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Abstract

Optimal transport and Wasserstein distances are flourishing in many scientific fields as
a means for comparing and connecting random structures. Here we pioneer the use of an
optimal transport distance between Lévy measures to solve a statistical problem. Dependent
Bayesian nonparametric models provide flexible inference on distinct, yet related, groups of
observations. Each component of a vector of random measures models a group of exchange-
able observations, while their dependence regulates the borrowing of information across
groups. We derive the first statistical index of dependence in [0, 1] for (completely) random
measures that accounts for their whole infinite-dimensional distribution, which is assumed
to be equal across different groups. This is accomplished by using the geometric properties
of the Wasserstein distance to solve a max-min problem at the level of the underlying Lévy
measures. The Wasserstein index of dependence sheds light on the models’ deep structure
and has desirable properties: (i) it is 0 if and only if the random measures are independent;
(ii) it is 1 if and only if the random measures are completely dependent; (iii) it simultane-
ously quantifies the dependence of d ≥ 2 random measures, avoiding the need for pairwise
comparisons; (iv) it can be evaluated numerically. Moreover, the index allows for informed
prior specifications and fair model comparisons for Bayesian nonparametric models.

Keywords: Bayesian nonparametrics | Index of dependence | Lévy measure | Random measure |
Wasserstein distance.

1 Introduction
Complex phenomena often yield data from different but related sources, which are ideally suited
to Bayesian modeling because of its inherent borrowing of information. In a nonparametric
setting this is regulated by the dependence between random measures, which provide the main
building block for many dependent priors. This is witnessed by the multitude of contributions in
the literature; see MacEachern (1999, 2000) for pioneering ideas and Quintana et al. (2022) for a
recent review. The unknown distribution P̃i of each group of observations Xi = (Xi,1, . . . , Xi,ni
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is flexibly modeled as P̃i = t(µ̃i), where µ̃i is a random measure and t is a suitable transforma-
tion that typically maps it to a space of random probability measures. Notable examples, for
which µ̃i is a completely random measure, include normalization for random probability mass
functions (Regazzini et al., 2003), kernel mixtures for densities (Lo, 1984) and for hazards (Dyk-
stra and Laud, 1981; James, 2005), exponential transformations for survival functions (Doksum,
1974) and cumulative transformations for cumulative hazards (Hjort, 1990). When a priori the
distribution for each group is assessed to be similar, it is often convenient to borrow information
across different groups. One can allow for different levels of borrowing through the dependence
structure of the random measures µ̃ = (µ̃1, . . . , µ̃d), which regulates the interaction among d ≥ 2
groups of observations; see, e.g., Nguyen (2016); Camerlenghi et al. (2019). This class of models
is summarized as Xi|µ̃ ∼ t(µ̃i) independently for i = 1, . . . , d, where µ̃ has all equal marginal
distributions. One may distinguish two extreme situations: (a) when the random measures are
completely dependent, that is, µ̃1 = · · · = µ̃d almost surely, there is no distinction between the
different groups. In such case the observations are exchangeable, in the sense that their law is
invariant with respect to permutations not only within the same group but also across different
groups; (b) when the random measures are independent, the groups do not interact and consist
of d independent groups of exchangeable observations. When performing Bayesian inference on
this class of models, different levels of prior interaction between groups entail smaller or greater
borrowing of information in the posterior update, with a crucial impact on the estimates for the
distribution of each group. One should thus enable the practitioner to choose the hyperparame-
ters of the prior for µ̃ so to include the desired level of interaction between groups. This leads to
the need for a precise measure of dependence between d random measures that simultaneously
quantifies the discrepancy from both extreme situations of exchangeability and independence.
Our proposal is rooted in the theory of optimal transport and Wasserstein distances, which are
flourishing in many scientific fields as a means to compare and connect different random struc-
tures (Santambrogio, 2015; Villani, 2003; Panaretos and Zemel, 2019). We take three conceptual
steps: 1) For most completely random measures the density of µ̃i(A) is intractable and the dis-
tribution of µ̃ is specified in an indirect way in terms of a multivariate Lévy measure, which
characterizes its distribution. In order to have closed form expressions for a measure of depen-
dence the first key idea is thus to define it at the level of the Lévy measures. 2) We measure
the dependence as distance from exchangeability, which corresponds to maximal dependence,
by resorting to an extended Wasserstein distance between Lévy measures. This geometric dis-
tance was introduced by Figalli and Gigli (2010) in a different context and it remarkably allows
for the comparison between measures with different and possibly infinite mass. We unravel key
properties of this distance that allow one to find the optimal extended coupling for the distance
from exchangeability, reducing its evaluation to a one-dimensional integral that can be computed
numerically. 3) We use the distance to quantify the discrepancy with respect to the other ex-
treme, independence, by proving that it achieves the maximum distance from exchangeability.
This pivotal result requires to solve an intruiguing max-min problem whose solution leverages
the dual formulation of the extended Wasserstein distance. There are two crucial consequences:
first, once we find the maximum of the distance from exchangeability, we are able to renormalize
the distance and obtain an index between 0 and 1; second, since the index is equal to 0 if and only
if the random measures are independent and equal to 1 if and only if they are completely depen-
dent, the Wasserstein index of dependence provides an overall measure of discrepancy from both
extremes.

The Wasserstein distance has been used to measure the dependence on Euclidean or Polish
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spaces in several interesting settings; see Nies et al. (2021) for an up-to-date account. Specifically,
both Nies et al. (2021) and Mordant and Segers (2022) propose to define an index of dependence
by finding the supremum of the Wasserstein distance from an extremal dependence structure,
which in their works (as in many others) is independence. Measuring the distance from indepen-
dence allows to be more flexible in the definition of maximal dependence for a random vector
(X, Y ), going beyond almost sure equality (Y = X a.s.). This is especially useful when the
marginal distributions of X and Y differ: in such case the definition of maximal dependence usu-
ally boils down to Y = f(X) a.s., for f in some class of functions. However, there is no universal
consensus on which class of functions to use. As effectively underlined in Nies et al. (2021), such
choice is context-specific and should rather be made on a case-by-case basis. Arguably, the most
common classes found in the literature are: the whole set of measurable functions, the set of
monotonic functions, and the set of linear functions (interestingly, Nies et al. (2021) define an
index that is maximized on the set of α-Lipschitz functions). While this level of flexibility may
be valuable in many settings, in our context not only it is not necessary, since we are considering
equal marginal distributions, but it could also be harmful in future extensions to the case with
unequal marginals. Indeed, our notion of complete dependence for random measures is rooted in
the full homogeneity of the underlying groups of observations (exchangeability), which requires
the random measures to be almost surely equal.

A similar idea to the one of the present contribution can be found in Catalano et al. (2021),
where dependence is measured in terms of distance from exchangeability at the level of two ran-
dom measures. This precludes exact calculations (only upper bounds are available) and ultimately
does not provide any notion of discrepancy from independence. The distance from exchangeabil-
ity alone can still be useful for relative comparisons between dependence structures (“µ̃1 is more
dependent than µ̃2") but prevents absolute quantifications of dependence (“µ̃ has an intermedi-
ate dependence structure") and the assessment of closeness to independence. Summing up, our
Wasserstein index of dependence IW crucially overcomes this limitation and has the following
properties: (i) it is equal to 0 if and only if the random measures are independent; (ii) it is equal
to 1 if and only if the random measures are completely dependent; (iii) it simultaneously quan-
tifies the dependence of d ≥ 2 random measures, avoiding the need for pairwise comparisons;
(iv) since it is defined at the level of the Lévy measures, it is possible to evaluate it numerically.
An important additional merit of the proposed index is that it allows for a principled comparison
of the inferential performance of different models: by tuning their prior parameters to achieve
the same value of the index of dependence, one can make a fair assessment of their posterior
performance under different scenarios.

The paper is structured as follows. In Section 2 we define the Wasserstein index of depen-
dence and state our main result (Theorem 1), together with some intuition on both the statistical
and the mathematical problems we address in this work. In Section 3 we define the extended
Wasserstein distance between Lévy measures and highlight some important novel properties that
provide further insights on this distance and that are needed to prove the results in Section 4.
Here, we focus on the theoretical findings behind the evaluation of the index, which remarkably
recover an explicit expression for the optimal transport coupling in this multivariate setting (The-
orem 5). In Section 5 we evaluate the Wasserstein index of dependence in notable models in
the literature, namely additive random measures (Müller et al., 2004; Lijoi et al., 2014; Lijoi and
Nipoti, 2014) and compound random measures (Griffin and Leisen, 2017, 2018; Riva-Palacio
and Leisen, 2021). We also investigate its behavior in the generic setup of multiple comonotone
replicates of independent components. Finally in Section 6 we perform a simulation study to
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showcase the relevance of the index to conduct principled and fair model comparisons. In the
Supplementary Material we describe our proof techniques and the underlying optimal transport
problem, which we believe are of interest beyond the present setup with natural applications to
the theory of partial differential equations and of Lévy processes.

2 Main result
Most nonparametric models are built on random structures taking values on spaces of measures.
Among this large class, completely random measures (Kingman, 1967) stand out for their ability
of combining analytical tractability with a large support. We recall that a random measure µ̃ is
completely random whenever its evaluations {µ̃(A1), . . . , µ̃(An)} on pairwise disjoint sets are
mutually independent random variables on [0,+∞). Here and after, we use the term set to
indicate a Borel set on a generic Polish space, and the symbol ∼ to underline the randomness
of the measure. Following Catalano et al. (2021), we refer to a completely random vector as its
multivariate extension.

Definition 1. A vector of random measures µ̃ = (µ̃1, . . . , µ̃d) is a completely random vector
(CRV) if for any n ≥ 2, and for any family of pairwise disjoint sets {A1, . . . , An}, the set-wise
evaluations {µ̃(A1), . . . , µ̃(An)} are mutually independent random vectors on [0,+∞)d.

The definition remarkably entails that µ̃ =
∑∞

i=1(J
1
i , . . . , J

d
i )δYi are almost surely discrete

measures with jumps {(J1
i , . . . , J

d
i )} and common atoms {Yi} (up to a potential deterministic

drift). CRVs often arise in Bayesian nonparametrics to model the interaction across distinct
groups of observations. Prior specifications are typically based on CRVs without fixed atoms and
with equal marginals, where the jumps and the atoms are independent (homogeneity) and every
random measure has an infinite number of jumps on bounded sets (infinite activity). We focus on
this class and restrict our attention to CRVs with finite second moments, that is E(∥µ̃(A)∥2) <
+∞ for every set A, where we have used the compact notation µ̃(A) = (µ̃1(A), . . . , µ̃d(A)).

