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Abstract: Bayesian nonparametric methods have recently gained popularity in the

context of density estimation. In particular, the density estimator arising from

the mixture of Dirichlet process is now commonly exploited in practice. In this

paper we perform a sensitivity analysis for a wide class of Bayesian nonparametric

density estimators, including the mixture of Dirichlet process and the recently pro-

posed mixture of normalized inverse Gaussian process. Whereas previous studies

focused only on the tuning of prior parameters, our approach consists of perturb-

ing the prior itself by means of a suitable function. In order to carry out the

sensitivity analysis we derive representations for posterior quantities and develop

an algorithm for drawing samples from mixtures with a perturbed nonparametric

component. Our results bring out some clear evidence for Bayesian nonparametric

density estimators, and we provide an heuristic explanation for the neutralization

of the perturbation in the posterior distribution.
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1. Introduction

The problem of density estimation is an inferential problem that falls natu-

rally in the realm of nonparametric statistics. Many estimators proposed in the

literature are of the form

f(x) =

∫

k(x, y)P(dy), (1.1)

where k is a parametric kernel and P is a mixing distribution. The popular

kernel density estimator is of the form (1.1) with P the empirical distribution

function. The Bayesian counterpart is achieved by replacing the empirical distri-

bution function with a nonparametric prior and, hence, (1.1) is a random density

function. The Bayesian density estimator, with respect to the integrated squared

loss function, is then given by the predictive distribution arising from (1.1),

f̂n(x) = E

[
∫

k(x, y)P(dy)
∣

∣X1, . . . ,Xn

]

. (1.2)
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A typical choice for P is the Dirichlet process, giving rise to the popular

Dirichlet process mixture (DPM). An early use of the DPM can be found in

Berry and Christensen (1979), whereas the first systematic treatment of den-

sity estimation is due to Lo (1984), who also provided an expression for (1.2).

However, such an expression, involving a sum over partitions, turns out to be

inapplicable to concrete examples of datasets. Ferguson (1983) noted that the

DPM can be formulated in hierarchical form as

Xi |Yi ind∼ k( · , Yi)
Yi|P i.i.d.∼ P (1.3)

P ∼ Dα,

where Dα stands for the Dirichlet process prior with parameter measure α( · ) =

aP0( · ), with P0( · ) = E[P( · )] being the prior guess at the shape. This idea

turned out to be very fruitful for practical purposes. Indeed, Escobar (1988) (see

also Escobar (1994) and Escobar and West (1995)) developed an MCMC algo-

rithm for simulating from the posterior distribution of a DPM, which allowed

the DPM and semiparametric variations of it to be exploited in many different

applied contexts such as longitudinal data models (Müller and Rosner (1997),

Müller, Quintana and Rosner (2004)), clustering and product partition models

(Petrone and Raftery (1997) and Quintana and Iglesias (2003)), survival analysis

(Doss (1994)), analysis of randomized block experiments (Bush and MacEachern

(1996)), multivariate ordinal data (Kottas, Müller and Quintana (2005)), and

differential gene expression (Do, Müller and Tang (2005)). See Müller and Quin-

tana (2004) for a review.

In the recent literature, various large classes of discrete random prob-

ability measures that generalize the Dirichlet process have been proposed.

Among them we mention species sampling models (Pitman (1996)), stick

breaking priors (Ishwaran and James (2001)), normalized random measures

with independent increments (Regazzini, Lijoi and Prünster (2003)), Poisson–

Kingman models (Pitman (2003)) and spatial neutral to the right models (James

(2006)). Indeed, any specific prior contained in the classes listed above is a

potential candidate for replacing the Dirichlet process in (1.3). For instance,

Lijoi, Mena and Prünster (2005, 2007) used specific normalized random mea-

sures with independent increments (NRMI), and highlighted their different

clustering behavior with respect to the DPM model. Recently interest has

also focussed on generalizations of (1.3) by the introduction of general de-

pendence structures on time or covariates. This important research line was

initiated in the seminal papers of MacEachern (1999, 2000), whose dependent
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nonparametric priors constitute the theoretical framework for many mod-

els now exploited in practice. Among other contributions, Griffin (2007)

proposed a class of time–varying NRMI in view of financial applications,

Dunson and Park (2008) and Dunson, Xue and Carin (2008) introduced de-

pendent stick–breaking priors for epidemiologic and bioassay problems, and

De Iorio, Müller, Rosner and MacEachern (2004) designed an ANOVA model

based on the dependent Dirichlet process. It has to be remarked that in all

the papers mentioned above, some sensitivity analysis with respect to the choice

of the parameters of the mixing measure P , chosen to be the Dirichlet process or

a suitable tractable alternative, was performed. However, at least to the authors

knowledge, no sensitivity analysis involving a perturbation of P itself has been

carried out.

