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Introduction

What role should the preferences of an investor play in optimal portfolio deci-
sions? If one adds a qualifier that the optimal portfolio decision concerns the
very investor whose preferences are under investigation, the question seems triv-
ial. Everyone would answer that preferences are crucial or at least very important
ingredients, alongside other factors such as the asset menu, the dynamics of invest-
ment opportunities, and the relevant constraints. Modern portfolio theory affirms
that such a question is far from trivial for two reasons: First, various asset alloca-
tion frameworks often disregard the role of preferences. This omission is often
justified by results in asset pricing theory; for instance by the separation result of
the celebrated capital asset pricing model (CAPM) implying that, independently
of preferences, investors ought to simply demand a multiple of the market portfo-
lio. Second, critical differences between ex-ante versus ex-post optimal portfolios
exists, and preferences are often downplayed on an ex-ante basis. Strategies that
seem to be optimal ex-ante may turn gravely disappointing ex-post. Further, strat-
egies that in principle are suboptimal (e.g., ones disregarding the preferences of
decision makers) may yield ex-post robust performance. This chapter investigates
whether and how preference-based optimal asset allocation models may poten-
tially contribute to producing appealing ex-ante and ex-post performances.

This chapter mixes the goals and methods of a review of the methodological
literature with the objective of offering novel insights on whether and how the
tools described herein may work in practice. The chapter is organized as follows:
It begins by setting up the typical portfolio problem, providing relevant defini-
tions and notations. Next, the chapter introduces the main types of preference
frameworks used in the portfolio literature and, to a lesser extent, in the prac-
tice of applied wealth management, often borrowing from microeconomic theory.
Because various researchers have proposed that Taylor approximations applied to
the functional representation of standard preferences may replace more complex
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232 ASSET ALLOCATION AND PORTFOLIO CONSTRUCTION

mathematical constructs, the chapter includes an in-depth discussion of the
advantages and disadvantages of using Taylor approximations, which emphasize
the role played by statistical moments (mean, variance, skewness, and kurtosis)
of either terminal wealth or portfolio returns. Some discussion is then devoted
to new and exciting developments that have recently occurred at the intersec-
tion between decision theory and portfolio management in the form of frame-
works that emphasize the concepts of robust decisions and ambiguity aversion.
Providing an illustrative example that aims at investigating some aspects of the
interaction between preferences and statistical models of investment opportuni-
ties is undertaken. In particular, optimal portfolio decisions are computed under
regime-switching models that capture various features of time-varying investment
opportunities.

Preliminaries and Definitions

In the economic literature, a standard practice is to model the choices of eco-
nomic agents among several goods using the concept of a utility function. In
its cardinal form, a utility function, u(*), is used to assign a numeric value to
all possible choices (e.g., bundles of goods) faced by an economic agent. These
values, often referred to as the utility index, have the property that bundle r' is
(weakly) preferred to r* if and only if the utility of r' is higher than that of 7%, as
in u(r') > u(r*). The higher the value of a particular choice, the greater the utility
derived from that choice. Utility functions can represent a broad set of preference
orderings.

The literature on utility functions, such as Elton, Gruber, Brown, and
Goetzmann (2010), widely explores the precise conditions under which a prefer-
ence ordering can be expressed through a utility function. At least at a super-
ficial level, the properties of such conditions are usually held to imply several
things. First, when a utility index is written as a function of either the wealth
or the consumption of an agent, the condition implies that y(-) should be mono-
tonically increasing in its argument(s); this increase is known as the nonsatiation
property, meaning that investors always prefer more to less. Second, the con-
ditions necessary for a preference ordering imply that u(-) should be concave,
which can be proven to be equivalent to risk aversion. Risk aversion involves
that investors prefer the expected value of a gamble (risky investment) to the
risky gamble itself.

In portfolio theory, investors are faced with a set of choices under uncertainty.
Different portfolios have different levels of risk, &k, and expected return, U, where
risk may be measured in various ways. Besides variance, examples of alterna-
tive measures of risk are dispersion measures, such as mean absolute deviation
of portfolio returns or wealth and downside risk measures. Investors are faced
with the decision of choosing a portfolio from the set of all possible risk-return
combinations, and obtain different levels of utility from different combinations.
The utility obtained from a risk-return combination is expressed by the utility
function, implicitly or explicitly capturing preferences in regard to perceived risk
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and expected return. When such dependence is assumed to be explicit, the result
is Equation 11.1,

V=U(u,x) dU/du>0,0U/dk<0 (11.1)

where dU /du>0 derives from nonsatiation and U /dk <0 from risk aversion.
These preference representations may be particularly simple and enlightening,
giving rise to classical derivations, for instance of the CAPM in asset pricing the-
ory. However, in such cases, how this risk-return preference is derived from an
underlying preference ordering concerning bundles of goods and services under
uncertainty is often unclear. When the agent has simple preference structures
directly defined according to expected risk and returns, a utility function can be
presented in graphical form by a set of indifference curves.

More often, such dependence is modeled in an indirect, implicit fashion, so
that the links with the underlying, micro-founded preference ordering are easy
to formalize, but the analysis tends to be more involved. In this case, the general
idea is that a rational investor with utility u(-) and initial wealth W, chooses his
portfolio y, at time t so as to maximize his expected utility of either of the ter-
minal wealth T periods ahead, as shown in Equation 11.2,

maxE [u(W, +T) st.()W, T

N T N f Ly
=exp[2n=1 w:l pIY rt{!!-i +(1-250 w? )Tr ]Wn j(i)op 1y =1 (11.2)
o,
t

or of the stream of consumption flows between ¢ and ¢+ T, as shown in Equation 11.3:

maxp_y > B [u(Cp,,)]st

(B Cidi=o i=0
W, exp[z a)tz e +(1- 2 a))Tr] it =Ceni)s

(i, 1y =1i=0,1,..,T~1;
(iii)Cs4; 20i=0,1,...,T—1.
(11.3)

In both Equations 11.2 and 11.3, the constraint in (i) is the dynamic law of
motion of wealth (the net of consumption withdrawals in the case of Equation
11.3). Equation 11.2 illustrates the problem of an investor who commits her ini-
tial wealth W, to a vector of weights {a)t }N in order to maximize the expected
utility of her ﬁnal wealth, u(W,.;), without the possibility of any interim with-
drawals or consumption. This is also called a buy-and-hold problem. Of course,
most investors are not concerned with the level of wealth for its own sake but
with the standard of living that their wealth can support. In other words, they
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consume out of wealth and derive utility from consumption rather than wealth.
Therefore, Equation 11.3 illustrates the problem of an investor who selects a vec-
tor of weights, {(ofﬂ.} s well as of interim consumption levels C,,; and who
does this repeatedly over time to maximize her utility of the flow of consumption.
However, in both equations 11.2 and 11.3, the utility indices play a key role.

The Arrow-Pratt coefficients of (local) absolute and relative risk aversion are
two key measures describing the (local) properties of utility functions u(W,, )
and/or u(C,,,), usually abbreviated as CARA(x) and CRRA(x), respectively. They
are illustrated in the equations shown in 11.4:

W' (x)

:((z)) CRRA(x)E—u,,—(x)x=CARA(x)x. (11.4)

CARA(x)=—

where x is either terminal wealth W, . or consumption C,, . These properties
give important insights into the nature and behavior of cardinal utility functions,
as described in the following: CARA(x) is a scaled, normalized measure of an
individual’s risk aversion in a small neighborhood of her current (initial) wealth
or consumption. Notice that if 4’(x)>0 and u”(x)<0, as normally required of
utility functions used in portfolio theory, then CARA(x)>0. CRRA(x), on the
other hand, is a normalized measure of an individual’s risk aversion in a small
neighborhood of her current (initial) wealth or consumption per unit of wealth
or consumption. Because CRRA(x)=CARA(x)-x, when CARA (x)>0, CRRA
(x)>0. Pratt (1964) shows that for a small degree of risk, the CARA coefficient
determines the absolute dollar amount that an investor is willing to pay to avoid
such a small risk. A common view is that CARA should decrease, or at least not
increase, with wealth. Instead, CRRA determines the fraction of wealth than an
investor will pay to avoid a small risk of a given size relative to wealth. Another
common belief is that plausible preferences should imply that relative risk aver-
sion should be independent of wealth (LeRoy and Werner, 2001). Moreover,
Campbell and Viceira’s (2002) discussion of the long-run behavior of most econ-
omies, characterized by substantial growth in real consumption but also by real
interest rates and consumption-wealth ratios that fail to be trending, is consistent
with relative risk aversion levels that are independent of wealth.

