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ABSTRACT

Inference for Expressed Sequence Tags (ESTs) data is considered. We focus on evaluating

the redundancy of a cDNA library and, more importantly, on comparing different libraries

on the basis of their clustering structure. The numerical results we achieve allow us to assess

the effect of an error correction procedure for EST data and to study the compatibility of

single EST libraries with respect to merged ones. The proposed method is based on a

Bayesian nonparametric approach that allows to understand the clustering mechanism that

generates the observed data. As specific nonparametric model we use the two parameter

Poisson–Dirichlet (PD) process. The PD process represents a tractable nonparametric prior

which is a natural candidate for modeling data arising from discrete distributions. It allows

prediction and testing in order to analyze the clustering structure featured by the data.

We show how a full Bayesian analysis can be performed and describe the corresponding

computational algorithm.

Key words: Bayesian nonparametrics, clustering, EST analysis, species sampling, two-parameter
Poisson–Dirichlet process.

1. INTRODUCTION

CLASSICAL SPECIES SAMPLING PROBLEMS have recently gained renewed interest due to their im-
portance in genomic applications. In such inferential problems, one is interested in the species

composition of a certain population containing an unknown number of species and only a sample drawn
from it is available. Specifically, a sample of size n, X1; : : : ; Xn, will exhibit Kn 2 f1; : : : ; ng distinct
species with frequencies .N1; : : : ; NKn/, where clearly

PKn

iD1 Ni D n. Given such a sample, interest
lies in estimating the number of new species to be observed in an additional sample of size m and in
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determining the decay of the discovery probability as a function of the sample size m. Estimators for
such quantities were first provided in Good (1953) and Good and Toulmin (1956), whereas among recent
contributions we mention Mao (2004, 2007), Wang et al. (2005), and Lijoi et al. (2007a). When samples
from different but somehow related populations are available it is often also fundamental to test whether
the two samples can be explained by the same model or, in other terms, are compatible in a suitable sense.
This happens, for instance, when analyzing ecological data about species diversity in different geographical
regions.

There is a variety of experimental platforms that give rise to data for which these issues are relevant. In
this paper, we focus on the analysis of Expressed Sequence Tags (ESTs), which naturally falls within such
a framework. Indeed, the available information about a certain cDNA library, which contains a large and
unknown number of unique genes, is represented by an ESTs basic sample of size n, each EST identifying a
specific gene or species. Since repetitions are common on these experiments, the sample consists of Kn � n

distinct genes with frequencies, or expression levels, .N1; : : : ; NKn/. Starting from these data one needs
statistical methods for assessing some features of the whole library. The above mentioned problems then
take on the interpretation of: predicting the number of new genes that will arise from further sequencing,
which provides a measure of redundancy of the library; comparing different libraries, either from the same
organism under different biological conditions, such as cancer versus normal, or from different parts of the
same organism, in order to establish, which library yields more information so to optimize the sequencing
procedure.

Before outlining the model we are going to exploit, we briefly explain how ESTs arise and which
particular EST datasets we will focus on. ESTs are created by partially sequencing the 50 and/or the 30 ends
of randomly isolated gene transcripts that have been converted into cDNA (Adams et al., 1991). Analysis
of ESTs constitute a cost-effective tool in genomic technologies. Their public access through dbEST, a
division of the National Center for Biotechnology Information that collects and stores information of EST
data, provides researchers with elements for identification, discovery and characterization of organisms. It
also constitutes the basis for other gene expression profiling such as cDNA microarrays. cDNA libraries
typically contain many expressed mRNAs corresponding to the same gene, hence ESTs derived from these
mRNAs might be redundant. This leads to the need of bioinformatics methods to compare, cluster and
annotate EST data. Of particular interest is the transcript abundance: this can be obtained through EST
clustering procedures and it allows to identify the abundance of mRNA species in the cDNA library. The
gene cluster profile, underlying cDNA libraries, describes the gene diversity of an organism and constitutes
an appealing source of genomic information. Therefore, the development of suitable computational and
statistical methodologies to analyze such data is of critical importance.