In this paper we consider mixture models like (1.3) where P is a perturbed

NRMI. To be more specific, consider a Dirichlet process; it is well known (Ferguson

(1973)) that it can be constructed as a suitable normalization of a gamma process

Γ. Now, take some positive deterministic function k̄ and define a new random

probability measure as

P(dy) =
k̄(y)Γ(dy)

∫

k̄(s)Γ(ds)
=

∑

i≥1 k̄(y)Ji δYi
(dy)

∑

i≥1 k̄(y)Ji
, (1.4)

where δa is a point mass at a, the Yi’s are the jump locations and the Ji’s are

the jump heights. Note that P in (1.4) is obviously not a Dirichlet process

anymore, unless k̄ is constant. The role of the function k̄ in (1.4) consists of

amplifying or squeezing the heights of the jumps of the gamma process. Hence,

k̄ can be used to perturb the original Dirichlet process: by selecting a k̄ with

a relatively large (low) value on a certain interval B, the expected probability

assigned to B increases (decreases). In this paper we try to answer the question

of whether the Bayesian density estimator (1.2) is robust with respect to such a

perturbation. Our answer is positive and we also provide a description of how the

posterior distribution of (1.4) is able to neutralize the effect of k̄. Indeed, we face

the problem in a greater generality by allowing Γ in (1.4) to be any increasing

additive process (IAP): mixtures with such a driving measure have been termed

normalized priors driven by IAPs in Nieto-Barajas, Prünster and Walker (2004),

where the distribution of their mean functionals is studied.

In order to carry out our sensitivity analysis, two main ingredients are

needed: the posterior distribution of a perturbed NRMI and a simulation al-

gorithm for drawing samples from a mixture like (1.3), with mixing measure a

perturbed NRMI. These are given in Section 2, together with a precise definition
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of perturbed NRMI. In Section 3 we study in great detail a simulated data ex-

ample, and analyze the posterior behaviour of the perturbed NRMI highlighting

its ability to neutralize the influence of k̄. The section is then completed by the

analysis of two classical datasets, namely the galaxy and acidity data. Section 4

contains some concluding remarks.

2. Tools for the Analysis of a General Perturbed Mixture Model

2.1. The perturbed mixture model

Let us start this section by describing the mixture model we are going to

consider in some detail. Let (Xi)i≥1 be a sequence of observable random variables,

whereas (Yi)i≥1 is a a sequence of latent random variables. We assume a mixture

model for the observations, namely

Xi |Yi ind∼ k( · , Yi)
Yi|P i.i.d.∼ P (2.1)

P ∼ P,

where P is the distribution of a perturbed NRMI given by

P(dy) =
k̄(y)A(dy)

∫

R
k̄(s)A(ds)

, (2.2)

with k̄ being some non-negative function, and A an increasing additive pro-

cess (IAP) that is an increasing process with independent but not necessar-

ily stationary increments. See Sato (1999) for an exhaustive account of IAPs.

Note that if k̄ is a constant, then the perturbed NRMI reduces to an NRMI

as defined in Regazzini, Lijoi and Prünster (2003). In the following, the process

Ak(y) :=
∫

(−∞,y] k̄(s)A(ds) is termed a weighted IAP. The random probability

in (2.2) is uniquely characterized by k̄ and the Poisson intensity measure ν cor-

responding to A. This can be seen from the Laplace transform of Ak(y) which,

for any λ ≥ 0, is given by

E
[

e
−λ

R

(−∞,y]
k̄(s)A(ds)

]

= exp

{

−
∫

(−∞,y]×R+

(

1 − e−λk̄(s)v
)

ν(ds,dv)

}

. (2.3)

In the sequel, it is useful to write the Poisson intensity as

ν(dy,dv) = ρ(dv|y)α(dy), (2.4)

where α(·) is a measure on R and ρ a measurable kernel such that ρ(·|y) is a

measure on R+ for every y∈R. Now, the normalization in (2.2) leads to a well–

defined random probability measure if the denominator in (2.2) is (almost surely)
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finite and positive. This can be achieved by requiring k̄, α and ρ to satisfy
∫

R×R+[1 − exp{−λvk̄(y)}]ρ(dv|y)α(dy) < ∞ for every λ > 0 (finiteness), and

ρ(R+|y)=∞ for every y∈R (positiveness). See Nieto-Barajas, Prünster and Walker

(2004) for details.

As recalled in the Introduction, the Dirichlet process with parameter α arises

when k̄(y) = c and A is a gamma process or, equivalently, ρ(dv|y) = v−1e−vdv.

The normalized inverse Gaussian (N–IG) process (Lijoi, Mena and Prünster

(2005)) with parameter measure α is obtained by setting k̄(y) = c and ρ(dv|y) =

δ(
√

2π)−1v−3/2e−γ
2v/2dv, which corresponds to A being an inverse Gaussian pro-

cess. On the other hand, if k̄ is not a constant, the resulting P in (2.2) is not

Dirichlet or N–IG anymore, but is a normalized perturbed gamma or inverse

Gaussian measure. It is worth noting that the un–normalized process k̄(y)Γ(dy)

is also known as an extended gamma process, which has been introduced in

Dykstra and Laud (1981) in the context of survival analysis. In Section 3 we

compare the density estimates arising from these two priors, and from their per-

turbed variations.

2.2. The posterior distribution of the mixing measure

Given the complexity of a mixture model like (2.1), inference is necessar-

ily simulation-based. Nonetheless the derivation of some analytical quantities is

required to set up an algorithm for drawing samples from (2.1). A common strat-

egy is to integrate out P in (2.1), and then resort to its predictive distributions

within a Gibbs sampler to obtain posterior samples. Such an approach falls within

the class of marginal methods and can be applied to DPM and N–IG mixtures.

However, for general mixing distributions like (2.2), even when A is a gamma

or inverse Gaussian process, the predictive distributions are intractable. Hence

we have to derive, according to the terminology of Papaspiliopoulos and Roberts

(2008), a conditional method, which means that we have to set up an algorithm

without integrating out (2.2) in (2.1).