This chapter examines relatively simple portfolio selection problems under a
variety of alternative assumptions concerning the preferences (objectives) of an
atomistic investor who is not necessarily representative of the market. Therefore,
the analysis is of a partial-equilibrium nature. In particular, unless otherwise
stated, the chapter deals with an investor who has to choose a portfolio com-
prised of N risky assets, described by a vector r, of continuously compounded
returns. If a riskless asset exists, its risk-free yield is denoted as rfand the asset
is indexed as 0. To keep things simple, the assumption is made not only that
the riskless asset exists but also that the risk-free rate is constant over time. In
fact, these assumptions are not far from describing how very-short-term inter-
est rates behave in reality, over the investment horizons of interest in this chap-
ter. The investor’s choice is embodied in an N X1 vector, w=[0’0'®* -+ @" of
weights, where each weight ®" represents the percentage of the nth asset held
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in the portfolio, and the sum of the weights, including the riskless asset weight
®° must be equal to 1 (i.e., no money should be left on the table, which derives
from nonsatiation). Although, in general, short selling (the case in which weights
can be negative or can exceed 1 is possible. In the illustrations given later, the
restriction prohibiting short selling is imposed because this is realistic and often
simplifies numerical optimization when short selling is undertaken.

Subjective Expected Utility Preferences:
Main Functional Classes

To get comfortable with the previously described frameworks and concepts, list-
ing the most commonly used assumptions made in the literature about u(W,, )
and u(C,,;) and discussing their connections are useful. As a rule, examples are
provided with explicit reference to the case of utility depending on terminal
wealth, unless the presentation requires dealing with consumption.

AD-HOC MEAN-VARIANCE UTILITY FUNCTIONS

The development of the classical theory of finance has been characterized by
using simple but ad-hoc mean-variance (MV) objective functions with structure,
as shown in Equation 11.5:

MV = E[%T]—%mr[m”]. (1L5)

However, Equation 11.5 does not define a utility function in a technical sense.
Instead of writing a mapping from either terminal wealth or consumption streams
into investor’s welfare, Equation 11.5 pins down a mapping between the final
investor’s objective—say, expected utility—and the first two moments of the dis-
tribution of wealth (i.e., mean and variance). For a long time, this representation
has been just perceived as a convenient shortcut. Using Equation 11.5 generates
problems that stem from its lack of microfoundations. For instance, Equation 11.5
does not allow computing either CARA(VVt) or CRRA(W;) and therefore formally
characterizing MV. However, finding interpretations of 4 that assimilate this coef-
ficient to a CARA measure is common. Although this interpretation is not for-
mally correct, it is approximately the case under some special assumptions.

Interestingly, these remarks concerning Equation 11.5 do not apply to
Markowitz’s classical risk minimization framework that is sometimes referred
to as being based on MYV, although this labeling may be misguiding. Markowitz
(1952) argues that for any given level of expected return, ,l_ip, a rational investor
would choose the portfolio with minimum variance from among the set of all
possible portfolios, as illustrated in Equation 11.6:

min ®'Var[r, Jo s.t.()@'E[r,]=[1,; (i)'l =1. (11.6)
(0]
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The set of all possible portfolios that can be constructed is called the fea-
sible set. MV portfolios are called mean-variance efficient portfolios. The set of all
MV efficient portfolios, for different desired levels of expected return, is called
the efficient frontier. Clearly, this algorithm does not lead to selecting a unique
optimal portfolio but instead to locating the efficient frontier, represented by
the set @ seen as a function of ﬁp. However, a well-known alternative to
Markowitz’s risk minimization framework, shown in the optimization problem
11.6, is to explicitly model the trade-oft between risk and return in the objec-
tive function using a fictitious risk-aversion coefficient, 4, which is commonly
called the risk-aversion formulation of the efficient frontier problem, as shown
in Equation 11.7:

min @ E[r, |- A&’ Var(r, ) st 'l =1.
o (11.7)

If A is gradually increased from zero to infinity, and for each increase, the
optimization problem is solved, the result is that all portfolios along the efficient
frontier can be calculated . Equation 11.7 differs from Equation 11.5 in that the
MV trade-oft is explicitly formulated in terms of the expectation and variance of
portfolio returns. Although useful in the development of the CAPM, this rela-
tionship cannot represent a benchmark in portfolio choice applications. In fact,
the objective in Equation 11.7 is even more problematic than the one in Equation
11.5. When returns are discretely compounded, as in W,,r =(1+R/;(®,))W,,
where RET is the total portfolio return (from an investment strategy charac-
terized by @,) between time t and time T, many researchers often plug this
accounting into Equation 11.5 and obtain an equivalent objective, as shown in
Equation 11.8:

MV" = E[(1+ RE (00,1~ AVarl (14 R (@0,)) W,

11.8
=W, +E[R£T(wt)]Wt—%Wtz/lVar[Rf,T(wt)]. (11.8)

If one further standardizes initial wealth to be 1 and observes that adding a
constant to the objective of a maximization problem does not change the nature
of the problem or affect the set of controls, then Equation 11.9 results:

MV*E ocE[RfT(wt)]—%lVar[Rij(a)t)], (11.9)

which is a new, ad-hoc objective functional in which the mean and variance are
no longer defined with reference to terminal wealth but directly in terms of port-
folio returns over the horizon [t,T]. However, the absence of a precise microfoun-
dation is simply concealed by the deceivingly intuitive nature of the objective
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11.9, as defining CARA(R/ ;) or CRRA(R/ ) remains impossible. An additional
problem is caused by that fact that because of Equation 11.10,

T-1 T-1 N
RtI:T = H(l + R i) 1= H(l + z Q- ] -L (11.10)
i=0 i=0 n=0

Var[R!;(®,)] has a complicated expression unless one assumes, usually in con-
trast with the data, that the returns on all risky assets are independent over
time with zero cross-serial correlations. Probably as a result of this simple fact,
Equation 11.9 has been most often employed only after setting T =1, when
Var(Rfy,) = o, Var(x,., ) o

Both equations 11.5 and 11.9 are frequently used in portfolio management,
and, at least to some extent, in practice this is because they lead to a closed-
form expression (Fabozzi, Focardi, and Kolm, 2006). For instance, in the case of
Equation 11.5, Equation 11.11

1
max E[R], (®,)]-=AVar[R}, (@,)]
o, 2 (11.11)

st. (R, =ofr,, +(1- o1y )”fvvt} (ii) 0/ 1y =1,

leads to the first-order conditions (x,,, —f 1, )—AVar(x,,,) ®, =0y that yield the
classical MV formula in Equation 11.12:

O, = )L_l[V“r(rt+;)]_l(rt+1 —r! Ly). (11.12)

LINEAR UTILITY

Even though the case of linear utility, which is better known as maintaining risk-
neutral preferences, can be easily derived from Equation 11.5 by setting =0,
different than that done in both equations 11.5 and 11.9, linear utility has clean
microfoundations, as shown in Equation 11.13:

ty (Weer)=Wr, (11.13)

which implies that E[u, (W, ;)]=E[W, ;], implying that an investor ought to
simply maximize her expected terminal wealth. Because the case of risk neu-
tr,alit?/rvderizes from an assumoption of preferences for terminal wealth, then
Wi (Wier)=1>0, uil, (W1 )=0, hich imply CARA(W,)= CRRA(W,)=0. Even
though this specification lacks an assumption of risk aversion, much commentary
about market performance implicitly assumes that a simple, linear objective may
characterize the behavior of important portions of investors, especially those with
short-term goals.

