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Summary. A Bayesian non-parametric methodology has been recently proposed to deal with
the issue of prediction within species sampling problems. Such problems concern the evalua-
tion, conditional on a sample of size n, of the species variety featured by an additional sample of
size m. Genomic applications pose the additional challenge of having to deal with large values
of both n and m. In such a case the computation of the Bayesian non-parametric estimators
is cumbersome and prevents their implementation. We focus on the two-parameter Poisson–
Dirichlet model and provide completely explicit expressions for the corresponding estimators,
which can be easily evaluated for any sizes of n and m.We also study the asymptotic behaviour
of the number of new species conditionally on the observed sample: such an asymptotic result,
combined with a suitable simulation scheme, allows us to derive asymptotic highest posterior
density intervals for the estimates of interest. Finally, we illustrate the implementation of the
proposed methodology by the analysis of five expressed sequence tags data sets.
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1. Introduction

Species sampling problems have a long history in ecological and biological studies. Given the
information that is yielded by an initial sample of size n, most of the statistical issues to be faced
are related to the concept of species richness, which can be quantified in different ways. For
example, given an initial sample of size n, species richness might be measured by the estimated
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E-mail: ramses@sigma.iimas.unam.mx



994 S. Favaro, A. Lijoi, R. H. Mena and I. Prünster

number of new species to be observed in an additional sample of size m. It can be alterna-
tively evaluated in terms of the probability of discovering a new species at the .n + m + 1/th
draw, which yields the discovery rate as a function of the size of the additional sample m. Or
it can be seen as the sample coverage that is achievable by means of a sample of size n + m

which, in other words, is the proportion of distinct species that are detectable in a sample
of size n + m. Recently there has been renewed interest in the area due to its importance in
genomics as witnessed by the recent contributions of, for example, Mao and Lindsay (2002), Mao
(2004), Susko and Roger (2004) and Wang and Lindsay (2005). In such inferential problems
we are interested in the species composition of a certain population containing an unknown
number of species and only a sample drawn from it is available. Specifically, a sample of size n,
X1, . . . , Xn, will exhibit Kn ∈ {1, . . . , n} distinct species with frequencies .N1, . . . , NKn/, where
clearly ΣKn

i=1Ni = n. Given such a basic sample, interest lies in estimating the number of new
species, K.n/

m :=Km −Kn, to be observed in an additional sample of size m and in determining
the decay of the discovery probability as a function of the sample size m. Genomic applications,
such as the analysis of expressed sequence tags (ESTs) that are generated by sequencing com-
plementary deoxyribonucleic acid (‘cDNA’) libraries consisting of millions of genes, have the
distinctive feature of requiring estimation of K.n/

m for very large additional samples.
In recent years there has been an enormous growth in the proposal of Bayesian non-para-

metric methods for several applied problems. See Müller and Quintana (2004) and Dunson
(2008) for interesting reviews, the latter with emphasis on biostatistics applications. As far as
species sampling problems are concerned, a Bayesian non-parametric approach has been laid
out in Lijoi et al. (2007a). Assuming that the data form an exchangeable sequence .Xn/n�1, by
de Finetti’s representation theorem .Xn/n�1 can be characterized by a hierarchical model, with
the Xns as a random sample from some distribution P̃ and a prior Π on P̃ , i.e.

Xi|P̃ IID∼ P̃ ,

P̃ ∼Π:
.1/

Their idea then consists in deriving estimators for quantities that are related to the additional
sample Xn+1, . . . , Xn+m conditionally on the observed basic sample X1, . . . , Xn. See also Lijoi
et al. (2008b) for a theoretical study and Lijoi et al. (2007b) for a practitioner-oriented illustration.
Although the Bayesian non-parametric estimators can be exactly evaluated, there are situations
of practical interest, such as the analysis of EST data, where the size of the additional sample
of interest is very large and the computational burden makes the evaluation of these estimators
almost impossible.

In this paper we focus attention on the two-parameter Poisson–Dirichlet model (Pitman, 1995)
which stands out for its tractability and, hence, represents the natural candidate for applications
within the large class of priors that was considered in Lijoi et al. (2007a). Our primary aim is the
achievement of a considerable simplification of the estimators that were proposed in Lijoi et al.
(2007a), which makes them of straightforward use for any size, no matter how large, of the addi-
tional sample. In particular, we obtain an explicit and simple expression for both the expected
number of new species and the discovery probability. Moreover, to be able to combine the esti-
mators with measures of uncertainty, we study the asymptotic behaviour of K.n/

m : this allows us to
deduce asymptotic highest posterior density (HPD) intervals to be associated with the point esti-
mates. The results that we obtain are also of interest beyond the species sampling framework since
they shed some light on conditional properties of the two-parameter Poisson–Dirichlet process,
which appears in many contexts that are not related to Bayesian non-parametrics such as com-
binatorics, excursion theory and population genetics. See Pitman (2006) and references therein.
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In Section 2 we recall the definition of the two-parameter Poisson–Dirichlet process, derive
the moments of any order of K.n/

m conditionally on a basic sample and study its asymptotic
behaviour: it will be shown that, given Kn, K.n/

m =mσ converges, as m→∞, to a random variable.
Moreover, we devise a simulation algorithm for drawing samples from this limiting random
variable. In Section 3 we show how to implement the results by analysing five real EST data sets.
Proofs are postponed to Appendix A.

2. Conditional formulae for species sampling problems

We start this section by introducing the two-parameter Poisson–Dirichlet process (Pitman,
1995). Among the various possible definitions, a simple and intuitive one follows from the
so-called stick breaking construction. For a pair of parameters .σ, θ/ such that σ ∈ .0, 1/ and
θ > −σ, let .Vk/k�1 denote a sequence of independent random variables, with Vk ∼ beta.θ +
kσ, 1−σ/. Define the stick breaking weights as p̃1 =V1 and

p̃j =Vj

j−1∏
i=1

.1−Vi/ j �2

and suppose that .Yn/n�1 is a sequence of independent and identically distributed (IID) random
variables, which are independent of the p̃is and whose common probability distribution P0
is non-atomic. If δa is the point mass at a, the discrete random-probability measure P̃σ,θ =
Σj�1p̃jδYj is a Poisson–Dirichlet process with parameters .σ, θ/. For brevity we write PD.σ, θ/.
See Pitman (2006) for a detailed account on general theoretical aspects and, for example,
Ishwaran and James (2001), Navarrete et al. (2008) and Jara et al. (2008) for applications in
Bayesian non-parametrics.

