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Time Allowed: 85 minutes

Please answer all the questions by writing your answers in the spaces provided.
No additional papers will be collected and therefore they will not be marked. You
always need to carefully justify your answers and show your work. If you **feel**
that you **need** to make any assumptions to answer a question, please do so—
your assumption will be evaluated along with your answer. The exam is closed
book, closed notes. You can withdraw until 10 minutes before the due time.

Question 1.A (6.5 points)

Consider a bivariate VAR(2) model for the yields of 1-month T-bills and of 10-year Treasury
notes (y2M and y}°, respectively). Write:

» The structural, unconstrained VAR(2) that includes contemporaneous effects between

the two markets.

» The implied, unconstrained reduced-form VAR(2).
Explain through which steps it is possible to transform the structural VAR model into the
reduced-form one (algebra is not required, unless it helps you to provide an efficient answer).
How would/could you estimate the reduced-form model? Explain what issues/limitations are
caused by the transformation of a structural VAR into a reduced-form model. Discuss how these

limitations will affect the estimation of the impulse response functions (IRFs).

Debriefing: You were expected to write the following structural model (and not the generic
VAR(p) model, be warned):

By: = Qo + Q1¥i—1 + Q2yi—2 + &

1 by, y}M by P111 P121 D112 P12,2
where B = [b2,1 1 Y= [ytloy]’ Q = [bz,o]' Q = ®2,11 (P2,2,1]' Q; = P2,1,2 ‘Pz,z,z]

£
and g = [S;Z] In order to obtain the reduced form, the structural model needs to be multiplied

by B~1, which leads to



where the errors, u; are now a composite of the structural innovations and therefore they are not

Ve =9+ A1yi—1 + Agyo + U,

uncorrelated. See pages 83-86 of the book, copied below for your perusal.
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To help the reader familiarize with the concepts, we gan our discussion introducing a hivariae VAR(]) model,
while in Section 3.23 we generalize it toa VAR(p) model with N endogenous varisbles (hence, equations). Consider
the following bivariste, first-order Markovian system

¥ =bip—Buawy Tearu- T aarn- tay {3.12)
¥au=bop = buyyu + oy Y-+ g ey, (313
where bofh the variables y,, and y, , are assumed to be stationary and the structral emor ferms &y, and £, , ar uncome-

lated white noise disturbances with standard deviation =, and oy, respectively. The system in Eqs. (3.12) and (3.13) can
also be rewritien in a more compact form using matnix notation:
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By, =Qu+ Q¥+, (315
where

= |1 P - Y bip ¥ ¥ = | e -t
B= [m 1 ] ¥o= [m} @® [m]- @ [ | m]‘ Yem1 = [m-\]‘ and &= [m}

In this system, that is also known as a strucrieral VAR {or VAR in primitive form), v, depends on its own lag and on
one lag of y1,, but ako on the current value of yu,: similarly, v, depends on its own lag and on one lag of v, but als
on fhe current value of y,. Therefore, a VAR in its stuctural form captures contemporanesus edback effects: —bia
measures the contemporanecus effect of a unit change of y2, on v, and —by ) measures the contemporaneous effect of
a unit change of ¥, , on ¥a,.

Unfortunately, structural VARs are not very practical for applied purposes because standasd estinution techniques
require the regressors to be uncomelated with the emor tems, which is clearly not the case of the VAR in its struetural
form. This is due © the presence of contemporancous feedback effects: obviously, each contemporaneous variable is
conelated with its own emor em. From Egs. (3.12) and (3.13), it is clear that when —b, , is nonzero, vy, depends on
vy, from the second equation and therefore on £, and it will be comelated with it: when — b is nonzero, vy, depends
on yy, From the first equation and therefore on & . As an additional drawback of fie structural model, contemporaneous
terms cannot be used in forscasting, that is, exactly where VAR models tend to be ugely popular. As a result, in time
series analysis, it is common to manipulaie the VAR in its structural form to make it mose direcdy useful.
Premultiplying boh sides of Eq. (3.15) by B! we obtain

¥o=apt ArFior T, 316

where ay =B~'Qp, A, = B~'Qy, and u, = B 's,. Denoting by ayy the element in row { of fie vector ay, by a,; the ele-
ment in row i and column j of the matrix Ay, and by u,, the element in row i of the vecior u,, we can rewrite Eq. (3.16)
in the equivalent form:

Yup Sdip T dgon T Ea¥ae i, (am

¥ae =t araie-1 +anay -+l (3.18)

This sysiem is called reduced-form VAR or, aternatively, it is said to describe a VAR in its standard form. The

medel in Eq. (3.16) only featwres lagged endogenous variables {i.c., it does not contsin contemporaneous feedback

terms) and it can be estimated equation-by-equation using ondinary least square (OLS) {as we shall see in detail in

Section 3.2.4). Clearly the new, reduced-form error lerms, w1 and w s, are composites of the two original {also called
pure or structural) shoeks er, and ex,. This is easy to see if we solve w = B~ g to get

_As T hoey
= ——— 3.19)
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Practically, imposing the restriction by 2 = 0 means that B™! is given by

o[ 1w
B —[—m L]‘

and thus premultiplication of the primitive system (3.12) and (3.13) by the lower diagonal marix B~ yields

wel_[ 1 0][be 1 0] [vn ¥ [ 1 0] [

[.m} [—bu l][hn]+[—h,t l] [.au ey | R A P (33n
which results in
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The system has now only nine parameters tat can be identified using the OLS estimates from Egs. (3.17) to (3.18).
Indeed, wsing simple algehra we can see that ayp =l ap=bp—beby ;=g a0 =g
dyy =gy by gt a2 =y~ Bayyey . In addition, since we know from Egs. (3.29) to (3.30) that w, =&, and
tny = £, — By, We can compute:

o = Var[u,] =2, (333)
a3 = Var[us| = afa— B yol, (334
ol yur)] = —by oty (335)

The implication of the identification resriction that we just imposed i that while both the ey, and &2, shocks affect
the contemporaneous value of w,, only &, impacts the contemporaneous value of v,,. In practice, te observed values
of wy, are completely attributed to pure (structural) shocks to yi . This technique of decomposing the residuals in a tri-
angular fashion i called Cholesky decompesition (or triangularization). Put in other words, we see that the covariance
matrix of the residuals is forced to be equal to