11 HKentBaker 11.indd 237 @ 9/24/2012 6:44:32 PM



OUP UNCORRECTED PROOF - REVISES, 09/24/12, NEWGEN

2

238 ASSET ALLOCATION AND PORTFOLIO CONSTRUCTION

QUADRATIC UTILITY

One of the most traditional assumptions concerning u(W,_ ;) or u(C,,,) is that this
relationship is a quadratic utility function (Hanoch and Levy, 1970). For instance,
focusing on the simpler case of no interim consumption yields Equation 11.14:

1
Ugad Wisr )= Weay —leiT- (11.14)

In this case, risk aversion holds as “;qu.l (W,,7)==A<(but issues exist with
nonsatiation because u,,, (W,_;)=1-AW,_,, which is positive if and only if
W,,r <1/A, putting an upper bound on the domain for wealth levels and there-
fore the portfolio choices. W;, =1/ A is often also called the bliss point of qua-
dratic utility. Notice that in the case of Equation 11.15, we have

- 1 3 A | .
ELuquad (Wir) 1= EIW,, 1 ]- E AE[W. 1= E[W, 1 ]- E MVar[W,, 1 ]+ (E[W, ] )2 }

- 1 - 1
{EL%T]—EMEL%TF)}—EAVM[WHTL
(11.15)

which shows that quadratic utility is of a MV type. Even though under quadratic
utility E[uwd (W,_;)] declines in the variance of terminal wealth, some ambigu-
ity remains over the behavior of E[u,,,,(W,,1)] as a function of expected termi-
nal wealth, as shown in Equation 11.16:

OE[ug,09(Wyir )]

T =1-AE[W,,, . (11.16)

The expression in Equation 11.16 is positive if and only if E[W,,]<1/ A, which
means that expected wealth is below the bliss point. However, this issue is only
an apparent one, as W, <1/ A is sufficient for E[W,,]<1/A to hold, so that
quadratic utility preferences are truly based on the MV framework. As a result,
the decomposition in 11.15 indicates the way in which the portfolio objective
in 11.5 may suffer from an ad-hoc nature. If Equation 11.5 derives from a qua-
dratic utility function, then its functional form is misspecified, because Equation
11.5 differs from Equation 11.15 in the absence of the term —0.SA(E[W,,;])>.
Additionally, if the objective in 11.5 derives from a quadratic utility function,
then one should emphasize that this representation is only valid for W, <1/4,
something that users of Equation 11.5 often forget.

As Ugyyg (W,41) has a precise microfoundation, computing CARA and CRRA
measures in Equation 11.17 is useful:

L (W)—W(i—w)
“2 2 quad 2 . (11.17)

CARA, . (W)=~
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Clearly, as long as wealth is below the bliss point, CARAquud(W)>O, but
CARA is decreasing in wealth so that as wealth approaches the bliss point, then
CARA (W) converges to zero from the right, CARA, (W) —0" and the inves-
tor stops being risk averse. Moreover, Equation 11.17 shows that in this case
CRRA is decreasing in wealth. The finding that scaled, normalized risk aversion
is declining as investors grow wealthier is an unrealistic feature of quadratic pref-
erences, as is the property that utility may be defined only below the bliss point.
In fact, while Equation 11.5 is often employed in practice because of the attrac-
tiveness of closed-form expressions such as Equation 11.12, its microfounded
version in Equation 11.1§ is hardly ever used. These relationships imply that the
microfoundations of the portfolio objective in 11.5 have to be found elsewhere.

NEGATIVE EXPONENTIAL UTILITY

This utility function is as popular as the quadratic utility function, both in its
own right—for implying a rather realistic constant coeflicient of absolute risk
aversion for small risks—and because it provides an alternative to and more
compelling microfoundation than Equation 11.5 under the specific assumptions
shown in Equation 11.18:

uexp (M/tJrT):_eXp(_/lI/VtJrT) (1118)

, ” _ 42 _
Because Yo (Weer)=Aexp(-W1) | 4 Uexy (Wiir) =—A" exp(-W, 1),

Equation 11.19 results in:

_22 —
CARA,,, (W)= A e Wer) CRRA,,,,(W)=2Aw, (1119)
Aexp(—Wiyr)

which means that CARA is constant and independent of wealth, with A being
the CARA coeflicient, while CRRA is monotone, increasing in wealth. Of course,
this latter property is unrealistic, and concerns about the usefulness of this utility
function have stemmed from this CRRA behavior.

When wusing expected utility as an objective in portfolio optimiza-
tion, u,,(W,r) fails to yield particularly enlightening insights, such as
Elu,(W,,r)]=—E[exp(-AW,.1)], because the convexity of the exponential
function prevents the claim that E[exp(—AW,,;)]=exp(—AE[W,,,]). However,
when W, ; has a lognormal distribution, the function in Equation 11.20 results
from the properties of the moment-generating function of terminal wealth:

Elexp(—AW,_ ;)]=exp(-AE[W,, - ]) exp(% A Var[W,, ]) (11.20)

Because the standard features of convex optimization ensure that when 4 >0,
then choosing @, to maximize —E[u, (W,,r(®,))] is identical to maximizing
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—lnE[—l_luw (W,,r(®,))]. Thus, maximizing the function in Equation 11.21,

—In E[_Ailuexp (Wir(0,))]= E(W,, 1 (@,)]- % Var[W, 7 (o,)], (11.21)

delivers the same optimal weights as the maximization of the original expected
utility functional E[uexp (W,,7)]. In turn, for any given choice of weights w,, it
follows that the expression in Equation 11.22,

, i~ T
I/VtJrT(wt):exp(wtrt,T)zexp(thi:IrHi)’ (11.22)

has a lognormal distribution (i.e., InW,, ;(®,)= a);zilio r,,; has a normal distri-
bution) if and only if r,,;, has a multivariate normal distribution for all cases of
i21. Therefore, under negative exponential utility, the fact that r,,; has a multi-
variate, joint normal distribution is sufficient to lead to an expected utility func-
tional with a structure identical to Equation 11.5. In that case, the parameter A
in Equation 11.5 can be interpreted as a constant CARA coeflicient.

LOGARITHMIC UTILITY

As discussed later in this chapter, the case of logarithmic utility corresponds to
a special limit parameterization of power, known as isoelastic preferences. The
structure of this utility function is shown in Equation 11.23:

Uiy (Wisr)=InW,, 1, (11.23)

which implies 1oy (W;.r)=1/W, .1 and uj, (W, 7)= —1/W/,1, so that the expres-
sions in Equation 11.24 are obtained:

/w?> 1
-1/W W

CARA,,,(W)=~— CRRA,,, (W)=1, (11.24)

which reveals that a logarithmic utility function implies a monotone decreasing
CARA coefficient (i.e., the investor becomes decreasingly risk-averse as she gets
wealthier) and a constant unit CRRA coefficient.

POWER UTILITY

This functional generalizes the logarithmic case in the utility function 11.25,

AT
upower (VVHT)::y;ﬁ 1, (1125)
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which implies w,,, (W) =W} and .., (W) =-yW;}" so that expres-
sions in Equation 11.26,

— f}/Wﬁ y-1 ;}/

CARA,,,, (W)=- =
W) w’ w

power

CRRA,,, W)=y,  (1126)

confirm the same properties obtained under logarithmic utility. Yet, in this case,
all the results concerning CARA and CRRA appear to have been scaled by a fac-
tor of ¥ #1. However, one notable limit result applied to Equation 11.26 leads to.

}}iﬁ upower (VVH—T) = lnT'A']H-T = ”1og (M/H'T ) (1127)

Unless one is ready to resort to some form of approximations, power utility
preferences, of which the logarithmic case may be simply interpreted as a special
case for ¥ —1, generally do not lead to closed-form expressions for optimal port-
folio weights. Hence, one has to resort to numerical methods to compute optimal
allocations.