Consequently the basic analytical building block of the algorithm, to be

set forth in the next paragraph, is represented by a posterior characterization

of (2.2), given the latent variables Y := (Y1, . . . , Yn). Indeed, it is enough to

characterize the un–normalized perturbed IAP Ak(dy), since the normalization

can be carried out within the algorithm. Due to the (almost sure) discreteness

of the driving process Ak(dy), ties usually appear in the Yi’s. Hence, define

Y ∗ := (Y ∗
1 , . . . , Y

∗
r ) as the set of distinct values within Y , and denote by nj the

frequency of Y ∗
j , for j = 1, . . . , r ≤ n. Obviously,

∑r
j=1 nj = n. We are now in a

position to provide the posterior representation that characterizes the posterior

distribution Ak(dy) as a mixture with respect to a suitable latent variable.
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Proposition 1. Let Y be a set of latent variables sampled from (2.2). Then

the posterior distribution of Ak(ds) = k̄(s)A(ds), given Y , is a mixture with

respect to the distribution of a latent variable U . More explicitly, we have the

following.

(a) [Ak(ds)|U, Y ] coincides in distribution with a weighted IAP with fixed points

of discontinuity

k̄(s)A∗(ds) +

r
∑

j=1

k̄(s)J∗
j δY ∗

j
(ds). (2.5)

(a.1) A∗(ds) is an IAP without fixed points of discontinuity, characterized by

the intensity

ν∗(ds,dv) = e−uk̄(s)vν(ds,dv). (2.6)

(a.2) The Y ∗
j , j = 1, . . . , r, are fixed points of discontinuity with jump heights

J∗
j that are absolutely continuous with density

fj(v) ∝ vnje−Uk̄(Y
∗

j )vρ(dv|Y ∗
j ). (2.7)

(a.3) The jumps J∗
j , j = 1, . . . , r are mutually independent and independent

of A∗.

(b) [U |Y ] is absolutely continuous with density

fU |Y (u) ∝ un−1 exp{−ψk̄(u)}
r

∏

j=1

τnj
(u|Y ∗

j ), (2.8)

where ψk̄(u) =
∫

R×R+(1 − e−uk̄(s)v)ν(ds,dv) and

τnj
(u|y∗j ) =

∫ ∞
0 vnje−uk̄(y

∗

j )v ρ(dv|y∗j ).
The proof is postponed to the Appendix. We remark that an indirect proof

of this result can also be derived from the posterior characterization of an NRMI

due to James, Lijoi and Prünster (2009), via some suitable modifications and

changes of variables.

2.3. Posterior simulation from the perturbed mixture model

Given the posterior characterization of the perturbed IAP Ak(ds), we are in a

position to set up a Gibbs sampling scheme for simulating from the posterior of a

general mixture model (2.1). This sampling strategy represents a generalization

of the algorithm set forth in Nieto-Barajas and Prünster (2008) for a simple

NRMI.
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Recall that we do not observe the latent Yi’s (nor the Y ∗
j ’s), we only observe

X := (X1, . . . ,Xn). Therefore, in order to make posterior inference, we need to

implement a Gibbs sampling scheme with conditional distributions

[Ak|X,Y ] and [Y |X,Ak]. (2.9)

First consider [Ak|X,Y ]: due to conditional independence properties, this condi-

tional distribution does not depend on X. By Proposition 1, we can sample from

this distribution in two steps by sampling first [U |Y ] and then [Ak|U, Y ]. The

distribution [U |Y ] is univariate and absolutely continuous with density given in

(2.8). Therefore samples can be obtained by implementing a Metropolis–Hastings

step within the Gibbs sampler. [Ak|U, Y ] is an updated weighted IAP of the form

(2.5). For simulating the random process A∗ in (2.5), we resort to the represen-

tation of Ferguson and Klass (1972) combined with an inverse Lévy measure

algorithm. See Walker and Damien (2000) for a discussion of the Ferguson and

Klass algorithm. To this end, write

A∗(s) =
∑

i

JiI(τi≤s), (2.10)

where IA denotes the indicator of set A. The positive random variables Ji are

obtained via θi = −M(Ji), with M(v) = −ν(R, [v,∞)), Ji = 0 if θi > −M(0),

and θ1, θ2, . . . are jump times of a standard Poisson process at unit rate, i.e.,

θ1, θ2 − θ1, . . .
i.i.d.∼ Ga(1, 1), where Ga(a, b) stands for the gamma distribution

with mean a/b. The random locations τi are obtained via ωi = nτi(Ji), where

ω1, ω2, . . . are i.i.d. from a uniform distribution on (0, 1), independent of the Ji’s

and

nτ (v) =
ν((−∞, τ ],dv)

ν(R,dv)
.

Hence, the posterior weighted IAP Ak(y)|U, Y can be expressed as

Ak(y) =
∑

i

k̄(zi)GiI(zi≤y),

where, for any i ≥ 1, Gi ∈ {J1, . . .}∪{J∗
1 , . . . , J

∗
k} and zi ∈ {τ1, . . .}∪{y∗1 , . . . , y∗k},

with the τj’s and Jj’s denoting the locations and jumps in (2.10), the y∗j ’s and

J∗
j ’s being the fixed points of discontinuity and the corresponding jumps sampled

via (2.7), respectively.