%, = WEW = V42, (336)

where W=B"", E is the diagonal covariance matrix of the structural innovations, and £ is the triangular “square
1ot of the covariance matrix X, Eq. (3.36) is easily checked:

5[ ! ol [«3 0 Lol [ 1t o) o[t -ba)_[ &b —budd |
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which is exactly what we found in Egs. (3.33)—(3.35). The decompsition in Eq. (3.36) is what we call fhe Cholesky

decomposition of the symmetric matrix E,. Needless o say the task tat one usually wants to accomplish is to go back

from the estimated X, to the original (and unobserved) diagonal matrix X. With a litlle bit of algebra, we understand
that this & equivalent to

E=W'E,MW)™" (338)

Thiz iechnigue can be generalized © a VAR sysiem with any number N of equations. In panticular, in a N-variate
VAR, exact dentification requires us i impose (N* — N)/2 to retrieve the N structural shocks from the residual of the
OLS esimate. Being based on a tiangular structure, a Cholesky decomposition forces exactly (V2 — N)/2 values of the
matrix B to be 0 {or tosome ofher constant)

Letus pause for a moment to understand e meaning (and the implications) of the Cholesky decomposition for a
less simplistic mode], for instance a VAR(L) with three endogenous variables (and therefore three equations). The para-
meters in the structural model consist of three interce pt lems, six (two for each equation) coefficients that map the con-
temporancous effect of each variable on the other two, nine autoregressive coofficients (contained in a 3 % 3 matix),
and the three variance coefficients of the error terms, for a wotal of 21 parameters. The VAR in its reduced form con-
tains 12 estimated coefficients (@ree intercepts and six awtoregressive coefficients), hree variances and three covar-
iances, for a total of 18 coefficients. Therefore, we shall need to impose tree restrictions to idendfy the parameters of
ihe primiive sysiem from ihe OLS estimaies of ihe VAR in iis standard form, which is exacly (3° —3)/2=3

wms  Recalling that ey, and e, are white noise processes, we can easily derive the properties of the reduced form emors
iy and .. First, taking the expected value of Egs. (3.19) and (3.20) (and recalling that based on de definition of a
white noise, Eler;] = 0 and Elez,] = 0), we obtain that

o1 — braeay
E =E|——— 321
ol -5 o2
e~ buers
E =E|———=0. 322
b -2 2] o=
@m0 Inaddition, because en, and £1, are uncorrelated, fat i, Covfew, @] =0, we find that the variance of u, is
" _ Varey — g _ Varlen] + HaVardea] — 2buaCoeu, e
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2 2 (323)
_ s
(I=by by,
and, similadly,
2L
Varlie,) T+ BTy (324)

{1=buaba)”

wms  Tiessy to see that the variances of uy, and iy, are constant over time. Finally the covariance between the two srue-
tural emors is equal to

Hfers =~ buasaens ~ buien)] _ ~ (o, T iz

(1= buabn)’® (=babu)

@un  Noticeably, while the reduced-form emor terms remain serially uncorrelated (ie.. autocomelations are equal to ) as

the structural emars were, they are crosscomelated unless by = by = 0 fi.e,, fiere are no contemporancous effects of
Y1, 00 ¥, and vice versa). The variances and covariances of fhe reduced-form emors can be collected in the matrix T,:

Covluns uzy) = (325

Varfu)  Covfiau] | _ [ o2
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@us  The mduced-form VAR in Egs. (3.17) and (3.18) is very practical and easy to estimate (ihis can be done by smple

OL8), but it i imporant to understand that, e general, it i not possible to idenify he stricmral parameters and emors

fiie., the smple estimates of the coeficients and e residusls of the primitive system) from the OLS estimaies of the

parameters and the residuals of the standard form VAR, This lack of identification (because fie model is linear, the

problem is both local and ghobal, see Chapter 8 for a differentiation of the two concepis) may be overcome if one is pre-

pared i impase appropriste restricions on the primigive sysiem. This is unsurprising: the structural VAR in Egs. (3.12)

and (3.13) contains eight coefficients and two variances of the emor terms, for a total of 10 parameters: the VAR in its

standand form only contains nine parameters (six coefficients, two variances, and one covariance of fie ersor temis).

Therefore, and this occurs for a rather intuitive accounting, back-of-the-envelope reason, it is not possible to recover all

the information that was present in the primitive system unless we are able to resrict one of its parameters., To this

purpoe 3 popular identification scheme is the one proposed by Sims (1980), based on a recursive Cholesty

iriangularization.

omn Suppose that you are willng i impose 3 reariction on the primitive system in Eqe (3.12) and (3.13) such that b,

is equal © 0, meaning that y;, has a contemporaneous effect on yo,, but ¥;, only affects vy, with a one-period lag:

. (326)

Wy =bp e yuat e tey (32m

Y =bap — byt pnyuer T e tey (328)

@25 This comesponds © imposing a Cholesky decomposition on the covariance matrix of the residuals of he VAR in its

standard form. Indeed, now we can rewrite the relafonship between the pure shocks (from the sructural VAR) and the
regression residuals as

s =eny (329

gy = ey~ by (330)

restrictions. Indeed, imposing 2 wisngular (Cholesky) decomposition on the structural residuals is equivalent © premul-
tiplying the structural VAR by fe lower triangular matrix
[ )
1o, (339)
1 00
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s Because the Cholesky decomposition is basad on premuliiplying by a (lower) siangular mairix, it follows fiai when
we decide the ondering of the varisbles in a VAR system, we are also deciding which kind of restictions the decompo-
sition will impose on the contemporaneous effects of each variable on the others. For example, in the trivariate case of
Eq. (3.39) earlier, by, byy, and by, are set to 0, meaning that the first varisble in the system is forced not to be contem-
porancoudy affacted by shocks to any of the other variables: the scond varisble in the system & only conemporane-
ously affected by shocks to the first variable; the last variable is comemporaneoudy affected by te shocks to both the
other variables. Tt i easy to generalize this reasoning o the N-variable case
o Tt should be evident that there are a5 many Cholesky decompositions s all the possible orderings of the variables,
which e therefore 2 combinatorial factor of N, Therefore, we chall need to be aware that any time that we apply a
Cholesky triangular identification scheme 10 3 VAR model that results in a specific ordering, we will be introducing 3
number of (potentially arbitrary) on the i among the varisbles Therefore,
despite being very practical, Cholesky decomposifions are quite deliberate in the restrictions that dey place and tend
not to be based on any theoretical irding the nature of thy i i among the variables.
Alternative identification schemes are possible (although they are more popular in the maeroeconomics literature than
in applied finance). A review of some commenly used restriction schemes to achieve identification based on 4 theoreti-
cal background can be found in Litkepohl (2005, Chapter 9).