EPSTEIN-ZIN PREFERENCES

Despite the many attractive features of the power utility model, it has one highly
restrictive feature, which is that power utility implies that the consumer’s elastic-
ity of intertemporal substitution, ¥/, is the reciprocal of the coefficient of relative
risk aversion, 7. Yet, whether these two concepts should be linked so tightly is
unclear. Risk aversion describes the consumer’s reluctance to substitute consump-
tion across states of the world and is meaningful even in a temporal setting. By
contrast, the elasticity of intertemporal substitution describes the consumer’s will-
ingness to substitute consumption over time and is meaningful even in a deter-
ministic setting. Epstein and Zin (1989) offer a more flexible version of the basic
power utility model. The Epstein-Zin model retains the desirable scale indepen-
dence of power utility (i.e., the fact that CRRA does not depend on wealth) but
breaks the link between the parameters ¥ and 7. In this section, the assumption
is made that utility is defined over a stream of consumption. This is the only case
for which the recursive structure of Epstein-Zin preferences is sensible, because
defining utility over consumption streams drives a wedge between ¥ and 7. The
Epstein-Zin objective function is defined recursively, as shown in Equation 11.28:

=y 1l1-2
V,=10-8)C, ¢ +8(E [V ])er (11.28)

where 6€(0,1) is the subjective discount rate that reflects the impatience
of investors and 8=(1—y)/(1-1/w). When y=1/y, 6=1 and the recursion
in Equation 11.28 becomes linear, so that it can be solved forward to yield the
familiar (time-separable) power utility model.
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The nonlinear recursion in Equation 11.28 is generally difficult to work with
in consumption/portfolio problems. However, when risky returns are IID (identi-
cally and independently distributed, i.e., investment opportunities are constant),
then consumption is a constant fraction of wealth and covariance with consump-
tion growth equals covariance with portfolio return. In this case, showing that
if y=1, then 8=0 is straightforward, so that the standard myopic MV portfolio
rule in Equation 11.12 results.

MOMENT-BASED APPROXIMATIONS

Both power and, at least under general dynamics for portfolio returns, nega-
tive exponential utility fail to lead to a closed-form solution for optimal portfolio
weights, while MV preferences do not account for skewness and kurtosis in either
the (portfolio) return distribution or in interim or terminal wealth under models of
time-varying predictive densities. To compensate for these weaknesses, a growing
body of literature that goes back to seminal papers by Arditti and Levy (1975) and
Kraus and Litzenberger (1976) has adopted a different approach. The key idea of this
strand of papers is that expanding one of the utility functions (e.g., power utility or
negative exponential) previously specified is useful to obtain a tractable expression
that depends only on the first M moments of the wealth or portfolio return distribu-
tion. In fact, although in the classical development of financial economics, MV-based
portfolio selection and performance evaluation have been dominant, some papers
(Arditti, 1967; Samuelson, 1970) stress that, unless either asset returns are multi-
variate and normally distributed or utility functions are quadratic, higher moments
cannot be neglected. Indeed in the 1960s, the literature shows that security returns
were hardly Gaussian (Fama, 1965). More recently, Harvey and Siddique (2000)
show that skewness in stock returns is relevant to portfolio selection based on asset
pricing fundamentals. If asset returns exhibit nondiversifiable coskewness (the cova-
riance between portfolio returns and the variance of market returns), investors must
be rewarded for coskewness, resulting in increased expected returns. In fact, in
the presence of positive coskewness, investors may be willing to accept a negative
return. Guidolin and Timmernann (2008) extend these intuitions to international
asset allocation applications and derive results that explain why US investors may
hesitate before aggressively diversifying their equity portfolios internationally.

In particular, Samuelson (1970) shows that the possibility of using MV prefer-
ences to approximate any properly defined utility function (as discussed by Tsiang,
1972, and Levy and Markowitz, 1979) extends to all finite Mth moment approxi-
mations (obtained by taking a Taylor expansion) and to the generic utility of final
wealth functions, #(W,, ;). The approximation will work and will generate a sensible
representation of preferences (for instance, in terms of global nonsatiation and risk
aversion) only when riskiness is limited in a very precise sense. Assume that the t+T
period returns on the N risky assets are drawn from a family of compact (small-risk)
distributions; for instance, a multivariate distribution illustrated in Equation 11.29

rtl‘T—rf—GlT rfT—rf—GzT rtl‘VT—rf—O'NT

F{r, =P
(t—>t+T) O-lﬁ ] 0'2\/? PR O'N\/T J]

(11.29)
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such that the condition will do (in other words, this condition will only be suf-
ficient). Intuitively, compactness implies that as the time horizon vanishes asset
returns all converge to the riskless rate. Samuelson shows that an Mth moment
approximation of a utility function u{W, 1) has a precision that increases as the
horizons gets small. Furthermore, given the order of M of the approximation in
Equation 11.30,

dw(T) 0w, (T)
@r)"  (T)"

m=0,1,...,Mandn=1, ...,N, (11.30)

where 9w M(T)/(dT)° = (T), the apex indicates that an optimal portfolio
weight has been computed from an Mth order approximation and W,],w is the opti-
mizing weight under the utility function u(W,, ;) The implication is that the gain
in taking expansions that go beyond the simple MV model is that not only portfo-
lio weights but also their overall behavior as a function of the time horizon can be
better approximated the higher that the expansion order M is. These local approxi-
mations involving derivatives of the control variable are referred to as being high
contact. Conversely, notice that the result holds only asymptotically and irrespective
of the order m: if T is too large even under a high M, the resulting wflw may have
nothing to do with the correct w,. Samuelson’s paper stresses that two components
are needed for approximations to work in asset allocation problems: (1) the asset
returns must be drawn from well-behaved distribution families (such as normals),
and/or (2) the investment horizon must be very short, in principle infinitesimal.
Tsiang (1972) seems to offer the deepest theoretical background to finite-
order Taylor expansions of generally accepted utility functions. Tsiang notes that
although rigorous, Samuelson’s (1970) asymptotic results could be improved, so
that risk would be nonnegligible and small enough in a relative sense for Taylor
approximations (possibly MV analysis) to be sufficiently accurate. Finite-order
Taylor expansions may be applied to utility functions that display these properties,
provided that the power series converges (equivalently, provided the remainder
term can be ignored). Tsiang carefully considers this aspect for two classes of util-
ity functions. First, in the case of negative exponentials shown in Equation 11.31,

W (W B[ Wi )= —exp(—AE, Wy 1)+ AW,y = F, (W, Dexp(=AR, W, 1)+
(Wi (W, ) exp(—AE, W, 1)+
F oA Wy = E[Wir 1) exp(AE Wy o4
DM A (W B, (W, ) exp(-AE, W, )
=—exp< AEL o] [+ﬂfwm E[Wir )~

R Wy =B IW, )4 2 (W ~EIW, ) 4
DM 0 - D |

(11.31)
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which gives an approximation to the expected utility in Equation 11.32 of

E, [ui\;’fp (Weor; E([W, 7 1) ]=—exp(=AE,[W,,.1])

[“l”Van[mThlx‘ (Var, (W, 1)
2 6 (11.32)

X Skow Wy o)™ L VB (W~ B s D) |

From well-known mathematical results, the series emerging in Equation 11.33

1+/lh—l/lzh2 _,_113;13 o= (=M LthM, (11.33)
2 6 M!

converges for all hs (provided they are finite). This relationship also guarantees
that the approximation can be accurate provided M is high enough (M — ). In
particular, Tsiang argues that if A is bounded by 1/ E,[W, . ], then setting M = 2
or 3 may be enough.