Now, concerning [Y |X,Ak], since an IAP is a pure jump process, its support

is given by the locations of the jumps of Ak, that is the zi’s, and therefore

fYi|Xi,Ak
(v) ∝

∑

j

k(xi, v)Gjδzj
(v). (2.11)
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Note that sampling from (2.11) will produce ties in the Yi’s since the support of

the conditional density (2.11) for each Yi is the same; however, the probability

assigned to each point mass is different.

Once we have a sample from the posterior distribution of the driving measure

Ak(·), a realization of the posterior random density f(x), given in (2.1), can be

expressed as a discrete mixture of the form

f(x|Ak) =
∑

i

k(x, zi)
k̄(zi)Gi

∑

j k̄(zj)Gj
. (2.12)

When sampling from the posterior distribution of nonparametric mixture

models, a phenomenon of “sticky cluster locations” often appears causing a slow–

down in the convergence of the algorithm. Such an issue was first noted in

Bush and MacEachern (1996), where an important device for overcoming this

problem was proposed; it consists in a re–sampling step, sometimes termed ac-

celeration step, to be added to the algorithms. Specifically, one has to re-sample

the locations of the distinct latent Y ∗
j ’s from the full conditional distribution

fY ∗

j
(v|x, cluster configuration), whose density is proportional to

∏

i:yi=y∗j

k(xi, v)P0(dv). (2.13)

Sampling from this distribution can be done by implementing a Metropolis-

Hastings step, if P0( · ) = E[P( · )] is known explicitly. This is the case for the

Dirichlet and the N-IG processes, where P0( · ) = α( · )/a. In the perturbed case

P0 has more complicated structure, but if k̄ is a step–function it can still be

computed explicitly. Details for its determination are given in the Appendix.

Therefore, the algorithm for simulating from the posterior distributions in

(2.9) can be summarized as follows. Given the starting points y
(0)
1 , . . . , y

(0)
n , and

using the notation in terms of distinct y∗j ’s with frequency nj, for j = 1, . . . , r,

one has to iterate the following steps.

(i) Sample u from the conditional density (2.8).

(ii) Sample the process A∗( · ) using the Ferguson and Klass algorithm with Lévy

intensity (2.6).

(iii) For each y∗j , with j = 1, . . . , r, sample a jump height J∗
j according to its

density (2.7).

(iv) Compute a realization of the posterior random density f(x) by (2.12).

(v) For i = 1, . . . , n, sample yi from its discrete conditional density (2.11).

(vi) Group the yi’s obtained in (v) into the distinct y∗j ’s with frequency nj . Re–

sample the values of the fixed locations y∗j using (2.13).
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3. Sensitivity Analysis

In this section we perform the sensitivity analysis and show that the poste-

rior density estimates are not significantly affected by the perturbation arising

through k̄. The setup is as follows. The kernel in (2.1) is chosen to be

k(x, y) =
1

σ
√

2π
exp

{

− 1

2σ2
(x− y)2

}

, (3.1)

which represents the typical choice in the context of mixture models. In the

simulated data example, σ in (3.1) is fixed, whereas in data examples a prior

will be placed on σ leading to a semiparameteric mixture model. Hence, the

nonparametric prior (2.2) controls the means of the normal components in the

mixture. We focus attention on the following two choices: (1) A is a gamma

process with parameter α( · ); (2)A is an inverse Gaussian process with parameter

α( · ). These choices produce the Dirichlet and N–IG priors if k̄ is constant;

otherwise perturbed versions of them arise. Even if their perturbed versions are

not Dirichlet or N–IG processes, for terminological simplicity, we refer to them

as perturbed Dirichlet and N-IG processes. Another option for A is represented

by the stable subordinator; however, by the properties of stable distribution, in

such a case k̄ would be absorbed by A and the whole model would reduce to the

mixture of normalized stable process studied in Ishwaran and James (2001).

As for the choice of the parameter measure of the processes we used α(dy) =

aP0(dy) = aGa(y|p, q)dy, where Ga( · |p, q) stands for gamma density with mean

p/q and a some positive constant. This choice was motivated by the fact that we

consider positive data, and it serves also to highlight the fact that our algorithm

poses no additional computational difficulties if the kernel k and P0 do not form a

conjugate pair. Hence, we were left with the selection of the perturbing function

k̄. We considered functions k̄ of the type

k̄(y) =

{

κ if y ∈ B ⊂ R+,

1 otherwise.

If κ > 1, then k̄ amplifies the jumps of A in the region B, thus increasing,

with respect to the unperturbed model, the prior expected probability that the

means of the normal components lie in B. If κ < 1, then the prior probability of

selecting means in B decreases. Posterior inference was obtained via the Gibbs

sampler outlined in Section 2.3. For each case we took 20,000 iterations with a

burn-in of 2,000 and kept the last 18,000 for computing the estimates.

Before moving on to the analysis of the various datasets, it is important

to remark that the following results do not depend on the choices listed above.

Indeed, extensive simulation studies, not reported here, indicate that the same
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conclusions are reached when changing the kernel, the process A, its parame-

ter measure α, and the perturbing function k̄. In the analysis of the following

simulated data example, we try to explain why this is the case.

