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1 VARs and CVARs

Consider the multivariate generalization of the single-equation dynamic

model discussed above, i.e. a vector autoregressive model (VAR) for the

vector of, possibly non-stationary, -variables y:

y = A1y−1 +A2y−2 + +Ay− + u. (1)

By proceeding in the same way we did for the simple single-equation

dynamic model, we can reparameterize the VAR in levels as a model

involving levels and the first differences of variables.

Start by subtracting y−1 from both sides of the VAR to obtain:

∆y = (A1 − I)y−1 +A2y−2 + +Ay− + u. (2)

Subtract (A1 − I)y−2 from both sides:

∆y = (A1 − I)∆y−1 + (A1 +A2 − I)y−2 + +Ay− + u. (3)

By repeating this procedure until −1, we end up with the following
specification:

∆y=Π1∆y−1 +Π1∆y−2 + +Πy− + u (4)

=

−1X
=1

Π∆y− +Πy− + u,

where:

Π=−
Ã
 −

X
=1

A

!
,

Π=−
Ã
 −

X
=1

A

!
.

Clearly the long-run properties of the system are described by the

properties of the matrix Π There are three cases of interest:

1. rank (Π) = 0 The system is non-stationary, with no cointegration

between the variables considered. This is the only case in which

non-stationarity is correctly removed simply by taking the first

differences of the variables;

2. rank (Π) =  full The system is stationary;
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3. rank (Π) =   . The system is non-stationary but there are

 cointegrating relationships among the considered variables. In

this caseΠ = αβ0, where  is an (× ) matrix of weights and β

is an (× ) matrix of parameters determining the cointegrating

relationships.

Therefore, the rank of Π is crucial in determining the number of coin-

tegrating vectors. The Johansen procedure is based on the fact that the

rank of a matrix equals the number of its characteristic roots that differ

from zero. Here is the intuition on how the tests can be constructed.

Having obtained estimates for the parameters in the Π matrix, we as-

sociate with them estimates for the  characteristic roots and we order

them as follows 1  2    . If the variables are not cointegrated,

then the rank of Π is zero and all the characteristic roots equal zero. In

this case each of the expression ln (1− ) equals zero, too. If, instead,

the rank of Π is one, and 0  1  1 then ln (1− 1) is negative and

ln (1− 2) = ln (1− 3) =  = ln (1− ) = 0 Johansen derives a

test on the number of characteristic roots that are different from zero by

considering the two following statistics:

trace ()=−
X

=+1

ln
³
1− b´ ,

max (  + 1)=− ln
³
1− b+1´ ,

where  is the number of observations used to estimate the VAR. The

first statistic tests the null of at most  cointegrating vectors against a

generic alternative. The test should be run in sequence starting from

the null of at most zero cointegrating vectors up to the case of at most

 cointegrating vectors. The second statistic tests the null of at most 

cointegrating vectors against the alternative of at most +1 cointegrat-

ing vectors. Both statistics are small under the null hypothesis. Critical

values are tabulated by Johansen and they depend on the number of

non-stationary components under the null and on the specification of

the deterministic component of the VAR. Johansen (1994) has shown in

the past some preference for the trace test, based on the argument that

the maximum eigenvalue test does not give rise to a coherent testing

strategy.

To illustrate briefly the intuition behind the procedure, consider the

VAR representation of our simple dynamic model (??), introduced in

one of the previous sections, for the two variables,  and :µ



¶
=

µ
11 12
0 1

¶µ
−1
−1

¶
+

µ
1
2

¶
. (5)
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System (5) can be reparameterized as follows in terms of the VECM

representation:µ
∆
∆

¶
=

µ
11 − 1 12
0 0

¶µ
−1
−1

¶
+

µ
1
2

¶
, (6)

from which, clearly,

Π =

µ
11 − 1 12
0 0

¶
,  =

µ
11 − 1
0

¶
, 0 =

¡
1− 12

1−11
¢
.

Let us now consider the case when we have more than two variables

and work our example on the bond and stock market from the previous

section.

1.1 Identification of multiple cointegrating vectors

The Johansen procedure allows us to identify the number of cointegrat-

ing vectors. However, in the case of existence of multiple cointegrating

vectors, an interesting identification problem arises:  and  are only

determined up to the space spanned by them. Thus, for any non-singular

matrix  conformable by product:

Π = 0 = −10.

In other words  and 0 are two observationally equivalent bases of
the cointegrating space. The obvious implication is that before solving

such an identification problem no meaningful economic interpretation

of coefficients in cointegrating vectors can be proposed. The solution is

imposing a sufficient number of restrictions on parameters such that the

matrix satisfying such constraints in the cointegrating space is unique.

Such a criterion is derived by Johansen (1992) and discussed in the works

of Johansen and Juselius (1990), Giannini (1992) and Hamilton (1994).

Given the matrix of cointegrating vectors β we can formulate linear

constraints on the different cointegrating vectors using the  matrices of

dimensions ×. Let us consider the columns of β i.e. the parameters

in each cointegrating vector, ignoring the normalization constraint to

one of one variable in each cointegrating vector. Any structure of linear

constraints can be represented as

Rβ=0,

 ( × )  β(× 1) rank = .

The same constraints can be expressed in explicit forms as

β = S,
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where  (× (− )), β(× 1),  ((− )× 1), rank  = − ,

RS = 0

A necessary and sufficient condition for identification of parameters

in the -th cointegrating vector is:

rank (Rβ) =  − 1. (7)

When (12) is satisfied, it is not possible to replicate the -th coin-

tegrating vector by taking linear combinations of the parameters in the

other cointegrating vectors. In this case, the matrix obtained by apply-

ing to the cointegrating space the restrictions of the -th cointegrating

vector has rank  − 1.
A necessary condition for identification is immediately derived in

that Rβ must have enough rows to satisfy condition (12); therefore, a

necessary condition is that each cointegrating vector has at least  − 1
restrictions.

A sufficient condition for identification is provided by Johansen by

considering the implicit and explicit form of expressing constraints:

Theorem 1 The i-th cointegrating vector is identified by the constraints

S1 S2 ...  S if for each k=1,...,r-1 and for each set of indices 1 

1       not containing i, we have that rank [1   ]  

Given identification of the system, we can distinguish the case of

just-identification and over-identification. In case of over-identification,

the over-identifying restrictions are testable.