With reference to power utility, and when the approximation is taken around
V=E,[W,,;], v=E,[W, ] as shown in Equation 11.34,

1-y
E.| W, v
E[”xp(MJrT}Et[WHTDJ:%%y(Et[I/VHT]) ! 1V“Vt|:I’Vt+T]+
+§y(y+1)<Et[wt+TJ>*Y*2<Vartm+ﬂ>3“8kewt[m+ﬂ+
M-2
+"'—(_I)MML!H(V"'j)(Et[MIt+T])_V_M+1E|:(M/t+T*Et[WHTDM}
j:O

(11.34)

Tsiang (1972) shows that the condition |h|=|W,,; —E,[W, 1 ]|<E,[W,.;] is
required for the series in Equation 11.35,

(E, U/Vt+T:|)l_y +h(E,[W,,+])7 _l(Et[W'HTD—y—Ihz
1-y 2

1 o 1 L
+g(Et[Wt+T]) r 2h3’+...+—(—1)ME(Et[vv;”]) yME M
(11.35)

to converge. In general, convergence is much slower than in the exponen-
tial utility case, and it turns out to depend on T. For large values of T,
Pr{|W, . —E,[W,_;]|<E,[W,,1 ]} =1is unlikely to hold (depending on the distri-
bution of asset returns), and as such approximations may not be viable. Moreover,
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from an asset allocation perspective, Equation 11.34 has the disadvantage of being
taken around expected time t+7T wealth, which depends on a portfolio choice
that is supposed to be derived endogenously from the maximization of Equation
11.34, which is a circular reasoning (Kane, 1982).

Of course, moment-based expansions developed around points that differ
from conditional expected wealth can also be considered. In the case of power
utility, suppose W, =1 and consider a fourth-order Taylor series expansion, such
as a polynomial approximation arrested to the fourth-term of a standard power
function W/ /(1=¥) (y>0) around v=exp(r/T) EXPRESSION v=exp(r/T)
POSSIBLE (i.e, a 100 percent investment in the riskless asset), as shown in
Equation 11.36:

1y

_ 1
:_ 7+v 7/(I/VHT _V)_E w (YH)(VVﬁT +V)2 +

u(Wiyr) =
1 (. 1 _
+g7’(7+1)v (”2)(Wm—V)3—2—47’(7+1)(7+2)v U (W,pp —0)*,

(11.36)

where  u'(v)=v77, u”(v)=—p~ 7Y, u”(v)=y(y+ Dy and

u (V)=—y(y+1)(y+2)v "+, Expanding the powers of (W,,; —V) and taking
the expectation conditional on information up to time t, one obtains the expres-
sion for a fourth-order approximation in Equation 11.37:

E, [”Lp (Weir)1= KD+ K (DE W, 1+ 16, (DE W 1 ]

(DB, T+, (DE W, (1137
Here, variable definitions are shown in the following expressions:
)=V Q1 1= 7 L) = D (D) |
2 6 24
K (7) E%v’y[6+67+37/(y+1)+ Hy+1)(y+2)]>0
i, (7)= —i L2y D) + (74 1) (742)]<0 (11.38)

1 _
k()= W+ D(r+3) >0

1 _
Ky (N== 1+ D (r+3) +7) <o,

Equation 11.37 has highly intuitive implications: the (conditional) expected
utility from final wealth increases in E,[W,., ] and E, (W2 ], i.e., the higher the
expected portfolio returns are and the more skewed to the right the induced dis-
tribution of final wealth is. These are all signed statistics measuring the location
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of the distribution of final wealth. By contrast, expected utility is a decreasing
function of even noncentral moments, such as Et[WﬁT] and E, [I/VtiT], which
are statistics related to the thickness of the tails of the distribution of time t+T
wealth.

As for the economic interpretation of the coefficients k() and k,(y) in the
expressions in Equation 11.39, in the former case (with reference to a third-
order Taylor expansion of power utility around expected future wealth W,, ),
Kraus and Litzenberger (1976) observe that as long as the bound is imposed, a
three-moment Taylor expansion has three desirable properties besides the exis-
tence of expected utility: (1) positive marginal utility of wealth, (2) decreasing
marginal utility (risk aversion), and (3) nonincreasing absolute risk aversion,
which implies k(y)>0. Scott and Horvath (1980) show that a strictly risk-
averse individual who always prefers more to less and who consistently (i.e., for
all wealth levels) likes skewness will necessarily dislike kurtosis, K, {y)<0. Since
global risk aversion and nonsatiation seem plausible and preference for skewness
may be obtained under very weak assumptions, assuming kurtosis aversion may

be justified.

MV PREFERENCES AS A SPECIAL CASE

As a special case of Equation 11.35, one can obtain a MV objective function that
can be interpreted as a two-moment approximation to a power utility objective,
the argument of which is time t+T wealth, similarly to that done by Tsiang
(1972) and Levy and Markowitz (1979) in Equation 11.39:

E, [”pr (I/Vt+T)] =Kk (7)+ K (Y)Et W l+x, (?’)Et [M/:;-T 1. (11.39)

- - . 2
This result derives from the fact that EtLWtiT]zVartLWHT]+{EtU/VHT]} ,

implying the following expression:
E, [ujpp (W)= Ko (N + K (DE[W,ip 1+ Ky (V) Var, [W, g < E[W,,p = AVar,[W, 1 ].
(11.40)

The expressions in the former equation are defined in Equation 11.41,

k(7= r<1<y>+K2<y>Et[Wt+T]=%ﬂ[6+sy+3m+1)+y<y+1><y+z>1+

—(1+Y)rA

TRy +D+H(y+D(r+2)]E W, 1]

slizv-“”’{zv[6+3y+3y(y+1)+ Hr+1)(7+2)]

=3y2+2(y+ D)+ (y+D(y+2)IE (W1 ]},
(11.41)
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while i, () has a definition identical to Equation 11.38. K;(¥) can be shown
to be positive provided 7 is not too high. However, the sign of k7 () is hard
to assess, as it depends on E,[W, ;] and hence on the portfolio strategy imple-
mented by the investor.

Exotic, Nonstandard Preferences

A new strand of research that straddles the empirical finance, theoretical microeco-
nomics, and portfolio management literatures develops techniques of robust portfolio
management. This work contributes to establishing important connections between
the role played by preferences in the practice of asset allocation and applications
of optimal decisions under ambiguity. Traditional models assume the following:
(1) that investors maximize (subjective) expected utility ([SJEU), (2) that agents
are perfectly of aware their own preferences, and (3) that investors’ expectations
are not systematically biased and are made up of rational expectations. However, a
growing body of empirical evidence suggests that this traditional paradigm does not
well describe investors’ behavior in that actual choices are incompatible with (S)EU
predictions. As a result, a new line of research entertains agents whose choices are
consistent with models that are less restrictive than the standard (S)EU framework
in the sense that the underlying axioms are less demanding. In this area, particu-
lar attention has recently been dedicated to ambiguity. Under (S)EU, if preferences
satisfy certain axioms, numerical utilities and probabilities are used to represent
decisions under uncertainty by a standard weighted sum of the utilities, where the
weights are (subjective) probabilities for each of the states. As innocuous as this basic
principle may seem, a long, rich tradition questions whether it adequately describes
behavior. Knight (1921) distinguishes risk, or known probability, from uncertainty.
He suggests that economic returns could be earned for bearing uncertainty but not
for bearing risk. However, Ellsberg’s (1961) paradox most directly provides the mod-
ern attack to (S)EU as a descriptive theory. Ellsberg’s thought-provoking article led
researchers to assemble massive experimental evidence indicating that people gen-
erally prefer the least ambiguous acts. Such a pattern is inconsistent with Savage’s
(1954) sure-thing principle, the axiom by which a state with a consequence common
to a pair of acts is irrelevant in determining preference between the acts. The impli-
cation for portfolio management would be that investors would select optimal port-
folios not only by taking the risk of portfolios into account but also by considering
their overall uncertainty, which cannot be simply measured as risk.

Although a brief survey of this literature follows, a more complete discussion
is available in textbooks devoting chapters to the topic of robust portfolio deci-
sions, such as Fabozzi et al. (2006), or in papers reviewing applications of ambi-
guity to finance, such as Guidolin and Rinaldi (2010).