which yields the reduced form residusls:

w=B'g=

En
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Question 1.B (2 points)

Mitchell Dot Rink, a summer analyst at Gordon Socks, is estimating the VAR(2) model discussed
in Question 1.A for the yields of 1-month T-bills and 10-year Treasury notes. He claims that he
knows that, based on accepted theory, while shocks to 1-month T-bill yields do immediately
affect 10-year Treasury yields, shocks to 10-year Treasury yields affect 1-month T-bill yield
only with one lag. Therefore, so he claims, a Cholesky decomposition is not needed to identify

such a model. Do you agree with Mitchell’s conclusions? Carefully explain your answer.

Debriefing: MDR is not correct. The fact that he knows a theoretical relationship does not
guarantee that he will find uncorrelated errors when he estimates the reduced form model.
However, the theory tells him exactly which restriction he should impose, ie. b;, =0
(referring to the model specified in question 1.A. This is equivalent to a Cholesky decomposition

where the 1-month T-bill comes first in the ordering.

Question 1.C (1.5 points)
Mitchell has now extended his VAR(2) model to include also 1- and 5-year Treasury yields and

he would like to test Granger causality among the four series. Therefore, he has produced the
output below. Looking at the table he has concluded that the 1-month yield is not Granger-
caused by any other series, while it Granger-causes all of the others. After having briefly defined
what Granger causality is, discuss whether you agree with Mitchell’s conclusions. Clearly justify

your answer.

TABLE 3.9 Granger Causality Tests

(A) Dependent Variable: 1-Month Yield (B) Dependent Variable: 1-Year Yield
Excdluded X* df Probability Excluded X df Probability
1-year yield 102.054 2 0.000 1-month yield 33.950 2 0.000
5-year yield 4.965 2 0.084 5-year yield 3.236 2 0.198
10-year yield 1309 2 0.520 10-year yield 2.714 2 0.257
All 180.123 6 0.000 All 43.161 6 0.000
(C) Dependent Variable: 5-Year Yield (D) Dependent Variable: 10-Year Yield
Excdluded G df Probability Excluded X2 df Probability
1-month yield 5.630 2 0.060 1-month yield 0.940 2 0.625
1-year yield 3.976 2 0.137 5-year vield 1.638 2 0.441
10-year yield 1.238 2 0.539 10-year yield 2.051 2 0.359
All 7.535 6 0.274 All 4.579 6 0.599

Debriefing: The output should look familiar as it comes from Example 3.9 in the book. As one
can see, Mitchell is not right because the 1-month yield is Granger caused by the 1-year yield

(and, to some extent, by the 5-year yield, at a 10% confidence level). In addition, it does not
3
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seem to Granger-cause the 10-year yield. Definition of Granger causality can be found at page

108 of the book (copied below).

DEFINITION 3.5 (Granger causality)

Let 3J; be the information set containing all the relevant information available up to and including time ¢ In
addition, let y,(h|3,) be the optimal (minimum MSFE) h-step-ahead prediction of the process {y,} at the fore-
cast origin t, based on the information set J,. The vector time series process (x,} is said to (Granger-) cause
{y,) in a Granger sense if and only if MSFE,:(h|3;) << MSFE,,(h|3; {x:|s=1t)).

Altematively, it is possible to define Granger causality using its “its complement” (or lack thereof), that is, {x;} does
not cause (y,) in a Granger sense at horizon h. if taking into account present and past values of {x,) does not improve
the accuracy of the h-step-ahead prediction of the future realizations of {v,). Finally, if and only if {x,) causes (y,) and

{¥,) causes {x;}, then the joint process {x'r, ¥

Question 2.A (6.5 points)

)’ is said to represent a feedback system.

Describe the two alternative (univariate and multivariate) ways to test for cointegration. In

particular, be sure to discuss when each of the two tests is most appropriate and what is the

rationale behind each of them, together with the steps that are required to implement the tests.

Also discuss what are the main drawbacks of the Engle and Granger’s test. What does it mean

that Engle and Granger’s test suffers from a “generated regressors problem”? Be sure to

carefully justify your answer.

Debriefing:

4.4.4  Testing for Cointegration

There are two alternative and fundamental ways 1o test for cointlegration:

o Univariate, regresson-based testi—such as Engle and Granger®s (1987 b—that go back 1o Definition 4.3 and essen.
tially exploit the simple idea that 3 regression could be used 1o find at least one (the least mean-squared eror one)
cointegrating relationship (Le.. vector) such that a weighted linear combinations of the vaniables of interest is £(0).

& Mulrivariate, VECM -based tests, basically Johansen's ( 1985, 1995) and Stock and Watson's ( 195K), that exploit instead
Granger—Enghe’s representation theorem and the equivalence between the exigence of a VECM and cointegration: their
idea is that a restricted, reduced-form VAR can be used 1o perform hypotheses iests that, under the null of r < N coinge-
grating relationships among N variables. the transformation of a VAR ino a VECM i supponed by the data,

Engle and Euunur: 5 ummuue mrmmi plogy simply seeks to datermine whether the residuals of an estimated equi-
librium i are . we desoribe their west for the special case of the dividend/earnings
growth model and lkn briefly uld.lc'.!lc how the methodology can be generalized to the cse of N vanahles. Supposes
that, by using appropriate unit moot lests as documented in Seation 4.3, we have already successfully determined that
[Fri1) and [F,.y) are both £i1). By definition, cointegration needs that two variables be imtegrated of the same order
For instance. if one or both varables were stationary, then cointegration would be logically impossible, At this point,
we estimate the long-run equilibrium relationship:'”

Pi=wg tmF; e, “wsn

If the varisbles are cointegrated, an OLS regression yiekls o wperconsigent estimaror of the oointegrating pam-
meters s and g, in the sense that the OLS estimator converges faster (s rate proportional to 7) than in OLS models
using stationary variables, where the mie is T intuitively. this is due to the fact that correla-
tions between siochastic trends, which always underfie the OLS c\ltmn‘n of a regression slope coefficient, tend 10 be
stronger than correlations between pairs of #0) variables.'