Under model (1) with P̃ being a PD.σ, θ/ process, the sample coverage, which is defined as the
proportion of species represented in a basic sample of size n featuring j distinct species, is given by

Ĉ
.n,j/
1 =1− θ + jσ

θ +n
:

Moreover, the distribution of the number of new distinct species K.n/
m that will be observed in

an additional sample of size m, conditionally on a basic sample of size n featuring Kn distinct
species, is given by

P.n,j/
m .k/ :=pr.K.n/

m =k|Kn = j/= .θ +1/n−1

.θ +1/n+m−1

j+k−1∏
i=j

.θ + iσ/

σk
C.m, k;σ, −n+ jσ/ .2/

for k = 0, . . . , m, where C.m, k;σ, − n + jσ/ is the non-central generalized factorial coefficient
whose definition is recalled in equation (16) in Appendix A. Such an expression is the key for
evaluating Bayesian estimators that are useful for inference with species sampling problems. In
Lijoi et al. (2007a) it was deduced, resorting to combinatorial arguments, as a particular case
of a general class of priors. In Appendix A we provide an alternative proof of result (2) since it
introduces the way of reasoning that we shall resort to for proving proposition 1.

On the basis of result (2), the estimators of interest can be derived: the expected number of
new species is

Ê
.n,j/
m :=E[K.n/

m |Kn = j]=
m∑

k=0
kP.n,j/

m .k/,

whereas the discovery probability, which is interpreted as the probability that the .n+m+1/th
observation will yield a new species, without observing the m intermediate records, is given by
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D̂
.n,j/
m = .θ +1/n−1

.θ +1/n+m

m∑
k=0

j+k∏
i=j

.θ + iσ/

σk
C.m, k;σ, −n+ jσ/: .3/

Hence, the estimated sample coverage after n + m draws is given by Ĉ
.n,j/
m = 1 − D̂

.n,j/
m . The

advantage of the formulae yielding Ê
.n,j/
m and D̂

.n,j/
m is that they are explicit and can be exactly

evaluated. There are, however, situations of practical interest where the size of the additional
sample of interest is very large and the computational burden for evaluating equations
(2) and (3) becomes overwhelming. This happens, for instance, in genomic applications where
one must deal with relevant portions of cDNA libraries which typically consist of millions
of genes. Our first aim is the achievement of a considerable simplification of the two above-
mentioned estimators. Moreover, since equation (2) is still required for determining the corres-
ponding HPD intervals, we shall study the asymptotics of K.n/

m , given Kn, as m→∞: this allows
us to use the distribution of the limiting random quantity to approximate the HPD intervals.

The first important result concerns the moments of K.n/
m , given Kn, which will be expressed

in terms of non-central Stirling numbers of the second kind,

S.r, i;γ/= 1
i!

i∑
l=0

.−1/i−l

(
i

l

)
.l+γ/r .4/

for r =0, 1, . . . and i=0, . . . , r, and S.r, i;γ/=0 for i= r +1, r +2, . . .. See Charalambides (2005)
for an account on non-central Stirling numbers. Such moments allow us to derive completely
explicit expressions for the estimators of interest, which can be easily evaluated for any choice
of n and m.

Proposition 1. Under the two-parameter Poisson–Dirichlet model, we have

E[.K.n/
m /r|Kn = j]=

r∑
ν=0

.−1/r−ν

(
j + θ

σ

)
ν

S

(
r, ν;

θ

σ
+ j

)
.θ +n+νσ/m

.θ +n/m
.5/

where, for any non-negative integer N , .a/N =Γ.a+N/=Γ.a/ is the Nth ascending factorial of
a. In particular, a Bayesian non-parametric estimator of K.n/

m coincides with

E[K.n/
m |Kn = j]=

(
j + θ

σ

){
.θ +n+σ/m

.θ +n/m
−1

}
, .6/

the discovery probability is equal to

D̂
.n:j/
m = θ + jσ

θ +n

.θ +n+σ/m

.θ +n+1/m
.7/

and the sample coverage after n+m draws is given by

Ĉ
.n,j/
m =1− θ + jσ

θ +n

.θ +n+σ/m

.θ +n+1/m
: .8/

Note that the estimator in equation (6) admits an interesting probabilistic interpretation.
Indeed, we have that

E[K.n/
m |Kn = j]=pr.Xn+1 =new |Kn = j/Eσ,θ+n[Km]

where Eσ,θ+n[Km] stands for the unconditional expected number of distinct species, among m
observations, with respect to the probability distribution of a Poisson–Dirichlet process with
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parameter .σ, θ +n/. Moments of any order of the unconditional distribution, i.e. E[Kr
n], have

been determined by Pitman (1996a) and Yamato and Sibuya (2000) and are recovered from
equation (5) by setting n= j =0.

The formulae that were obtained in proposition 1 provide point estimators for quantities
of interest in species sampling problems. Besides them, we would also like to determine HPD
intervals since they provide a measure of uncertainty related to the point estimates. However,
for large values of m this represents a difficult task. To overcome this drawback, we analyse the
asymptotic behaviour of K.n/

m , for fixed n and as m→∞, and use the appropriate quantiles of the
limiting random variable to obtain an HPD interval. Results of this type for the unconditional
distribution have been determined by Pitman (1996a, 1999). See also Pitman (2006). To recall
Pitman’s result, let fσ be the density function of a positive σ-stable random variable and Yq be,
for any q�0, a positive random variable with density function

fYq.y/= Γ.qσ +1/

σ Γ.q+1/
yq−1−1=σfσ.y−1=σ/: .9/

We, then, have that Kn=nσ →Yθ=σ almost surely, as n→∞. As we shall now see, conditioning
on the outcome of a basic sample leads to a different limiting result.