3.1. A simulated data example

The first example consists of simulated data obtained from a mixture of two

gamma distributions of the form

f(x) = 0.7Ga(x|25, 5) + 0.3Ga(x|64, 8). (3.2)

Both components in the mixture f(x) have variance 1, but the weight in the mix-

ture is different. This hypothetical situation occurs when there is a dominating

group linked to a smaller group with slightly larger values; this situation would

result in observing mainly values from the first group and few values from the

other group.

Here we consider the case that 30 observation were available from the pre-

vious mixture, and density estimation was required. We set σ = 1 for the kernel

(3.1), α(dy) = Ga(y|3, 0.5)dy for the gamma process, and α(dx) = 0.1Ga(x|3,
0.5)dy for the inverse Gaussian process. This implies that the mode of the prior

distribution on the number of components is four for both the Dirichlet and the

N–IG process. See Lijoi, Mena and Prünster (2005) for details on this strategy of

tuning the distributions on the number of components in order to make the priors

comparable. As a perturbing function we selected k̄(y) = 10 I[0,3](y) + I(3,∞)(y),

which significantly amplifies the jumps in the interval [0, 3]. Note that the means

of the two components of (3.2) are 5 and 8, respectively.

Let us note that the prior guess at the shape of the distribution of the means

in (2.1), which is given by the expected value of (2.2), corresponds to P0(dy) =

E[P(dy)] = Ga(y|3, 0.5)dy for the Dirichlet and N–IG processes (that is, with

κ = 1), whereas it is given by P0(dy) = E[P(dy)] = 2.07Ga(y|3, 0.5)I[0,3](dy) +

0.75Ga(y|3, 0.5)I(3,∞)(dy) for the perturbed Dirichlet process, and by P0(dy) =

E[P(dy)] = 2.34Ga(y|3, 0.5)I[0,3](dy) + 0.68Ga(y|3, 0.5)I(3,∞)(dy) for the per-

turbed N–IG process. The two expression for P0 are determined using (A.3) and

(A.4), respectively. The prior density estimates of the mixture (2.1) are then

given by f̂(x) = E[f(x)] =
∫

R+(
√

2π)−1e−(x−y)2/2 P0(dy). Figure 3.1 depicts the

prior distribution on the means and the prior density estimate corresponding to

the Dirichlet process and its perturbed version. The great influence of the per-

turbation on the prior structure is apparent: it induces the mixing measure to

select means in the interval [0, 3] and the overall prior density estimate, though

smooth, is evidently biased towards allocating mass in the region including [0, 3].

The effect of the perturbation on the N–IG process mixture is similar.
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Figure 3.1. (a) Prior density on the means of the normal components: Dirich-

let (solid line) and perturbed Dirichlet (dashed line) processes; (b) Prior den-
sity estimate of the mixture: Dirichlet (solid line) and perturbed Dirichlet

(dashed line) processes.
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Figure 3.2. True density (dotted line) together with: (a) Posterior density
estimates for Dirichlet (solid line) and perturbed Dirichlet (dashed line) mix-

tures; (b) Posterior density estimates for the N–IG (solid line) and perturbed
N–IG (dashed line) mixtures.

Such a heavy perturbation leads one to expect that the posterior density

estimates would be influenced by it. However, this appears not to be the case.

Figure 3.2 displays the posterior density estimates for both the Dirichlet and N–

IG mixtures, together with the density estimates arising from their perturbations.

Now we try to provide an explanation of why the posterior density estimate

is not much affected by the perturbation. We do this by looking at the specific

example at issue, but the behaviour is actually quite general. To understand the

mechanism that neutralizes the perturbation we have to reason at the level of

the latent variables that control the location of the means of the normal compo-

nents. The key quantity is the latent variable U , whose density is given in (2.8).
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Figure 3.3. Distribution of U |Y for Y containing 0 (solid line), 10 (dotted

line), 20 (dashed–dotted line) and 30 (dashed line) latent variables in [0, 3].

First consider the case where A is a gamma process: it is easy to see that the

distribution of U given the latent variables Y = (Y1, . . . , Y30) is

fU |Y (u) ∝ u30−1(1 + 10u)−[α([0,3])+s](1 + u)−[α([0,3]c)+30−s], (3.3)

where s stands for the number of latent variables which fall into the interval [0, 3].

Moreover, since in our case α(dy) = Ga(y|3, 0.5)dy, we have α([0, 3]) ∼= 0.19.

Now focus attention on the set [0, 3] where the perturbation takes place. In

the Dirichlet case this set has a prior probability P0([0, 3]) ∼= 0.19, whereas in

the perturbed case the probability of selecting means in the set is doubled, since

P0([0, 3]) ∼= 0.4. The question is now what is the posterior expected probability of

the set [0, 3], which clearly depends on the configuration of the latent variables.

For illustrative purposes, we consider four cases, namely that 30, 20, 10 and

none of the latent variables fall in [0, 3]. First note that the configuration of

the latent variables heavily influences the shape of the density of U |Y in (3.3).

Figure 3.3 displays (3.3) corresponding to the four choices of the latent variable

configuration: the more the latent variables fall in [0, 3], the more likely it is that

(3.3) generates a small number. As an average representative of the distribution

in (3.3) we take the median. For the four considered cases, we have medians

equal to 5.1 when 30 latent variables belong to [0, 3], 16.9 for 20, 29.7 for 10 and

42.6 for none.