AL this point, 1o determine whether prices and fund Is are actually grated, denote the series of residuals
& = P, ~ kg — iy F,. which (assuming cointegration) is also the time series of estimated deviations from the long-mun
relationship. If these deviations are found 1o be stationary. say using one of the unit oot kests in Section 4.5, then prices
and fundamentals will be cointegrated of order (1,1), It is just worthwhile 1o add that when (augmented) Dickey— Fuller

Type tests are applicd. for instance 2 in the regression:

’
f= b 4 Y R ARt 452)
there will be no need 1o inchade an miercept term because these are already zero-mean OLS residuals. Abo, due anen
tion should be paid W the logic of the test. which has implications for the language 10 be used: failure 10 reject the null
of a unit root (Le. Hy: o =0 in(4.52)) should be expressed as the impossibility to reject the mdl of @ unit root in the
residals of the Engle —Granger's regression which, in its torm, implies that we cannol reject the mdl hypothesis thar
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prices and fundamentals are not cointegrated.'” 1n this case the appropriate modeling strategy would be 1o take first dif-
ferences of all the variables. Such a model would have no long-run equilibrium solution, but this would not matter since
no cointegration implies that there is no long-run relationship anyway. Finally. note that the caritical value of ADF tests
will need 1o be adjusted to reflect the fact that the residuals used in the test are generated from Eq. (4.51 & by construc-
tion OLS estimates the parameters minimizing the sum of squared residuals and since residual variance is made as small
s possible. using standard ADF critical valses in Engle—Granger tests will contain a bias toward finding a stationary
error process. In fact, besides focusing on the f-ratio statistic, i, = & /seid), it is also rypical 1o perform tests on the nor-

malized autocorrelation coefficient from Eq. (4.52) (see Hayashi, 2000):
T

4.53)

Of course, it is also possible to use the Durbin “:lsm (DW) test statistic (see Chapter 1) or the PP approach (see
Section 4.3) to test for of the coi gression residuals. If the DW test is applied to the residuals
of the comtegrating regression. it is known as the cointegrating regression Durbin—Waton (CRDW) test. Under the
null hypothesis of a unit root in the errors, CRDW will be chose 0 0, so the null of a unit rood is rejected if the CRDW
statistic is larger than the relevant critical value (which is approximately (L5).

In the leramre a PP lest applied 1o the residuals of the cointegrating regression in Eqg. (4.51) is called a Phillips
Chalicarin” (1990) pest, which wses the nonparametric PP methodology o deal with serial comelation in the regression
residuals, in the sense that |¢,] under p = 0 are used 10 compute :mrmw& of the long-nm variance V) 1 pcdn(m the

d o the given by & = 4~ TV, (- 5 r"l i L so that 3 = Ta"™, As
mlh the PP statistic, the asymplotic d.l\lnlrmms of the Phillips—Ouliaris aatistics are nm‘l:mhni and dcpend on the
i TEgnessor sp pL time trends, etc.) that may appear in Eg (4510, so tha critical values
for the statistics are obtained from simulation results, such as those in MacKmpon et al. {1999,
Al this point, when the mull of no cointegration is rejected, it will be possible (o estimate (usually by OLS) the
VECM. which in this case will simply consist of a VAR(p) ithis lag order p does nat need 1o be the same as in
Eq. (4520, in which the error-comection lerms directly use the stationary edimated residuals from Eq. (451 ¢

ShaR v,

% L 454)
AFy = Mpital + 3 dl AP+ Y abAFL el
=1

»
APy = Aoty + Y al AP 4
=

Because all tarms in Eg
VAR analysis are appropeiate. Moreover, Lutkepohl mnd Reimers (19920 have shown that standard innovation account-
ng fie., impulse responses and varance decomposition analysis) can be used 1o extract information on the dynamic lin-
kages among the variables. As a practical matter, the two mnovations <, and &, may be comemporancously
comclated, so that in obaining IRFs and varance decompositions, methods such as the Choleski decomposition of
Chapter 3 must be uwsed 1o orthogonaize the innovations. Example 45 shows how the Engle—Granger and
Phillips—Culiaris kests are applied to long series of real stock prices, dividends and eamings

(4.54) are stationary, the test stalidics and model diagnostic checks used in raditional

EXAMPLE 4.5
We test whether S&P real stock prces. aggregate camings, and aggmgate dividends, give any evidonce of caintegration. We start
by periorming bivarisse wsts, considering finst real prices and dividend—which repesonts the very classical Gordor's (195%)
kel —ane thon exdend # to real prices and oarmings. Last, we porfoem joint, trivariate lests of prios, dividends, and camings.
Becawe dividends are basscally pakid-ou eamings, to b a trivarisle joint selatiombip b kes implausible than it may sound.
From the analysis in Soction 2.1, we kaow that asking whethor the seres are cointegrated is sensible because they all are 1) lin
spite of some reservations concerning the neal aggregate camings senes).