Proposition 2. Under the two-parameter Poisson–Dirichlet model, conditional on Kn = j we
have

K.n/
m =mσ →Zn,j almost surely .10/

and in the pth mean, for any p > 0, where Zn,j =d Bj+θ=σ,n=σ−jY.θ+n/=σ, Ba,b is a beta random
variable with parameters .a, b/ and the random variables Bj+θ=σ,n=σ−j and Y.θ+n/=σ are inde-
pendent. Moreover,

E[.Zn,j/r]=
(

j + θ

σ

)
r

Γ.θ +n/

Γ.θ +n+ rσ/
: .11/

It is worth stressing that the limiting random variable in the conditional case is the same as
in the unconditional case but with updated parameters and a rescaling that is induced by a beta
random variable. The density of Zn,j in expression (10) can be formally represented as

fZn,j .z/= Γ.θ +n/

Γ.θ=σ + j/Γ.n=σ − j/
zθ=σ+j−1

∫ ∞

z

v−1=σ.v− z/n=σ−j−1 fσ.v−1=σ/dv:

When σ = 1
2 , the density f1=2 is known explicitly and the previous expression can be simplified to

fZn,j .z/= 4n+θ−1Γ.θ +n/zθ+k=2−1

π1=2 Γ.k +2θ/Γ.2n−k/

2n−k−1∑
j=0

(
2n−k −1

j

)
.−z/j=2 Γ

(
n− k −1+ j

2
; z

)
:

Nonetheless, even in the latter case we cannot easily determine the quantiles of Zn,j that we need
to use to determine HPD intervals. Hence, we resort to a simulation algorithm for generating
values of Zn,j and use the output to evaluate quantiles. The demanding part of this simulation
is the generation of samples from the probability distribution of Yq. Note that the sampling
strategy that we shall outline is also useful in the unconditional case, where the same tractabil-
ity issue in deriving properties of Yq is to be faced. The basic idea consists in setting Wq =Y

−1=σ
q

so that Wq has density function given by

f.w/= σ Γ.qσ/

Γ.q/
w−qσfσ.w/= σ

Γ.q/
fσ.w/

∫ ∞

0
uqσ−1 exp.−uw/du:
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Via augmentation, we then have

f.u, w/= σ

Γ.q/
fσ.w/uqσ−1exp.−uw/=f.u/fσ.w|u/

where f.u/ is the density function of a random variable Uq such that Uσ
q ∼ gamma.q, 1/, and

fσ.w|u/=fσ.w/ exp.−uw +uσ/:

This means that, conditional on Uq, Wq is a positive tempered stable random variable, according
to the terminology that was adopted in Rosiński (2007). To draw samples from it, a convenient
strategy is to resort to the series representation that was derived in Rosiński (2007), which, in
our case, yields

Wq|Uq
d=

∞∑
i=1

min[{ai Γ.1−σ/}−1=σ, eiv
1=σ
i ] .12/

where ei ∼IID exp.Uq/, vi ∼IID U.0, 1/ and a1 >a2 >. . . are the arrival times of a Poisson process
with unit intensity. Other possibilities for simulating from a tempered stable random variable are
the inverse Lévy measure method as described in Ferguson and Klass (1972) and a compound
Poisson approximation scheme that was proposed in Cont and Tankov (2004).

Summarizing the above considerations, an algorithm for simulating from the limiting random
variable Zn,j=dBj+θ=σ,n=σ−jY.θ+n/=σ is as follows.

Step 1: generate B∼beta.j +θ=σ, n=σ − j/.
Step 2: To sample from Y.θ+n/=σ:

(a) generate X∼Ga{.θ +n/=σ, 1} and set U =X1=σ;
(b) for a given truncation N and U sampled in step 2(a), generate: {ei} ∼IID exp.U/,

{vi}∼IID U.0, 1/ and ξj ∼IID exp.1/ and take ai =Σi
j=1ξj, for i=1, . . . , N;

(c) compute W according to expression (12) and set Y =W−σ.

Step 3: take Z =BY .

Note that, to establish whether a chosen truncation threshold N for the series in step 2(b) is
sufficiently large, one can compare the sample moments with the simple exact moments of Zn,j
given in equation (11).

3. Applications to genomics

We now show how to use the results of the previous section by applying them to five real EST data
sets. As briefly mentioned in Section 1, EST data arise by sequencing cDNA libraries consisting
of millions of genes and one of the main quantities of interest is the number of distinct genes.
Typically, owing to cost constraints, only a small portion of the cDNA has been sequenced and,
given this basic sample, estimation of the number of new genes K.n/

m to appear in a hypothetical
additional sample is required. On the basis of such estimates, geneticists must decide whether
it is worth proceeding with sequencing and, if so, also the size of the additional sample. Here,
we consider

(a) a tomato flower cDNA library (Quackenbush et al., 2000), which was previously anal-
ysed in Mao and Lindsay (2002), Mao (2004) and Lijoi et al. (2007a),

(b) two cDNA libraries of the amitochondriate protist Mastigamoeba balamuthi (Susko
and Roger, 2004) (the first is non-normalized , whereas the second is normalized , i.e. it
undergoes a normalization protocol which aims at making the frequencies of genes in
the library more uniform to increase the discovery rate) and
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(c) two Naegleria gruberi cDNA libraries prepared from cells grown under different culture
conditions, aerobic and anaerobic (Susko and Roger, 2004).