Given this, we now compute the posterior probability of selecting a mean

in [0, 3] conditional on the latent variable U |Y and on Y , which corresponds to



SENSITIVITY OF BAYESIAN DENSITY ESTIMATORS 697

Table 1. E[P ([0, 3])
∣

∣U, Y ] corresponding to different configurations of Y

for the Dirichlet process and the perturbed Dirichlet process with different

values for U .

# of latents Dirichlet Perturbed Dirichlet
in [0, 3] u = 1 u = 5 u = 10 u = 20 u = 30 u = 50 Median of U |Y

30 0.974 0.984 0.971 0.970 0.970 0.969 0.968 0.971

20 0.651 0.767 0.684 0.663 0.655 0.650 0.648 0.657

10 0.328 0.465 0.362 0.343 0.335 0.328 0.325 0.329

0 0.006 0.011 0.007 0.006 0.005 0.004 0.003 0.004

calculating

E

[

P ([0, 3])

∣

∣

∣

∣

U, Y

]

= E

[∫

[0,3] k̄(y)A
∗(dy) +

∑

Y ∗

i ∈[0,3] k(Y
∗
i )J∗

i
∫

R+ k̄(y)A∗(dy) +
∑

Y ∗

i ∈R+ k(Y ∗
i )J∗

i

]

, (3.4)

where A∗ is an IAP with intensity ν∗(dy,dv) = e−{1+u k̄(y)}vv−1dv α(dy) and

with fixed points of discontinuity at the distinct latent variables {Y ∗
1 , . . . , Y

∗
r },

with jump heights J∗
i having the Ga(ni, 1 + u k̄(Y ∗

j )) distribution. As shown

in James, Lijoi and Prünster (2009) for the unperturbed Dirichlet process, (3.4)

is independent of U and coincides with the usual a posteriori estimate of the

Dirichlet process, namely (α([0, 3])+s)(α(R+)+n)−1, where s stands, as before,

for the number of latent variables taking value in [0, 3]. The first column of

Table 1 reports the posterior estimates E[P([0, 3])|Y ] for the Dirichlet process

corresponding to different configurations of Y ; the following columns show the

posterior expected values in (3.4) for the perturbed Dirichlet process for various

values of U and different configurations of Y , and are obtained by exploiting the

algorithm described in Section 2.3.

In Table 1, first note that small values of U tend to overestimate, whereas

large values of U tend to underestimate, the posterior probability with respect

to the unperturbed Dirichlet case. Second, there is an intermediate value of U

(which heavily depends on the configuration of the latents) so that one matches

the a posteriori probability of the unperturbed case. Indeed, the median values of

the distributions (3.3) plugged into (3.4) lead to a discrepancy between perturbed

and unperturbed Dirichlet of less than 1%. Now, since the median represents an

average value of (3.3), the posterior probability of [0, 3] not conditioned on U and,

consequently, also the density estimate in Figure 3.2 exhibits no real difference

between the perturbed and the unperturbed Dirichlet mixtures. It is important

to remark that if the distribution of U |Y did not produce sufficiently “good”

values, where “good” depends on the configuration of Y , the effect of k̄ would

still be evident in the posterior estimate.
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At this point, it is natural to look at the values of U |Y generated inside the

Gibbs sampler. Given that the posterior density estimates are very similar, we

can deduce from the median value of U |Y the average configuration of the latent

variables. The median value of U |Y is 27: this suggests that approximately

ten latent variables fall within [0, 3]. Also, the histogram is quite similar to the

density of U |Y with ten latents in [0, 3]. One may argue that around ten latents in

[0, 3] is larger than what one would expect given the true density is (3.2); however,

(3.2) is an unequal mixture with weight 0.7 on the first component, thus favoring

small rather than large latent variables. Moreover, and more importantly, we are

fitting a mixture of gamma distributions that are not symmetric and have mode

smaller than the mean. For a normal mixture, to reproduce the behaviour of

a gamma distribution near the origin, a shift of one of the normal components

toward 0 is necessary.

Similar considerations can be made for the N–IG mixture with the proviso

that, in this case, the distribution of U |Y depends not only on the location

of the latents but also on the number of distinct latents r and, moreover, on

the frequency of the classes n1, . . . , nr. A description of this more elaborate

clustering mechanism is provided in Lijoi, Mena and Prünster (2005). However,

the structure of U |Y is once again able to neutralize the effect of k̄.

3.2. Galaxy data

For the second example we consider the well-known galaxy data, first an-

alyzed in Roeder (1990). The data consists of the relative velocities, in thou-

sands of kilometers per second, of 82 galaxies from six well-separated conic sec-

tions of space. These data have been analyzed by several authors, including

Escobar and West (1995) and Lijoi, Mena and Prünster (2005). To analyze this

dataset, we extend our model (2.1) to a semiparameteric mixture by placing an

independent hyper–prior on σ, namely σ ∼ Ga(1, 2). The Gibbs sampler is then

extended to include the conditional posterior distribution for σ,

π(σ|x, u, y,Ak) ∝ π(σ)
n

∏

i=1

k(xi|yi, σ),

and a Metropolis-Hastings step is added for simulating from it.