EST datasets have limitations when used as means to identify genome content since they only represent
a small portion of a coding sequence and their annotation, processing and assembly are prone to several
kinds of errors. Although many of these are efficiently addressed, others are difficult to avoid, such as
those arising from the imperfect nature of the enzymes used in the construction of cDNA libraries.

In this paper we use four cDNA libraries from Arabidopsis thaliana, previously prepared and studied
by Wang et al. (2004, 2005). This organism constitutes a model for understanding several biological
phenomena in plant sciences. Two libraries, namely green silique and flower bud, consist of reverse
sequenced ESTs (30); other two libraries, 2–6 weeks above-ground organs (ABGR) and root, arise from
forward sequenced ESTs (50). A more exhaustive description of the data, as well as their availability, can
be found in Wang et al. (2004, 2005).

1.1. Bayesian nonparametric methods

Applications of Bayesian methods have recently exploited very general families of discrete nonparametric
priors within complex hierarchical mixture models for density estimation and semiparametric regression
(Müller and Quintana, 2004). However, very little has been done when the data are actually generated by
a discrete probability distribution: in this case it would be appropriate to model the data according to a
discrete nonparametric prior. Such an argument obviously applies to species sampling problems and, in
particular, to EST analysis. Our inference approach is model–based and we assume that the EST data arise
from some (unknown) discrete probability distribution QP . We take a nonparametric Bayesian perspective
and complete the model with a prior distribution for the random probability measure QP . That is, we treat
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QP as an infinite–dimensional random element. The use of such probability distributions on probability
distributions is characteristic for nonparametric Bayesian inference.

Among different proposals of priors, a convenient choice is represented by the two parameter Poisson–
Dirichlet process (Pitman, 1995). Such a random probability measure, denoted by QP , can be defined as

QP D

1
X

j D1

Qpj ıX�

j

where ıX�

i
is the point mass at X�

i , the random weights Qpj ’s are independent from the X�
i ’s and the X�

i ’s
are i.i.d. from a continuous distribution P0. Moreover, the Qpj ’s admit a stick–breaking representation

Qpj D Vj

j �1
Y

iD1

.1 � Vi / with Vj
ind
� Beta.1 � �; � C j �/

and � 2 .0; 1/, � > �� , having set by convention
Q0

iD1 WD 0. A useful and accessible introduction to
this, and to more general species sampling, priors can be found in Pitman (1996). In the sequel, the two
parameter Poisson–Dirichlet process will be denoted as PD.�; �/. The above structure is clearly appropriate
to model data related to the detection of species: since P0 is continuous, the X�

i ’s are distinct and denote
different species labels and Qpi can be seen as the random proportion with which the species X�

i is present
in the population. Our main focus will be on comparing clustering structures of samples sequenced from
different libraries: since such clustering structures heavily depend on the parameters � and � (Pitman,
2006), it is important to specify a prior also for .�; �/. The desired comparison among populations will
then be carried out by computing Bayes factors.

Other interesting inferential applications of the two parameter PD pocess can be found in Ishwaran and
James (2001), Teh et al. (2006), and Teh (2006). It is worth noting that the popular Dirichlet process
(Ferguson, 1973) can be seen as a member of such a family of priors and corresponds to the case where
� ! 0. Finally, the PD.�; �/ process belongs to a wide and tractable class of random probability measures,
introduced in Gnedin and Pitman (2005), which are said of Gibbs–type. See also Griffiths and Spano (2007)
for a study of their age–ordered frequencies.

1.2. Outline

In Section 2, we provide a description of the nonparametric model which is used to fit the data. Subsec-
tion 2.1 introduces the framework within which hypothesis testing for comparing clustering structures is
carried out. Subsection 2.2 adapts the estimators of Lijoi et al. (2007a) to this framework and describes a
Blackwell–MacQueen sampling scheme used for computing them. Section 3 is devoted to the application
to real EST data. In Subsection 3.1, we evaluate the effect of the ISO error correction procedure of
Wang et al. (2004), whereas in Subsection 3.2 we study the compatibility of individual EST libraries
with respect to merged ones. Subsection 3.3 reports results of a sensitivity analysis. Finally, Section 4
contains some concluding remarks. A complete and exhaustive description of the numerical output, on
which our predictions rely, is provided as Supplementary Material. (See online supplementary material at
www.liebertonline.com.)