To implement the PD.σ, θ/ model, the first issue to face is represented by the specification
of its parameters. The first possibility is to adopt an empirical Bayes approach. Since the basic
sample consists of n observations featuring Kn distinct species with corresponding frequencies
.N1, . . . , NKn/, the joint distribution of Kn and .N1, . . . , NKn/ is given by

pr.Kn =k, N =n/=

k−1∏
i=1

.θ + iσ/

.θ +1/n−1

k∏
j=1

.1−σ/nj−1: .13/

This distribution is known as Pitman’s sampling formula (Pitman, 1995) and represents a gen-
eralization of Ewens’s sampling formula (Ewens, 1972), which is a cornerstone in population
genetics. The empirical Bayes rule then suggests that we fix .σ, θ/ to maximize expression (13)
corresponding to the observed sample .k, n1, . . . , nk/, i.e.

.σ̂, θ̂/=arg max
.σ,θ/

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∏
i=1

.θ + iσ/

.θ +1/n−1

k∏
j=1

.1−σ/nj−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

: .14/

An alternative way of eliciting .σ, θ/ is by placing a prior distribution on it. Such an approach is
useful when we are interested in testing the compatibility of clustering structures among different
populations (Lijoi et al., 2008). However, in terms of estimates there are typically no relevant
differences given that the posterior distribution of .σ, θ/ is highly concentrated. Hence, to keep
the exposition as simple as possible, in what follows we focus on PD.σ, θ/ models with empirical
Bayes prior specification. The extension to the case of priors on .σ, θ/ is straightforward.

The computation of the estimators for the number of new genes (6), for the discovery prob-
ability (7) and for the sample coverage (8) is immediate. For each of the five EST data sets, the
corresponding estimates for additional samples of size m∈{n, 10n, 100n} are reported in Table 1
together with the corresponding values n and j of the basic sample and the empirical Bayes
specifications of .σ, θ/.

The use of proposition 2 is slightly more delicate. Here, we show it only for the estimator of
the number of new genes; for the estimators of the discovery probability and the coverage one
can proceed along the same lines. To combine the point estimate for K.n/

m with an asymptotic
95% HPD interval, we can simulate from the limiting random variable Zn,j and determine the
95% HPD interval, .z1, z2/, for Zn,j. Then, given that the normalizing rate function for K.n/

m in
proposition 2 is mσ, we obtain an asymptotic 95% HPD interval for K.n/

m as .z1mσ, z2mσ/. Table 2
reports both the exact and the simulated mean and variance of the limiting random variable
Zn,j that is associated with each of the five EST data sets as well as the simulated 95% and 99%
HPD intervals. The sampled values are obtained by generating 2000 random variates according
to the algorithm that was devised in Section 2 with truncation of the series in expression (12)
given by N = 3 × 107. In fact, it is important to obtain accurate samples from Zn,j: a small
bias could heavily affect the asymptotic HPD intervals for K.n/

m , .z1mσ, z2mσ/, since a large mσ

would amplify the bias. It should be emphasized that it is sufficient to run the simulation of Zn,j
only once to obtain the HPD intervals for any choice of the additional sample size m. Hence,
it seems definitely worth pursuing a high precision, which can be easily verified by comparing
exact moments in equation (11) with the sampled moments.
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Table 1. Analysis of the five EST data sets†

Library n j σ̂ θ̂ m Ê
(n,j)
m D̂

(n:j)
m Ĉ

(n,j)
m

Tomato flower 2586 1825 0.612 741.0 n 1281 0.447 0.553
10n 8432 0.240 0.760

100n 40890 0.103 0.897
Mastigamoeba 715 460 0.770 46.0 n 346 0.452 0.548

10n 2634 0.307 0.693
100n 16799 0.185 0.815

Mastigamoeba—normalized 363 248 0.700 57.0 n 180 0.456 0.544
10n 1280 0.278 0.722

100n 7205 0.144 0.856
Naegleria aerobic 959 473 0.670 46.3 n 307 0.290 0.710

10n 2085 0.166 0.834
100n 11031 0.080 0.920

Naegleria anaerobic 969 631 0.660 155.5 n 440 0.412 0.588
10n 2994 0.236 0.764

100n 15673 0.111 0.889

†Size of the basic sample n, number of distinct genes j in the basic sample and empirical Bayes speci-
fications for .σ, θ/. Exact estimators for the number of new genes Êm

.n,j/ are rounded to the nearest integer,
for the discovery probability D̂m

.n:j/ and the coverage Ĉm
.n,j/ for sizes of the additional sample m∈{n, 2n, 3n}.

Table 2. Characteristics of the limiting random variable Zn,j for the five cDNA libraries: exact mean E[Zn,j ],
exact variance var.Zn,j /, sample mean Z̄n,j , sample variance S2 and sample 95% and 99% HPD intervals

Library E[Zn,j] var(Zn,j) Z̄n,j S2 95% HPD 99% HPD

Tomato flower 21.222 0.098 21.251 0.096 (20.62,21.83) (20.46,22.02)
Mastigamoeba 3.142 0.011 3.176 0.012 (2.95,3.37) (2.89,3.44)
Mastigamoeba—normalized 4.804 0.043 4.823 0.044 (4.43,5.24) (4.28,5.36)
Naegleria aerobic 5.279 0.039 5.304 0.039 (4.93,5.69) (4.78,5.82)
Naegleria anaerobic 8.400 0.054 8.419 0.054 (7.97,8.88) (7.80,8.98)

Having the asymptotic 95% HPD intervals for Zn,j at hand, the candidate approximate 95%
HPD intervals for K.n/

m are .z1mσ, z2mσ/. As apparent from Table 3, the HPD interval that is
constructed through such a procedure is not centred on and, in most cases, does not even include
the estimated number of new genes E[K.n/

m |Kn = j]. Indeed, if we look at the exact estimator for
K.n/

m that is given in equation (6), it is clearly much smaller than its asymptotic approximation
mσE[Zn,j]. This is because, when θ and n are moderately large and not overwhelmingly smaller
than m, a finer normalization constant is to be used for approximating K.n/

m : by close inspection
of the derivation of the moments of the limiting random variable Zn,j in expression (17) in
Appendix A, we see that an equivalent, though less rough, normalization rate is given by

rσ,θ,n.m/ := .θ +n+m/σ − .θ +n/σ:

Obviously, in terms of asymptotics, rσ,θ,n.m/=mσ → 1 as m →∞, but, importantly, as far as
approximations of K.n/

m for finite m are concerned, it overcomes the above-mentioned problems.
In fact, we have that, for any m, E[K.n/

m |Kn = j] ≈ rσ,θ,n.m/ E[Zn,j] and the asymptotic HPD
interval .rσ,θ,n.m/z1, rσ,θ,n.m/z2/ is approximately centred on the estimator E[K.n/

m |Kn = j], as
desired. Table 3 displays, for the five data sets, the exact estimator for K.n/

m , its asymptotic
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Table 3. Exact estimates Ê
.n,j /
m of the number of new genes K.n/

m and its asymptotic approximation
f .m/ E[Zn,j ], with rate functions f .m/Dmσ and f .m/D rσ,θ,n†

Library m Ê
(n,j)
m Results for rate mσ Results for rate rσ,θ,n(m)

mσ E[Zn,j] Asymptotic rσ,θ,n E[Zn,j] Asymptotic
95% HPD 95% HPD

Tomato flower, n=2586 n 1281 2602 (2528,2677) 1281 (1244,1318)
10n 8432 10649 (10347,10956) 8432 (8192,8675)

100n 40890 43583 (42345,44838) 40890 (39728,42067)
Mastigamoeba, n=715 n 346 495 (465,531) 346 (325,371)

10n 2634 2917 (2739,3129) 2634 (2473,2825)
100n 16799 17179 (16130,18427) 16799 (15774,18020)

Mastigamoeba—normalized, n=363 n 180 298 (274,324) 180 (166,196)
10n 1280 1491 (1375,1625) 1280 (1181,1396)

100n 7205 7474 (6893,8146) 7205 (6644,7852)
Naegleria aerobic, n=959 n 307 525 (491,566) 307 (287,331)

10n 2085 2457 (2295,2648) 2085 (1947,2247)
100n 11031 11492 (10735,12387) 11031 (10304,11889)

Naegleria anaerobic, n=969 n 440 786 (745,831) 440 (417,465)
10n 2994 3591 (3407,3797) 2994 (2841,3166)

100n 15673 16414 (15572,17355) 15672 (14869,16571)

†The size m of the additional sample varies in {n, 10n, 100n}. The asymptotic 95% HPD intervals are evaluated
for both rate functions, mσ and rσ,θ,n.m/. All values are rounded to the nearest integer.

approximation and the 95% asymptotic HPD intervals using both mσ and rσ,θ,n.m/ as rate
functions for sizes of the additional sample m∈{n, 10n, 100n}.

For the tomato flower library we have that, even for m = 100n = 258600, the asymptotic
approximation of the number of new genes with mσ is about 6.6% larger than the asymptotic
approximation with rσ,θ,n.m/, which coincides with the exactly estimated number. Hence, for
the finite sample size approximation it is definitely necessary to use rσ,θ,n.m/ as the rate function.

We now move on to comparing the asymptotic HPD intervals that are obtained with the
rate function rσ,θ,n.m/ with the exact HPD intervals that are determined by using the probabil-
ity distribution in expression (15) in Appendix A. Hence, we consider m∈{n, 2n, 3n}, because
otherwise the computational burden that is involved in expression (15) would become too heavy.
Table 4 reports, for the five data sets, the exact estimator for K.n/

m , the exact 95% HPD and both
the 95% and the 99% asymptotic HPD intervals. Table 4 shows that the length of the asymptotic
95% HPD intervals is shorter than the exact interval, although the difference is not big.

Indeed, such a finding is not surprising in the species sampling context. Obviously, the var-
iability of K.n/

m increases as m increases. However, the variability of K.n/
m =rσ,θ,n.m/, which can

be interpreted as an average variability over the additional sample of size m, is necessarily
decreasing as m increases, since the more distinct species are collected the lower the probability
of detecting additional new species will become. Hence, if we approximate K.n/

m =rσ,θ,n.m/ by
its asymptotic random variable Zn,j, we shall necessarily underestimate its variability, which
is reflected in the length of the HPD intervals. Nonetheless the possibility of resorting to the
asymptotic HPD intervals is extremely useful from a practical point of view:

(a) the HPD intervals of Zn,j automatically yield HPD intervals of K.n/
m for any choice of m,

whereas the exact HPD intervals must be recomputed for any m of interest and cannot
even be calculated for large m;
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Table 4. Estimates Ê
.n;j /
m of the number of new genes K.n/

m together with the exact 95% HPD
intervals and the 95% and 99% asymptotic HPD intervals†

Library m Ê
(n,j)
m Exact Asymptotic Asymptotic

95% HPD 95% HPD 99% HPD

Tomato flower, n=2586 n 1281 (1221,1341) (1244,1318) (1234,1329)
2n 2354 (2263,2449) (2287,2422) (2269,2442)
3n 3305 (3181,3434) (3211,3400) (3186,3430)

Mastigamoeba, n=715 n 346 (312,382) (325,371) (318,379)
2n 654 (599,711) (614,701) (601,716)
3n 939 (865,1015) (881,1007) (863,1028)

Mastigamoeba—normalized, n=363 n 180 (156,206) (166,196) (160,201)
2n 336 (299,375) (310,366) (299,375)
3n 477 (428,528) (440,520) (425,533)

Naegleria aerobic, n=959 n 307 (271,345) (287,331) (278,338)
2n 566 (510,624) (529,610) (513,624)
3n 798 (725,873) (746,861) (723,880)

Naegleria anaerobic, n=969 n 440 (402,478) (417,465) (408,470)
2n 812 (753,873) (771,859) (755,869)
3n 1146 (1069,1225) (1088,1212) (1065,1226)

†All values are rounded to the nearest integer.

(b) the fact that the length of the asymptotic HPD intervals is always shorter than the exact
length (and not oscillating) allows us to interpret it as a ‘lower bound’ on the length of
the exact intervals and, moreover, the underestimation will decrease as m increases.

