 2   ), in the IID case, a common fi nding is that an investor 
ought to invest 100 percent of her wealth in stocks. Equivalently, the market port-
folio advocated by the CAPM is ex-ante optimal. Th is result is easy to understand 
because over the sample period, the US market portfolio yielded a handsome aver-
age monthly return of 0.9 percent, which exceeds the 0.3 percent average monthly 
return on one-month Treasury bills. Th e diff erence of about 7 percent per year is 
called the  equity premium , which appears to be suffi  ciently high to lead any moder-
ately risk-averse investor to bet all of her wealth on stocks. Under some preference 
assumptions such as power utility and KMM, higher risk aversion levels would 
induce an investor to a much more balanced approach, in which the optimal share 
invested in US stocks might be as low as 30 percent, independent of the horizon. 

 For zero- or low-risk-aversion coeffi  cients and especially for short investment hori-
zons of one and three months, all asset allocations simulated under alternative MSM 
scenarios reveal the following: Investors ought to aggressively time the market in a 
simple way. Th ey should invest 100 percent in stocks in bull markets when limited 
uncertainty leads them to think that the current state does not depart much from 
ergodic probabilities. During bear markets, they should invest 0 percent in stocks 
(100 percent in cash). Th e case of 50–50 uncertainty is of some interest because this 
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is when diff erent preferences lead to heterogeneous indications. For example, linear 
utility, MV, and all moment-based preference models suggest exiting the stock mar-
ket. Power utility and KMM favor mixed portfolios, and negative exponential util-
ity oddly indicates a 100 percent optimal investment in stocks. Instead, for higher 
risk aversion and especially longer investment horizons, most preference frameworks 
give balanced indications in which the optimal share of stocks is not zero or one, 
although it remains the case that starting from a bear regime, all preferences and 
horizons indicate the optimality of exiting the stock market. Th is strategy is not only 
sensible, because in a bear regime, US stocks yield negative expected returns, but 
also plausible, in the light of the fi nding that the average duration of a bear regime 
is 11 months. Th us, even an investor with =12    may expect to remain, on average, 
in the bear regime over her entire horizon. However, in the remaining three switch-
ing scenarios, the heterogeneity in optimal portfolio weights across preferences is 
remarkable. Unlike the case of constant investment opportunities, an investor should 
pin down a preference framework that accurately describes her risk att itudes in order 
to be able to employ quantitative frameworks of portfolio optimization.  

  BACK-TE S T ING THE  REAL I ZED  PERFORMANCE  OF 
ALTERNAT I VE  PREFERENCE S 

 Table 11.1 cannot be used to show that modeling portfolio decisions in a utility-max-
imizing setup give investors any advantage. A simple recursive back-testing exercise 
was implemented for each month between January 1980 and December 2010, both 
econometric models (IID and MSM) were recursively reestimated, and the result-
ing parameter estimates were used to compute optimal portfolio weights for the 
same range of preferences, the same risk aversion coeffi  cients, and the same horizons 
as those in Table 11.1. Aft er computing the weights, realized wealth (or portfolio 
returns) over the assumed horizons were computed from the data, such as the actual 
value-weighted CRSP stock returns and one-month Treasury bill yields. Th is yields 
a total of 372−T    measures of realized wealth for each combination of preferences, 
risk aversion parameter, and horizon. Such time series of realized wealth were con-
verted in time series of realized utility using the assumed structure for preferences 
and for instances in the case of power utility, so that Equation 11.53 emerges:  

  
upower t T

t T t T( )t T
[ (Wt TWW )]

,
,ω
γ

γˆ
=

−

−1

1  
  (11.53)

 For the time index  t  that ranges between January 1980 and December 2010 . 
Finally, such time series of realized utility were averaged and converted into cer-
tainty equivalent returns (CERs), as illustrated in Equation 11.54:  

  

[( ) ]
(
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−
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∑
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⇒
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 (11.54)  
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 where upower t T t
T

power t T( )t T ( )T( ) ( )t T, :
:

,ut
T

power)t T ( )T (: T) ( )T (:
=∑1

1980 01
2010 12

. Th e CER represents 
the certain return that one investor would be ready to accept in replacement of 
the risky portfolio strategy defi ned by { }, :} :

t , t
T

=
−

1980 01
2010 12  because it gives her the 

same average realized utility. Obviously, the bett er a strategy is, the higher its 
CER. Moreover, the CER has the additional advantage of converting the realized 
performance of potentially heterogeneous strategies into a comparable measure. 
Obviously, in the case of simple MV frameworks, the ranking provided by the 
CER is identical to rankings based on Sharpe ratios. In the case of linear util-
ity, the CER is identical to average realized portfolio returns. However, in other 
cases, including moment-based preferences, power utility, and KMM, the CER 
is likely to give indications that signifi cantly diff er from simple Sharpe ratios 
(Guidolin and Ria, 2011).      