The goal of our work is to provide a tractable index of dependence for CRVs. Since these
multivariate random quantities live in a non-Euclidean space, a natural way to define the index
is by introducing a distance D between the laws of CRVs. First, we highlight two extreme
dependence structures: (a) complete dependence (or comonotonicity) µ̃co, where µ̃1 = · · · =
µ̃d almost surely, (b) independence µ̃⊥, where {µ̃1, . . . , µ̃d} are independent random measures.
Then, we define an index ID between 0 and 1 in terms of distance from complete dependence:

ID(µ̃) = 1− D(µ̃, µ̃co)2

supµ̃′ D(µ̃′, µ̃co)2
, (1)

where the supremum is taken over all CRVs µ̃′ with the same marginal distributions as µ̃, that is,
µ̃′
i = µ̃i in distribution for i = 1, . . . , d. Here, and in the sequel, we use the notation D(µ̃, µ̃co)

to indicate the distance between the laws of µ̃ and µ̃co. We observe that the non-degeneracy of
distances entails that ID(µ̃) = 1 if and only if µ̃ = µ̃co in distribution. In order to evaluate
this index in practice, we need to find a tractable distance D and to use its geometry to find the
supremum of the distance from complete dependence. The underlying intuition is that the supre-
mum should be achieved under independence and that the distance from any other dependence
structure should be strictly smaller. We are able to make this intuition rigorous by building D on
the Wasserstein distance, as defined below in (3). This leads to our main result which we now
state.
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Theorem 1. Let µ̃ be a homogeneous infinitely active CRV without fixed atoms, with equal
marginals and finite second moments. The Wasserstein index of dependence IW defined in (1)
with D equal to (3) satisfies the following properties:

(i) IW(µ̃) ∈ [0, 1];

(ii) IW(µ̃) = 1 if and only if µ̃ = µ̃co in distribution;

(iii) IW(µ̃) = 0 if and only if µ̃ = µ̃⊥ in distribution.

Remark 1. By dropping the infinite activity assumption, one can prove that (i) and (ii) continue to
hold, whereas (iii) is replaced by (iii’) IW(µ̃) = 0 if µ̃ = µ̃⊥ in distribution. Details are provided
in the proof of Theorem 1.
Remark 2. When defining the index (1), D(µ̃, µ̃co)2 can be replaced by D(µ̃, µ̃co)p for any p > 0,
without compromising any of our main findings. We fix p = 2 because of an intuitive linearity
property on the space of measures highlighted in Remark 4 and due to the use of the extended
Wasserstein distance of order 2, as will be clear in Section 3. This allows one to draw a parallel
with linear correlation in Section 5.1.

Before considering technical aspects, let us first provide some intuition on the definition of a
tractable distance D on the laws of CRVs. We observe that thanks to the independence on disjoint
sets, the distribution of a CRV µ̃ is characterized by the set-wise evaluations {µ̃(A)}, where A
spans over all sets. The definition of D is then achieved through two conceptual steps. Since
µ̃(A) takes values in Rd, the first step consists in reducing the dimensionality of the problem by
expressing the distance as a supremum over distances between finite-dimensional random objects,
D(µ̃1, µ̃2) = supADd(µ̃

1(A), µ̃2(A)), where Dd indicates a distance between the laws of set-
wise evaluations. The second step consists in choosing a distance Dd that allows for numerical
evaluations. To this end, it is worth underlining that the density and the cumulative distribution
function of µ̃(A) are usually intractable and its (multivariate infinitely divisible) distribution is
specified through a Lévy intensity νA(·) = α(A)ν(·) for some base measure α with finite mass
and some Lévy measure ν, which characterizes the distribution of µ̃(A) through its Laplace
transform. More specifically, let Ωd = [0,+∞)d \ {0}. Then νA is the only measure on Ωd that
satisfies

− log
(
E
(
e−λµ̃(A)

))
=

∫

Ωd

(1− e−λs)νA(ds), (2)

for every λ ∈ [0,+∞)d and for every set A. For this reason, the most natural choice is to define
the distance directly on the Lévy intensities.
When restricting to Lévy intensities, the distance should allow for informative comparisons be-
tween measures with (i) unbounded mass, which is always the case under infinite activity, (ii)
different support, which is crucial in our context since the Lévy intensity under complete depen-
dence has a degenerate support on the bisecting line, see Figure 1. We show that the extended
Wassertstein distance W∗ (Definition 2 below), introduced by Figalli and Gigli (2010) and spe-
cialized to Lévy measures in Guillen et al. (2019), remarkably satisfies both these properties.
This leads to the study of the following distance between the laws of CRVs:

D(µ̃1, µ̃2) = sup
A

W∗(ν
1
A, ν

2
A), (3)

where ν1A and ν2A are the Lévy intensities of the corresponding CRVs, uniquely defined by (2),
and A spans over all sets.
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3 Wasserstein distance between Lévy measures
In this section we introduce the extended Wasserstein distance between Lévy measures, highlight
its relation to the classical Wasserstein distance between probability measures and state some
key properties underlying the Wasserstein index of dependence. We refer to the supplement for
additional results on this optimal transport problem and in particular for the dual formulation,
which is pivotal in the proof of Theorem 1. We first introduce the classical framework and refer
to Santambrogio (2015); Villani (2003); Panaretos and Zemel (2019) for exhaustive accounts.

The definition of Wasserstein distance starts with the notion of coupling. To this end, for a
point (s, s′) ∈ R2d, we denote by π1(s, s′) = s ∈ Rd and π2(s, s′) = s′ ∈ Rd its projections.
Moreover, if µ is a measure on X and f : X → Y, f#µ stands for the pushforward of µ by
f , that is, the measure on Y defined by (f#µ)(A) = µ(f−1(A)). If ν1, ν2 are two probability
measures on Rd, a coupling γ is a probability measure on R2d such that πi#γ = νi for i = 1, 2.
Equivalently, it can be seen as a law of a random vector (X, Y ) such that X ∼ ν1 and Y ∼ ν2.
Let Γ(ν1, ν2) be the set of couplings. If ν1, ν2 are probability measures on Rd with finite second
moments, the classical Wasserstein distance is defined as

W(ν1, ν2)2 = inf
γ∈Γ(ν1,ν2)

∫∫

R2d

∥s− s′∥2 dγ(s, s′) = inf
X∼ν1, Y∼ν2

E
[
∥X − Y ∥2

]
. (4)

There always exists a coupling γ∗ that realizes the infimum in (4) and it is termed an optimal
transport coupling. If there exists T : Rd → Rd such that γ∗ = (id, T )#ν1, T is termed op-
timal transport map and the Wasserstein distance can be conveniently expressed in the form
W(ν1, ν2)2 =

∫
∥s− T (s)∥2dν1(s).

A priori this definition requires ν1 and ν2 to be probability measures, or at least to have finite
and equal mass. Following Figalli and Gigli (2010) and Guillen et al. (2019), we now extend it
to measures with different or infinite mass. Let Ωd = [0,+∞)d \ {0} and let M2(Ωd) denote the
set of positive Borel measures ν on Ωd with finite second moments, that is

M2(Ωd) =

{
ν positive Borel measure on Ωd s.t. M2(ν) =

∫

Ωd

∥s∥2dν(s) < +∞
}
.

For a measure γ ∈ M2(Ω2d) the projections πi#γ are measures on [0,+∞)d. In the following
definition we need to consider their restrictions to Ωd, which we denote as πi#γ

∣∣
Ωd

.

Definition 2 (Extended Wasserstein distance). Let ν1, ν2 ∈ M2(Ωd) and let Γ(ν1, ν2) be the set
of γ ∈ M2(Ω2d) such that π1#γ

∣∣
Ωd

= ν1 and π2#γ
∣∣
Ωd

= ν2. We define

W∗(ν
1, ν2)2 = inf

γ∈Γ(ν1,ν2)

∫∫

Ω2d

∥s− s′∥2 dγ(s, s′). (5)

“Extended” couplings Γ(ν1, ν2) are needed to prove the existence of an optimal coupling,
that is, to prove that the infimum is attained in (5). To give an intuition to the reader, couplings
γ ∈ Γ(ν1, ν2) are defined on Ω2d, which is strictly larger than Ωd × Ωd as it includes {0} × Ωd

and Ωd × {0}. Moreover, the mass that γ puts on {0} × Ωd only contributes to π2#γ
∣∣
Ωd

and not
to π1#γ

∣∣
Ωd

because we look at the marginal π1#γ, a priori defined on [0,+∞)d but we restrict it
to Ωd. Intuitively, the point {0} behaves like an infinite reservoir and sink of mass: γ(Ωd × {0})
(resp. γ({0} × Ωd)) correspond to the mass exchanged by ν1 (resp. ν2) with this reservoir. We
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define optimal transport couplings in Γ(ν1, ν2) and optimal transport maps T : Ωd → Ωd as for
the classical Wasserstein distance. In the Supplementary Material we provide a characterization
of extended optimal couplings in terms of c-cyclically monotone support, which establishes an
interesting link with the couplings studied in de Valk and Segers (2019) in the context of tail
limits of regularly varying probability measures.

Let us further explain the link between this distance and the work of Catalano et al. (2021).
Indeed, in the latter the authors introduce a distance based only on the Wasserstein distance
between setwise evaluations of the CRV, but also provide an upper bound in terms of a quantity
depending on Lévy measures (see Theorem 5 therein). We recover this result by a simpler proof
in (7) below, which brings to a better understanding of our distance. We start from the following
alternative expression of our extended Wasserstein distance.

Proposition 2. Let µ̃i satisfy the assumptions of Theorem 1 and let νiA indicate its Lévy intensities
as in (2), for i = 1, 2. Then for any set A,

W∗(ν
1
A, ν

2
A)

2 = min
(µ̂1,µ̂2)

E(∥µ̂1(A)− µ̂2(A)∥2),

where the minimum is taken over all homogeneous CRV (µ̂1, µ̂2) such that µ̂i = µ̃i in distribution
for i = 1, 2.

This proposition immediately yields an upper bound on the Wasserstein distance between the
laws of the setwise evaluations µ̃1(A), µ̃2(A):

W(µ̃1(A), µ̃2(A))2 ≤ W∗(ν
1
A, ν

2
A)

2, (6)

as the quantity in the left hand side corresponds to a minimum taken among all couplings between
the random vectors µ̃1(A), µ̃2(A), while the right hand side restricts to couplings that derive from
the law of a joint CRV.

Remark 3. The inequality in (6) is generically strict, clearly implying that the distance in Catalano
et al. (2021) and our proposal are different. Indeed, for a homogeneous CRV (µ̂1, µ̂2) and a setA,
the coupling (µ̂1(A), µ̂2(A)) is not deterministic (that is, µ̂2(A) is not a deterministic function
of µ̂1(A)). Thus by Brenier’s theorem (Villani, 2003, Theorem 2.12) it cannot be the optimal
coupling between the law of µ̃1(A), µ̃2(A).

The next step to recover the result of Catalano et al. (2021) is a rewriting of the extended
Wasserstein distance as a limit of classical Wasserstein distances, at least under the assumption
of infinite mass.

Proposition 3. Let ν1, ν2 ∈ M2(Ωd) be Lévy measures with finite second moments such that
ν1(Ωd) = ν2(Ωd) = +∞. For each r > 0, assume that ν1r , ν

2
r are two measures with finite mass

r such that for each set B, νir(B) → νi(B) increasingly as r → +∞. Then

W∗(ν
1, ν2) = lim

r→+∞

√
rW

(
ν1r
r
,
ν2r
r

)
.