2. THE BAYESIAN NONPARAMETRIC MODEL

We assume that the EST data form an exchangeable sequence .Xn/n�1. By de Finetti’s representation
theorem an infinitely exchangeable sequence can be characterized by a hierarchical model, with the Xn’s as
a random sample from some distribution QP and a prior on QP . Within the parametric Bayesian framework,
the distribution QP is assumed to belong to some some parametric class and the model is completed with a
prior on the parameters. Nonparametric Bayesian inference is less restrictive by allowing QP to vary within
a larger class and assuming a nonparametric prior for QP . We use the two parameter Poisson–Dirichlet
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process PD.�; �/ (Pitman, 1995). This is equivalent to assuming that

Xi j QP
iid
� QP

QP j.�; �/ � PD.�; �/: (1)

Note that the two parameter PD selects discrete distributions (almost surely), which is a desirable feature
in this context, in contrast to situations where one has to model continuous data. Moreover, in order to
carry out a full Bayesian analysis and, in particular, to develop a testing procedure, we specify a hyperprior
��;� D �� � �� for its parameters. This differs from the setup of Lijoi et al. (2007a) where an empirical
Bayes specification for (sigma,theta) is adopted: such an approach cannot be pursued here since it does
not allow to perform a test which compares different EST libraries.

When analyzing EST libraries, one is interested in the number of distinct genes and their expression
levels. This naturally leads us to consider the partition structure induced by model (1): a sample of n EST
data yields Kn 2 f1; : : : ; ng distinct gene species with corresponding frequencies N D .N1; : : : ; NKn/ such
that

PKn

j D1 Nj D n. Given .�; �/, the probability distribution for Kn and the frequencies N induced by
Equation (1) coincides with Pitman’s sampling formula (Pitman, 1995), which is of the form

P rŒKn D k; N D nj.�; �/� D

Qk�1
iD1.� C i�/

.� C 1/n�1

k
Y

j D1

.1 � �/nj �1 (2)

with n D .n1; : : : ; nk/ and .a/n D a.a C 1/ � � � .a C n � 1/ being the ascending factorial with .a/0 � 1.
The partition distribution (2) represents a generalization of the popular Ewens’ sampling formula (Ewens,
1972) which corresponds to the partition structure induced by the Dirichlet process and is recovered by
letting � ! 0. See Arratia et al. (2003) for a stimulating account. In order to obtain the joint distribution
of Kn and N , we simply have to marginalize Equation (2) with respect to .�; �/ leading to

P rŒKn D k; N D n� D

Z 1

0

Z 1

0

Qk�1
iD1.� C i�/

.� C 1/n�1

k
Y

j D1

.1 � �/nj �1 ��.d�/ �� .d�/ (3)

When used for predictive purposes, we will see in Section 2.2 that Equation (3) can be interpreted as the
prior distribution on the clustering structure of an EST sequence.

2.1. Hypothesis tests for comparing libraries

We consider the issue of pairwise comparison between different libraries. The main factor driving the
comparison is the kind of clustering present in the different libraries: two different libraries are considered
equivalent if they give rise to similar groupings of the observations. This, in turn, entails that they produce a
similar number of distinct genes when sampling from such libraries and can then be considered equivalent
in terms of redundancy. In this setting, a reasonable measure of redundancy is the proportion of genes,
detected in further sampling, which coincide with genes that have been already observed in the basic sample.
Note that our goal is not to assess the homogeneity by means of a test for equality of the distributions
of the data. Such a task seems not achievable in this context where: (i) data are categorical; (ii) a very
small portion of the population is observed; (iii) the supports of the distributions are unknown as well
as the number of support points. Moreover, interest relies in redundancy rather than in the labels which
identify the single genes. For this reason a sensible approach for the assessment of homogeneity versus
heterogeneity of two cDNA libraries can be traced back to a comparison of the values of the distribution
parameters responsible for the particular grouping that is observed. Within the PD.�; �/ model we are
adopting, this basically reduces to comparing the parameters .�; �/ corresponding to the libraries. Suppose
there are N1 and N2 data from the first and second library, respectively. The model one can refer to consists
in taking