MV ANALYSIS UNDER AMBIGUITY

As previously shown, under the assumption that r, follows a joint multivariate
normal distribution with known variance-covariance matrix 2 =Var[r,] and
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known mean ©=E[r,], a MV investor will invest using the well-known formula
in Equation 11.12. Kogan and Wang (2003) extend this result to the case in
which r, the investor does not have perfect knowledge of the distribution of the
risky returns; specifically, the case in which follows a joint multivariate normal
distribution with a known variance-covariance matrix and an unknown vector of
mean returns, {. Here, the agent displays a special kind of preferences, which
Gilboa and Schmeidler (1989) call the multiple priors type (MPP). In this clas-
sification, a rational decision maker evaluates expected utility using a multival-
ued set of priors to capture the existence of ambiguity on the distribution of the
set of random outcomes that may affect either the wealth or consumption of the
investor. In this case, Schmeidler (1989) proves that standard SEU optimization
may be replaced by max-min problems, in which an investor minimizes her maxi-
mum expected utility with reference to a set of candidate probability measures,
as defined by the multiple priors. Assuming a unique source of information, so
that the agent is able to derive only a reference joint normal distribution of asset
returns, f~ N(u,2), the set of effective priors $(f) is shown in Equation 11.42:

ﬂ}, (11.42)

go(f) = {q (Ezlnz]<1nz &

where 1] captures ambiguity aversion (a larger 17 means higher aversion). The
investment problem can then be reformulated as a typical max-min problem illus-
trated in Equation 11.43:

mchV(W,sO(f))=ma§qulpia){Eq[u(W)]} st W=[@ (r=r/ ) +(1+r7)],  (1143)

(under the standard constraint that portfolio weights sum to one, @'ty =1)
where W is final wealth, and the set §(f) constrains the statistical models for
the vector process r to be not too distant from the benchmark f, with maxi-
mum distance given by 7). Letting O=u—1U be the divergence between one
of the possible mean vectors under MPP and the vector of expected returns
under the benchmark model, the problem in Equation 11.43 can be rewritten
in Equation 11.44 as

) _ | p— -1
max ee{gzglznl%n}E(z(r)u(W)) z(r)= exp{z 0 0-0% 6(r—u+ 9)}, (11.44)

subject to a budget constraint, which is a transformation of the constraint on the
set of admissible models under the parameter 7] into a (multiplicative) factor that
appears in the objective function.

Garlappi, Uppal, and Wang (2007) extend these early results and show how
to use a confidence interval framework that appears to be natural in the portfolio
literature. Their starting point is that the parameters of the joint normal density
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characterizing the ambiguous asset returns r have to be estimated. Assuming that
a time series of length T of past asset returns h, is available, the conditional den-
sity distribution of returns g(r|h,) must be derived. Assuming that the returns
depend on some unknown parameters 6, whose prior is 77{6), the predictive den-
sity g(R|h,) is g(rlht)=fg(r|9)p(9|ht)d9, where p(6|h,) is the data posterior.
If an investor solves the classical MV problem using the predictive density of the
data, Equation 11.45 emerges:

max w'-“rg(r|ht)dr—%7w'2w (11.45)
w

The resulting portfolio is of a Bayesian type, taking into full account the
existence of parameter uncertainty (Barberis, 2000). The portfolios in which
only parameter uncertainty is considered often perform poorly out of sample,
even in comparison to portfolios selected according to some simple ad-hoc rules
(Miguel, Garlappi, and Uppal, 2009). One reason for this result is that the vector
of expected asset returns U is hard to estimate with any precision. This induces
Garlappi et al. (2007) to introduce ambiguity on the appropriate statistical
model, as identified here by the vector of expected returns . When using MPP,
the optimization takes the form shown in Equation 11.46:

1 =
max min a)’,u—zyco'Za) st.f(uUX)Snwl=1 (11.46)
o

where f is a vector-valued function and M is the estimate of W derived from the
predictive density g(r|h,). One can prove that the max-min problem in Equation
11.46 is equivalent to the simpler maximization problem in Equation 11.47:

max @' (1—4*” ) —— vy’ o, (11.47)

where [L—u“dj is the adjusted estimated expected return (the adjustment
has the role of incorporating ambiguity), and define a vector ,u“dj to satisfy
Equation 11.48,

u“di—[sgn(a)l)\/_ /ﬁsgn(a% \/—\/TTZ Sgn(wN) r:| (11.48)

The adjustment depends on the precision with which parameters are estimated,
the length of the data series, and the investor’s aversion to ambiguity ( 17).

Additional papers have recently shown that using ambiguity aversion to solve
realistic, large-scale portfolio problems is possible. Boyle et al. (2009), who study
the role of ambiguity in determining portfolio underdiversification and the flight
to familiarity episodes, offer the simplest of such papers. Consider a MV portfolio

11 HKentBaker 11.indd 249 @ 9/24/2012 6:46:24 PM



OUP UNCORRECTED PROOF - REVISES, 09/24/12, NEWGEN

2

250 ASSET ALLOCATION AND PORTFOLIO CONSTRUCTION

problem in which the asset menu is composed of N identical risky assets and one
riskless asset. Each asset has (unknown) expected excess return [, and common
volatility 0. Using the framework developed by Boyle et al., the authors write the
optimization problem as shown in Equation 11.49:
=1L
max min m’u-lm'Zco s.t -MS n o,y =L
(O]

u 2 g

2 (11.49)

Under this specification, the ambiguity problem can be interpreted in terms of
classical statistical analysis, because by letting L represent the estimated value of
the mean return of asset i = 1,...,N and ¢, represent the variance of i1, defining
the confidence interval {T(ui -, )L/(fi4 <1, for expected returns is possible.
Hence \/777, , is the critical value determining the size of the confidence interval,
which can be interpreted as a measure of the amount of ambiguity of the esti-
mate of expected returns. The authors find that an investor holds familiar assets
but balances this investment by also holding a portfolio of all the other assets
(as advocated by Markowitz 1952), which remains biased toward more familiar
assets.

SMOOTH RECURSIVE PREFERENCES

One novel approach to modeling ambiguity in asset allocation decisions exploits
a generalization of Klibanoff, Marinacci, and Mukerji’s (200S; hereafter, KMM)
class of smooth preferences. These authors propose that the ambiguity of a risky
act or decision can be characterized by a set g ={P,,..,P,} of subjectively plausi-
ble cumulative probability distributions. They give the hypothetical example that
letting W, denote the random variable distributed as P,j=1,..,n the decision
maker, based on her subjective information, associates a distribution q,, ..., q,
over §, where g; is the subjective probability of P, being the true distribution of
W. They that show that resulting preferences have the following representation:

Yag{fucnran), (150

where {(-) is an increasing real-valued function whose shape describes the inves-
tor’s attitude toward ambiguity. Using Equation 11.50, the decision maker first
evaluates the expected utility of W with respect to all the priors in §: each prior
P is indexed by j, so in the end, a set of expected utilities results, each being
indexed by j. Then, instead of taking the minimum of these expected utilities, as
MPP would, the investor takes an expectation of distorted expected utilities. The
role { of is crucial here: If { were linear, the criterion would simply reduce to (S)
EU maximization with respect to the combination of the gs representing the prob-
abilities, and the P, representing the possible distributions. When { is not linear,
one cannot combine gs and Ps to construct a reduced probability distribution. In
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this event, the decision maker takes the expected {-utility (with respect to q) of
the expected u-utility (with respect to the Ps). A concave { will reflect ambigu-
ity aversion, in the sense that it places a larger weight on poor expected u-utility
realizations. One important implication of the two-stage approach is that the deci-
sion maker is not forced to be so pessimistic as to select the act that maximizes
the minimum expected utility as a consequence of the separation between ambi-
guity and her attitude toward ambiguity. In this sense, KMM preferences may
be interpreted as a smooth extension of Gilboa and Schmeidler’s (1989) classical
MPP. MPP is a limiting case of Equation 11.50. Up to ordinal equivalence, MPP
is obtained in the limit as the degree of concavity of { increases without bound.
Although the type of portfolio problems that have been analyzed so far, assum-
ing simple KMM’s preferences, remain limited, this smooth class will acquire
increasing weight in the asset allocation literature.