 Table 11.2 presents the realized certainty equivalent returns (CERs) for the 
three alternative strategies. Corresponding to each combination of preferences and 
risk aversion coeffi  cients/horizon, the best performing CER is shown in boldface. 
Th e table shows that preference-based, optimizing asset allocation models may 
help investors to maximize their realized performance but may also occasionally 
provide disappointing results. Although a detailed analysis of the point estimates 
of the CERs in Table 11.2 is beyond the scope of this illustration, the usefulness 
of preference-based asset allocation seems to be “U-shaped” with respect to both 
risk aversion and horizon. Th e utility-based CER outperforms the benchmarks for 
risk-neutral investors and for highly risk-averse investors, while it underperforms 
the benchmarks for investors who display intermediate levels of risk aversion. Th e 
utility-based CER outperforms the benchmarks for shorter (one-month) and espe-
cially longer (6- and 12-month) horizons. However, when preferences are MV or 
MV skewness, utility-based CERs are never superior to those of the benchmarks. 
Th e equally weighted portfolio does not perform as well as expected in light of 
the recent academic literature. However, its realized performance tends to be 
strong for long-horizon investors whose risk aversion is relatively high. Yet, even 
when the utility-optimizing framework fails to turn out the best realized perfor-
mance, the distance to the benchmarks remains modest. For instance, consider 
the case of a three-month investor favoring MV skewness whose approximation 
is taken around a power utility function with γ = 4    . Independent of the details 
of the Taylor approximation, her CER is 6.3 percent per year from the utility-
maximizing framework, 7.1 percent from 1/N, and 7.2 percent from the market 
portfolio that always invests 100 percent in stocks. One fi nal fi nding is intrigu-
ing. Th e ex-ante preference-optimizing strategy is ex-post the most successful 
strategy under KMM’s ambiguity-averse preferences. Th is fi nding confi rms the 
importance of performing quantitative portfolio optimization in the case where 
investors are sensitive to parameter and model uncertainty.   

  Summary and Conclusions 

 Surveying the portfolio theory literature that uses preference-based frameworks 
to compute optimal portfolios, this chapter’s key empirical result is that basing 
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asset allocation decisions on preferences may pay off  not only in ex-ante but 
also ex-post terms under two important conditions: First, asset returns must be 
generated from non-Gaussian frameworks characterized by nonlinear predicta-
bility dynamics, which translates into rich time variation in skewness and kur-
tosis. Second, the preferences must overweight the importance of higher-order 
moments and of the (conditional) tails of the distribution of portfolio returns, 
such as power utility or ambiguity-averse preferences. 

 Although this fi nding fi ts the key results in the literature, its characterization 
under Markov switching dynamics when ambiguity aversion is called into play 
appears novel. For instance, Kallberg and Ziemba (1983) already report that in 
many practical applications, one can choose the utility function that allows for 
the most effi  cient numerical solution. As the utility function that is most easily 
tractable in terms of computation, fi nding that quadratic utility is by far the most 
commonly used in practice is not surprising. Th ese authors note, however, that 
they performed most of their calculations using assets exhibiting return distribu-
tions not too far away from normality; for instance, in the case of the so-called 
elliptical distributions (such as the normal, Student t, and Levy distributions). 
Th is chapter further emphasizes that when such elliptical properties are absent, 
results for MV preferences may diff er from those derived under more complex 
and arguably realistic preferences.  

  Discussion Questions  

   1.     What are the possible combinations of assumptions about individual’s pref-
erences and about the statistical distribution of asset (portfolio) returns that 
may justify a simple MV approach to portfolio optimization, such as that in 
Equation 11.5?  

  2.     Why is computing the standard (small) risk measures CARA (W) and 
CRRA (W) impossible in the case of MV preferences? Explain the source from 
which defi ciencies stem.  

  3.     Describe the intuition underlying Klibanoff , Marinacci, and Mukerji’s (2005) 
smooth ambiguity-averse preferences. Explain how these smooth preferences 
can nest both Gilboa and Schmeidler’s (1989) max-min type, multiple priors 
preferences, and the standard subjective expected utility case.  

  4.     Why is a dynamic model of risky asset returns such as a Markov switch-
ing model likely to bring out the power of smooth ambiguity preferences to 
improve realized performance?     
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