Remark 4. The factor
√
r comes from the 1/2-homogeneity of the Wasserstein distance with

respect to the mass. Similarly, one can easily see that W∗(aν1, aν2)2 = aW∗(ν1, ν2)2 for any
a > 0. This has an important consequence in our context because of the homogeneity of CRVs.
Indeed, the Lévy intensities satisfy νA(·) = α(A)ν(·) for some base measure α with total mass
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ᾱ and some Lévy measure ν. Thus W∗(ν1A, ν
2
A)

2 = α(A)W∗(ν1, ν2)2 and as an immediate, yet
remarkable consequence its supremum is achieved on the total space. This implies that

D(µ̃1, µ̃2)2 = ᾱW∗(ν
1, ν2)2

and the base measure α only acts as a scaling factor through its total mass ᾱ. In particular, when
normalizing the distance to obtain the index of dependence, the scaling factor cancels out (see
(8) below) and the base measure does not impact the value of the index. This corresponds to
a desirable intuitive property, since all the dependence is introduced at the level of the jumps,
whose joint distribution does not depend on α.

Putting together bound (6) and Proposition 3, as well as the scaling of Remark 4, we obtain
that for every set A,

W(µ̃1(A), µ̃2(A)) ≤
√
α(A) lim

r→+∞
1√
r
W
(
ν1r
r
,
ν2r
r

)
, (7)

which is nothing else than Theorem 5 in Catalano et al. (2021), but now the right hand side has a
much neater interpretation.

The last key result that we state is that, similarly to the classical case, the optimal trans-
port coupling for measures lying on the one-dimensional axis is the unique non-decreasing one.
Moreover for atomless measures with infinite mass, as in our context, we also find the expression
of the optimal transport map. Recall that Ω1 = (0,+∞). For a measure ν ∈ M2(Ω1) with finite
second moment we define its tail integral Uν : x ∈ Ω1 7→ ν((x,+∞)) and its generalized inverse
U−1
ν : t 7→ inf{x ≥ 0 : Uν(x) ≤ t}. If Uν is injective, it coincides with the usual inverse.

Moreover, we denote by Leb(Ω1) the Lebesgue measure on Ω1.

Proposition 4. Let ν1, ν2 ∈ M2(Ω1) be Lévy measures with finite second moment and let γ be
the restriction of (U−1

ν1 , U
−1
ν2 )#Leb(Ω1) to Ω2. Then γ ∈ Γ(ν1, ν2) is the unique optimal transport

coupling and

W∗(ν
1, ν2)2 =

∫ +∞

0

(U−1
ν1 (s)− U−1

ν2 (s))
2 ds.

Moreover, if ν1 is atomless and ν1(Ω1) ≥ ν2(Ω1), T (x) = U−1
ν2 (Uν1(x)) is an optimal transport

map.

4 Evaluation of the index
In this section we provide some guidance on how to use the properties of the extended Wasser-
stein distance in Section 3 to evaluate the Wasserstein index of dependence IW .
First of all it is worth underlying that both extreme dependence structures of complete depen-
dence (µ̃co) and independence (µ̃⊥), as defined in Section 2, are CRVs and therefore their law is
characterized by Lévy intensities νco

A = α(A)νco and ν⊥A = α(A)ν⊥, respectively, where α is a
finite measure, while νco and ν⊥ are Lévy measures. We recall that under complete dependence
the Lévy measure µ̃co is concentrated on the bisecting line, while under independence the Lévy
measure ν⊥ is supported on the axes, that is

dνco(s) =

(
d∏

i=2

dδs1(si)

)
dν(s1), dν⊥(s) =

d∑

j=1

(∏

i ̸=j
dδ0(si) dν(sj)

)
,
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s1

s2

s1

s2

Figure 1: Support of νco and ν⊥ in Ω2, respectively.

where δ is the Dirac measure and ν is the Lévy measure of the marginal completely random
measures. We refer to Figure 1 for intuition, and to Cont and Tankov (2004) and Catalano et al.
(2021) for a proof in the context of multivariate Lévy processes and of completely random vec-
tors, respectively.

Let now µ̃ be a homogeneous infinitely active CRV without fixed atoms, with equal marginals
and finite second moments, whose dependence we wish to quantify. As recalled in (2), µ̃ is
uniquely characterized by the Lévy intensities νA = α(A)ν, where α is a finite measure and ν is
a Lévy measure. Starting from (1), the homogeneity property highlighted in Remark 4 ensures
that

IW(µ̃) = 1− W∗(ν, νco)2

supν′ W∗(ν ′, νco)2
, (8)

where the supremum is taken over all Lévy measures on Ωd with the same marginals as ν, that
is, πi#ν = πi#ν

′ = ν̄ for i = 1, . . . , d. The evaluation of IW requires two steps: (i) to compute
the numerator, we need to find an optimal extended coupling between ν and νco, so to have an
integral expression for W∗(ν, νco); (ii) to compute the denominator, we have to find the supremum
of W∗(ν, νco) over all possible dependence structures of ν, which involves solving a highly non-
trivial max-min problem. The solutions to these two points are strongly intertwined. The integral
expression for W∗(ν, νco) is provided

in Theorem 5 below and has two benefits: on the one hand it allows one to compute the
numerator in explicit examples in the literature, and on the other it also provides the starting
point to solve (ii). In the proof of Theorem 1 we show that the supremum is a maximum and it
is achieved under independence, that is, W∗(ν, νco) ≤ W∗(ν⊥, νco) with equality if and only if
ν = ν⊥. To this end, we heavily rely on the dual formulation of W∗, whose details are provided
in the supplementary material. Finally, to compute the denominator, we have to evaluate the
distance between complete dependence and independence, which is done by resorting again to
Theorem 5.
Remark 5. In principle, the Lévy measure ν corresponding to a CRV µ̃ is a positive Borel measure
on Ωd with finite second moments near the origin. Because of infinite activity, ν has infinite mass.
Since µ̃ has fixed and equal marginal distributions, ν has d equal marginals, that is, πi#ν = ν for
i = 1, . . . , d, where ν is a 1-dimensional Lévy measure on Ω1. Since we restrict to µ̃ with finite
second moments, M2(ν) =

∫
Ω1
s2dν(s) is finite and thus ν belongs to M2(Ω1). In particular, the

Lévy measure ν ∈ M2(Ωd) has finite second moments.

Theorem 5. Let ν ∈ M2(Ωd) be a Lévy measure with finite second moments and equal marginals
πi#ν = ν for i = 1, . . . , d. Denote by ν+ = Σ#ν ∈ M2(Ω1), where Σ(s) =

∑d
i=1 si. Then

W∗(ν, ν
co)2 = 2dM2(ν)− 2

∫ +∞

0

U−1
ν+ (s)U

−1
ν (s) ds,

9



where M2(ν) =
∫
Ω1
s2dν(s). Moreover, when ν = ν⊥,

W∗(ν
⊥, νco)2 = 2d

(
M2(ν)−

∫ +∞

0

sU−1
ν (dUν(s)) dν(s)

)
.

When ν+ is atomless, Theorem 5 amounts to showing that s 7→ (T (
∑d

i=1 si), . . . , T (
∑d

i=1 si))
is an optimal transport map between ν and νco, with T (s) = U−1

ν (Uν+(s)). Thanks to Proposi-
tion 4, T is the optimal transport map from ν+ to ν̄. Thus, the optimal way to transport the mass
of ν to νco first sends each point s 7→ (

∑d
i=1 si, . . . ,

∑d
i=1 si), so to concentrate the mass onto the

bisecting line. This is then optimally transported to νco, reducing to an optimal transport problem
on a one-dimensional subspace of Ωd and thus crucially ending up with a tractable computation.
In short, we use the geometry of the support of the measure νco to find the explicit expression
of the optimal transport map, whereas in the general case one has to solve a nonlinear partial
differential equation for which there is no explicit solution, see Villani (2003, Chapter 4).

5 Examples

5.1 Additive models
Additive models first appeared in the Bayesian nonparametric literature to borrow information
across distinct groups of observations (Müller et al., 2004; Lijoi et al., 2014; Lijoi and Nipoti,
2014). The dependence between random measures is introduced in a natural way through a su-
perposition of independent components. In this section we find the corresponding Lévy measure
and use it to evaluate the Wasserstein index of dependence in terms of the hyperparameter of
the model. When restricting to 2-dimensional vectors, this brings to interesting links with linear
correlation.

Let ξ̃0, ξ̃1, . . . , ξ̃d be independent completely random measures whose Lévy measures satisfy
ν0 = zν̄ and νi = (1 − z)ν̄, where z ∈ [0, 1] and ν̄ ∈ M2(Ω1) is a fixed Lévy measure, for
i = 1, . . . , d. A CRV µ̃ is said to be additive or GM-dependent if its marginals satisfy µ̃i = ξ̃i+ ξ̃0
in distribution, for i = 1, . . . , d. The parameter z adjusts for dependence linearly with respect to
the Lévy measures, reaching complete dependence µ̃co as z → 1 and independence µ̃⊥ as z → 0.

Lemma 6. The Lévy measure of an additive CRV is ν = zνco + (1− z)ν⊥.

It follows that the Lévy measure of an additive CRV has mass both on the bisecting line and on
the axes, differently weighted according to the parameter z. In particular, the marginals are not
affected by z since πi#ν = zπi#ν

co + (1− z)πi#ν
⊥ = ν̄, for i = 1, . . . , d. Let

Uν+z (s) = d(1− z)Uν(s) + zUν(sd
−1), ν+z (s) = d(1− z)ν(s) + zd−1ν(sd−1).

Proposition 7. Let µ̃ be a d-dimensional additive CRV of parameter z such that M2(ν) =∫
Ω1
s2dν(s) < +∞. Then IW(µ̃) ≥ z and

IW(µ̃) = 1− dM2(ν)−
∫ +∞
0

sU−1
ν (Uν+z (s))ν

+
z (s) ds

dM2(ν)− d
∫ +∞
0

sU−1
ν (dUν(s))ν(s) ds

.
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Figure 2: Left: IW(µ̃) for µ̃ additive gamma CRV of parameter z and dimension d. Right: IW(µ̃)
for µ̃ gamma compound random vector of parameter ϕ and dimension d.

Proposition 7 provides the exact expression of the index of dependence and shows that it is
always larger than the parameter z, for any choice of Lévy measure ν̄ and dimension d. When
restricting to two groups of observations, z = cor(µ̃1(A), µ̃2(A)), which does not depend on
A ∈ X . One proves this by using Proposition 6 and Campbell’s theorem (see, e.g., (9.5.2) in
Daley and Vere-Jones (2007)), so that

cov(µ̃1(A), µ̃1(A)) = α(A)

∫ +∞

0

∫ +∞

0

s1s2 dν(s1, s2) = zα(A)M2(ν̄)

= z var(µ1(A))
1
2 var(µ1(A))

1
2 .

Thus when d = 2, Proposition 7 guarantees that IW(µ̃) ≥ cor(µ̃1(A), µ̃2(A)). In Figure 2 (left)
we plot the value of IW(µ̃) when the marginal is a gamma random measure and we see that the
lower bound appears to be tight. This is a very desirable property of the index, since correlation
is the most well-established measure of linear dependence between two random variables and
additive CRVs introduce dependence linearly at the level of the Lévy measures.