To illustrate the procedure let us reconsider our example. Adopting

the following vectorial representation of the series:
¡
  

¢0
, and

leaving aside normalizations, the matrix β can be represented as:⎛⎜⎜⎝
11 0

−11 0

0 32
0 −42

⎞⎟⎟⎠ .
Given the following general representation of the matrix β:⎛⎜⎜⎝

11 12
21 22
31 32
41 42

⎞⎟⎟⎠ ,
our constraints imply the following specification for the matrices  and

:

1 =

⎛⎝1 1 0 00 0 1 0

0 0 0 1

⎞⎠ , 1 =

⎛⎜⎜⎝
1

−1
0

0

⎞⎟⎟⎠ ,
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2 =

⎛⎝1 0 0 00 1 0 0

0 0 1 1

⎞⎠ , 2 =

⎛⎜⎜⎝
0

0

1

−1

⎞⎟⎟⎠ .
The necessary conditions for identification are obviously satisfied,

while the sufficient conditions for identification requires that rank (12) ≥
1, and rank (21) ≥ 1. They are also satisfied

12 =

⎛⎝ 0

1

−1

⎞⎠ , 21 =

⎛⎝ 1

−1
0

⎞⎠ .
1.2 Hypothesis testing with multiple cointegrating

vectors

The Johansen procedure allows for testing the validity of restricted forms

of cointegrating vectors. More precisely, the validity of restrictions (over-

identifying restrictions) in addition to those necessary to identify the

long-run equilibria can be tested. The intuition behind the construction

of all tests is that when there are  cointegrating vectors, only these  lin-

ear combination of variables are stationary; therefore, the test statistics

involve comparing the number of cointegrating vectors under the null

and the alternative hypotheses. Following this intuition, we understand

why only the over-identifying restrictions can be tested. Just-identified

models feature the same long-run matrix Π and therefore, the same

eigenvalues of Π Consider the case of testing restrictions on a set of 

identified cointegrating vectors stacked in the matrix β The test statistic

involves comparing the number of cointegrating vectors under the null

and the alternative hypothesis. Let b1 b2 b be the ordered eigen-
values of the Π matrix in the unrestricted model, and b∗1 b∗2  b∗ the
ordered eigenvalues of the Πmatrix in the restricted model. Restrictions

on β are testable by forming the following test statistic:



X
=1

h
ln
³
1− b∗´− ln³1− b´i . (8)

Johansen (1992) shows that the statistic (8) has a 2-distribution with

degrees of freedom equal to the number of over-identifying restrictions.

Note that small values of b∗ with respect to b imply a reduction of
the rank of Π when the restrictions are imposed and hence the rejec-

tion of the null hypothesis. This testing procedure can be extended to

tests on restrictions on the matrix of weights α or on the deterministic

components (constant and trends) of the cointegrating vectors.
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2 Using VAR Models

A Cointegrated VAR, after the identification of the number and shape

of cointegrating vector(s), provides a statistical model of the joint dis-

tribution of the variables of interests:

∆y=αβ
0y−1 + u (9)

u∼
³
0
X´

where y is a vector of length N containing the modelled variables.

The reduced form specification (9) can be adopted directly for fore-

casting purposes or to describe the dynamic response of the system to

innovations to observables, such as the VAR residuals. Some further

identification choice must be made if the model is to be used for eval-

uating the response of economic and financial variables to innovations

to unobservables, i.e. the "structural" shocks to some of the variables

included in the VAR. Impulse response analysis examines the effect of a

typical shock, usually one-standard deviation, on the time path of the

variables in the model.

2.1 An alternative representation of a VECM

Consider a vector y containing two variables  and  cointegrated with

an equilibrium error  =  − 

The Johansen representation for such system will be:

µ
∆
∆

¶
=Π1

µ
∆−1
∆−1

¶
+

µ
11
21

¶¡
1−¢µ−1

−1

¶
+

µ
1
2

¶
 (10)µ

∆
∆

¶
=Π1

µ
∆−1
∆−1

¶
+

µ
11
21

¶
−1 +

µ
1
2

¶
(11)

Define a matrix  such that



µ
∆
∆

¶
=

µ
∆
∆

¶
so

 =

µ
1 0

1−
¶

then we have:
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µ
∆
∆

¶
=Π1

µ
∆−1
∆−1

¶
+

µ
11
21

¶
−1 +

µ
1
2

¶
µ
∆
∆

¶
=Π1

−1
µ
∆−1
∆−1

¶
+

µ
11
21

¶
−1 +

µ
1
2

¶
The system can be rearranged so that it describes levels rather than

differences of 

The result is a second order VAR as follows:µ
∆


¶
= 1

µ
∆−1
−1

¶
+2

µ
∆−2
−2

¶
+

µ
1
2

¶

3 Identification of VAR

Computing impulse responses to unobservables requires the imposition

of some identification assumptions and the orthogonality of structural

shocks is a necessary condition to consider the effect of each identified

shocks in isolation. The study of the response to the system to an

innovation in observables does not require any identification assumption

but the contemporaneous linkages between shocks must be modelled.

In macroeconomics, the importance of computing impulse responses

to structural shocks is related to the fact that the solution of a Dy-

namic Stochastic General Equilibrium (DSGE) model can be well ap-

proximated by a VAR, and VARs have become the natural tool for

model evaluation. In this context, VAR models are not estimated to

yield advice on the best policy but rather to provide empirical evidence

on the response of macroeconomic variables to policy impulses in order

to discriminate between alternative theoretical models of the economy.

It then becomes crucial to identify policy actions using restrictions in-

dependent from the theoretical models of the transmission mechanism

under empirical investigation, taking into account the potential endo-

geneity of policy instruments.

In finance, the use of VAR is more related to forecasting first and

second moments of the distributions of returns at different horizons.

Macro-finance model concentrate on the different role of permanent ver-

sus transitory shocks to understand the comovement between financial

and macroeoconomic variables.Given the estimation of (9) the problem

of extracting unobservable structural shocks υ from the observed VAR

innovations u is usually addressed by positing the following relations

Au=Bυ,

υ∼ (0 )
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from which we can derive the relation between the variance-covariance

matrices of u (observed) and ν (unobserved) as follows:

 (uu
0
) = A

−1B (υυ
0
)B

0A−1

Substituting population moments with sample moments we have:dX
= bA−1BIbB0 bA−1, (12)cP contains (+1)2 different elements, which is the maximum number

of identifiable parameters in matrices A and B. Therefore, a necessary

condition for identification is that the maximum number of parameters

contained in the two matrices equals (+1)2 such a condition makes

the number of equations equal to the number of unknowns in system

(12). As usual, for such a condition also to be sufficient for identification

no equation in (12) should be a linear combination of the other equa-

tions in the system (see Amisano and Giannini 1996, Hamilton 1994).