(Continued)

Although Engle and Granger’s (1987) approach is easily implemented, it faces important drawbacks:

® The estimation of the long-run equilibrium regression requires that the researcher places one variable on the lefi-
hand side and uses the others as regressors. For instance, in our example, shall we estimate Eq. (4.51) or

Fo=ry+ kPt é 7

(4.55)
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As the sample size grows, asymplotic theory indicates that the tests for a unil ot using the residuals from

Eqg 451) or (4.55) will become equivakent, but this is not helpful when we have finite samples, that is, always. In

practice, similarly to Example 4.5, it is possible 1o find that one regression indicates that the vaniablkes we coinie

grated, whercas reversing the order of dependent versus independent variables wall reveal no coimtegration, which is
puzzling, almos to imply that say. while there exists a long-run equilibrium price-camings o price-dividend ratio,
there is insiead no long-run equilibrium for the eamings-peice of dividend-price ratios! The problem s obviously
compounded using three or more variables since any of the vaniables can be selecied o the lefthand side variable,

that is. should we be regressing ¥i, 00 [¥zn Vi - = Vel ¥3 08 (¥ Vi - - ¥l €16 OF Moy 08 [V Vara- <o -1 7
® The Engle—Granger procedure relies on a two-step estimator, in which the first step regression resduals are used in

the second siep (o estimate an ADF {or PP)-type regression, which causes errors and contamination deriving from a

generated regressors problem,

* Finally, even more problematic is the fact that i tests wsing three or more vanables, we know that there may be
maore than one cointegrating veaor, Engle and Granger's method has po systematic procedure to perform the sepa
rate estimation of multiple coinlegrating vectors,

On the contrary, multivaniate methods naturally take the potential exisience of mulliple coinlegrating veators into
account in a straightforward way, by wsing smgle-step full inf likelihood estimation. In practice,
Jo 11995) procedure s nothing more than a multivanate generalization of the Dickey~Fuller tests from
S . Consider a reduced-form VAR(p) model for N variables of interest (adding an mtercept is immaterial and
we shall drop it 1o simplify maners):

»

P = 3 A¥u gt & £ D (O.E) (4.56)
=

The model can be wmed into a more revealing form following steps similar 1o those already employed in the case

of the ADF test. First add and subtract Ay, .2 10 the right-hand side. to obtain:
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Next. add and subtract (Ap-1 +Aply, o4 =d keep proceading in this way. If we perform this operation p times, the
final cutcome is

et » ’
By =y, + Y Dby tea 1T (f.- El) r, 3 A (4.58)
= = f=ni}
Result 4.6 plays a key role in what follows
RESULT 4.6
For a set of N variables y, | that can be represented as in Fg. (4.58), the rank of IT equals the number of

cointegrating vextors, r. I IT consists of all 0's, so that rank{IT) = 0, then all the varables in the vector v,
contain a unit reot and there is no cointegrating relationship. i rankiIT) = N, Eq. (4.58) represents a conver-
gent system of difference equations so that all vanables are stationary. If N = rank(IT) > 0, then fy, s the
error-correction term such that;

(Continued )

v

RESULT 4.6 iContinued)

0= HAy, | =Hy, + Y LAy, )+ Elera] = Hy, =0, (4.59)
=1

and IT= AK', where K is the N = r matrix of coinfegrating vectors and A s the N = r, the matrix of weights
with which each cointegrating vector enters the N equations of the VAR, A can also be interpreted as
containing r different N % 1 vectors of adjusment coefficients,

Johansen’s method congists of the estimation of the matrix IT from an unrestricted VAR for N nonstationary series
arcl of tests of whether we can reject the restrictions implicd by the rediuced rank of TT. We know (see the mathematical
and stastical Appendix for a review of the concept) that the rank of a matrix is equal to the number of it (inverse)
charactenistic roots (A, i=1, 2, .., N, also called eigemvalues) that differ from 0. Suppose we have estimated the
matrix IT and ordered the N eigenvalues such that A > == == Ay, Because when there is at lemt one cointegrating
relationship, Iy, = 0, it tums out that X < 1. If the varishles in y,,; are not cointegrated, the rank of IT is O and all of
these charsatenstic roots will equal 0 and Infl ~ A) =Inl =0 i= 1, 2, N. Similarly. if the rank of IT is one, then

=0, (1~ 4) <0 and Indl = A)=Inl=0fori=2 3, .... N if the rank of IT is two, then 1 =4, > A >0,
a)<Infl = X} =<0, and In(1 = A) =Inl =0 fori= 3, 4, ... N elc
i (1985) proposed that 1o test for the number of eigenvalues that are insignificanily different from unity can
be conducted usng the following two test Qatistics:

Aracel(r) 7Y il -3 (4.60)
[ ]
Aeaalrr + 1) Tl ~ 4,,1), (461)

where the i =, = Ay are the estimated values of the cigenvalues obtained from IT. A (r) tests the null
hypothesis that the number of distinct coinlegrating vectors is less than or equal 1o r agamg a general aliemative of a
number exceeding r. The further the estimated cigenvalues are from 0, the larger is the trace statistic. My, (r, r # 1) tests
the null that the number of colnegrating vectors is r againg the altlemative of r + | cointegrating vectors. Again, if the
estimated value of the cigenvalue is large, Ag (7, r + 1) will be large.

The critical values of the Mg, Ar) and the A, (r,r + 1) statistics are obtained using a Monte Carlo approach a in
Joh 1 and Juselius (19900, The distribution of the test statistics is nonstandard, and the critical values depend on
the value of N r, the number of nonstationary components, and whether deterministic terms (such constanis or
trends) are included in cach of the equations.”’ If the test statistic is greater than the appropriate critical value, we
will reject

& the null hypothesis that there are al most r cointegrating vedtors in favor of the aliemative that there are r + 1 vee
tors, in the case of the Ao (r) tesd, o

® the null hypothesis that there are r cointegrating vectors in favor of the alternative that there are r + J vectors, in the
case of Apgulr,r+ 1)

Of course, the tests based o0 Ao (0) and Ao, (0, 1) are key, because they are implicidy cointegration tests. Given
their rother heterogencous functional form, o is possible for (4.600) and (4.61) 1o give different results. In fact,
Anaalr, £+ 1) has the sharper aliemative hypothesis and as a result it is usually preferred when trying 1o pin down the
number of cointegrating vectors,

Finally, it is imponant o emphasize that the VECM in Eqg. 14 55) cannot be estimated by OLS because it is neoes
sary 1o impose cross-equation restrictions on the IT matrix. Therefore, multivanate comiegration testing tends 1o rely
on ML estimation methods. We are now ready to ask whether our historical imes senes of monthly real S&F stock
prices, dividends, and earnings are cointegrated using multivariate, mnk-based MLE wests

Question 2.B (2 points). Mango Bell, a junior analyst at Linova & Co, is studying the

relationship between two series, namely a stock price and the associated earning-price ratio,

which are both I(1). Mango has found out that the two series are cointegrated, therefore he

decides to proceed to estimate a regression of the stock price over the price earning ratio.