5.2 Compound random measures
Compound random measures (Griffin and Leisen, 2017, 2018; Riva-Palacio and Leisen, 2021)
provide a flexible way to model dependence between different families of completely random
measures. A CRV µ̃ is a compound random vector if its Lévy density takes the form

ν(s) =

∫

(0,+∞)

1

ud
h

(
s1
u
, . . . ,

sd
u

)
dν∗(u),

where h is a density function on (0,+∞)d and ν∗ is a Lévy measure. A widely used specifi-
cation takes h the density of d independent gamma(ϕ, 1) random variables and ν∗(u) = (1 −
u)ϕ−1u−1

1(0,1)(u), for ϕ > 0. The marginals µ̃i are then gamma completely random measures
and that ϕ only accounts for dependence. Under these specifications µ̃ is a gamma compound
random vector of parameter ϕ. Let

Uν+ϕ
(s) =

1

Γ(dϕ)

∫ 1

0

Γ

(
dϕ,

s

u

)
(1− u)ϕ−1

u
du, ν+ϕ (s) =

sdϕ−1

Γ(dϕ)

∫ 1

0

e−
s
u
(1− u)ϕ−1

udϕ+1
du,

11



where Γ(a, s) =
∫ +∞
s

e−t ta−1dt is the upper incomplete gamma function. Moreover, we indicate
by E1(s) = Γ(0, s) the exponential integral and by E−1

1 its inverse function.

Proposition 8. Let µ̃ be a d-dimensional gamma compound random vector of parameter ϕ. Then,

IW(µ̃) = 1−
d−

∫ +∞
0

sE−1
1 (Uν+ϕ

(s)) ν+ϕ (s) ds

d− d
∫ +∞
0

E−1
1 (dE1(s))e−s ds

.

We use Proposition 8 to analyze the dependence structure induced by gamma compound ran-
dom measures, as in Figure 2 (right). In particular, we observe that large values of ϕ favour highly
dependent completely random measures and already with ϕ = 1, IW is slightly larger than 0.5.
Finally, we observe that for both classes of models the dependence increases with the dimension
d. Hence, one should take the dimension into account when fixing a value or an hyperprior for
z and ϕ. This is an example of the use of the index for an informed prior specification of the
dependence structure in presence of an arbitrary number of groups of observations.

5.3 Comonotone replicates of independent components
Additive and compound random measures are symmetric laws for a CRV µ̃ = (µ̃1, . . . , µ̃d), in
the sense that µ̃1, . . . , µ̃d are exchangeable. This implies, for example, that all pairs of random
measures have the same distribution and thus dependence structure. When this condition is not
met, our index provides a valuable quantification of the overall dependence, which can not be
grasped with pairwise comparisons. A prototype situation is the one of a d-dimensional CRV
with m independent components and n comonotone replicates each, that is,

µ̃ = (

n︷ ︸︸ ︷
µ̃1, . . . , µ̃1,

n︷ ︸︸ ︷
µ̃2, . . . , µ̃2, . . . ,

n︷ ︸︸ ︷
µ̃m, . . . , µ̃m), (9)

where µ̃⊥ = (µ̃1, µ̃2, . . . , µ̃m) ∈ M2(Ωm) is an independent CRV with equal marginals ν̄.

Proposition 9. Let µ̃ be a d-dimensional CRV as in (9), with m independent components and n
comonotone replicates such that M2(ν) =

∫
Ω1
s2dν(s) < +∞. Then,

IW(µ̃) = 1− M2(ν)−
∫ +∞
0

sU−1
ν (mUν̄(s))ν̄(s) ds

M2(ν)−
∫ +∞
0

sU−1
ν (dUν(s))ν(s) ds

.

The previous result has the merit of reducing the evaluation of the Wasserstein distance to a
1-dimensional integral, and this quantity may be easily evaluated numerically also in presence of
a large number of groups. Moreover, its analytical expression can be studied as the number of
groups d = nm diverges, which can happen if the number either of independent components or
of comonotone replicates increases.

Proposition 10. Let µ̃ be a d-dimensional completely random vector as in (9) with m indepen-
dent components and n comonotone replicates such that M2(ν) =

∫
Ω1
s2dν(s) < +∞. If n is

fixed and m→ +∞,
IW(µ̃) → 0

monotonically from above. If m is fixed and n→ +∞,

IW(µ̃) →
∫ +∞
0

sU−1
ν (mUν̄(s))ν̄(s) ds

M2(ν̄)

monotonically from below.
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Figure 3: Evaluation of the index for a CRV with m independent components and n comonotone
replicates, in the case of gamma marginals. The dashed lines are the limits in Proposition 10.

Proposition 10 shows that if the number of independent component diverges, the index goes to
zero, whereas if the number of comonotone replicates diverges, the index increases and converges
to a quantity that depends on the number m of independent components. In particular, if m = 1
the index is equal to 1 since in such case,

∫ +∞

0

sU−1
ν (mUν̄(s))ν̄(s) ds =

∫ +∞

0

s2ν̄(s) ds =M2(ν̄).

These limiting behaviors confirm what one would intuitively expect and actually provide further
evidence of the principled nature of the proposed index of dependence. Figure 3 further illustrates
our findings by specializing them to the case of gamma marginals.

6 Model comparison
The proposed index has another important merit: by tuning the prior parameters of different mod-
els to achieve the same value of the dependence index, one can design a principled comparison of
their inferential properties. While there is a multitude of dependent priors in the literature, a tool
for matching their level of dependence a priori was still missing, preventing a fair comparison
of their posterior performance under different scenarios. To illustrate this point, in Figure 4, we
compare the dependence structure of an additive gamma completely random vector of parameter
z with a gamma compound random vector of parameter ϕ, when d = 3. We associate the values
of IW to the corresponding parameter, z and ϕ respectively. For instance, the same level of high
dependence, say 0.8, corresponds to setting z = 0.75 for the additive model and ϕ = 3 for the
compound random vector. It should be clear that a fair posterior comparison requires to match
their a priori strength of dependence. Moreover, note that IW grows almost linearly with z and
non-linearly with ϕ. This may provide valuable guidance on the choice of hyperpriors for the
parameters in the model: in the first case a uniform prior on z will imply a roughly uniform
prior on the dependence structure, whereas with compound random measures standard priors on
[0,+∞), unless carefully parametrized, would implicitly favor highly correlated marginals.
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We now provide an illustration of how the choice of dependence structure impacts posterior
inference, supporting our understanding of these models and highlighting the relevance of de-
pendence matching when performing model comparisons. Simulations are performed using the
BNPmix package (Corradin et al., 2021) in R (R Core Team, 2022), the POT package (Flamary
et al., 2021) in Python (Van Rossum and Drake, 2009) and code kindly made available by Ric-
cardo Corradin.
A highly popular use of dependent random measures is to model dependent random densities as
location-scale Gaussian mixtures over the normalized random measures. These models allow to
simultaneously perform joint density estimation and cluster analysis within and across popula-
tions; see Müller et al. (2015); Foti and Williamson (2015); Quintana et al. (2022) and references
therein. For simplicity we focus on the case of two groups of observations, though the analysis
can be readily extended to an arbitrary number of groups. Let (X1,j1)j1≥1 and (X2,j2)j2≥1 be two
sequences of random variables such that

(X1,j1 , X2,j2)|(µ̃1, µ̃2)
iid∼ f̃1 × f̃2

where f̃1 and f̃2 are location-scale Gaussian mixtures, that is,

f̃i(y) =

∫

R×(0,+∞)

N (y;m,σ2) dp̃i(m,σ
2)

with X = R × (0,+∞), p̃i = µ̃i/µ̃i(X) are random probability measures, and N (·;m,σ2)
indicates the density of a Gaussian distribution N (m,σ2) with mean m and variance σ2.
We consider two different priors on the vector of dependent random measures (µ̃1, µ̃2), namely
an additive and a compound CRV. In both cases we keep the same specification of the marginals
random measures, which are equal to gamma completely random measures with a normal-inverse
gamma base probability measure, i.e., α has density

α(m,σ2) = N
(
m;m0,

σ2

k0

)
× InvGamma(σ2; a0, b0),
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with hyperparameters m0 ∈ R and k0, a0, b0 > 0. Given the data X1 = (X1,1, . . . , X1,n1) from
the first group and X2 = (X2,1, . . . , X2,n2) from the second, each specification yields an estimate
for the random densities a posteriori, which we informally indicate as (f̃ a

1 , f̃
a
2)|data when we use

an additive prior and (f̃ c
1 , f̃

c
2)|data when we use a compound prior. We consider two different

scenarios for the data generating process:

a. The observations in each group are i.i.d. draws from a mixture of two Gaussians and one
mixture component is shared between groups, namely, X1

iid∼ 0.5N (−5, 1) + 0.5N (0, 1)

and X2
iid∼ 0.5N (0, 1) + 0.5N (5, 1).

b. The observations in each group are i.i.d. draws from a Gaussian distribution, but the two
Gaussian distributions have different means, namely, X1

iid∼ N (−1, 2) and X2
iid∼ N (1, 2).

Since the borrowing of information is particularly useful in presence of unbalanced groups of
observations, for both scenarios the first group has many more observations (n1 ∈ {100, 200})
than the second (n2 = 10). Our analysis proceeds as follows: i) We consider three different
values of the index, namely IW(µ̃) ∈ {0.1, 0.5, 0.9}, which correspond to the situation of almost
independence, intermediate dependence and almost exchangeability, respectively. ii) We find the
hyperparameters for the additive CRV and the compound random measures matching these values
of the index, namely z ∈ {0.08, 0.44, 0.88} for the former and ϕ ∈ {0.1, 0.85, 8} for the latter.
iii) For both scenarios a. and b., for each value of the index, for both additive and compound
random measures, we estimate the densities of the two groups a posteriori. Figure 5 displays the
graphical output for scenario a. while Figure 6 for scenario b. We observe that in both scenarios
the densities of the two groups differ the most when close to independence (IW(µ̃) = 0.1) and
are more similar when close to exchangeability (IW(µ̃) = 0.9). There clearly are differences
in the estimates between the two nonparametric models that are due to the specific amount of
dependence rather than to the chosen prior.
This qualitative intuition can also be confirmed quantitively in the following way. Since for both
scenarios a. and b. the first group has many more observations than the second, as the index
varies we correctly observe a greater impact on the estimation of the second group. For the sake
of compactness we thus focus on the estimation of the density of the second group, which is
more interesting. We estimate the Wasserstein distance between the two mean posterior densities
W(E(f̃ a

2 |data),E(f̃ c
2 |data)) as the index of dependence varies in both models. The heatmap in

Figure 7 shows that in both scenarios a. and b. the estimates tend to be closer for the same value
of the index than for different ones, i.e., the values near the diagonal tend to be smaller than the
values far from the diagonal.

Finally we push the comparison even further and show that the distance between two additive
models with different value for the index of dependence is bigger than the distance between an
additive and a compound with the same index of dependence. This is pictured in the heatmap
in Figure 8, where on the antidiagonal one finds W(E(f̃ a

2 |data),E(f̃ c
2 |data)) with the same index

of dependence, while on the off-antidiagonal one finds W(E(f̃ a
2 |data),E(f̃ a

2 |data)) with different
index of dependence. This is repeated for both scenarios a. and b. Similar results can be obtained
for compound random measures.
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Figure 5: Mean posterior densities with additive random measures (left) and compound random
measures (right) for three different values of the index (0.1, 0.5, 0.9, from top to bottom). Both
models have gamma marginals with normal-inverse gamma base measure of parameters m0 =
0, k0 = 0.1, a0 = 2, b0 = 1. Group 1 has n1 = 100 observations and Group 2 has n2 = 10
observations, according to scenario a.
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Figure 6: Mean posterior densities with additive random measures (left) and compound random
measures (right) for three different values of the index (0.1, 0.5, 0.9, from top to bottom). Both
models have gamma marginals with normal-inverse gamma base measure of parameters m0 =
0, k0 = 1, a0 = 2, b0 = 1. Group 1 has n1 = 200 observations and Group 2 has n2 = 10
observations, according to scenario b.
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ent values of the index. The setups are the same as in Figure 5 (left) and in Figure 6 (right).