As for traditional models, we have the three possible cases of under-

identification, just-identification and over-identification. The validity of

over-identifying restrictions can be tested via a statistic distributed as a

2 with a number of degrees of freedom equal to the number of over-

identifying restrictions. Once identification has been achieved, the esti-

mation problem is solved by applying generalized method of moments

estimation.

In practice, identification requires the imposition of some restrictions

on the parameters of A and B. This step has been historically imple-

mented in a number of different ways.

4 Description of VAR models

After the identification of structural shocks of interest, the properties

of VAR models are described using impulse response analysis, variance

decomposition and historical decomposition. Consider a structural VAR

model for a generic vector y, containing  variables:

Given an identified and estimated estimate structural VAR

y=

X
=1

Cy− + u

Au=Bυ,

we can re-write it as:

Ay=

X
=1

Ay− +Bυ

A−1A=C
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which we can express in a compact way as:

[A−A ()]y=Bv

A ()=

X
=1

A


By inverting [A0 −A ()] (under the assumption of invertibility of
this polynomial) we obtain the moving average representation for our

VAR process:

y=C ()v, (13)

y=C0v +C1v−1 + +Cv−,

C ()= [A0 −A ()]−1 ,
C0=A

−1
0 B.

To illustrate the concept of an impulse response function, we inter-

pret the generic matrix C within the moving average representation as

follows:

C =
y+

v
.

The generic element { } of matrix C represents the impact of a

shock hitting the -th variable of the system at time  on the -th variable

of the system at time  + . As  varies we have a function describing

the response of variable  to an impulse in variable . For this function

of partial derivative to be meaningful we must allow that a shock to

variable  occurs while all other shocks are kept to zero. Of course

this is allowed for structural shocks, as they are identified by imposing

they are orthogonal to each other. Note, however that the concept of

an impulse response function is not applicable to reduced form VAR

innovations, which, in general, are correlated to each other.

Historical decomposition is obtained by using the structural MA rep-

resentation to separate series in the components (orthogonal to each

other) attributable to the different structural shocks.

Finally forecasting error variance decomposition (FEVD) is obtained

from (13) by deriving the error in forecasting y period in the future as:

(y+ −y+) = C0v +C1v−1 + +Cv−

from which we can construct the variance of such forecasting error as:

  (y+ −y+) = C0C
0
0 +C1C

0
1 + +CC

0


fromwhich we can compute the share of the total variance attributable to

the variance of each structural shock. Note again that such composition
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makes sense only if shocks are orthogonal to each other. Only in this

case we can write the variance of the total forecasting error as a sum of

variances of the single shocks (as the covariance terms are zero following

the orthogonality property of structural shocks).

5 From VAR innovations to structural shocks

In practice, identification requires the imposition of some restrictions on

the parameters ofA andB. This step has been historically implemented

in a number of different ways.

5.1 Choleski decomposition

In the famous article which introduced VAR methodology to the profes-

sion, Sims (1980) proposed the following identification strategy, based

on the Choleski decomposition of matrices:

A =

⎛⎜⎜⎝
1 0 0 0

21 1 0 0

  1 

1  −1 1

⎞⎟⎟⎠  B

⎛⎜⎜⎝
11 0 0 0

0 22 0 0

   

0 0 0 

⎞⎟⎟⎠  (14)

This is obviously a just-identification scheme, where the identification

of structural shocks depends on the ordering of variables. It corresponds

to a recursive economic structure, with the most endogenous variable

ordered last.

Consider for the sake of illustration a bivariate VAR:µ
1
2

¶
=

µ
11 12
21 22

¶µ
1−1
2−1

¶
+

µ
11 0

21 22

¶µ
1
2

¶
.

The MA representation isµ
1
2

¶
=

µ
11 0

21 22

¶µ
1
2

¶
+

µ
11 12
21 22

¶µ
11 0

21 22

¶µ
1−1
2−1

¶
++

µ
11 12
21 22

¶µ
11 0

21 22

¶µ
1−
2−

¶
,

from which impulse response functions, historical decomposition and

forecasting error variance decomposition are immediately obtained.

An obvious generalization of Choleski is to consider contemporaneous

restrictions that do not necessarily lead to a triangular structure of A.

Famous examples of this approach are Blanchard-Perotti, for the analysis

of the effects of fiscal policy, and Bernanke and Mihov for the analysis

of the monetary policy transmission mechanism in closed economies.
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5.2 Structural VARs with long-run restrictions

Often long-run behaviour of shocks provide restrictions acceptable within

a wide range of theoretical models. A typical restriction compatible

with virtually all macroeconomic models is that in the long-run demand

shocks have zero impact on output. Blanchard and Quah (1989) show

how these restrictions can be used to identify VARs.

The structural model of interest is specified by posing A equal to

the identity matrix and by imposing no restriction on the B matrix. We

then have the following specification for a generic vector of variables y:

y =

X
=1

Ay− +Bv

from which one can derive the matrix which describes the long-run effect

of the structural shocks on the variables of interest as follows:Ã
I−

X
=1

A

!−1
Bv = −Π−1Bv.

Coefficients in Π are obtained from the reduced form, therefore, we

are able to impose long-run restrictions given the estimation of the re-

duced form.

Two points are worth noting:

1. ( −1) is -Π for this matrix to be invertible the VAR must be

specified on stationary variables;

2. the long-run restrictions are restrictions on the cumulative impulse

response function.