Given such a lower bound, it would be also of interest to have an ‘upper bound’ on the length
of the exact HPD interval. Indeed, if we consider the asymptotic 99% HPD intervals, by propo-
sition 2, there is an m̄ such that for any m>m̄ the asymptotic 99% HPD interval for K.n/

m covers
the exact 95% HPD interval. Hence, for sufficiently large m, the asymptotic 99% HPD interval
acts as an upper bound for the exact interval. Although the determination of such a suitable
m, for any choice of parameters and basic samples, is not possible we can proceed empirically.
From Table 4, where the 99% asymptotic HPD intervals are reported as well, we see that for the
Mastigamoeba and Naegleria libraries the asymptotic 99% HPD interval covers the exact 95%
HPD interval already starting from m=3n. As for the tomato flower library, whose distinctive
feature with respect to the other libraries is represented by a larger basic sample, such a covering
has not yet been achieved for m=3n but it is very close to happen. Hence, by the combination of
the asymptotic 95% and 99% HPD intervals, we obtain a useful device for assessing uncertainty
of species richness estimates. Fig. 1 shows, for the Naegleria anaerobic cDNA library, how the
95% and 99% asymptotic HPD intervals provide an envelope around the exact HPD interval
from m≈2500 onwards. Given that the two asymptotic HPD intervals are quite close, we thus
achieve a satisfactorily accurate estimate of the uncertainty.

Finally, we perform a cross-validation study in terms of out-of-sample predictive performance
and at the same time we compare the behaviour of the Poisson–Dirichlet process estimator with
other widely used estimators. Specifically, we consider the tomato flower library, which, among
the data sets considered, has the largest observed sample (n = 2586), thus allowing an effec-
tive cross-validation study. We take subsamples of size n = 1034 and make predictions over
an additional sample of size m = 1552. This amounts to predictions for an additional sample
1:5 times the basic sample, which allows us to compare the results also with estimators which
become unstable for larger sizes of the additional sample such as the popular estimator of Efron
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Fig. 1. Exact estimator Ê
.n,j /
m ( ) and corresponding exact 95% HPD intervals ( ), and asymptotic

95% HPD intervals ( ) and asymptotic 99% HPD intervals (. . . . . . .) for the Naegleria anaerobic library

and Thisted (1976). The subsamples are obtained by sampling 1034 genes without replacement
from the 2586 observed genes and by recording Kn and the frequencies of the observed genes.
The true value for the number of new genes in the additional sample, K.n/

m , is then equal to
1825 − Kn, since 1825 are the distinct genes in the observed sample of size 2586. Predictions
of K.n/

m are derived using, in addition to the Poisson–Dirichlet process estimator, the following
estimators:

(a) the estimator of Efron and Thisted (1976) which is based on a gamma–mixed Poisson
model;

(b) the plug-in estimator of Solow and Polasky (1999);
(c) the non-parametric estimator of Chao and Shen (2004);
(d) the penalized non-parametric maximum likelihood estimator of Wang and Lindsay (2005).

Estimators (a)–(c) are computed by using the SPADE software that is available from
http://chao.stat.nthu.edu.tw, whereas estimator (d) is calculated by using the EST-
stat Java program that is available at http://bioinfo.stats.northwestern.edu/∼
jzwang. To make the comparison on representative samples, we generated 10000 subsamples
of size 1034 from the whole sample of 2586 units and recorded the frequency distribution of the
number of distinct genes Kn within each subsample: the corresponding empirical deciles are 839,
844, 847, 850, 852, 855, 858, 861 and 865. Samples with number of distinct genes belonging to
the low and high deciles correspond to situations respectively of underrepresentation and over-
representation of distinct genes with respect to the distinct genes in the whole sample. Table 5
displays the results for 10 samples, where each sample corresponds to a different decile. The
Chao–Shen estimator, which allows us to tune a cut-off point (see Chao and Shen (2004)), is
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Table 5. Cross-validation study with basic sample of size nD1034 and prediction for an
additional sample of size m D 1:5n based on the tomato flower library data (2586 genes
with 1825 distinct genes)†

Estimator Results for the following samples:

1 2 3 4 5

Kn 837 842 845 849 851
True K

.n/
m 988 983 980 976 974

PD(σ, θ) 952 982 975 972 991
(904,999) (934,1031) (928,1022) (925,1019) (944,1039)

Efron–Thisted 670 1000 900 790 800
(360,980) (760,1300) (570,1200) (510,1100) (510,1100)

Solow–Polasky 899 926 907 928 940
(818,980) (844,1007) (826,988) (848,1008) (860,1021)

Chao–Shen 952 977 968 968 987
(872,1033) (897,1056) (886,1049) (885,1051) (905,1069)

Wang–Lindsay 909 927 918 933 948
(834,955) (857,983) (842,966) (849,983) (881,1004)

6 7 8 9 10

Kn 853 856 859 862 865
True K

.n/
m 972 969 966 963 960

PD(σ, θ) 981 991 990 1003 1013
(934,1027) (944,1037) (944,1036) (957,1049) (967,1059)

Efron–Thisted 650 640 1000 880 850
(280,1000) (58,1200) (890,1200) (690,1100) (670,1000)

Solow–Polasky 927 941 939 956 950
(846,1007) (861,1021) (859,1018) (876,1036) (869,1030)

Chao–Shen 984 989 981 1000 1010
(900,1068) (901,1076) (899,1062) (916,1082) (929,1092)

Wang–Lindsay 933 950 939 964 960
(867,1002) (886,1013) (866,1010) (881,1026) (893,1028)

†Kn reports the observed distinct genes in the subsamples; the true K
.n/
m (values in italics) is

then given by 1825−Kn. Point and 95% uncertainty estimates are displayed for the Poisson–
Dirichlet estimator, the Efron–Thisted estimator, the Solow–Polasky estimator, the Chao–
Shen estimator and the Wang–Lindsay estimator. All values are rounded to the nearest integer.

reported with cut-off point equal to the gene(s) with highest frequency. Lower cut-off points
worsen the resulting estimates.