However, his boss claims that he has done a mistake since regressing two I(1) series one over

the other leads to a spurious regression. Do you agree with Mango’s boss? Carefully justify your

answer; note that you are not asked to define cointegration.

Debriefing: Mango’s boss is not correct: it is true that regressing two I(1) series one over the

other may lead to a spurious regression. However, since the two series are cointegrated, not

only the results from OLS estimates will be valid, but the OLS estimator will be super-consistent.

Question 2.C (2 points). With reference to weekly, constant-maturity US Treasury nominal

rates (assumed to be I(1)) for the maturities 1- and 6-month, 1-, 3-, 7-, and 10-years and a

January 8, 1982-December 30, 2016 sample, the following output shows the results of a

standard Johansen'’s test.



Sample (adjusted): 7/16/1982 12/30/2016
Included observations: 1799 after adjustments
Trend assumption: No deterministic trend
Lags interval (in first differences): 1 to 26

Unrestricted Cointegration Rank Test (Trace)
Trace-Eigenvalue

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**
None * 0.0391 154.5082 83.9371 0.0000
Atmost1* 0.0172 82.8136 60.0614 0.0002
Atmost 2 * 0.0146 51.6783 40.1749 0.0024
At most 3 * 0.0083 25.1920 24.2760 0.0383
At most 4 0.0036 10.1201 12.3209 0.1137
At most 5 0.0020 3.5823 4.1299 0.0693

Trace test indicates 4 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) P-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Max-Eigenvalue

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**
None * 0.0391 71.6946 36.6302 0.0000
Atmost1* 0.0172 31.1354 30.4396 0.0409
Atmost 2 * 0.0146 26.4862 24,1592 0.0238
At most 3 0.0083 15.0719 17.7973 0.1228
At most 4 0.0036 6.5378 11.2248 0.2925
At most 5 0.0020 3.5823 4.1299 0.0693

Max-eigenvalue test indicates 3 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) P-values

You care for cointegration because according to the expectation hypothesis (EH) of the term
structure of interest rates, at least over the long-run it should happen that appropriately scaled
sums of expected rates should equal the current rate minus a constant risk premium that
rewards habitat effects and liquidity preference in favor or short-term bonds. Does the
Johansen'’s test lead to identify one or more cointegrating relationships? What is the meaning
of a number of cointegrating relationships exceeding one? What is the relationship between
such findings on the existence of one or more cointegrating relationships and the fact the EH

may hold on these data? Carefully explain your answer.

Debriefing: Even though the A-trace and the A-max tests point toward a different number of

cointegrating vectors, there is no doubt that such number is at least two. This is consistent with
the EH.

According to the EH, at least over the long-run, it should happen that appropriately scaled sums
of expected rates should equal the current rate minus a constant risk premium that rewards
habitat effects or a liquidity preference in favor or shorter-term bonds. Equivalently, all
mispricings, i.e., deviations of long-term rates from weighted average of short-term rates,
should be temporary and as such they should be 1(0): if it were the case that the tested rates
were all I(1), and if future short rates were easily predictable to the point to equal on average

their future realized value, then the EH implies that one or more weighted sums of the I(1) rates
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exist, such that the result is a [(0) variable plus a constant (the risk premium). However, note
that cointegration between the rates is a necessary but not sufficient condition for the EH to be
supported by the data. The validity of the EH would also require that a combination of rates is
found to cointegrate with a cointegrating vector with structure [, A7v, K3vs..., Kim] ,
where the coefficients should be all negative and satisfy precise constraints. No such results or
estimates have been reported for you to be able to decide on this matter.

Question 3.A (7 points) Consider the family of GARCH(p, g) models for asset returns. Define
the persistence index and discuss what is the role that it plays in establishing the stationarity
of a GARCH. Consider two alternative GARCH models for the same series of returns

characterized by identical persistence index, but (i) the first model is characterized by a large
Zle a; and a small Z _1 Bj; (ii) the second model is characterized by a small Zl ,a;and alarge

le B;- What do you expect that the differences between the filtered, one-step ahead predicted

variances from the two models will look like? Also consider the two cases that follow:
*You are a risk manager and you are considering calculating value-at-risk on the basis of
a Gaussian homoskedastic model: is the mistake you are about to make larger under
model (i) or model (ii)? Carefully explain why.
*You write and sell short-term options written on the underlying asset that you price
using a tool that accounts for time varying volatility under GARCH: in the presence of large

return shocks, will the mispricing be larger under model (i) or under model (ii)?

Debriefing:

cconomic insights on the perceptions of uncertsinty and ik, depending on the “fraction” of 3 fine
brought sbout by 37 o and 377, 3 respectively. ' further ¢laborates on this point

EXAMPLE 5.13
Let us fit a simple Gaussian ARMA|D., el —GARCHIp, g) 1o manthly UK stock metums over 3 sample 1977 -2016
abernative strategy, we simply apply information criteria fwith 3 preference for the BIC) to select the best el o 2
wide range of cholces of P, Gu.p, and q. including reros and homoskecastic madels. We obtain that a wery simphe const
mean ARMAID0)-CGARCHI, 1) mode| brings the BIC down to 6158, and this is sensibly inferior to the 6170 of an ARI(I
CARCHIL,1) and the 6.172 of & mome complex ARMAILT —‘.!k[ HILTY In parSculas, ARCH maodels a3 well as bigger CARCH
models neves succeed in reducing the BIC below 6.158. The estimated model is then (p-values in parentheses):

nn Moef,,

In all cases, the comtant coefiickent in the conditional variance madel is held fued t the estimated 0540 and the series ane

initialized at the same vakie of 11122, to taver comparability. Cleady, the fint two cases illustrate the behavior of stationary,
peraistent GARCH models that resct weakly 1o shacks: the lag Two cases concem GARCH modeds in which news tend 1 yiekd
large krpacts. | shows e resubting five implicit monthly volieity series, st bica e thew enter more Fequently the