Here we compare the posterior density estimates corresponding to the N–IG

and perturbed N–IG mixtures. To this end, set the parameter measure to be

α(dy) = 0.1Ga(y|1, 0.01)dy and the perturbing function to k̄(y) = 20 I[11,16](y)+

I[0,11)∪(16,∞)(y). By (A.4), this implies that P0(dy) = 4.13Ga(y|1, 0.001)I[11,16]
(dy) + 0.86Ga(y|1, 0.001) I[0,11)∪(16,∞)(dy). The prior and posterior density es-

timates arising from the N–IG and perturbed N–IG mixture are shown in Fig-

ure 3.4. It has to be noted that the prior estimate for the N–IG mixture is
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Figure 3.4. Galaxy data: (a) Prior density estimates for the N–IG (solid line)
and perturbed N–IG (dashed line) mixtures; (b) Posterior density estimates

for the N–IG (solid line) and perturbed N–IG (dashed line) mixtures together

with histogram of the data.

essentially flat, whereas its perturbed version has a high peak around (11, 16].

In contrast the posterior density estimates are close and the posterior estimates

for σ are similar, being 0.88 for the N–IG mixture and 0.76 for the perturbed

N–IG mixture. When considering Dirichlet and perturbed Dirichlet mixtures,

conclusions do not change all that much.

3.3. Acidity data

The third data we analyze concern the environmental problem of acidifica-

tion. The data consist of measurements of an acid neutralizing capacity (ANC)

index in a sample of 155 lakes in North–Central Wisconsin, USA; a low value of

ANC can lead to a loss of biological resources. These data were studied by several

authors, among others Richardson and Green (1997), and they were considered

on a log–scale there, as here.

As with the galaxy data, we consider a semiparametric variation of the

mixture model (2.1) and assign an independent gamma hyper-prior to σ, σ ∼
Ga(1, 10). We compute the posterior density estimates corresponding to the

Dirichlet and perturbed Dirichlet mixtures. To this end, set the parameter

measure to be α(dy) = Ga(y|5, 1)dy and the perturbing function to k̄(y) =

0.1 I[4,5](y) + I[0,4)∪(5,∞)(y). This choice, in contrast to the previous ones, has

the effect of squeezing, by a factor of 10, the jumps of the process in the in-

terval (4, 5]. From (A.3), we have that P0(dy) = 0.32Ga(y|5, 1) I[4,5](dy) +

1.16Ga(y|5, 1) I[0,4)∪(5,∞)(dy). Figure 3.5. displays the prior and posterior den-

sity estimates arising from the Dirichlet and perturbed Dirichlet mixture. The

perturbation creates a bimodal prior density estimate with minimum in the inter-

val (4, 5]. However, the posterior density estimates do no exhibit any appreciable
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Figure 3.5. Acidity data: (a) Prior density estimates for the Dirichlet (solid
line) and perturbed Dirichlet (dashed line) mixtures; (b) Posterior density

estimates for the for the Dirichlet (solid line) and perturbed Dirichlet (dashed

line) mixtures together with histogram of the data.

difference. The posterior estimates for σ are basically the same, 0.14 for the

Dirichlet mixture and 0.12 for the perturbed Dirichlet mixture. Although not

reported here, a similar behaviour arises when considering N–IG and perturbed

N–IG mixtures.

4. Conclusions

In this paper we have performed a new type of sensitivity analysis for

Bayesian density estimators that consists of perturbing the nonparametric com-

ponent in the mixture model by means of a suitable function. Such a perturbation

heavily affects the prior structure of the model by increasing (or decreasing) the

mass in certain regions. However, the model is able to absorb and neutralize

such a perturbation in the posterior distribution by a quite interesting mecha-

nism whose heuristics we have tried to describe. Being robust with respect to

functional perturbations seems to represent a clear point in favor for mixtures

of NRMI and, in particular, of their important special cases represented by the

mixture of Dirichlet process and the mixture of normalized inverse Gaussian pro-

cess. This clearly speaks also in favor of the use of dependent variations of these

priors in a regression setup, where the fundamental ingredient is always a model

like (1.3) with the Dirichlet replaced by a dependent random measure.
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Appendix

Proof of Proposition 1. The strategy of the proof consists of deriving the

posterior Laplace functional of k̄(y)A(dy), and it exploits the technique set forth

in Prünster (2002). Let C1, . . . , Cr be such that Cj ⊂ R and Ci ∩ Cj = ∅ for all

i 6= j. Then

ψ(λ, Y ∗, C) = E
{

e−
R

λ(s)k̄(s)A(ds)
∣

∣

∣
(Y ∗

1 , . . . , Y
∗
r ) ∈ ×r

j=1C
nj

j

}

,

which takes the form

E
[

e−
R

λ(s)k̄(s)A(ds)
∏r
j=1

{

∫

Cj
k̄(s)A(ds)

}nj {∫

k̄(s)A(ds)
}−n

]

E
[

∏r
j=1

{

∫

Cj
k̄(s)A(ds)

}nj {∫

k̄(s)A(ds)
}−n

] .

We work on the numerator and denominator separately. Using the gamma iden-

tity λ−n =
∫ ∞
0 un−1e−uλdu/Γ(n), the numerator can be expressed as

E





∫ ∞

0

un−1

Γ(n)
e−

R

{λ(s)+u}k̄(s)A(ds)
r

∏

j=1

{

∫

Cj

k̄(s)A(ds)

}nj

du



 .