SUPPLEMENTARY MATERIAL

The Supplementary Material contains our proof techniques and the underlying optimal transport
problem, which we believe are of interest beyond the present setup with natural applications to
the theory of partial differential equations and of Lévy processes.
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Abstract
The Supplementary Material is organized as follows. In Section 1 we state some pre-

liminary notions about the extended Wasserstein distance. We prove the results of the main
manuscript in a slightly rearranged order to ease and streamline the exposition of the proofs.
In particular, Sections 2, 3, 4, 5 contain the proofs of the results of, respectively, Sections
3, 4, 1, 5 of the main manuscript. To ease cross-reading between the main manuscript and
the supplement, here we use a prefix SM for the numbering of results and definitions (e.g.,
Proposition SM1, Equation (SM1)).

1 Preliminaries
In this section we state some preliminary results on the extended Wasserstein distance that are
needed for the proofs in the next sections. The main focus is on the notion of c-cyclically mono-
tone set and on the dual formulation of the extended Wasserstein distance.

We recall that Ωd = [0,+∞)d \ {0} and M2(Ωd) denotes the set of positive Borel measures
with finite second moment. Given ν1, ν2 ∈ M2(Ωd), we define the set Γ(ν1, ν2) of (extended)
couplings γ ∈ M2(Ω2d) such that π1#γ

∣∣
Ωd

= ν1 and π2#γ
∣∣
Ωd

= ν2. Following Figalli and Gigli
(2010), we define the extended Wasserstein distance as follows.

Definition SM1. Let ν1, ν2 ∈ M2(Ωd). We define the extended Wasserstein distance as

W∗(ν
1, ν2)2 = inf

γ∈Γ(ν1,ν2)

∫∫

Ω2d

∥s− s′∥2 dγ(s, s′). (SM1)

A coupling γ∗ that realizes the infimum in (SM1) is termed an optimal transport coupling.

Proposition SM1 (Theorem A.5 in Guillen et al. (2019)). If ν1, ν2 ∈ M2(Ωd), there exists at
least one optimal transport coupling.

Note in particular that we do not need the total mass of ν1 to match the one of ν2 for this
result to hold. If there exists T : Rd → Rd such that γ∗ = (id, T )#ν1, T is termed optimal
transport map between ν1 and ν2. Similarly to the classical optimal transport theory, c-cyclically
monotone sets may be used to characterize optimal couplings.
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Definition SM2. A set A ⊂ [0,+∞)d × [0,+∞)d is c-cyclically monotone if for every N ∈
N, for every finite family of points (s1, s

′
1), . . . , (sN , s

′
N) ∈ A and for every permutation σ of

{1, 2, . . . , N} there holds
N∑

i=1

∥si − s′i∥2 ≤
N∑

i=1

∥si − s′σ(i)∥2.

A proof of the following result is provided in Figalli and Gigli (2010, Proposition 2.3) and
in Guillen et al. (2019, Theorem A.13). We recall that the support of a measure ν on Ωd is the
smallest closed set of Ωd = [0,+∞)d on which it is concentrated, that is, supp(ν) = ∩{C ⊂
[0,+∞)d closed set such that ν(Cc ∩ Ωd) = 0}.

Proposition SM2. A coupling γ ∈ Γ(ν1, ν2) is optimal if and only if supp(γ)∪{0} is c-cyclically
monotone.

Proof. We apply Guillen et al. (2019, Theorem A.13), noticing that the set K coincides with R2d

in this case.

The next result shows that c-cyclical monotonicity is preserved under weak* convergence. We
recall that µn → µ weakly* if and only if

∫
fdµn →

∫
fdµ for every f ∈ Cc(Ωd) continuous

function with compact support. This will be used in the proof of Proposition 3 in the next section.

Lemma SM3. Let (γn)n∈N a sequence of non-negative measures on Ωd and assume that it
weakly* converges to γ. If supp(γn) is c-cyclically monotone, then so is supp(γ).

Proof. First, we argue that we can restrict to compact sets. As it is clear from the definition,
a set A ⊂ Ωd is c-cyclically monotone if and only if for any compact set K ⊂ Ωd, K ∩ A is
c-cyclically monotone. Let us fix K ⊂ Ωd. As argued as in the proof of Santambrogio (2015,
Theorem 1.50), since γn|K converges weakly* to γ|K , supp(γn|K) converges in the Haussdorff
topology to supp(γ|K). Since c-cyclically monotonicity is preserved under Hausdorff limit, we
deduce that supp(γ|K) is c-cyclically monotone. As K is arbitrary, this concludes the proof.

We now introduce the dual formulation of W∗. We first define a pair of Kantorovich potentials
as any (φ, ψ) upper semi-continuous (hence measurable) functions [0,+∞)d → R∪{−∞} such
that φ(0) = ψ(0) = 0 and

φ(s) + ψ(s′) ≤ ∥s− s′∥2
2

. (SM2)

We denote with KD the set of pairs of Kantorovich potentials.

Theorem SM4 (Lemma 3.6 in Guillen et al. (2019)). Let ν1, ν2 ∈ M2(Ωd). Then

1

2
W∗(ν

1, ν2)2 = max
(φ,ψ)∈KD

{∫

Ωd

φ(s) dν1(s) +

∫

Ωd

ψ(s′) dν2(s′)

}
.

A pair (φ, ψ) ∈ KD that realizes the supremum in the right hand side is termed an optimal pair
of Kantorovich potentials. Note that Theorem SM4 entails that an optimal pair of Kantorovich
potentials always exists. The pair of primal and dual problem gives an effective criterion to check
the optimality of a solution, as summarized by the following result.

Proposition SM5. Let ν1, ν2 ∈ M2(Ωd). Let γ ∈ Γ(ν1, ν2) and (φ, ψ) a pair of Kantorovich
potentials. Then the followings are equivalent:

2



(i) The coupling γ is optimal and the pair (φ, ψ) is an optimal pair of Kantorovich potentials.

(ii) There holds
∫∫

Ω2d

∥s− s′∥2 dγ(s, s′) =
∫

Ωd

φ(s) dν1(s) +

∫

Ωd

ψ(s′) dν2(s′). (SM3)

(iii) For every (s, s′) ∈ supp(γ) there is equality in (SM2), that is,

φ(s) + ψ(s′) =
∥s− s′∥2

2
. (SM4)

Proof. That (i) and (ii) are equivalent is a straightforward consequence of Theorem SM4: indeed
the left hand side of (SM3) is always larger than W∗(ν1, ν2)/2, and the right hand side is smaller
than this quantity by the aforementioned theorem. If there is equality if and only if everything
coincides with W∗(ν1, ν2)2/2, which means that both γ as well as (φ, ψ) are optimal.

On the other hand, to show that (ii) and (iii) are equivalent, we write

1

2

∫∫

Ω2d

∥s− s′∥2 dγ(s, s′)−
∫

Ωd

φ(s) dν1(s)−
∫

Ωd

ψ(s′) dν2(s′)

=

∫∫

Ω2d

(∥s− s′∥2
2

− φ(s)− ψ(s′)

)
dγ(s, s′),

thanks to the marginal property of γ and φ(0) = ψ(0) = 0. On the right hand side, we see that
the integrand ∥s−s′∥2

2
− φ(s)− ψ(s′) is non-negative and lower semi-continuous as (φ, ψ) ∈ KD,

thus its integral with respect to γ vanishes if and only if it is identically 0 on the support of γ.

As we are in the case of quadratic cost, by the usual double convexification trick Villani (2003,
Lemma 2.10), we can always assume the following form for the optimal Kantorovich potentials.

Lemma SM6. Let ν1, ν2 ∈ M2(Ωd). There exists an optimal pair of Kantorovich potentials and
a convex lower semi-continuous function u on Ωd such that u(0) = u∗(0) = 0 and

φ(s) =
1

2

d∑

i=1

s2i − u(s), ψ(s) =
1

2

d∑

i=1

s2i − u∗(s), (SM5)

where u∗ is the Legendre transform of u.

Proof. We start with (φ̃, ψ̃) an optimal pair of Kantorovich potentials. We then define

φ(s) = inf
s′∈Ωd

∥s− s′∥2
2

− ψ̃(s′), ψ(s′) = inf
s∈Ωd

∥s− s′∥2
2

− φ(s). (SM6)

As we started from (φ̃, ψ̃) admissible, there holds (φ, ψ̃), (φ, ψ) ∈ KD. Moreover, still because
(φ̃, ψ̃) admissible there holds φ ≥ φ̃ and ψ ≥ ψ̃, thus (φ, ψ) is an optimal pair of Kantorovich
potentials.
Then we define u and v (which will coincide with u∗) via (SM5), that is, u(s) = 1/2

∑
i s

2
i −φ(s)

and v(s) = 1/2
∑

i s
2
i − ψ(s). Thus (SM6) reads

u(s) = sup
s′∈Ωd

s · s′ −
(∥s′∥2

2
− ψ̃(s′)

)
, v(s′) = sup

s∈Ωd

s · s′ − u(s).

The second equation yields v = u∗ by definition; while the first one shows that u is a supremum
of linear function, thus is convex.

3



Remark SM1. In particular, assuming that (φ, ψ) is given as above, the constraint (SM2) simply
amounts to u(s) + u∗(s′) ≥ s · s′, which holds by Young’s inequality. Thus (SM4) is equivalent
to s′ belonging to the subdifferential of u evaluated in s, see Villani (2003, Proposition 2.4). If u
is differentiable at s with gradient ∇u(s), then (s, s′) satisfies (SM4) if and only if s′ = ∇u(s).

Contrary to the optimal transport problem in terms of couplings, the existence of a transport
map is difficult, even under the assumption that ν1 is absolutely continuous with respect to the
Lebesgue measure on Ωd. This is because one has to exclude the possibility of mass being sent
from {0} to more than one point of the support of ν2, which presents some difficulties. As we
do not rely on the existence of transport maps in the sequel, we will not investigate this question.
However we do prove the converse result, that is, that any transport map that is the gradient of a
convex function is optimal.

Lemma SM7. Let ν1, ν2 ∈ M2(Ωd) and let T : Ωd → Ωd be a measurable map such that
T#ν1 = ν2 and T = ∇u for some lower semi-continuous convex function u. If u(0) = u∗(0) = 0
then T is an optimal transport map between ν1 and ν2.

Proof. This follows the same proof as for classical optimal transport. Let γT = (id, T )#ν1 be the
coupling generated by T that belongs to Γ(ν1, ν2). We define (φ, ψ) according to (SM5). Since
u(0) = u∗(0) = 0, (φ, ψ) ∈ KD. In addition, thanks to Remark SM1 we know that the triple
(γT , φ, ψ) satisfies (iii) of Proposition SM5. This is enough to ensure optimality of γT .