Let us now consider the Blanchard and Quah (1989) dataset. The

authors aim at separating demand shocks from supply shocks, they con-

sider a VAR on two variables, the unemployment rate, UN, and the

quarterly rate of growth of GDP, ∆LY. The VAR is specified with 8

lags, a constant, and a deterministic trend (in the original paper a break

in the constant for ∆LY is also allowed but we do not allow it here) as

follows:µ
∆


¶
= 1

µ
∆−1
−1

¶
+ +8

µ
∆−8
−8

¶
+9

µ
1



¶
+

µ
1
2

¶


The structure of interest is the following:µ
∆


¶
=1

µ
∆−1
−1

¶
+ 8

µ
∆−8
−8

¶
+9

µ
1



¶
+

µ
11 12
21 22

¶µ
1
2

¶
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To obtain the identifying restrictions consider thatµ
∆


¶
=

Ã
I−

X
=1

A

!−1µ
11 12
21 22

¶µ
1
2

¶
=

µ
11 12
21 22

¶µ
11 12
21 22

¶µ
1
2

¶


Demand shocks are identified by imposing that their long-run impact on

the level of output is zero:

1111 + 1221 = 0

Note that by imposing the restriction that the cumulative impulse re-

sponse of the rate of output growth to a demand shock is zero we impose

the restriction that the impulse response of the level of output to a de-

mand shock is zero in the long run. As the variables are stationary the

long-run response of ∆ and  to all shocks is zero by definition.

5.3 CVAR and Identification of shocks

Consider, for simplicity, the case of a bivariate model y = ( )  in

which variables are non-stationary (1) but cointegrated with a cointe-

grating vector (1−1), so the rank of the Π matrix is 1 and we use the

following representation of the stationary reduced form:µ
∆
∆

¶
=

µ
11
21

¶¡
1−1¢µ−1

−1

¶
+

µ
1
2

¶
(15)µ

1
2

¶
=

µ
11 12
21 22

¶µ
1
2

¶
 (16)

Model (15) can be re-written as follows :µ
1 1

0 1

¶µ
(1− ) 0

0 1

¶µ
( − )

∆

¶
=

µ
11 0

21 0

¶µ
(−1 − −1)
∆−1

¶
(17)

+

µ
11 12
21 22

¶µ
1
2

¶


The two representations are completely identical (they feature the

same residuals). The cointegrating properties of the system suggest the

presence of two types of shocks: a permanent one (related to the single

common trend shared by the two variables) and a transitory one (related

to the cointegrating relation). It seems therefore natural to identify one

shock as permanent and the other as transitory. Given that we have a

stationary system, the identification of shocks is obtained by deriving
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long-run responses of the variables of interest to relevant shocks. From

(17) we have:µµ
1 1

0 1

¶µ
(1− ) 0

0 1

¶
−
µ
11 0

21 0

¶¶µ
( − )

∆

¶
=

µ
11 12
21 22

¶µ
1
2

¶


from which long-run responses are obtained by setting  = 1 and by

inverting the matrix pre-multiplying variables in the stationary repre-

sentation of VARµ
( − )

∆

¶
=

µ−11 1
−21 1

¶−1µ
11 12
21 22

¶µ
1
2

¶
(18)

µ
( − )

∆

¶
=

µ −11+21
11−21 − 12−22

11−21−2111+1121
11−21

−2112+1122
11−21

¶µ
1
2

¶
 (19)

Thus 2 can be identified as the transitory shock by imposing the

following restriction:

−2112 + 1122 = 0

which, given knowledge of the α parameters from the cointegration

analysis, provides the just-identifying restriction for the parameters in

B. Note that, there is one case in which this identification is equivalent

to the Choleski ordering, the case in which 11 = 0 Note that this is

the case in which ∆ is weakly exogenous for the estimation of 21 An

application of this identifying scheme is provided in Cochrane(1999) that

uses it to identify permanent and transitory components in stock prices.

5.4 Sign Restrictions

Given the VAR specification:

y=

X
=1

Ay− +Bu

Σ=BE (uu
0
)B

0 = BB0

Consider the Choleski decomposition of Σ  .

The impulse response function, given the Choleski decomposition

could be written as :

y = [I−A ()]−1Cu
All the possible rotation of the Choleski decomposition are obtained

as follows:
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[I−A ()]−1CQQ0u
QQ0= 

The impulse response for Q0u is then [I−A ()]−1CQ
The imposition of the sign restrictions then consider Q to generate

all possible identification and then select only those that satisfy some

sign restriction.

5.5 GIRF

If the identification of structural shocks is not an issue of primary interest

then Generalized Impulse Response Functions can be used to describe

the respoonse of the system to change in observable i.e. the VAR inno-

vations.

Consider again our bivariate CVAR model :

µ
( − )

∆

¶
=

µ
(−1 − −1)
∆−1

¶
+ u

u∼

µ
0

µ
211 12
12 

2
22

¶¶
from the properties of the normal distribution we have that

 (2 | 1) =
¡
211
¢−1

121

so the impulse responses can be derived as follows:



∙
(+ − +)

∆ + 

¸
1

=

=

µ
1

(211)
−1

12

¶
GIRF seems to be more appropriate when the primary focus of the

analysis is the description of the transmission mechanism rather than

the structural interpretation of shocks. The effect of the shock we are

studying with GIRF can be interpreted as the effect on the variables in

the model of an intercept adjustment to the particular equation shocked.
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6 Structural Shocks identified independently from

VAR

6.1 The R&R narrative approach to fiscal policy

shocks

• A time-series of exogenous shifts in taxes is constructed using of-
ficial documentation, such as congressional reports, etc.to identify

the size, timing, and principal motivation for all major postwar

tax policy actions

— legislated tax changes are classified into endogenous (induced

by short-run countercyclical concerns) and exogenous, taken

to deal with an inherited budget deficit , or driven by concerns

about long-run economic growth or politically motivayed: −

• − measure the impact of a tax change at the time it was imple-
mented (− ) on tax liabilities at time 

• the effect of − on output is estimated using quarterly data and
OLS in a single equation, a truncated (=12) MA

∆ = +

X
=0



− + 

For =12. Note that this equation is a truncated MA. Impulse re-

sponses are read directly off the  coefficients.
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6.2 The Rudebusch approach to monetary policy

shocks

Rudebusch (1998) derives Monetary policy shocks are derived from the

thirty-day Federal funds future contracts, which have been quoted on

the Chicago Board of Trade since October 1988, and are bets on the

average overnight Federal funds rate for the delivery month, the variable

included in benchmark VARs. Shocks are constructed as the difference

between the Federal funds rate at month  and the thirty-day federal

funds future at month  − 1. Such a choice is based on the evidence
that the regression of the Federal funds rate (FF) at  on the thirty-day

Federal funds future (FFF) at −1 produces an intercept not significantly
different from zero, a slope coefficient not significantly different from one,

and serially uncorrelated residuals:

FF=−0037
(00436)

+ 0999
(0007)

FFF−1 + b
2=099  = 0145 DW = 186

Note that this procedure produces shocks, labelled FFF, comparable to

the reduced form innovations from the VAR and not to the structural

monetary policy shocks, because surprises relative to the information

available at the end of month  − 1 may reflect endogenous policy re-
sponses to news about the economy that become available in the course

of month . However, if an identification scheme is available, then in-

novations derived from the future contracts can be transformed in the

relevant shocks by applying to them the standard VAR identification

procedure. A non-trivial problem with this procedure comes from the

fact that Federal funds future are available from 1988 onwards. Future

contracts on the one-month Eurodollar are available on a more extended

sample. Given that the properties of the series generated by the one-

month Eurodollar are very close to the properties of Federal funds future,

the direct measurement based on one-month Eurodollar could be used

on an extended sample.