X
.j /
i j . QP1; QP2/

ind
� QPj j D 1; 2

X
.j /

i j . QP1; QP2/
iid
� QPj i D 1; : : : ; Nj
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with independent PD priors QPj j.�j ; �j / � PD.�j ; �j /, for j D 1; 2, and a hyperprior � for .�1; �1; �2; �2/.
To facilitate the desired inference we write the hyperprior as a mixture

�.d�1; d�1; d�2; d�2/ D �0 �0.d�; d�/ I.�1;�1/D.�2;�2/ C .1 � �0/�1.d�1; d�1/ �2.d�2; d�2/I.�1 ;�1/¤.�2 ;�2/; (4)

where IA is 1 whenever A is true and 0 otherwise. The value of �0 is an indication of how much, a

priori, we believe that the two libraries are equivalent. When there is equivalence, the distribution of
the vector .�1; �1; �2; �2/ degenerates on a two dimensional space. On the other hand, when .�1; �1/ ¤

.�2; �2/ we specify independent priors for .�1; �1/ and .�2; �2/. Finally, we suppose that �j .d�j ; d�j / D

�j;�.d�j /�j;� .d�j /, for j D 1; 2, and �0.d�; d�/ D ��.d�/ �� .d�/. Within this framework we are, then,
going to establish a suitable decision rule for testing

H0 W .�1; �1/ D .�2; �2/ vs H1 W .�1; �1/ ¤ .�2; �2/

where .�1; �1/ and .�2; �2/ are the parameters corresponding to the two libraries. Formally, the problem
can be given a statistical answer by resorting to a test based on the use of Bayes factors. In order to
describe the Bayes factor, set ….i/.�i ; �i/ D PrŒK.i/

n D ki ; N i D ni j.�i ; �i/� as defined in Equation (2).
Hence, the Bayes factor is

BF01 D

R 1

0

R 1

0
….1/.�; �/ ….2/.�; �/ �� .d�/�� .d�/

Q2
j D1

R 1

0

R 1

0
….j /.�j ; �j / �j;�.d�j / �j;�.d�j /

(5)

We will use 2 log.BF01/ to establish whether H0 must be rejected or not. See Kass and Raftery (1995) for
a discussion of Bayes factors and the indications of thresholds. An alternative test we consider is based
on the idea that � is the main parameter being responsible for the specific grouping of the data that have
been observed. Such a claim is motivated by the asymptotic behavior of Kn as n diverges: indeed, Kn

grows at a rate n� (Pitman, 2006, Theorem 3.8). See also Lijoi et al. (2007b) for further considerations
on this point. Hence, it is also important to verify that a rejection of the null hypothesis is not solely due
to differences in � . To this end, we evaluate a Bayes factor for testing H0 W �1 D �2 vs H1 W �1 ¤ �2.
In order to do so, we slightly change the prior specification of the model and in place of Equation (4)
we have

�.d�1; d�1; d�2; d�2/ D �1;�.d�1/�2;� .d�2/
˚

�0�0.d�1/I�1D�2 C .1 � �0/�1;�.d�1/�2;� .d�2/I�1¤�2

	

(6)

Hence, the Bayes factor is in this case

BF0
01 D

R 1

0

R 1

0

R 1

0

Q2
j D1 ….j /.�; �j / �j;� .d�j / �.d�/

Q2
j D1

R 1

0

R 1

0
….j /.�j ; �j / �j;�.d�j / �j;�.d�j /

(7)

2.2. Bayesian nonparametric estimators and a Blackwell–MacQueen sampling scheme

In order to interpret the testing results and to provide a comprehensive analysis of EST data, it is useful
to combine the Bayes factors with the Bayesian nonparametric estimators derived in Lijoi et al. (2007a).
Here, we briefly recall and adapt them to the case where hyperpriors on .�; �/ are specified.