An Illustrative Application

To illustrate the effects of preferences on optimal portfolio decisions, provid-
ing an empirical example is useful. Assume the following two experiments: The
first experiment involves calculating optimal weights under a range of alternative
utility functions (preferences). Such optimal weights are computed over a range
of alternative scenarios describing the state of the economy, where the state is
defined through the lenses of a simple but powerful two-state Markov switching
model (henceforth, MSM). The second experiment illustrates the power of alter-
native preference frameworks as tools to evaluate performance. To keep things
simple, a recursive evaluation of three portfolio strategies is undertaken. The
first strategy is the optimal recursive strategy computed under a given preference
framework. The second strategy is an equally weighted strategy (also called 1/N
after Miguel et al., 2009) that has been shown to be highly performing in spite
of its complete disregard for any kind of utility optimization. The third strategy
involves deriving the value-weighted market portfolio implied by the CAPM.
Notice that 1/N basically results in a simple 50-50 allocation between stocks
and cash. This result avoids both estimation and model specification errors that
are implicit when relying on the CAPM. The following are the preference frame-
works employed in the examples:

o The linear utility framework characterizes the behavior of a risk-neutral
investor.

o Ad-hoc MV preferences are defined over portfolio returns.

o Ad-hoc MV preferences are defined over terminal wealth.

+ Three- and four-moment (M = 3 and M = 4) Taylor expansions approximate
the expected power utility of terminal wealth as a function of the first three
and four moments of terminal wealth. In this case, calculations are performed
around two approximation points, v=7/T and v= E,_,[W, ]

« Additional frameworks include:
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« The power utility function characterizes the behavior of a risk-averse investor
with constant relative risk-aversion.

« The negative exponential utility function characterizes the behavior of a
risk-averse investor with constant absolute risk-aversion; entertaining this util-
ity function as a separate framework from the standard MV one is advisable
when stock returns do not follow an IID Gaussian distribution.

« A KMM smooth ambiguity functional characterized by u(W, ;) set to be a
power utility function and C(Et [u(I/VHT)]):_eXP(_Et [u(VVH—T)]) captures
aversion to ambiguity; the set g ={P,.,P,} of plausible cumulative probabil-
ity distributions is specified to correspond to the set of possible states/scenar-
ios according to the estimated MSM along a grid {0,0.1,0.2,--+, 1) with each of
the regimes being equally weighted.

This list delivers a total of 10 alternative preference frameworks, in which
alternative choices of the approximation points v are taken into account. In fact,
each such framework is implemented with three alternative values for the unique
parameter characterizing the degree of risk aversion: { = 0.5, 2, and 4 in the case
of MV and negative exponential utility and =2, 5, and 10 in the case of power
utility and KMM. Finally, calculations are performed for four horizons of 1, 3,
6, and 12 months. Short sales are ruled out throughout. However, calculations
that are done without imposing the short sales restriction have been performed,
obtaining results that are qualitatively similar.

ECONOMETRIC ESTIMATES

Monthly data from the Center for Research in Security Prices (CRSP) at
the University of Chicago from July 1926 through December 2010 on value-
weighted stock returns on the New York Stock Exchange (NYSE), American
Stock Exchange (AMEX), and NASDAQ markets are employed to estimate two
alternative statistical models that describe the dynamics of stock returns. The
first model is a simple Gaussian IID model that is consistent with the hypothe-
sis of geometric random walk in (cum dividend) stock index prices and with the
absence of predictability (robust standard errors are in parenthesis) shown in the
estimated model 11.51:

r, =0.920+5465¢, &, ~IIDN(0,1). (11.51)
1

Moreover, a simple, two-state MSM 1is estimated in model 11.52:

r, =-1.2238,+1.293(1—S, )+[10.607S, +3.801(1-S,)]e, & ~I1ID N(0,1).
[0920]  [0.152] (11.52)

Regime 1 (S, =1) is a bear state with negative expected returns and high volatil-
ity, while regime 0 (S, =0) is a bull state with positive expected return and moderate
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equity volatility. The estimated persistence on the main diagonal of the transition
probability matrix is p,, = 0.984 and p,, = 0.907. These imply an average duration
of eleven months for the bear regime and sixty-three months for the bull regime.
As a result, the ergodic, long-run probabilities (that one would obtain from an infi-
nite sample from the process) of the two regimes are 0.147 and 0.853, respectively.
Figure 11.1 plots the full-sample, smoothed-state probabilities of the two regimes.
In the bear state plot, various episodes of declining and turbulent aggregate stock
prices can be singled out: two spikes corresponding to the Great Depression in the
1930s, two spikes for the oil shocks of 1974-1975 and 1980, and one spike each
for the crash of late 1987, the Asian crisis of the summer 1998, the dot-com bubble
crash of 2000-2001, and more recently the great financial crisis of 2008-2009.

The reason the MSM is entertained as an alternative statistical framework is
that dynamic econometric frameworks from this family are well known to capture,

Bear Regime, Smoothed State Probabilities
al
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Bull Regime, Smoothed State Probabilities
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Figure 11.1 Smoothed (full-sample) probabilities from two-state Markov switching
model. These two plots show the full-sample smooth probabilities derived from a
two-state Markov switching model in which means, variances, and covariances are
assumed to be a function of the Markov state.
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in an intuitive way, the most salient features of the dynamics of investment
opportunities. MSM also has rich implications for the time variation of means,
variances, and especially skewness and kurtosis (Timmermann, 2000). Guidolin
and Timmermann (2008) and Guidolin (2011) provide additional details on the
role of MSMs in dynamic portfolio selection and estimation. These authors also
show how to derive closed-form expressions for the first four noncentral moments
of the time t+T wealth. Guidolin and Timmermann prove that when the risky
asset return follows a Markov switching process, conditional expectations of the
type Et[exp(mxiil f,+;)] can be calculated in a recursive fashion.