7 Cointegration and multivariate trend-shocks de-

compositions

Having discussed the VECM representation for a vector of non-stationary

variables admitting  cointegrating relationships, let us compare it with

the multivariate extension of the Beveridge−Nelson decomposition. Con-
sider the simple case of an I(1) vector y featuring first-order dynamics

and no deterministic component:

∆y = αβ0y−1 + u, (20)
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where  is the (× ) matrix of loadings and β is the (× ) matrix

of parameters in the cointegrating relationships. As y is I(1), we can

apply the Wold decomposition theorem to ∆y to obtain the following

representation:

∆y = C ()u,

from which, by applying the algebra illustrated in our discussion of the

univariate Beveridge−Nelson decomposition, we can derive the following
stochastic trends representation:

y = C
∗ ()u +C (1) z,

where z is a process for which ∆z = u The existence of cointegration

imposes restrictions on the C matrices. The stochastic trends must

cancel out when the  stationary linear combinations of the variables in

y are considered. In other words we must have:

β0C (1) = 0

By investigating further the relation between the VECM and the

stochastic trend representations, we can give a more precise parameter-

ization of the matrix C (1).

Note first that equation (??) is equivalent to:

y = ( +αβ
0)y−1 + u. (21)

Pre-multiplying this system by β0 yields:

β0y=β
0 ( +αβ

0)y−1 + β
0u

=( +αβ
0)β0y−1 + β

0u.

Solving this model recursively, we obtain the MA representation for

the  cointegrating relationships:

β0y =
∞X
=0

( +αβ
0) β0u−. (22)

By substituting (22) in (??) we have the MA representation for ∆y,

∆y =

∞X
=1

α ( +αβ
0)−1 β0u− + u,

from which we have

C (1) =  −α (β0α)−1 β0. (23)
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Now note the beautiful relation (see Johansen 1995: 40),

 = ⊥ (
0
⊥⊥)

−1
0⊥ +  (0)−1 0, (24)

where ⊥ ⊥ are ((× (− ))matrices of rank− such that 0⊥ =
0, 0⊥ = 0
Using (24) in (23), we have

C (1) = ⊥ (
0
⊥⊥)

−1
0⊥,

and

y = C
∗ ()u + ⊥ (

0
⊥⊥)

−1
(0⊥z) ,

which shows that a system of  variables with  cointegrating relation-

ships features (− ) linearly independent common trends (TR). The

common trends are given by (0⊥z), while the coefficients on these trends
are ⊥ (

0
⊥⊥)

−1
. Note also that stochastic trends depend on a set of

initial conditions and cumulated disturbances,

TR = TR−1 +  (1)u

Our brief discussion should have made clear that the VECM model

and the MA model are complementary. As a consequence, the identifi-

cation problem relevant for the vector of parameters in the cointegrating

vectors  is also relevant for the vector of parameters determining the

stochastic trends α⊥ However, there is one aspect in which the two con-
cepts are different. In theory, identified cointegrating relationships on a

given set of variables should be robust to augmentation of the informa-

tion set by adding new variables which should have a zero coefficient in

the cointegrating vectors of the VECM representation of the larger infor-

mation set. This is not true for the stochastic trends. Consider the case

of augmenting an information set consisting of  variables admitting 

cointegrating vectors to  +  variables. The number of cointegrating

vectors is constant while the number of stochastic trends increases by ;

moreover, an unanticipated shock in the small system need not be unan-

ticipated in the larger system. Note that we have added ‘in theory’ to

our statement. In practice, given the size of available samples, applica-

tion of the procedure to analyse cointegration in a larger set of variables

might lead the identification of different cointegrating relationships from

those obtained on a smaller set of variables.

8 Global VARS

The Global VAR (GVAR) approach advanced in Pesaran, Schuermann

and Weiner (2004, PSW) provides a flexible reduced-form framework
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capable of accommodating a time-varying co-movement across domestic

variables and their foreign (in our case euro area) counterpart.

The general specification of a GVAR can be described as follows:

x = d +1x−1 +∗0x
∗
 +∗1x

∗
−1 + u

where x is a vector of domestic variables, d is a vector of determin-

istic elements as well as observed common exogenous variables, x∗ is a
vector of foreign variables specific to country i. In general x∗ =

X
 6=

x

where  is the share of country j in the trade (exports plus imports) of

country i. Finally u is a vector of country-specific idiosyncratic shocks

with 
¡
uu

0


¢
= Σ 

¡
uu

0
0
¢
= 0 for all   and  6= 0

The construction of the foreign variables allows for the identifica-

tion of a common component that is different across countries and it is

computed as a time-varying linear combination the domestic variables.

Beside being a parsimonious approach to international co-movement

the GVAR has also much more flexibility that a VAR in accommodating

varying (both in the cross-sectional and in the time-series dimension) co-

variation across variables. The GVAR framework can also accommodate

long-run solution and the existence of cointegration between the x and

the x∗. A cointegrating GVAR can be written in VECM format as

follows:

∆x = d −Πz−1 +∗0∆x
∗
 + u

where z−1 =
¡
x0−1x

∗0
−1
¢0
, Π = ( −1−∗0 −∗1) 

9 Finance. Log-linearizedModels of Stock and Bond

Returns

9.1 Stock Returns and the dynamic dividend growth

model

Consider the one-period total holding returns in the stock market, that

are defined as follows:1


+1 ≡

+1 ++1



− 1 = +1 −  ++1



=
∆+1



+
+1



 (25)

where  is the stock price at time ,  is the (cash) dividend paid

at time , and the superscript  denotes “stock”. The last equality

1The use of ‘≡’ emphasizes that (25) provides a definition. Moreover, ∆+1

denotes the first difference of a generic variable, or ∆+1 ≡ +1 −.
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decomposes a discrete holding period return as the sum of the percentage

capital gain and of (a definition of) the dividend yield, +1 Given

that one-period returns are usually small, it is sometimes convenient to

approximate them with logarithmic, continuously compounded returns,

defined as:

+1 ≡ log
¡
1 +

+1

¢
= log

µ
+1 ++1



¶
= log (+1 ++1)−log () 

(26)

Interestingly, while linear returns are additive in the percentage capital

gain and the dividend yield components, log returns are not as

log

µ
+1 ++1



¶
6= log

µ
+1



¶
+ log

µ
+1



¶
However, it is still possible to express log returns as a linear function of

the log of the price dividend and the (log) dividend growth. Dividing

both sides of (25) by
¡
1 +

+1

¢
and multiplying both sides by 

we have:




=
1¡

1 +
+1

¢+1



µ
1 +

+1

+1

¶


Taking logs (denoted by lower case letters, i.e.,  ≡ log for a generic

variable ), we have:
2

 −  = −+1 +∆+1 + ln
¡
1 + +1−+1

¢
(27)

as log(+1) = log+1 − log = ∆ log+1 = ∆+1. Taking a

first-order Taylor expansion of the last term about the point ̄ ̄ = ̄−̄

(where the bar denotes a sample average), the logarithm term on the

2−+1 follows from

log
1¡

1 +
+1

¢ = log 1− log ¡1 +
+1

¢
= − log ¡1 +

+1

¢
= −+1

based on our earlier definitions and the fact that log 1 = 0 for natural logs. Moreover,

notice that

+1

+1

= log(+1+1) = log+1−log+1 = +1−+1
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right-hand side can be approximated as:

ln
¡
1 + +1−+1

¢ ' ln(1 + ̄−̄) +
̄−̄

1 + ̄−̄
[(+1 − +1)− (̄− ̄)]

= − ln(1− )−  ln

µ
1

1− 
− 1
¶
+ (+1 − +1)

= + (+1 − +1)

where

 ≡ ̄−̄

1 + ̄−̄
=

̄ ̄

1 + (̄ ̄)
 1  ≡ − ln(1−)− ln

µ
1

1− 
− 1
¶


Although  ∈ (0 1) is just a factor that depends on the average price-
dividend ratio, in what follows it will be used in a way that resembles

a discount factor. At this point, substituting the expression for the

approximated term in (27), we obtain that the log price-dividend ratio

is defined as:3

 −  ' − +1 +∆+1 + (+1 − +1)

Re-arranging this expression shows that total stock market returns can

be written as:

+1 = +  (+1 − +1) +∆+1 − ( − ) 

or a constant , plus the log dividend growth rate (∆+1), plus the (dis-

counted, at rate ) change in the log price-dividend ratio,  (+1 − +1)−
( − ) = ∆(+1 − +1)− (1− ) (+1 − +1). Moreover, by forward

recursive substitution one obtains:

( − ) = − +1 +∆+1 + (+1 − +1)

= − +1 +∆+1 + 
¡
− +2 +∆+2 + (+2 − +2)

¢
= (+ )− (+1 + +2) + (∆+1 + ∆+2) + 2(+2 − +2)

= (+ )− (+1 + +2) + (∆+1 + ∆+2)+

+ 2(− +3 +∆+3 + (+3 − +3))

= (1++2)− (+1++2+2+3) + (∆+1+∆+2+
2∆+3) + 3(+3 − +3)

=  = 

X
=1

−1 +
X
=1

−1(∆+ − +) +  (+ − +) 

3The approximation notation ‘'’ appears to emphasize that this expression is
derived from an application of a Taylor expansion.
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Under the assumption that there can be no rational bubbles, i.e.,

that4

lim
−→∞

 (+ − +) = 0

from

lim
−→∞

X
=1

−1 =
1

1− 

if  ∈ (0 1) we get

( − ) =


1− 
+

X
=1

−1
¡
∆+ − +

¢


This result shows that the log price-dividend ratio, ( − ), measures

the value of a very long-term investment strategy (buy and hold) which–

apart from a constant (1 − )–is equal to the stream of future div-

idend growth discounted at the appropriate rate, which reflects the

risk free rate plus risk premium required to hold risky assets, + ≡
 + (+ − ).5 Therefore, for long investment horizons, economet-

ric methods may hope to infer from the data two different types of

“information”: information concerning the forecasts of future (continu-

ously compounded) dividend growth rates, i.e., ∆+1 ∆+2 ..., ∆+
as  −→ ∞, which are measures of the cash-flows paid out by the
risky assets (e.g., how well a company will do); information concern-

ing future discount rates, and in particular future risk premia, i.e.,

(+1 − ), (+2 − ) ..., (+ − ) as  −→ ∞. Note that, under
the null hypothesis of constancy of returns, the volatility of the price

dividend ratio should be completelyt explained by that of the dividend

process. The empirical evidence is strongly against this prediction (see

the Shiller(1981) and Campbell-Shiller(1987)).

If we decompose future variables into their expected component and

the unexpected one (an error term) we can write the relationship between

the dividend-yield and the returns one-period ahead and over the long-

horizon as follows:

4This assumption means that as the horizon grows without bounds, the log price-

dividend ratio (hence, the underlying price-dividend ratio) may grow without bounds,

but this needs to happen at a speed that is inferior to 1  1 so that when +−
+ is discounted at the rate 

 the limit of the quantity  (+ − +) is zero.
5Here we have assumed that the risk-free interest rate is approximately constant.

We shall see that, at least as a first approximation, this is an assumption that holds

in practice.
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+1 = +  (+1 − +1) +∆+1 − ( − ) + 

+1 + ∆

+1

X
=1

−1+ =


1− 
+

X
=1

−1 (∆+)− ( − ) +  (+ − +)+



+ +

X
=1

−1∆
+

These two expressions illustrate that when the price dividends ratio

is a noisy process, such noise dominates the variance of one-period re-

turnsand the statistical relation between the price dividend ratio and one

period returns is weak. However, as the horizon over which returns are

defined gets longer, noise tends to be dampened and the predictability

of returns given the price dividend ratio increases.