Having observed a sample of size n, the probability distribution of detecting j new genes in a future
sample of size m, denoted by P X

m .j /, is the main tool for deriving estimators of: (i) the number of new
genes in an additional sample and (ii) the probability of discovering a new gene at the .n C m C 1/th
draw. To derive an expression for P X

m .j /, consider first P
.k;n/
m .j j�; �/, which denotes the probability of

recording j new tags in a future sample of size m, conditional on data with k distinct tags in the basic
sample of size n, and conditional on � and � . Indeed, we have

P .k;n/
m .j j�; �/ D

.� C 1/n�1

.� C 1/mCn�1

QkCj �1

iDk .� C i�/

�j

1

j Š

j
X

iD0

.�1/i

�

j

i

�

.n � .i C k/�/m ; (8)
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and, additionally,

��;�.d�; d� jX/ /

Qk�1
iD1.� C i�/

.� C 1/n�1

k
Y

j D1

.1 � �/nj �1 ��.d�/�� .d�/:

Thus, the desired distribution is given by

P X

m .j / D

Z 1

0

Z 1

0

P .k;n/
m .j j�; �/ ��;�.d�; d� jX/:

The expected number of new genes observed in a future sample of size m, given .�; �/, is

OE.k;n/
m .�; �/ D

m
X

j D1

j
1

j Š

j
X

iD0

.�1/i

�

j

i

�

.k C �=�/j

.� C n/m

.n � .i C k/ �/m

and, hence, the Bayes estimator for the expected number of new genes is

OEX

m D

Z 1

0

Z 1

0

OE.k;n/
m .�; �/ ��;�.d�; d� jX/: (9)

Then, the discovery probability can be estimated by

ODX

m D

Z 1

0

Z 1

0

� C
h

k C OE
.k;n/
m .�; �/

i

�

� C n C m
��;�.d�; d� jX/: (10)

The highest posterior density intervals corresponding to Equations (9) and (10) can be derived in a quite
straightforward way from Equation (8).

In contrast to the case of fixed .�; �/, where the exact estimators are easily computed as in Lijoi et al.
(2007a, 2007b), in such a hierarchical setup the quantities we have been describing cannot be easily
evaluated for large values of n and m. Hence, we outline a suitable algorithm for achieving this task.

The main idea for computing integrals in Equations (9) and (10) consists in applying a generalization
of the well–known Blackwell–MacQueen Pólya urn scheme (Pitman, 1996). The implementation turns out
to be straightforward given the simple form of the predictive distributions associated to the PD.�; �/ prior.
Note that, when sampling .�; �/ from the posterior one needs to implement a Gibbs sampling step. The
full conditionals are as follows

��.d� jX ; �/ D ��.d� jKn D k; N D n/ /

k�1
Y

iD1

.� C i�/

k
Y

j D1

.1 � �/nj �1 ��.d�/ (11)

��.d� jX ; �/ D �� .d� jKn D k/ /

Qk�1
iD1.� C i�/

.� C 1/n�1

�� .d�/

In computational terms it is extremely convenient to rewrite
Qk

j D1 .1��/nj �1 in Equation (11) as
Ql�

lD1 Œ.1�

�/l�1�rl where, for l D 1; 2; : : : ; l�, rl denotes the number of genes with expression level l , i.e., rl D
Pk

iD1 Ini Dl , where l� is the maximum level of expression. The computational advantage is due to the fact
that typically l� is much smaller than the number of distinct genes k.

We agree to denote by X�
1 ; : : : ; X�

k the k labels identifying the distinct genes observed in the basic
sample X D .X1; : : : ; Xn/. Moreover, recall that nl is the frequency of X�

l in X1; : : : ; Xn. Having this in
mind, the algorithm works as follows:

(1) Generate N pairs of .�; �/ values. In order to do so, fix an initial value �0 and, then, sample �0 from
�� .d� jX ; �0/. Then, at iteration i 2 f1; : : : ; N g