2 Proofs of Section 3: Wasserstein distance between Lévy mea-
sures

Proposition 2. Let µ̃1, µ̃2 satisfy the assumptions of Theorem 1. Then for any set A

W∗(ν
1
A, ν

2
A)

2 = min
(µ̂1,µ̂2)

E(∥µ̂1(A)− µ̂2(A)∥2),

where the minimum is taken over all homogeneous CRV (µ̂1, µ̂2) such that µ̂i = µ̃i in distribution
for i = 1, 2.

Proof. We will re-express the right hand side to show it coincides with the left hand side.
Take an homogeneous CRV (µ̂1, µ̂2) such that µ̂i = µ̃i in distribution for i = 1, 2. As µ̃1 and
µ̃2 do not have atoms, the same holds for (µ̂1, µ̂2). Thus it is characterized by a Lévy measure
γ over Ω2d, and its base measure must be α by the marginal conditions. The condition that
µ̂i = µ̃i in distribution for i = 1, 2 directly translates in π1#γ

∣∣
Ωd

= ν1 and π2#γ
∣∣
Ωd

= ν2,
that is, γ ∈ Γ(ν1, ν2). Here the fact that we restrict π1#γ and π2#γ on Ωd has a very simple
interpretation: the mass of π1#γ and π2#γ given to {0} corresponds to jumps of size 0, thus
they do not modify the law of the corresponding CRV. Thus the infimum over (µ̂1, µ̂2) can be
parametrized as an infimum over γ ∈ Γ(ν1, ν2).
Eventually, we can use Campbell’s formula: for any γ ∈ M2(Ω2d), if (µ̂1, µ̂2) is a CRV with
base measure α and Lévy measure γ, then

∥µ̂1(A)− µ̂2(A)∥2 =
∫∫∫

A×Ω2d

∥s− s′∥2 dα(x)dγ(s, s′) = α(A)

∫∫

Ω2d

∥s− s′∥2 dγ(s, s′).

4



Thus we can rewrite our right hand side as

min
(µ̂1,µ̂2)

∥µ̂1(A)− µ̂2(A)∥2 = α(A) min
γ∈Γ(ν1,ν2)

∫∫

Ω2d

∥s− s′∥2 dγ(s, s′),

and the right hand side coincides with W∗(ν1A, ν
2
A)

2, see Definition 1 and Remark 4.

Proposition 3. Let ν1, ν2 ∈ M2(Ωd) such that ν1(Ωd) = ν2(Ωd) = +∞. For each r > 0,
assume that ν1r , ν

2
r are two measures with finite mass r such that for each set B, νir(B) → νi(B)

increasingly as r → +∞. Then

W∗(ν
1, ν2) = lim

r→+∞

√
rW

(
ν1r
r
,
ν2r
r

)
.

Proof. The idea of the proof is to extract a converging subsequence from the classical optimal
couplings γ∗n ∈ Γ(ν1n, ν

2
n) and prove that its limit is an extended optimal coupling. To this end,

we heavily rely on the characterization of optimality with c-cyclically monotone sets in Propo-
sition SM2 and on its preservation under weak* limits in Lemma SM3. We then express the
Wasserstein distance in terms of the optimal coupling and conclude by the monotone conver-
gence theorem thanks to the increasing convergence.

First, we prove that there exists a subsequence {γnk
}k and γ ∈ Γ(ν1, ν2) such that γnk

→ γ
according to the weak* convergence. For every f ∈ Cc(Ω2d),

∣∣∣∣
∫

Ω2d

f(s, s′) dγn(s, s
′)

∣∣∣∣ ≤ |f |∞
1

infsupp(f) ∥s∥2 + ∥s′∥2
∫

supp(f)
∥s∥2 + ∥s′∥2 dγn(s, s

′).

The integral on the right hand side is bounded from above by M2(ν
1
n) +M2(ν

2
n) ≤ M2(ν

1) +
M2(ν

2) by the increasing convergence hypothesis. Since supp(f) does not contain the origin,∫
Ω2d

f(s, s′) dγn(s, s′) is uniformly bounded in n and thus there exists a subsequence {γnk
}k

such that limk→+∞
∫
f dγnk

exists and it is finite. By diagonal extraction and separability of
Cc(Ω), this holds for every f ∈ Cc(Ω). The functional f 7→ limk→+∞

∫
f dγnk

is positive
and linear, so that by Riesz Representation Theorem there exists a regular Borel measure γ on
Ω2d such that, for every f ∈ Cc(Ω2d), limk→+∞

∫
Ω2d

f dγnk
=
∫
Ω2d

f dγ. We need to prove
that γ ∈ Γ(ν1, ν2), that is that for every ϕ ∈ Cc(Ωd),

∫
Ω2d

ϕ(s) dγ(s, s′) =
∫
Ωd
ϕ(s) dν1(s)

and
∫
Ω2d

ϕ(s′) dγ(s, s′) =
∫
Ωd
ϕ(s′) dν2(s′). The main obstacle in the proof is that we may not

directly take the limit of the integral with respect to (s, s′) 7→ ϕ(s) because it is not continuous
and compactly supported on Ω2d. We therefore multiply ϕ(s) by a suitable function gm(s′) as
follows. Let Am = [−m,m]d. By Urysohn’s Lemma, for every m and every open set Vm ⊃ Am,
there exists gm ∈ Cc(Ωd) such that 0 ≤ gm ≤ 1, gm = 1 on Am and gm = 0 on V c

m. One can
assume that {gm}m are non-decreasing in the sense that for every s′ ∈ Ωd and every m ∈ N,
gm(s

′) ≤ gm+1(s
′). First we observe that

sup
k

∣∣∣∣
∫

Ω2d

ϕ(s)gm(s
′) dγnk

(s, s′)−
∫

Ω2d

ϕ(s) dγnk
(s, s′)

∣∣∣∣

≤ sup
k

∫

Ω2d

|ϕ(s)|1Ac
m
(s′) dγnk

(s, s′),

5



which is bounded from above by |ϕ|∞m−2
∫
Ωd

∥s′∥2 dν2(s′) and thus goes to zero as m → +∞.
Moreover, by the monotone convergence theorem,

∫

Ω2d

ϕ(s) dγ(s, s′) = lim
m→+∞

∫

Ω2d

ϕ(s)gm(s
′) dγ(s, s′).

Since supp(ϕ)× supp(gm) is a compact subset of Ω2d,

lim
k→+∞

∫

Ω2d

ϕ(s)gm(s
′) dγnk

(s, s′) =

∫

Ω2d

ϕ(s)gm(s
′) dγ(s, s′).

By taking the limit as m → +∞ and switching the order of the limits thanks to the uniform
convergence of the first integral, we find that

∫
Ω2d

ϕ(s) dγ(s, s′) =
∫
Ωd
ϕ(s) dν1(s). We reason in

the same way to prove the second marginal condition.
We now prove that γ∗ is an optimal coupling. Since γn are optimal couplings for the stan-

dard Wasserstein distance, their support is c-cyclically monotone. Thus by Proposition SM3 the
measure γ∗ has a c-cyclically monotone support. Next we claim that {0} ∈ supp(γ∗), so that by
Proposition SM2 γ∗ is an optimal coupling. Indeed, if {0} /∈ supp(γ∗), there exists ϵ > 0 such
that γ∗([0, ϵ)2d \ {0}) = 0. Then, +∞ = γ∗(Ω2d) ≤ γ∗([ϵ,+∞)d× [0,+∞)d) + γ∗([0,+∞)d×
[ϵ,+∞)d) = ν1([ϵ,+∞)d) + ν2([ϵ,+∞)d) < +∞. Thus, there is a contradiction.

To conclude, it suffices to show that
∫

Ω2d

∥s− s′∥2 dγ∗(s, s′) = lim inf
k→+∞

∫

Ω2d

∥s− s′∥2 dγnk
(s, s′).

Once again, we may not directly pass to the limit because the support of ∥s − s′∥2 is not
bounded. We reason similarly to the proof of the marginal constraints for γ∗, by introducing
Am = [−m,m]2d \ (−1/m, 1/m)2d compact set of Ω2d and interchanging the limits thanks to the
bounded second moments of ν1, ν2.

We now move to the one-dimensional case, for which we closely follow the techniques of
Santambrogio (2015, Chapter 2). We recall that the tail integral of a measure is defined as
Uν(x) = ν((x,+∞)). Moreover, we define its generalized inverse as U−1

ν (t) = inf{x ≥ 0 :
Uν(x) ≤ t}. The function Uν is non-increasing and right-continuous. Moreover, one can easily
check that for any a ≥ 0,

U−1
ν (t) > a⇐⇒ t < Uν(a). (SM7)

We start with the following Lemma, whose statement and proof are adapted from Santambrogio
(2015, Lemma 2.4).

Lemma SM8. Let ν ∈ M2(Ω1) atomless. Then Uν#ν = Leb((0, Uν(0))). Moreover, for every
r > 0, the set {x > 0 : Uν(x) = r} is ν-negligible.

Proof. Note that Uν(0) is nothing else than the total mass of ν. Also, note that ν atomless
translates in Uν continuous. Let us take a ∈ (0, Uν(0)). Then the set {x > 0 : Uν(x) < a} is a
interval of the form (xa,+∞) with Uν(xa) = a. Thus ν({x > 0 : Uν(x) < a}) = Uν(xa) = a.
The conclusion that ν({x > 0 : Uν(x) = r}) = 0 follows exactly the same line as Santambrogio
(2015, Lemma 2.4): if it were not the case, then Uν#ν would have an atom.

We can now prove the Proposition 4 of the main manuscript.
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Proposition 4. Let ν1, ν2 ∈ M2(Ω1) and let γ be the restriction of (U−1
ν1 , U

−1
ν2 )#Leb(Ω1) to Ω2.

Then γ ∈ Γ(ν1, ν2) is the unique optimal transport coupling and

W∗(ν
1, ν2)2 =

∫ +∞

0

(U−1
ν1 (s)− U−1

ν2 (s))
2 ds.

Moreover, if ν1 is atomless and ν1(Ω1) ≥ ν2(Ω1), T (x) = U−1
ν2 (Uν1(x)) is an optimal transport

map.

Proof. Thanks to Proposition SM1 there exists an optimal coupling γ∗. As proved in Santam-
brogio (2015, Theorem 2.9), since the support of γ∗ is c-cyclically monotone we know that if
(x, y) and (x′, y′) ∈ supp(γ∗) with x ≤ x′, then y ≤ y′. Then we reason as in Santambrogio
(2015, Lemma 2.8). Let a, b ≥ 0 and let us compute γ∗((a,+∞) × (b,+∞)). By the prop-
erty on the support we just mentioned, γ∗ cannot give mass to both A = (a,+∞) × [0, b] and
B = [0, a]× (b,+∞). Thus

γ∗((a,+∞)× (b,+∞)) = min [γ∗((a,+∞)× (b,+∞) ∪ A), γ∗((a,+∞)× (b,+∞) ∪B)]

= min [γ∗((a,+∞)× [0,+∞)), γ∗([0,+∞)× (b,+∞))]

= min[Uν1(a), Uν2(b)].