9.2 Bond Returns

The relationship between price and yield to maturity of a constant

coupon () bond is given by:

 
 =

¡
1 +  



¢ + ¡
1 +  



¢2 + +
1 + 

(1 +  )
− 

When the bond is selling at par, the yield to maturity is equal to the

coupon rate. To measure the length of time that a bondholder has

invested money for we need to introduce the concept of duration:


 =



(1+ 
 )

+ 2 

(1+ 
 )

2 + + ( − ) 1+

(1+ )
−

 


=


−P
=1



(1+ 
 )

 +
(−)

(1+ )
−

 




Note that when a bond is floating at par we have:


 =  



−X
=1

¡
1 +  



¢ + ( − )

(1 +  )
−

=  


³
( − ) 1

1+ 


− ( − )− 1
´

1

(1+ 
 )

−+1 +
1

1+ 
³

1− 1
1+ 



´2 +
( − )

(1 +  )
−

=
1− ¡1 +  



¢−(−)
1− ¡1 +  



¢−1 
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because when ||  1
X

=0

 =
(− − 1) +1 + 

(1− )
2



Duration can be used to find approximate linear relationships be-

tween log-coupon yields and holding period returns. Applying the log-

linearization of one-period returns to a coupon bond we have:

 −  = −+1 +  +  (+1 − )

+1 =  + +1 + (1− ) −  

When the bond is selling at par,  = (1 + )
−1
=
¡
1 +  



¢−1
. Solving

this expression forward to maturity delivers:

+1 = 



 −

¡


 − 1
¢
+1 

9.3 A simple model of the term structure

Consider the relation between the return on a riskless one period short-

term bill,  and a long term bond bearing a coupon  the one-period

return on the long-term bond is a non-linear function of the log yield

to maturity   Shiller (1979) proposes a linearization which takes

duration as constant and considers the following approximation in the

neighborhood  = +1 =
_
 = :

 '  − ( − 1) +1
 =

1− −−1

1− 
=

1

1− 

 =
n
1 +

_

£
1− 1(1 + _

)−−1
¤−1o−1

lim
−→∞

 =  = 1(1 +
_
)

solving this expression forward we generate the equivalent of the

DDG model in the bond market:

 =

−−1X
=0

 (1− )+ + −−1

In this case, by equating one-period risk-adjusted returns, we have:



∙
 − +1

1− 
| 
¸
=  +  (28)
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From the above expression, by recursive substitution, under the ter-

minal condition that at maturity the price equals the principal,we obtain:

 = ∗ +[Φ | ] = 1− 

1− −

−−1X
=0

[+ | ] +[Φ | ] (29)

where the constant Φ is the term premium over the whole life of

the bond:

Φ =
1− 

1− −

−−1X
=0

+

For long-bonds, when  −  is very large, we have :

 = ∗ +[Φ | ] = (1− )

−−1X
=0

[+ | ] +[Φ | ]

Subtracting the risk-free rate from both sides of this equation we

have:

 =  −  =

−1X
=1

[∆+ | ] +[Φ | ]

= ∗ +[Φ | ]

10 Linearized Present Value models for Consump-

tion

The accumulation equation for aggregate wealth may be written as:

+1 = (1 ++1) ( − ) (30)

Define +1 = log (1 ++1), and use lowercase letters to denote

log variables throughout. As LL we follow Campbell and Mankiw (1989)

and assume that the consumption—aggregate wealth ratio is stationary.

In this case the budget constraint may be approximated by taking a

first-order Taylor expansion of equation (30)  to obtain

∆+1= +1 +  +

µ
1− 1



¶
( − ) (31)

=1− exp
³_____
− 

´
where  is a constant of normalization, not relevant for the problem

at hand.
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By solving (31)forward, we have :

 −  = 

" ∞X
=1

 (+ −∆+)

#
+



1− 
(32)

LL point out that (32) shows that the consumption—wealth ratio is

a function of expected future returns to the market portfolio in a broad

range of optimal consumption models, so they concentrate in finding a

proxy for − and in assessing its performance for forecasting market

returns.

To illustrate how we take equation (??) to the data note that, fol-

lowing Campbell(1996), we approximate the log of total wealth as:

 =  + (1− )

where  is a constant of linearization, equal to the average share of

asset holdings in total wealth,  is the log of asset holdings and  is the

log of human capital. While we have available data for financial wealth,

the measurement of  is not immediate. To find an empirical counter-

part of this variable consider that labour income can be interpreted as

a dividend on human capital (see Julliard(2004)):

1 ++1 =
+1 + +1



Log-linearizing this relation around the steady state human capital-

labor income ratio (

= 1


− 1) we have:

+1 = (1− )  +  (+1 − +1)− ( − ) +∆+1

By solving this relation forward and by imposing the transversality

condition we have:

 =  +

∞X
=1

−1 (∆+ − +) + 

so the log of human capital to income ratio is determined by dis-

counted sum of future labour income growth and human capital returns.

Consistently with our linearization for wealth, the total return on

wealth can be approximated by:

 =  + (1− )  + 

we decompose the unobservable  into a part correlated with 
and a part orthogonal to it:
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 =  + 

By substituting all these relationships in the optimality condition we

have:

 −  − (1− ) =(1− )

" ∞X
=1

 ( + (1− )) +

#
+  +

∞X
=1


−1
 (∆+ − +) +  (33)

=

∞X
=1


−1
 +

where  is an unobservable stationary component.

11 Cointegration and Present Value Models

CS tests the ET6 by considering the case of the risk free rate and a very

long term bond.

 = ∗ +[Φ | ] = (1− )

−−1X
=0

[+ | ] +[Φ | ]

Subtracting the risk-free rate from both sides of this equation we

have:

 =  −  =

−1X
=1

[∆+ | ] +[Φ | ]

= ∗ +[Φ | ]

which could be re-written in terms of spread between long and short-

term rates,  =  −  :

 = ∗ =
−1X
=1

[∆+ | ] (34)

6In fact CS use de-meaned-variables, that is equivalent to test a weak form of

the Expectations Theory, in the sense that de-meaning eliminates a constant risk

premium.
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(34) shows that a necessary condition for the ET to hold puts con-

straints on the long-run dynamics of the spread. In fact, the spread

should be stationary being a weighted sum of stationary variables. Obvi-

ously, stationarity of the spread implies that, if yields are non-stationary,

they should be cointegrated with a cointegrating vector (1,-1). However,

the necessary and sufficient conditions for the validity of the ET impose

restrictions both on the long-run and the short run dynamics.