(1a) Sample �i from �� .d� jX ; �i�1/

(1b) Sample �i from �� .d� jX ; �i /
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(2) Correspondingly to each pair .�i ; �i/ in (1), simulate a sample X
.i/

nC1; : : : ; X
.i/

nCm by resorting to a

Blackwell–MacQueen urn scheme which generates X
.i/
nCr , given the data X1; : : : ; Xn and the previously

sampled values X
.i/
nC1; : : : ; X

.i/
nCr�1, for any r D 1; : : : ; m as

X
.i/
nCr D

8

ˆ

ˆ

<

ˆ

ˆ

:

new with probab. .� C .k C jr�1/�/=.� C n C r � 1/

X�
l

with probab. .nl C ml;r�1 � �/=.� C n C r � 1/ l D 1; : : : ; k

X�
l;r�1

with probab. .ql;r�1 � �/=.� C n C r � 1/ l D 1; : : : ; jr�1

where X�
1;r�1; : : : ; X�

jr�1;r�1 are the new genes, not coinciding with any of X�
1 ; : : : ; X�

k
, detected in

XnC1; : : : ; XnCr�1; ml;r�1 is the number of observations in XnC1; : : : ; XnCr�1 that coincide with X�
l

;
and, finally, ql;r�1 is the number of observations XnC1; : : : ; XnCr�1 coinciding with X�

l;r�1.

Hence, after a burn-in period of size N0, the output of the algorithm is a collection of future scenarios
f.X

.i/
nC1; : : : ; X

.i/
nCm/ W i D N0; : : : ; N g which will be used in order to evaluate the main quantities we

are interested in for inferential purposes. Letting j
.i/
m denote the number of new distinct genes observed

in X
.i/
nC1; : : : ; X

.i/
nCm, the estimator (9) is evaluated as OEX

m � 1
N�N0

PN
iDN0C1 j

.i/
m whereas the discovery

probability is approximated by

ODX

m �
1

N � N0

N
X

iDN0C1

�i C
h

k C j
.i/
m

i

�i

�i C n C m
:

3. CLUSTERING STRUCTURE OF EST DATA

3.1. Specification of the model parameters

The implementation of the model in Equation (1) requires the specification of the prior distribution for
.�; �/, i.e., one needs to assess �� and �� . We have taken � to be distributed according to a beta.a�; b�/

law discretized over the grid f0:01; 0:02; : : : ; 0:99g, whereas a Poi. O�/ has been specified for � . The choices
of �� , as a discretization of a continuous distribution, and of �� supported by N are motivated by the
desire on one hand to calculate the exact Bayes factors and on the other to sample from the exact posterior
quantities when computing the estimators. The hyperparameters .a� ; b�/ and O� are elicited by suitably
centering the priors on the empirical Bayes specification set forth in Lijoi et al. (2007a), where no prior is
introduced for .�; �/. Such a specification leads to a pair . O�; O�/ defined as

. O�; O�/ D arg max
.�;�/

Qk�1
iD1.� C i�/

.� C 1/n�1

k
Y

j D1

.1 � �/nj �1:

Hence, we have that EŒ�� D O� , whereas .a�; b�/ are fixed in a way that the mode of �� is O� and that
Var.�/ D 1=27. Such a value of the variance is the largest compatible with the requirement that the mode
is O� . This specification is set for all the libraries to be considered and the resulting hyperparameters are
reported in Table 1. The fact that, for all EST samples, O� is far away from 0, which corresponds to the
Dirichlet case, witnesses the advisability of resorting to its two parameter extension.

Specifically, when comparing two different libraries, the denominator of the Bayes factors in Equa-
tions (5) and (7) is evaluated by choosing �j;� and �j;� as above, for j D 1; 2. Moreover we need to
define the distributions �0 corresponding to the null hypothesis in Equations (6) and (4). To this end,
let N1 and N2 denote as before the sizes of the basic sample from library 1 and library 2, respectively.
For �0 D ��0��0 in Equation (6) we set: ��0 is Poi.�0/, with �0 WD .N1

O�1 C N2
O�2/=.N1 C N2/; ��0

is a discretized beta distribution with mode �0 D .N1 O�1 C N2 O�2/=.N1 C N2/ and variance 1=27. When
performing a test involving only � , we use as a prior �0 in Equation (4) the previous discretized beta ��0.
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TABLE 1. . O�; O�/ REPRESENT THE EMPIRICAL

BAYES SPECIFICATION OF .�; �/

Library O� O� a� b�

Silique 0.43 1186 3.03 2.69
ABGR before ISO 0.66 409 3.10 1.08
ABGR after ISO 0.59 471 3.33 1.62
Root before ISO 0.66 536 3.10 1.08
Root after ISO 0.59 599 3.33 1.62
Flower Bud 0.64 267 3.19 1.23
ABGR and Root before 0.6 891 3.31 1.54
ABGR and Root after 0.51 1048 3.29 2.20
Silique and Flower bud 0.45 1210 3.11 2.58

The hyperprior for � is then a Poi. O�/ and for � it is a Beta.a�; b�/, where
.a�; b�/ are fixed so to have the mode in O� and the variance equal to 1=27.