jamgon of traders and ressarc hees

kary role played by the « of 3 G ol s easily detecied. Even though, by con

rcrith, the predicted volaslisy ses e by h;.-... and low 4 tend

o fall - 10 then suddenly spile in short- live Euprsts that see hosaever a high
fowst tirmes. the average. |0 our cam, such models y make e urhulenoe of the 2 Corwat Financial Crinks (hence
forth GHO) ook unprecedensed. Notwe that nsk managen and practitionsn may then be induced some degres of “Hlack Swan®

type of complacency, when the numbers turn in the red or defaults occr. On the opposte, unde GARCH modek with low o and

her mmhﬂm.'--."hrhﬁ o & e nd £ long-un mean, 0 the peoint (in exreme cases in which 1

t specs. In dny v the case stands: ML esti

- inations such that o + 1= 0.4, becaue

v oo mavimi fe the IL fihewd #131 the Larmp| |.- o ol LK seturrs does come from Prmrlpl\.p- Er

comtination ol and 8 4-.1-.-,,h-

4=0043,b=0943
164 —— 220.129,6=0.855
a=0344,b = 0640

x of a GARCHip, gt model is given by 370, oy + 327, i, obvios
i I

1980 1965 1990 1995 2000 2005 2010 2015

FIGLIRE 5.9 e duied condiions] volsiliy Trom o GARUHL ) muodel s fous slicrmatie simulaol o

Question 3.B (2 points) Bruno Cerelli, an analyst at Reyer & So., has estimated a Gaussian
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GARCH(1,1) model for FTSE MIB stock index returns and found that @ + 8 = 1; upon testing,
he has not been able to reject the null hypothesis that « + = 1. Therefore, he has concluded

that because the condition @ + < 1 is violated, the GARCH model is non stationary so that a

time-invariant unconditional distribution for the FTSE MIB returns does not exist and one

cannot learn from past data to forecast returns. A colleague of his, Stefania Younot, has objected

that this implication is unjustified, even though a GARCH with @ + f = 1 implies that variance

follows a random walk with drift so that time t estimated variance is (in a mean-squared error

sense) the best forecast for variance at time t + 1, t + 2,

., t+ H for all H> 1. Which one of the

two analysts at Reyer & So. is correct and why? Make sure to carefully explain your answer.

Debriefing:

5.2.2  Exponential Smoothing Variance Forecasts: RiskMetrics

In spite of its intuitive simplicity, the three problens described in Section 5.2.1 severely limit (hopefully, they should!)
the practical usefulness of the rolling variance forecast model. However, how one remedy to such limitations offers

itsell mther naturally if one carefully thinks of what are the issues plaguing Eq. (5.6): we need to find a way to use the

entire history of a time series but an the same time w weight cach past observation as a decreasing function of its dis
tance 1o the forecas

by professional forecasters, exponential smoothing models (hencelonh, ESM)

1 The solution 1o this search for a better model is offered by one of the classical wols wsed

=0 =03 (5.9

=1
where Ae(D, 1) so that increasing powers of the A" ' factor assign a declining weight 1o past squared residuals
N2> .2 o r=1,2... The presence of the factor (1= A) that premaubtiplies the infinite sum

puarmbees that the sum of the weights equals 1, as it should:

o . '
=-0%"x I="_"S."="_”u x =, 5.0
L Lt T
=
wsing the fact that 357, A7 = 1/(1 = A). OF course, the sum in the ESM formula is infinite, but in practice it is nor
mially tru sormespondence to the size of the available sample T, which vsaually does ot cause problems when T

i Bk, researchers at JP. Morgan Chase realized that this rather simple amd already Tamous forecasting
device ool u1ll‘\ rewnitten in an even simpler and considerably more elegant way
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=(1=X + A1 =N} e

_ 2 -1
==+ (=03
(5.11)
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Eq. (5.11) is called RiskMerrics model. It is characterized by just one parameter that can in principle be estimated from the
data, and it consists of a simple, convex (in the sense that Ae(0, 1) and the two weights sum to 1) linear combinations of:
® the most recent squared residual, and
® the most recently saved forecast of the variance at time ¢ — | for time £, o7, ,.

In the RiskMetrics model, A plays a role similar to the choice of the rolling window parameter W in Eq. (5.6): the
larger is A, the slower is the speed at which past squared innovations are forgotten by the conditional varance model,

which is similar to picking a relatively large value of W in the rolling window model. An interesting property of the
RiskMetrics model is that:

lim ol = m(l =N+ lim Aol =0l . 15.12)
that is, today’s forecast of time £ + 1 varignce is \unpl\ yesterday s variance forecast. However, solving then the model
backward, we would have o, | = o7 =gl | = ... =g, that ix, the process for variance becomes constant and we obtain

the standard homoskedastic case. The n.n\v bdea ﬂnl one can simply identify the forecast of time ¢+ | variance with
the squared retum of the residuals comesponds instead to the case of A<+0", that is. a limit from the right:
lim o7, = lm(l= X+ lim Aop,_ =] (5.13)

OF course, this represents a rather special parameterization, since it is the limit as A—0" from the right.

The fact that the RiskMetrics maodel contains only one parameter is one of its most altractive features. We shall pos-
pone discussing the methods of estimation of Eqg. (5.11) after we introduce ARCH and GARCH models but emphasize
one interesting feature of Eq. (5.11). Even though in many practical applications A is actually estimated by ML, it tums
oul that for a varety of high-frequency duta sets (for instance, when data are sampled at daily frequencies). it has
become typical to obtain estimated values for A that tend to be close o (.94, which is the value onginally estimated
and proposed by 1P Morgan. An illustration of this result can be foand as an online example,
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In many applications 1 high-frequency financial data, the estimate of Y0y (3, + 3) ums out 10 be close 10
unitly. This provides an empirical motivation for the so-called integrated GARCH{p,q), or IGARCHip, q), mode] intro-
duced by Engle and Bollerslev ( 1986). In the IGARCH class of models, the autore gressive polynomial in Eq. (5.35) has
2 unit root, and consequently a shock 1 the conditional variance is persisient in the sense that it remains equally impor-
tani for future forecasts ot all horizons. In fact, IGARCH is a class of models that may be sinicily stationary (under
sppropriste conditions) but is nol covariance dstionary. In fact, because by Jensen's inequality, Efln(as? + d)]<
In(Elag + J)) =In{aE]z]] + 5) = In{a + §), in the case of IGARCH(1,1) we have In{a + ) = In | =0, which always
ensures sationarity. Yed, this does not mean that the IGARCH process does not have ANY finite moment: for instance,
Nelson (1990) shows that in the IGARCHI1,1) model E,[o; "] converges 10 a finite limit independent of time s informa-
tion as [ -+ oo, whenever 5 < 1. However, this is not new 1o us. To see why, consider for concreteness a GARCH(1.1)
model when o+ =1 or a= 1~ 3. Then,

oy =wt (1= el + 87, . (5.40)