Assuming7 that  and  are cointegrated with a cointegrating vec-

tor (1,-1), CS construct a bivariate stationary VAR in the first difference

of the short-term rate and the spread :

∆ = ()∆−1 + ()−1 + 1
 = ()∆−1 + ()−1 + 2

(35)

Stack the VAR as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆




∆−+1





−+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1    1   
1   0 0   0

0   0 0   0

0  1 0 0   0

1    1   
0   0 1   0

0   0 0   0

0   0 0  1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆−1




∆−
−1




−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1




0

2




0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

This can be written more succinctly as:

 = −1 +  (37)

The ET null puts a set of restrictions which can be written as :

0 =
−1X
=1

00 (38)

where 0 and 0 are selector vectors for  and ∆ correspondingly ( i.e.

row vectors with 2p elements, all of which are zero except for the p+1st

element of 0 and the first element of 0 which are unity). Since the
above expression has to hold for general , and, for large T, the sum

converges under the null of the validity of the ET, it must be the case

that:

0 = 0( − )−1 (39)

7In fact, the evidence for the restricted cointegrating vector which constitutes a

necessary condition for the ET to hold is not found to be particularly strong in the

original CS work.
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which implies:

0( − ) = 0 (40)

and we have the following constraints on the individual coefficients of

VAR(??):

{ = −∀}  {1 = −1 + 1}  { = −∀ 6= 1} (41)

The above restrictions are testable with a Wald test. By doing so

using US data between the fifties and the eighties Campbell and Shiller

(1987) rejected the null of the ET. However, when CS construct a the-

oretical spread ∗  by imposing the (rejected) ET restrictions on the
VAR they find that, despite the statistical rejection of the ET, ∗ and
 are strongly correlated.

Things look very different for the stock market when the dynamic

dividend growth model with constant rates of return is considered. In

this case we have:

( − )
∗
=

X
=1

−1 (∆+)

and the variable ( − )
∗
can be obtained by imposing the appropri-

ate cross-equation restrictions on a bivariate VAR for the dividend-yield
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and dividend growth. The relation between the actual and the "theory-

consistent" price-dividends looks much different than what it had been

obtained for the bond market. This result is consistent from the evidence

of predictive regressions relating the dividend price to future returns

rather than to future dividend growth.

12 Macro. Model Evaluation of a Simple DSGE

Model

We consider a small New Keynesian DSGE model of the economy which

features a representative household optimizing over consumption, real

money holdings and leisure, a continuum of monopolistically competi-

tive firms with price adjustment costs and a monetary policy authority

which sets the interest rate. Furthermore, the model is driven by three

exogenous processes which determine government spending, , the sta-

tionary component of technology, , and the policy shock, .

A full description of the model can be found in Woodford (2003).

Here, we mainly focus on its log-linear representation which takes each

variable as deviations from its trend. The model has a deterministic

steady state with respect to the de-trended variables: the common com-

ponent is generated by a stochastic trend in the exogenous process for

technology. The model follows Del Negro and Schorfheide (2004) (hence-
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forth, DS) and it reads

̃=̃+1 − 1

(̃ −̃+1) + (1− )̃ + 

1


̃ (42)

̃=̃+1 +  (̃ − ̃) (43)

̃= ̃−1 + (1− )(1̃ + 2̃) +  (44)

̃= ̃−1 +  (45)

̃=  ̃−1 +  (46)

where ̃ is the output gap, ̃ is the inflation rate, ̃ is the short-

term interest rate and ̃ and ̃ are two AR(1) stationary processes for

government and technology, respectively.

The first equation is an intertemporal Euler equation obtained from

the households’ optimal choice of consumption and bond holdings. There

is no investment in the model and so output is proportional to consump-

tion up to an exogenous process that can be interpreted as time-varying

government spending. The net effects of these exogenous shifts on the

Euler equation are captured in the process ̃ The parameter 0    1

is the households’ discount factor and   0 is the inverse of the elastic-

ity of intertemporal substitution. The second equation is the forward-

looking Phillips curve which describes the dynamics of inflation and 

determines the degree of the short-run trade-off between output and

inflation.

The third equation describes the behavior of the monetary author-

ity. The central bank follows a nominal interest rate rule by adjusting

its instrument to deviations of inflation and output from their respective

target levels. The shock  can be interpreted as unanticipated devia-

tion from the policy rule or as policy implementation error. The set of

structural shocks is thus  = (  )
0
which collects technology,

government and monetary shocks.

The model needs to be solved and this can be done by applying the

algorithm proposed by Sims (2002). Define the vector of variables as

̃ =
¡
̃ ̃ ̃ ̃

∗
 ̃ ̃̃+1̃+1

¢
and the vector of shocks as  =¡

  
¢
 Therefore the previous set of equations, (42) - (46), can

be recasted into a set of matrices (Γ0Γ1 ΨΠ) accordingly to the

definition of the vectors ̃ and 

Γ0̃ =  + Γ1̃−1 +Ψ +Π (47)

where +1, such that +1 ≡  (+1 −+1) = 0, is the expecta-

tions error8.

8See Appendix A for a detailed derivation.
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As a solution to (47), we obtain the following policy function

̃ =  () ̃−1 + ()  (48)

and in order to provide the mapping between the observable data and

those computed as deviations from the steady state of the model we set

the following measurement equations as in DS

∆ ln= ln  +∆̃ + ̃ (49)

∆ ln= ln
∗ + ̃ (50)

ln=4[(ln
∗ + ln∗) + ̃] (51)

which can be also cast into matrices as

 = Λ0 () + Λ1 () ̃ +  (52)

where  = (∆ ln∆ ln ln)
0
,  = 0 and Λ0 and Λ1 are de-

fined accordingly. For completeness, we write the matrices  , , Λ0
and Λ1 as a function of the structural parameters in the model,  =¡
ln  ln∗ ln ∗    1 2       

¢0
: such a formulation

derives from the rational expectations solution.

The evolution of the variables of interest, , is therefore determined

by (48) and (52) which impose a set of restrictions across the parame-

ters on the moving average (MA) representation. Given that the MA

representation can be very closely approximated by a finite order VAR

representation, DS propose to evaluate the DSGE model by assessing

the validity of the restrictions imposed by such a model with respect to

an unrestricted VAR representation. The choice of the variables to be

included in the VAR is however completely driven by those entering in

the DSGEmodel regardless of the statistical goodness of the unrestricted

VAR.
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