On the other hand, by the marginal property if a > 0 there holds γ∗((a,+∞) × [0,+∞)) =
ν1((a,+∞)) and similarly for the second marginal. In conclusion, the measure γ∗ satisfies:





γ∗((a,+∞)× (b,+∞)) = min[Uν1(a), Uν2(b)] ∀a, b > 0,

γ∗((a,+∞)× [0,+∞)) = Uν1(a) ∀a > 0,

γ∗([0,+∞)× (b,+∞)) = Uν2(b) ∀b > 0,

(SM8)

and these three set of equalities are enough to characterize a measure on Ω2. Thus the optimal
transport coupling is unique and any measure on Ω2 which satisfies (SM8) is in fact the optimal
coupling.

We now prove that γ in the statement satisfies these properties. Let a, b ≥ 0. By definition,

γ((a,+∞)× (b,+∞)) = Leb(Ω1)
{
t ≥ 0 : U−1

ν1 (t) > a and U−1
ν2 (t) > b

}
.

From this we can use (SM7) to rewrite the quantity of interest as

γ((a,+∞)× (b,+∞)) = Leb(Ω1) {t ≥ 0 : t < Uν1(a) and t < Uν2(b)}
= Leb(Ω1) {t ≥ 0 : t < min[Uν1(a), Uν2(b)]} = min[Uν1(a), Uν2(b)].

In addition, as

γ((a,+∞)× [0,+∞)) = Leb(Ω1)
{
t ≥ 0 : U−1

ν1 (t) > a and U−1
ν2 (t) ≥ 0

}

and the second inequality is always satisfied, we obtain thanks to (SM7) that γ((a,+∞) ×
[0,+∞)) = Uν1(a). The case where we exchange the marginals is similar. We conclude that
γ satisfies (SM8) and thus it is the optimal coupling.
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Eventually, let’s turn to the case of when ν1 is atomless and ν1(Ω1) ≥ ν2(Ω1), and let us
define T (x) = U−1

ν2 (Uν1(x)). The map T is non-decreasing as the composition of two non-
increasing functions. Let us define γT = (id, T )#ν1, again we only have to show that γT satisfies
(SM8). Let’s take a, b ≥ 0 and we write:

γT ((a,+∞)× (b,+∞)) = ν1({x ≥ 0 : x > a and T (x) > b})
= ν1({x ≥ 0 : x > a and U−1

ν2 (Uν1(x)) > b})
= ν1({x ≥ 0 : x > a and Uν1(x) < Uν2(b)}),

where again we have use (SM7) for the last equality. So if Uν1(a) < Uν2(b) then indeed the
second constraint is always satisfied so γT ((a,+∞) × (b,+∞)) = Uν1(a). On the other hand
if Uν1(a) > Uν2(b) then the first constraint is always satisfied and thus γT ((a,+∞) × (b,+∞))
coincides with Uν1#ν

1((0, Uν2(b))) = Uν2(b): to show this we use Lemma SM8 and the as-
sumption Uν2(b) ≤ Uν2(0) ≤ Uν1(0). Eventually, if Uν1(a) = Uν2(b) then we can remove all
the points x such that Uν1(x) = Uν1(a), as it is a ν1-negligible set by Lemma SM8. It shows
that γT ((a,+∞) × (b,+∞)) = min[Uν1(a), Uν2(b)]. Then let us take a > 0 and we look at
γT ((a,+∞) × [0,+∞)). For this one it is clear that it coincides with ν1((a,+∞)) = Uν1(a).
Eventually, if b > 0 then

γT ([0,+∞)× (b,+∞)) = ν1({x ≥ 0 : x ≥ 0 and T (x) > b})
= ν1({x ≥ 0 : U−1

ν2 (Uν1(x)) > b})
= ν1({x ≥ 0 : Uν1(x) < Uν2(b)})
= Leb(Ω1){t ≥ 0 : t ≤ Uν2(b)} = Uν2(b),

where the second to last equality follow from Lemma SM8 and the assumptionUν2(b) ≤ Uν2(0) ≤
Uν1(0). We conclude that γT satisfies the set of identities (SM8), and thus it is the unique optimal
coupling. Lastly, the formula for the expression of the distance is clear from the definition of γ
and T .

3 Proofs of Section 4: Evaluation of the index
Theorem 5 in the main manuscript is implied by the following Theorem SM9 and Corollary
SM10.

Theorem SM9. Let ν ∈ M2(Ωd) be a Lévy measure with equal marginals πi#ν = ν on Ω1, for
i = 1, . . . , d. Denote by ν+ = Σ#ν ∈ M2(Ω1), where Σ(s) =

∑d
i=1 si. Then

W∗(ν, ν
co)2 = 2dM2(ν)− 2

∫ +∞

0

U−1
ν+ (s)U

−1
ν (s) ds.

Moreover, there exist an optimal pair (φ, ψ) of Kantorovich potentials and a convex function u
on Ω1 such that

φ(s) =
1

2

d∑

i=1

s2i − u(Σ(s)), ψ(s) =
1

2

d∑

i=1

s2i − u∗(max(s)),

where u∗ is the Legendre transform of u and max(s) = max(s1, . . . , sd).
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Proof. Though not necessary, we first focus on the expression for the Wasserstein distance when
ν+ is atomless because the proof is more straightforward. In such case as clearly ν+(Ω1) ≥
ν(Ω), by Proposition 2 there exists an optimal transport map T+ = ∇u between ν+ and ν̄. We
prove that T (s) = (T+(Σ(s)), . . . , T+(Σ(s))) is a transport map between ν and νco. We define
∆(s) = (s, . . . , s) and observe that T = ∆◦T+◦Σ. By associativity of the pushforward operator
T#ν = (∆ ◦ T+)#ν

+ = ∆#(T
+
#ν

+). Since T+ is the optimal transport map between ν+ and ν,
T#ν = ∆#ν = νco by definition of comonotonic Lévy measure. Moreover, T is the gradient of
u′(s) = u(Σ(s)), which is convex since u is convex. By Lemma SM7, T is the optimal transport
map between ν and νco.

We now focus on the general case which follows the same idea but relies on disintegration to
palliate the absence of transport map. By Proposition 4 there exists a unique optimal transport
plan γ+ = (U−1

ν+ , U
−1
ν )#Leb(Ω1) between ν+ and ν. We consider the disintegration of γ+ with

respect to ν+, so that one can write γ+ =
∫
Ω1×Ω1

γ+s dν
+(s), where γ+s is a probability measure

on Ω1 for every s ∈ supp(ν+). We claim that an optimal transport map between ν and νco is

γ =

∫

Ωd×Ωd

∆#γ
+
Σ(s)dν(s).

First we prove that γ ∈ Γ(ν, νco), that is that γ has the right marginals. The first marginal ν
derives from the definition of disintegration of measures. As for the second, we must show that
for every f ∈ Cc(Ωd),

∫

Ωd×Ωd

f(s′) dγ(s, s′) =

∫

Ωd

f(s′) dνco(s′).

This follows by observing that the term on the left hand side is equal to
∫

Ω1×Ω1

f(∆(s′)) dγ+s (s
′) dΣ#ν(s) =

∫

Ω1×Ω1

f(∆(s′)) dγ+(s, s′) =

∫

Ω1

f(∆(s′)) dν(s′),

by definition of disintegration and because γ+ ∈ Γ(ν+, ν). We conclude by the definition of
pushforward map since ∆#ν = νco.

Consider the convex function u, u∗ arising from the dual formulation of the transport problem
between ν+ and ν̄, as in Lemma SM6. We claim that (φ, ψ) in the statement is an optimal pair
of Kantorovich potentials and γ is the optimal transport coupling. We will use Proposition SM5.
We observe that (s, s′) ∈ supp(γ) if and only if the following conditions hold: (i) s ∈ supp(ν);
(ii) s′ = (s′, · · · , s′) for some s′ ∈ Ω1; (iii) (Σ(s), s′) ∈ supp(γ+). Thus in this case s · s′ =
Σ(s)s′. Using the implication (i) ⇒ (iii) from Proposition SM5 for the transport from ν+ onto
ν (combined with Remark SM1), we see that u(Σ(s)) + u∗(s′) = Σ(s)s′. But with the explicit
expression that we have for (φ, ψ) it implies that (SM4) actually holds for the (s, s′) that we chose
in supp(γ). Using this time the implication (iii) ⇒ (i) from Proposition SM5 for the transport
from ν onto νco yields optimality of γ for the primal problem and (φ, ψ) for the dual one.

We now show that γ induces the expression of the extended Wasserstein distance in the state-
ment. Indeed, since s · s′ = Σ(s)s′ on the support of γ,

∫
∥s− s′∥2 dγ(s, s′) is equal to

2dM2(ν̄)− 2

∫

Ωd×Ωd

Σ(s)s′ d∆#γ
+
Σ(s)(s

′) dν(s).
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By definition of pushforward map,
∫
Ωd×Ωd

Σ(s)s′ d∆#γ
+
Σ(s)(s

′) dν(s) is equal to

∫

Ω1×Ω1

ss′dγ+s (s
′) dν+(s) =

∫

Ω1×Ω1

ss′ dγ+(s, s′).

We conclude by substituting γ+ = (U−1
ν+ , U

−1
ν )#Leb(Ω1).

Corollary SM10. Let ν⊥ ∈ M2(Ωd) be an independent Lévy measure with equal marginals
πi#ν = ν on Ω1, for i = 1, . . . , d. Then,

W∗(ν
⊥, νco)2 = 2d

(
M2(ν)−

∫ +∞

0

sU−1
ν (dUν(s)) dν(s)

)
.

Proof. Let ν = ν⊥ indicate the Lévy measure. Thanks to the support of ν and its marginal
constraint, we observe that

Uν+(s) = ν({(s1, . . . , sd) : s1 + · · ·+ sd ≤ s})

=
d∑

i=1

ν({(s1, . . . , sd) : si ≤ s})

=
d∑

i=1

ν̄({si : si ≤ s})

= dUν(s)

By absolute continuity of ν, it follows that ν+(s) = −∂/∂sUν+(s) = −d ∂/∂sUν(s) = d ν(s) is
atomless. Thus, with a change of variable s = U−1

ν+ (t), the expression in Theorem SM9 becomes

W∗(ν, ν
co)2 = 2dM2(ν)− 2

∫ +∞

0

sU−1
ν (Uν+(s))ν

+(s) ds. (SM9)

We conclude by substituting the expression of ν+ and Uν+ above.

4 Proofs of Section 2: Main result
Given the expression of the index in (7) of the main manuscript, Theorem 1 and Remark 1 are
easily implied by the following result.

Theorem SM11. Let ν ∈ M2(Ωd) with equal marginals πi#ν = ν on Ω1, for i = 1, . . . , d. Then
W∗(ν, νco) ≤ W∗(ν⊥, νco). If ν(Ω1) = +∞, there is equality if and only if ν = ν⊥.

Proof. We first prove that W∗(ν, νco) ≤ W∗(ν⊥, νco). Let (φ, ψ) be the optimal pair of Kan-
torovich potentials for the transport between ν and νco in Theorem SM9. Then,

W∗(ν, ν
co)2 =

∫

Ωd

φ(s) dν(s) +

∫

Ωd

ψ(s′) dνco(s′),

W∗(ν
⊥, νco)2 ≥

∫

Ωd

φ(s) dν⊥(s) +

∫

Ωd

ψ(s′) dνco(s′).
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In particular this yields

W∗(ν
⊥, νco)2 −W∗(ν, ν

co)2 ≥
∫

Ωd

φ(s) d(ν⊥ − ν)(s).