OPTIMAL PORTFOLIO WEIGHTS UNDER ALTERNATIVE
SCENARIOS

Table 11.1 reports optimal weights computed under different preferences, risk
aversion parameters, and investment horizons. The optimal allocation to US
stocks in five representative scenarios has been computed: (1) when at time ¢ the
regime is bull, (2) when it is bear, (3) when the investor is in a state of ignorance
on the nature of the regime and guesses that each state carries a current prob-
ability equal to its ergodic frequency, (4) when the investor is in such a state
of ignorance to understand only the presence of two regimes but is unable to
compute the ergodic frequencies and she attributes equal probabilities to both,
and (S5) when the investor ignores regimes altogether. Notice that in scenarios
(1)-(4), even when knowledge of the starting regime is assumed in the scenario
simulation, this never implies that the regime is known in advance or observable
at times t+1, t+2,...,t+T. Under scenario (S), optimal weights are computed
assuming (counterfactually) that stock returns are generated by a simpler single
state, Gaussian IID model, when only one regime is possible at all times.
Independent of the preference framework for low risk aversion (i.e., ¢ = 0, 0.5,
and 2; moreover ¥=2), in the IID case, a common finding is that an investor
ought to invest 100 percent of her wealth in stocks. Equivalently, the market port-
folio advocated by the CAPM is ex-ante optimal. This result is easy to understand
because over the sample period, the US market portfolio yielded a handsome aver-
age monthly return of 0.9 percent, which exceeds the 0.3 percent average monthly
return on one-month Treasury bills. The difference of about 7 percent per year is
called the equity premium, which appears to be sufficiently high to lead any moder-
ately risk-averse investor to bet all of her wealth on stocks. Under some preference
assumptions such as power utility and KMM, higher risk aversion levels would
induce an investor to a much more balanced approach, in which the optimal share
invested in US stocks might be as low as 30 percent, independent of the horizon.
For zero- or low-risk-aversion coefficients and especially for short investment hori-
zons of one and three months, all asset allocations simulated under alternative MSM
scenarios reveal the following: Investors ought to aggressively time the market in a
simple way. They should invest 100 percent in stocks in bull markets when limited
uncertainty leads them to think that the current state does not depart much from
ergodic probabilities. During bear markets, they should invest 0 percent in stocks
(100 percent in cash). The case of 50-5S0 uncertainty is of some interest because this
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is when different preferences lead to heterogeneous indications. For example, linear
utility, MV, and all moment-based preference models suggest exiting the stock mar-
ket. Power utility and KMM favor mixed portfolios, and negative exponential util-
ity oddly indicates a 100 percent optimal investment in stocks. Instead, for higher
risk aversion and especially longer investment horizons, most preference frameworks
give balanced indications in which the optimal share of stocks is not zero or one,
although it remains the case that starting from a bear regime, all preferences and
horizons indicate the optimality of exiting the stock market. This strategy is not only
sensible, because in a bear regime, US stocks yield negative expected returns, but
also plausible, in the light of the finding that the average duration of a bear regime
is 11 months. Thus, even an investor with T'=12 may expect to remain, on average,
in the bear regime over her entire horizon. However, in the remaining three switch-
ing scenarios, the heterogeneity in optimal portfolio weights across preferences is
remarkable. Unlike the case of constant investment opportunities, an investor should
pin down a preference framework that accurately describes her risk attitudes in order
to be able to employ quantitative frameworks of portfolio optimization.

BACK-TESTING THE REALIZED PERFORMANCE OF
ALTERNATIVE PREFERENCES

Table 11.1 cannot be used to show that modeling portfolio decisions in a utility-max-
imizing setup give investors any advantage. A simple recursive back-testing exercise
was implemented for each month between January 1980 and December 2010, both
econometric models (IID and MSM) were recursively reestimated, and the result-
ing parameter estimates were used to compute optimal portfolio weights for the
same range of preferences, the same risk aversion coefficients, and the same horizons
as those in Table 11.1. After computing the weights, realized wealth (or portfolio
returns) over the assumed horizons were computed from the data, such as the actual
value-weighted CRSP stock returns and one-month Treasury bill yields. This yields
a total of 372 —T measures of realized wealth for each combination of preferences,
risk aversion parameter, and horizon. Such time series of realized wealth were con-
verted in time series of realized utility using the assumed structure for preferences
and for instances in the case of power utility, so that Equation 11.53 emerges:

Weor (@,0)]77
1=y

upower(a)t,T): (1153)

For the time index ¢t that ranges between January 1980 and December 2010 .
Finally, such time series of realized utility were averaged and converted into cer-
tainty equivalent returns (CERs), as illustrated in Equation 11.54:

[(+CEREL W) 1 BT
Z l’lpawer(a)t,T):>

1-y T3n-T
t=1980:01
o (11.54)
CERZt;ier = [:(l - ’}/)ﬁpower(a")t,T)]l_y -1 ]
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— ~ 7 —1"2010 : 12-T A
where upuwer(wt,T) = \372 _T) Zt:1980 . 01 upawer(wt,T) . The CER represents

the certain return that one investor would be ready to accept in replacement of
the risky portfolio strategy defined by {® tlT}fgigsﬁo‘?ng
same average realized utility. Obviously, the better a strategy is, the higher its
CER. Moreover, the CER has the additional advantage of converting the realized
performance of potentially heterogeneous strategies into a comparable measure.
Obviously, in the case of simple MV frameworks, the ranking provided by the
CER is identical to rankings based on Sharpe ratios. In the case of linear util-
ity, the CER is identical to average realized portfolio returns. However, in other
cases, including moment-based preferences, power utility, and KMM, the CER
is likely to give indications that significantly differ from simple Sharpe ratios
(Guidolin and Ria, 2011).

Table 11.2 presents the realized certainty equivalent returns (CERs) for the
three alternative strategies. Corresponding to each combination of preferences and
risk aversion coefficients/horizon, the best performing CER is shown in boldface.
The table shows that preference-based, optimizing asset allocation models may
help investors to maximize their realized performance but may also occasionally
provide disappointing results. Although a detailed analysis of the point estimates
of the CERs in Table 11.2 is beyond the scope of this illustration, the usefulness
of preference-based asset allocation seems to be “U-shaped” with respect to both
risk aversion and horizon. The utility-based CER outperforms the benchmarks for
risk-neutral investors and for highly risk-averse investors, while it underperforms
the benchmarks for investors who display intermediate levels of risk aversion. The
utility-based CER outperforms the benchmarks for shorter (one-month) and espe-
cially longer (6- and 12-month) horizons. However, when preferences are MV or

because it gives her the

MV skewness, utility-based CERs are never superior to those of the benchmarks.
The equally weighted portfolio does not perform as well as expected in light of
the recent academic literature. However, its realized performance tends to be
strong for long-horizon investors whose risk aversion is relatively high. Yet, even
when the utility-optimizing framework fails to turn out the best realized perfor-
mance, the distance to the benchmarks remains modest. For instance, consider
the case of a three-month investor favoring MV skewness whose approximation
is taken around a power utility function with == Independent of the details
of the Taylor approximation, her CER is 6.3 percent per year from the utility-
maximizing framework, 7.1 percent from 1/N, and 7.2 percent from the market
portfolio that always invests 100 percent in stocks. One final finding is intrigu-
ing. The ex-ante preference-optimizing strategy is ex-post the most successful
strategy under KMM’s ambiguity-averse preferences. This finding confirms the
importance of performing quantitative portfolio optimization in the case where
investors are sensitive to parameter and model uncertainty.

Summary and Conclusions

Surveying the portfolio theory literature that uses preference-based frameworks
to compute optimal portfolios, this chapter’s key empirical result is that basing
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asset allocation decisions on preferences may pay off not only in ex-ante but
also ex-post terms under two important conditions: First, asset returns must be
generated from non-Gaussian frameworks characterized by nonlinear predicta-
bility dynamics, which translates into rich time variation in skewness and kur-
tosis. Second, the preferences must overweight the importance of higher-order
moments and of the (conditional) tails of the distribution of portfolio returns,
such as power utility or ambiguity-averse preferences.

Although this finding fits the key results in the literature, its characterization
under Markov switching dynamics when ambiguity aversion is called into play
appears novel. For instance, Kallberg and Ziemba (1983) already report that in
many practical applications, one can choose the utility function that allows for
the most efficient numerical solution. As the utility function that is most easily
tractable in terms of computation, finding that quadratic utility is by far the most
commonly used in practice is not surprising. These authors note, however, that
they performed most of their calculations using assets exhibiting return distribu-
tions not too far away from normality; for instance, in the case of the so-called
elliptical distributions (such as the normal, Student t, and Levy distributions).
This chapter further emphasizes that when such elliptical properties are absent,
results for MV preferences may differ from those derived under more complex
and arguably realistic preferences.

Discussion Questions

1. What are the possible combinations of assumptions about individual’s pref-
erences and about the statistical distribution of asset (portfolio) returns that
may justify a simple MV approach to portfolio optimization, such as that in
Equation 11.5?

2. Why is computing the standard (small) risk measures CARA(W) and
CRRA(W) impossible in the case of MV preferences? Explain the source from
which deficiencies stem.

3. Describe the intuition underlying Klibanoff, Marinacci, and Mukerji’s (2005)
smooth ambiguity-averse preferences. Explain how these smooth preferences
can nest both Gilboa and Schmeidler’s (1989) max-min type, multiple priors
preferences, and the standard subjective expected utility case.

4. Why is a dynamic model of risky asset returns such as a Markov switch-
ing model likely to bring out the power of smooth ambiguity preferences to
improve realized performance?
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