Table 5 shows that the Poisson–Dirichlet and Chao–Shen estimators exhibit the overall best
performances, whereas the Efron–Thisted and Solow–Polasky estimators are less accurate. The
Wang–Lindsay estimator performs very well for samples with large Kn but underestimates K.n/

m

significantly in the other cases. Compared with the other estimators the Poisson–Dirichlet esti-
mator exhibits narrower uncertainty estimates: their average length is 92 genes, whereas for the
Chao–Shen estimator it is 165. In cases where the point estimate is accurate this represents an
advantage but when this is not so it may lead to missing the correct value as happens for sample
10. If one prefers larger HPDs with the Poisson–Dirichlet model, then it is advisable to put priors
on .σ, θ/. For instance, for sample 10 with independent uniform priors on σ and θ, the estimate
for K.n/

m is 1016 with HPD (949,1087): the point estimate is essentially the same but the larger
HPD allows us to capture the true value. It also worth noting that the extreme situation with
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underrepresentation or overrepresentation of distinct genes in the basic sample seem to be less
likely in real EST sequencing than in sampling without replacing, since in EST sequencing there
is a constant sequencing error rate which prevents such abrupt changes in the discovery rate.
A repeated analysis, which is not reported here, for various samples belonging to the different
deciles shows essentially the same behaviour for the various estimators and, hence, confirms the
patterns that were nicely highlighted by the grouping according to Kn presented in Table 5.

4. Concluding remarks

In this paper we have derived results which allow the implementation of the two-parameter
Poisson–Dirichlet model in species sampling problems for any sizes of the basic and the addi-
tional sample. This is of particular importance in genomics problems, where prediction over
large unobserved portions of cDNA libraries is required. Specifically, the derived estimators for
the number of new genes, the discovery rate and the sample coverage are completely explicit.
Moreover, the conditional asymptotic result concerning the number of new species yields also
measures of uncertainty of the estimates in the form of asymptotic HPD intervals, which can
be readily used as approximate HPD intervals. Given that the 95% asymptotic HPD interval
is always included in the 95% exact HPD interval and that, for sufficiently large m, the 99%
asymptotic HPD covers the exact 95% HPD interval, the combination of the 95% and 99%
asymptotic HPD intervals provides a simple and valuable measure of uncertainty.
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Appendix A

A.1. Alternative derivation of the distribution in expression (2)
An important result that was proved in Pitman (1996b) concerns the representation of the posterior distri-
bution of P̃σ,θ, given a sample X1, . . . , Xn of data governed by P̃σ,θ. Indeed, if the observations Xi are, con-
ditional on P̃σ,θ, IID from P̃σ,θ and the sample X1, . . . , Xn contains j �n distinct values XÅ

1 , . . . , XÅ
j , then

P̃σ,θ|.X1, . . . , Xn/
d=

j∑
i=1

wiδXÅ
i
+wj+1P̃σ,θ+jσ .15/

where .w1, . . . , wj/ is distributed according to a j-variate Dirichlet distribution with parameters
.n1 − σ, . . . , nj − σ, θ + jσ/, ni = card{r : Xr = XÅ

i } is the frequency of XÅ
i in the sample and wj+1 = 1 −

Σj
i=1wi.
To derive expression (2), we shall make use of the posterior representation that is given in expression (15)

and of the distributional properties of Kn. Indeed, from expression (15) we note that, given w ∼ beta.θ +
jσ, n−jσ/, an observation Xn+i, with i=1, . . . , m, does not coincide with any of the Kn =j distinct species
that are observed in the basic sample with probability w. Consequently

pr.K.n/
m =k|Kn = j/= Γ.θ +n/

Γ.θ + jσ/ Γ.n− jσ/

∫ 1

0
pr.K.n/

m =k|Kn = j, w/wθ+jσ−1.1−w/n−jσ−1 dw:
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To have K.n/
m = k, at least k of the m data Xn+1, . . . , Xn+m must be allocated to the k new distinct species

that are not observed among the Kn = j species of the basic sample. Hence we have

pr.K.n/
m =k|Kn = j, w/=

m∑
i=k

(
m

i

)
wi.1−w/m−i pr.Ki =k/

where it is to be noted that Ki is, now, the number of distinct species among the i observations that are
generated by a PD.σ, θ + jσ/ process. Such a probability distribution was derived in Pitman (1999) (see
also Pitman (2006)) and in this case yields

pr.Ki =k/=

k−1∏
l=1

.θ + jσ + lσ/

σk.θ + jσ +1/i−1
C.i, k;σ/ i=k, . . . , m

with

C.i, k;σ/= 1
k!

k∑
r=0

.−1/r

(
k

r

)
.−rσ/i

being the generalized factorial coefficient. Summing up the previous considerations we obtain expression
(2) by noting that

P.n,j/
m .k/= .θ=σ + j/k

.θ +n/m

m∑
i=k

(
m

i

)
C.i, k;σ/.n− jσ/i = .θ=σ + j/k

.θ +n/m

C.m, k;σ, −n+ jσ/

where the second equality follows from expression (2.56) in Charalambides (2005) and

C.m, k;σ, −n+ jσ/= 1
k!

k∑
r=0

.−1/r

(
k

r

)
.n−σ.r + j//m .16/

is the non-central generalized factorial coefficient. See Charalambides (2005) for a detailed account on
generalized factorial coefficients.