By Theorem SM9, φ(s) = 1
2

∑d
i=1 s

2
i − u(Σ(s)), where u is convex. The second moments in

the right hand side of the last inequality cancel out because ν and ν⊥ satisfy the same marginal
constraints. Thus, we can rewrite the right hand side as

∫
Ωd
u(Σ(s)) d(ν − ν⊥)(s). Since ν⊥ is

supported on the axis and thanks to the marginal constraints of ν,

∫

Ωd

u(Σ(s)) dν⊥(s) =
d∑

i=1

∫

Ω1

u(si) dν(si) =

∫

Ωd

d∑

i=1

u(si) dν(s).

Thus, ∫

Ωd

φ(s) d(ν⊥ − ν)(s) =

∫

Ωd

(
u(Σ(s))−

d∑

i=1

u(si)

)
dν(s), (SM10)

which is non-negative thanks to superadditivity of convex functions, see Lemma SM12 below.
This proves that W∗(ν, νco) ≤ W∗(ν⊥, νco).

We now assume that ν(Ω1) = +∞ and we show that equality holds only if ν = ν⊥. Let
ν satisfy W∗(ν, νco) = W∗(ν⊥, νco). Then by (SM10), the support of ν is contained in the set
Du = {s ∈ Ωd : u(Σ(s)) =

∑d
i=1 u(si)}. We prove by contradiction that Du only contains

the axis. Without loss of generality let s ∈ Du such that s1, s2 > 0. Then by Lemma SM12
below, u is linear on [0, s1 + s2]. Let λ ≥ 0 be the slope of u on [0, s1 + s2]. On (0, s1 + s2) the
subdifferential of u coincides with the gradient of u, that is {λ}. Let γ+ = (U−1

ν+ , U
−1
ν )#Leb(Ω1)

be the optimal transport coupling between ν+ and ν. By Proposition SM5 and Remark SM1 we
know the support of γ is concentrated on the graph of the subdifferential of u. Thus for ε > 0
there holds

supp(γ+) ∩ ([ε, s1 + s2 − ε]× [0,+∞)) = [ε, s1 + s2 − ε]× {λ}.

Note that the assumption of infinite mass also implies that ν+(Ω1) = +∞ and in particular U−1
ν

and U−1
ν+ take strictly positive values. Thus λ cannot be equal to 0. On the other hand, if λ > 0

then by the marginal property of γ+ we see that

ν+([ε, s1 + s2 − ε]) = γ+([ε, s1 + s2 − ε]× {λ}) ≥ ν({λ}).

Letting ε→ 0, as ν+ ∈ M2(Ω1) is also a measure with infinite mass we see that ν({λ}) = +∞.
This a contradiction since λ > 0 and the second moment of ν is finite.

During the proof we have used the following elementary Lemma about convex functions.

Lemma SM12. Let u : [0,+∞) → [0,+∞) a convex function such that u(0) = 0. Then if
s ∈ (0,+∞)d, u(Σ(s)) ≥∑i u(si) and equality holds if and only if u is linear on [0,Σ(s)].

Proof. We reason by induction on d. For d = 2, as the slopes of u are non-decreasing,

u(s1 + s2)− u(s2)

(s1 + s2)− s2
≥ u(s1)− u(0)

s1
,
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which is equivalent to our claim. Moreover, it is clear that equality holds if and only if u is linear
on [0, s1 + s2]. For d ≥ 3 we rewrite

u(Σ(s))−
d∑

i=1

u(si) =

[
u

(
d−1∑

i=1

si + sd

)
− u

(
d−1∑

i=1

si

)
− u(sd)

]
+

[
u

(
d−1∑

i=1

si

)
−

d−1∑

i=1

u(si)

]
,

and we use the case d = 2 for the first term in the sum and the case d − 1 for the second term.
The equality case is implied by the equality case for the first term.

5 Proofs of Section 5: Examples
Lemma 6 easily follows from the following.

Lemma SM13. Let µ̃1 and µ̃2 be independent homogeneous CRVs with same base measure α
and Lévy measures ν1, ν2, respectively. Then µ̃1 + µ̃2 is a CRV with base measure α and Lévy
measure ν1 + ν2.

Proof. The law of a CRV with base measure α and Lévy measure ν is characterized by the joint
Laplace exponent

E(e−λ µ̃(A)) = e
−α(A)

∫
Ωd

(1−e−λs) dν(s)
,

for every set A and every λ ∈ Ωd. By linearity of the integral,

e
−α(A)

∫
Ωd

(1−e−λs) d(ν1+ν2)(s)
= E(e−λ µ̃1(A))E(e−λ µ̃2(A)).

Since µ̃1 and µ̃2 are independent, this is equal to E(e−λ (µ̃1+µ̃2)(A)).

We define the following quantities.

Uν+z (s) = d(1− z)Uν(s) + zUν(sd
−1), ν+z (s) = d(1− z)ν(s) + zd−1ν(sd−1).

Proposition 7. Let µ̃ be a d-dimensional additive CRV of parameter z. Then IW(µ̃) ≥ z and

IW(µ̃) = 1− dM2(ν)−
∫ +∞
0

sU−1
ν (Uν+z (s))ν

+
z (s) ds

dM2(ν)− d
∫ +∞
0

sU−1
ν (dUν(s))ν(s) ds

.

Proof. Let ν = νz. The expression in the denominator follows by Corollary SM10. Since ν
is supported on the bisecting line and on the axis, we observe that Uν+(s) = d(1 − z)Uν(s) +
zUν(sd

−1). We derive the expression of ν+ by differentiation. To prove the inequality IW(µ̃) ≥
z, we restrict to transport maps that acts as the identity on the mass on the bisecting line, so that

W∗(ν, ν
co)2 = W∗(zν

co + (1− z)ν⊥, νco)2 ≤ W∗((1− z)ν⊥, (1− z)νco)2,

which is equal to (1−z)W∗(ν⊥, νco)2 by homogeneity of the squared Wasserstein distance. Thus
W∗(ν⊥, νco)2 cancels out with the denominator and one gets IW(µ̃) ≥ 1− (1− z) = z.

We define the following quantities.

Uν+ϕ
(s) =

1

Γ(dϕ)

∫ 1

0

Γ

(
dϕ,

s

u

)
(1− u)ϕ−1

u
du, ν+ϕ (s) =

sdϕ−1

Γ(dϕ)

∫ 1

0

e−
s
u
(1− u)ϕ−1

udϕ+1
du.
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Proposition 8. Let µ̃ be a d-dimensional gamma compound random vector of parameter ϕ.
Then,

IW(µ̃) = 1−
d−

∫ +∞
0

aE−1
1 (Uν+ϕ

(s)) ν+ϕ (s) ds

d− d
∫ +∞
0

E−1
1 (dE1(s))e−s ds

.

Proof. Since M2(ν̄) = 1, by Corollary SM10,

W∗(ν
⊥, νco)2 = 2d

(
1−

∫ +∞

0

E−1
1 (dE1(s))e

−s ds

)
.

Let ν = νϕ. Since ν is diffuse, ν+ is atomless and we may apply (SM9). We first find the
expression of Uν+ . Let pϕ(z) = Γ(ϕ)−1zϕ−1e−z1(0,+∞)(z) indicate the density of a gamma(ϕ, 1),
so that

ν(s) =

∫ 1

0

(1− u)ϕ−1

ud+1

d∏

i=1

pϕ

(
si
u

)
du.

By definition of pushforward measure,

Uν+(t) =

∫

(0,+∞)d
1(t,+∞)(s1 + · · ·+ sd)ν(s) ds1 . . . dsd

=

∫ 1

0

(1− u)ϕ−1

u

(∫

(0,+∞)d
1( t

u
,+∞
)(v1 + · · ·+ vd)

d∏

i=1

pϕ(vi) dv1 . . . dvd

)
du,

with a change of variable v = s/u. The expression in the parenthesis coincides with the survival
function of the sum of d independent gamma(ϕ, 1) random variables, evaluated in t/u. Since the
sum of d independent gamma(ϕ, 1) random variables is a gamma(dϕ, 1),

Uν+(t) =
1

Γ(dϕ)

∫ 1

0

Γ

(
dϕ,

t

u

)
(1− u)ϕ−1

u
du.

The expression of v+ easily derives by differentiating Uν+ .

We now consider a d-dimensional CRV with m independent components and n comonotone
replicates each, that is,

µ̃ = (

n︷ ︸︸ ︷
µ̃1, . . . , µ̃1,

n︷ ︸︸ ︷
µ̃2, . . . , µ̃2, . . . ,

n︷ ︸︸ ︷
µ̃m, . . . , µ̃m), (SM11)

where µ̃⊥ = (µ̃1, µ̃2, . . . , µ̃m) ∈ M2(Ωm) is an independent CRV with equal marginals ν̄.

Proposition 9. Let µ̃ be a d-dimensional CRV as in (SM11), with m independent components
and n comonotone replicates. Then,

IW(µ̃) = 1− M2(ν)−
∫ +∞
0

sU−1
ν (mUν̄(s))ν̄(s) ds

M2(ν)−
∫ +∞
0

sU−1
ν (dUν(s))ν(s) ds

.
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Proof. Let ν indicate the corresponding Lévy measure. Then,

Uν+(s) = ν({(s1, . . . , sd) : s1 + · · ·+ sd ≤ s})

=
m∑

i=1

ν({(s1, . . . , sd) : s(i−1)n+1 + · · ·+ sin ≤ s})

=
m∑

i=1

ν({(s1, . . . , sd) : nsin ≤ s})

=
m∑

i=1

ν̄

({
sin : sin ≤ s

n

})

= mUν

(
s

n

)

By absolute continuity of ν, it follows that

ν+(s) = − ∂

∂s
Uν+(s) =

m

n
ν

(
s

n

)

is atomless. Thus, with a change of variable s = U−1
ν+ (t),

W∗(ν, ν
co)2 = 2dM2(ν)− 2

∫ +∞

0

sU−1
ν (Uν+(s))ν

+(s) ds.

The result follows by substituting the expression of ν+ and Uν+ above in the numerator and by
using Corollary SM10 for the denominator.

Proposition 10. Let µ̃ be a d-dimensional CRV as in (SM11) with m independent components
and n comonotone replicates. If n is fixed and m→ +∞,

IW(µ̃) → 0

monotonically from above. If m is fixed and n→ +∞,

IW(µ̃) → IW(µ̃) =

∫ +∞
0

sU−1
ν (mUν̄(s))ν̄(s) ds

M2(ν̄)

monotonically from below.

Proof. Thanks to Proposition 9 we only need to show that

lim
k→+∞

∫ +∞

0

sU−1
ν (kUν̄(s))ν̄(s) = 0

monotonically in k. Since Uν is a decreasing function, so is U−1
ν . Moreover lims→+∞ U−1

ν (s) = 0
by the infinite activity assumption. Thus for every s > 0, U−1

ν (kUν̄(s)) → 0 monotonically. We
then apply the monotone convergence theorem and conclude.
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