Now, noting that xn = eux(−1)n(dn/dun)e−ux, the numerator is

∫ ∞

0

un−1

Γ(n)
E



e
−

R

Cr+1
{λ(s)+u}k̄(s)A(ds)

r
∏

j=1

{

(−1)nj
dnj

dunj
e
−

R

Cj
{λ(s)+u}k̄(s)A(ds)

}



 du,

where Cr+1 = R − ⋃r
j=1Cj. Considering that the regions C1, . . . , Cr+1 are dis-

joint we can apply the independence properties of the IAP and, using (2.3), the

numerator is now expressed as

∫ ∞

0

un−1

Γ(n)
exp

{

−
∫

Cr+1×(0,∞)

(

1 − e−{λ(s)+u}k̄(s)v
)

ν(ds, dv)

}

×
r

∏

j=1

[

(−1)nj
dnj

dunj
exp

{

−
∫

Cj×(0,∞)

(

1 − e−{λ(s)+u}k̄(s)v
)

ν(ds, dv)

}]

du.

The denominator of ψ can be obtained from the numerator by setting λ(s) = 0

for all s.
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Now assuming that the Cj’s are of the form Cj = [y∗j −ǫ, y∗j +ǫ), and recalling

that ν(ds,dv) = ρ(dv|s)α(ds), then taking the limit when ǫ→ 0, we obtain

lim
ǫ→∞

ψ(λ, Y ∗, C) = lim
ǫ→∞

E
{

e−
R

λ(s)k̄(s)A(ds)
∣

∣

∣
(Y ∗

1 , . . . , Y
∗
r )∈×r

j=1[y
∗
j − ǫ, y∗j + ǫ)

}

=

∫ ∞
0 un−1E

[

e−
R

{λ(s)+u}k̄(s)A(ds)
]

∏r
j=1

[

∫ ∞
0 vnje−{λ(y∗j )+u}k̄(y∗j )vρ(dv|y∗j )

]

du

∫ ∞
0 un−1E

{

e−
R

uk̄(s)A(ds)
}

∏r
j=1

{

∫ ∞
0 vnje−uk̄(y

∗

j )vρ(dv|y∗j )
}

du
.

Finally, multiplying and dividing by E
{

e−
R

uk̄(s)A(ds)
}

inside the integral in the

numerator, the previous expression becomes

∫ ∞

0
exp

{

−
∫

R×(0,∞)

(

1 − e−λ(s)k̄(s)v
)

e−uk̄(s)vρ(dv|s)α(ds)

}

×
r

∏

j=1

∫ ∞

0
e−λ(y∗j )k̄(y∗j )v v

nje−uk̄(y
∗

j )vρ(dv|y∗j )
τnj

(u|y∗j )

×
un−1 exp

{

−
∫

R×(0,∞)

(

1 − e−uk̄(s)v
)

ρ(dv|s)α(ds)
}

∏r
j=1 τnj

(u|y∗j )du
∫ ∞
0 un−1 exp

{

−
∫

R×(0,∞)

(

1 − e−uk̄(s)v
)

ρ(dv|s)α(ds)
}

∏r
j=1 τnj

(u|y∗j )du
,

where τnj
(u|y∗j ) =

∫ ∞
0 vnje−uk̄(y

∗

j )vρ(dv|y∗j ). This completes the proof.

Details for the determination of P0( · )=E[P( · )]. Using the gamma iden-

tity, the independence properties of A, and some suitable rearrangement, one

has

E[P(B)] = E

{

∫

B k̄(y)A(dy)
∫

R
k̄(s)A(ds)

}

=

∫ ∞

0
E

{
∫

B
k̄(y)A(dy)e−u

R

R
k̄(s)A(ds)

}

du

=

∫ ∞

0
E

{∫

B
k̄(y)A(dy)e−u

R

B
k̄(s)A(ds)

}

E
{

e−u
R

Bc k̄(s)A(ds)
}

du

=

∫ ∞

0
e−ψk̄(u)

∫

B
τ1(u|y)k̄(y)α(dy)du, (A.1)

where τ1 and ψk̄ are defined as in point b) of Proposition 1. Let (B1, . . . , Bm) be
a partition of R and k̄(y) =

∑m
j=1 kjIBj

(y) with kj > 0 for j = 1, . . . ,m. Assume

the IAP A is such that its Poisson intensity measure (2.4) can be written as

ρ(dv)α(dy), which means that jump–sizes and jump–locations are independent.

Set ψkj
(u) =

∫

R+(1 − e−ukjv)ρ(dv) and τ1,kj
(u) =

∫ ∞
0 ve−ukjvρ(dv), then note

that (A.1) becomes

E[P(B)] =

m
∑

j=1

kj α(B ∩Bj)
∫ ∞

0
e−

Pm
i=1 ψki

(u)α(Bi)τ1,kj
(u)du. (A.2)
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If A is a gamma process, (A.2) reduces to

E[P(B)] =
m

∑

j=1

kj α(B∩Bj)
∫ ∞

0
(1+ukj)

−α(Bj )−1
m
∏

i=1,i6=j

(1+uki)
−α(Bi)du, (A.3)

whereas if A is an inverse Gaussian process, we have

E[P(B)] =

m
∑

j=1

kj α(B ∩Bj)
∫ ∞

0
(1 + 2ukj)

− 1
2 e−

Pm
i=1(1+2uki)

1
2 α(Bi)du. (A.4)

By specifying the forms for k̄ and α, the previous two expressions allow an explicit

evaluation of P0 via numerical integration.
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