A.2. Proof of proposition 1
Indeed, we have

E[.K.n/
m /r|Kn = j, w]=

m∑
i=0

(
m

i

)
wi.1−w/m−iE[Kr

i ]

where the unconditional moment E[Kr
i ] is evaluated with respect to a P̃σ,θ+jσ-prior. Such an expression is

already available from Pitman (1996a) and Yamato and Sibuya (2000) and it is given by

E[Kr
i ]=

r∑
ν=0

.−1/r−ν

(
1+ θ + jσ

σ

)
ν

S

(
r, ν;

θ + jσ

σ

)
.θ + jσ +νσ +1/i−1

.θ +1/i−1

where S is the non-central Stirling number of the second kind. Hence, we have

E[.K.n/
m /r|Kn = j]= Γ.θ +n/

Γ.θ + jσ/ Γ.n− jσ/

∫ 1

0
wθ+jσ−1.1−w/n−jσ−1E[.K.n/

m /r|Kn = j, w] dw

= Γ.θ +n/

Γ.θ + jσ/ Γ.n− jσ/

r∑
ν=0

.−1/r−ν

(
1+ θ + jσ

σ

)
ν

S

(
r, ν;

θ + jσ

σ

)

×
m∑

i=0

(
m

i

)
.θ + jσ +νσ +1/i−1

.θ +1/i−1

∫ 1

0
wθ+jσ+i−1.1−w/n−jσ+m−i−1 dw

= 1
.θ +n/m

r∑
ν=0

.−1/r−ν

(
1+ θ + jσ

σ

)
ν

S

(
r, ν;

θ + jσ

σ

)
θ + jσ

θ + jσ +νσ

×
m∑

i=0

(
m

i

)
.θ + jσ +νσ/i.n− jσ/m−i

= 1
.θ +n/m

r∑
ν=0

.−1/r−ν

(
θ

σ
+ j

)
ν

S

(
r, ν;

θ + jσ

σ

)
.θ +n+νσ/m,
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where the last equality follows by an application of the Chu–Vandermonde formula. See, for example,
Charalambides (2005).

The expression for the discovery probability in equation (7) is obtained by inserting equation (6) into
equation (9) of Lijoi et al. (2007b) and some simple algebra.

A.3. Proof of proposition 2
The proof strategy for proposition 2 is as follows: we first adopt a technique that is similar to that suggested
in Pitman (2006), theorem 3.8, for the unconditional case to establish that K.n/

m =mσ converges almost surely
and in the pth mean for any p > 0. Then, we determine the moments of the limiting random variable and
show that the limiting random variable is characterized by its moments.

Let us start by computing the likelihood ratio

M
.n/
σ,θ,m := dP

.n/
σ,θ

dP
.n/
σ,0

∣∣∣∣∣
F

.n/
m

= q
.n/
σ,θ.K

.n/
m /

q
.n/
σ,0.K

.n/
m /

where F.n/

m =σ.Xn+1, . . . , Xn+m/, P
.n/
σ,θ is the conditional probability distribution of a PD.σ, θ/ process given

Kn and, by virtue of proposition 1 in Lijoi et al. (2008b),

q
.n/
σ,θ.k/= σKn .θ=σ +Kn/k

.θ +n/m

for any integer k �1 and q
.n/
σ,θ.0/ :=1=.θ+n/m. Hence .M

.n/
σ,θ,m, F.n/

m /m�1 is a P
.n/
σ,0-martingale. By a martin-

gale convergence theorem, M
.n/
σ,θ,m has a P

.n/
σ,0 almost sure limit, say M

.n/
σ,θ, as m→∞. Convergence holds in

the pth mean as well, for any p > 0. We clearly have that E
.n/
σ,0[M.n/

σ,θ] = 1, where E
.n/
σ,0 denotes the expected

value with respect to P
.n/
σ,0. It can be easily seen that

M
.n/
σ,θ,m ∼ Γ.θ +n/ Γ.Kn/

Γ.n/ Γ.θ=σ +Kn/

(
K.n/

m

mσ

)θ=σ

as m→∞. Hence .K.n/
m =mσ/θ=σ converges P

.n/
σ,0 almost surely to a random variable, say Zn,j , such that

E
.n/
σ,0[Zθ=σ

n,j ]= Γ.n/ Γ.θ=σ +Kn/

Γ.θ +n/ Γ.Kn/
:

To identify the distribution of the limiting random variable Zn,j with respect to P
.n/
σ,θ, we consider the

asymptotic behaviour of E[.K.n/
m /r|Kn] as m→∞, for any r �1. Letting m→∞ in equation (5) of propo-

sition 1, use the Stirling formula to obtain

1
mrσ

E[.K.n/
m /r|Kn]→

(
Kn + θ

σ

)
r

Γ.θ +n/

Γ.θ +n+ rσ/
=:μ.n/

r : .17/

Such a moment sequence clearly arises by taking Zn,j =d Bj+θ=σ,n=σ−jY.θ+n/=σ, with the beta random vari-
able Bj+θ=σ,n=σ−j independent from Y.θ+n/=σ, which has density (9). Hence, we are left with showing that the
distribution of Zn,j is uniquely characterized by the moment sequence {μ.n/

r }r. To establish this, we can
evaluate the characteristic function of Zn,j which, at any t ∈R, coincides with

Φ.t/= Γ{.θ +n/=σ}
Γ.Kn +θ=σ/Γ.n=σ −Kn/

Γθ +n+1/

Γ{.θ +n/=σ +1}
∫ ∞

0
exp.itz/zKn+θ=σ−1

∫ ∞

z

w.w − z/n=σ−Kn−1 gσ.w/dw dz

= σ Γ.θ +n/

Γ.Kn +θ=σ/ Γ.n=σ −Kn/

∫ ∞

0
w gσ.w/

∫ w

0
exp.itz/zKn+θ=σ−1.w − z/n=σ−Kn−1 dz dw

= Γ.θ +n+1/

Γ{.θ +n/=σ +1}
∑
r�0

.it/r

r!
.Kn +θ=σ/r

..θ +n/=σ/r

∫ ∞

0
w.θ+n/=σ+r gσ.w/dw

= ∑
r�0

.itr/

r!
.Kn +θ=σ/r

..θ +n/=σ//r

Γ.θ +n+1/

Γ{.θ +n/=σ +1}
Γ{.θ +n/=σ + r +1}

Γ.θ +n+1+ rσ/
= ∑

r�0

.it/r

r!
μ.n/

r

and the conclusion follows.
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