(1} =1

Yel, upon reflection, Eq. (5.40) has been encountered already in Section 5.2.2: JGARCH{ 1.1} is just a RiskMetrics
maodel in which the parameter A has been relabeled 3 and in which a constant intercept o has appeared. Il we flip our
argument around, we oblain one important insight: RiskMetrics is just a special case of GARCHI(L,1) in which

» there is no intercept;

® the sum of the coefficients is one 50 that the model is not covanance stationary, and a8 such

® the long-run, ergodic varance T =wf{l —a- ) =0/0 and therefore it does not exist (one may sy that 7
diverges, even though this would require a > 0),

Therefore, RiskMetrics ought 10 be used with extreme caution for two reasons. Fird, because it is a special case of a
more general model that has been investigated for its good empirnical properties but that in general includes an intercept
w >0 and is charscterized by ARMA “complexity dimensions™ p and g that should be either estimated or o least
selecied on the basis of the data: RiskMetrics instead imposes w = D and p =g = 1. Second, because, as we shall see in
Section 5.4, using 2 nonstationary model (in the covaniance sense) w0 forecast has clear limitations, and one should
adopt this choice only when sharply demanded by the data,

One may wonder how is it possible that IGARCH models are estimated asing the same methods 25 standard station-

ary GARCH models (see Section 5.6), even though they are nonstationary. Although the exact answer has a technical
nature, the intwition can be grasped by the fact that given that o + J=1 (10 be concrete, consider the (1,1) case),
and that:
Ry =wt(l =B+ Bof  =mw+ (1 =G+ Pu+ (1 - Dl + oty 3
w1+ @)+ (1= G2 + Bel )+ ol ppa
15.41)
\’- = 3 w \’- 3
wy 7+ I [: [ —_— g . s
2 (1 "2:;; =gt ".'-.: 2y

unlike a genuinely nonstationary process, conditional vanance is a geometrically declining function of the cerrent and
past realizations of the sequence of past shocks, that will make it possible for a IGARCH model w be at least ergodic,
that is, 1o have the dependence between increasingly distant past shocks that fades o 0 sufficiently fast, for the proper-
ties of generally used estimation methods (such zs ML) to hold as for any other GARCH maodel.

GARCHIp, ¢) models are extended ARCH models that deliver the same advantages as ARCH but require a lower
number of parameters 10 be estimated under inequality constraints. Therefore, similarly 10 ARCH, GARCH successfully
capiures thick-tailed returns and volatility clustering. However, it is not well suited 1o copture what we have called the
“leverage effect™ because the conditional variance in Eg. (5.40) is a function only of the magnitudes of the lagged
squared residuals and not of their signs.

In the exponential GARCH (EGARCH) model of Nelson (1991), o7, depends on both the sire and the sign of
lagped residuals. The model is st up o directly express forecasts nol of future conditional veriance, but of fiuture condi-
tiomal log-variance. When estimation is performed by ML, from the invarance property of maximum likelihood

7. In fact when the support of the thocks & it wsbounded, Nelwon (1990 proves thal in any stationary and enpodic GARCH(L1) model e,
diverges for all sufficlently Large 1 and converpes for all sufficiently smull 1y

Question 3.C (1.5 points) Using CRSP daily stock excess return data for a 1963-2016 sample,
John, a quant researcher at Charles Thomas and Associates, has estimated two models: (i) a
Gaussian MA(1)-GARCH(1,1) model, and (ii) a Gaussian MA(1)-EGARCH(3,3). The following
plots compare in two different ways the predicted 1-day-ahead volatility filtered from the two
different models. How can you describe the differences between the implied series of
filtered/one-step ahead predicted variances from the two models? Suppose you are pricing
securities the price of which monotonically increases with predicted variance (e.g., European
puts and calls). Based on these two plots, what is the practical advantage that a EGARCH model

may give over and above a simpler GARCH(1,1)? Make sure to carefully explain your answers.



1-day volatility from MA(1)-GARCH(1,1)
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= Predicted daily volatility from MA(1)}-EGARCH(3.3) 0 1 0 3 4
Predicted daily volatility from MA(1)-GARCH(1.1) 1-day volatility from MA(1)-EGARCH® 1)

Debriefing: Visibly, the EGARCH(3,3) is able to predict for the same day variances that are
sometimes considerably higher and at other times visibly lower vs. those implied by a
GARCH(1,1). The differences are particularly obvious in correspondence to October 1987 and
September 2008, when the spikes in predicted variance differ across the two models, and in
1964-1966 when EGARCH(3,3) turned able to systematically forecast standard deviations that
are 0.1-0.2% below GARCH(1,1). This can also be noted in the plot on the right, when for no
value of volatility on the horizontal axis, the scatter plot reduced to a rather thin line close to
the 45-degree line in red (the blue scatter plot always remains “thick” so to speak).

To a plain vanilla option pricer, EGARCH gives an additional layer of pricing flexibility, in the
sense that both large and small shocks may predict rather heterogeneous, subsequent variances
depending on the sign and the sequence of such shocks, given the fact that a EGARCH model is
able to reflect complex patterns of leverage effects. This means that similar recent returns,
depending on their sign and exact sequence may lead to different fair-value option prices and

this may represent an advantage in terms of resulting P&L.
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