3.2. ISO error correction

As mentioned above, EST data play a crucial role in gene annotation and inference of the number of
expressed genes in the transcriptome of an organism. However, a major problem for predicting the discovery
of new genes is due to the EST clustering error: this affects the basic sample on which predictions are
based. As pointed out and thoroughly discussed in Wang et al. (2004), errors from different sources can
bias the number of observed genes upward by 35–40%. Such a problem is especially relevant for 50

ESTs such as the ABGR and Root data considered here, whereas errors are less frequent for 30 ESTs
such as Silique and Flowerbud data. It is to be noted that for 50 ESTs, the false separation error (to be
understood as insufficient overlap (ISO) between ESTs from the same gene) can cause up to 80% of all the
clustering errors: hence, ESTs present a higher number of distinct genes than they actually should. Wang
et al. (2004) proposed a method, termed ISO error correction, for overcoming this problem. Given this
procedure corrects a large portion of the transcripts errors, the data, after its application, can be considered
“good” data.

Here, we face the problem of establishing how much inferences are affected by the ISO error. We
perform such an analysis by comparing EST data of the same library before and after having applied
the ISO correction procedure: it is clear that, if the clustering structure of the data before and after ISO
correction is compatible in a suitable sense, also inferences based on these data will be different but
compatible with the hypothesis that the underlying model is the same. We first consider the estimates of
the expected number of new genes. From Tables 2–5 of the Supplementary Material a steady change in the
estimates after the ISO correction is apparent. Indeed, the estimate of the expected number of new genes
decreases by a percentage ranging between 15% and 20%. The same phenomenon can be observed with
reference to the discovery probabilities. Table 2 here reports the expected number of new genes and the
discovery probabilities (both with corresponding highest posterior density intervals) for the ABGR data
before and after ISO correction at selected values. More exhaustive results for this case can be found in
Tables 2 and 3 of the Supplementary Material. Still for the ABGR data, Figure 1 displays our Bayesian
estimates for OEX

m ’s. For comparison purposes, we also report a plot of the corresponding Good–Toulmin
frequentist estimator (Good and Toulmin, 1956): as it is well–known that such an estimator features reliable
predictions only up to m D n. In contrast, for the Bayesian nonparametric estimator the relative dimension
of m with respect to n is not an issue.

Since, in the analysis of EST data, prediction is required also for future samples significantly larger than
the basic sample, recently there have been various proposals of alternative frequentist estimators which
partially overcome this drawback allowing prediction up to m D 2n (Mao, 2007; Lijoi et al., 2007c).
In particular, Wang et al. (2005) report the estimates of OEX

m , before and after the ISO correction, for
additional samples of size at most equal to 2n. They also point out that their method underestimates the
actual expected number of new genes. By comparing our estimates with those in Wang et al. (2005) it is
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TABLE 2. EXPECTED NUMBER OF NEW GENES AND DISCOVERY

PROBABILITIES FOR DIFFERENT SIZES OF THE ADDITIONAL

SAMPLE m COMPUTED FOR THE ABGR LIBRARY BEFORE AND

AFTER ISO ERROR CORRECTION OF THE BASIC SAMPLE

m OEX
m HPD(95%) ODX

m HPD(95%)

ABGR before ISO correction
1000 383 (338, 414) .3738 (.3698, .3767)
5000 1765 (1640, 1903) .3218 (.3144, .3299)

10,000 3267 (3061, 3521) .2836 (.2752, .2940)
15,000 4619 (4208, 4903) .2588 (.2460, .2677)
20,000 5870 (5384, 6271) .2409 (.2287, .2511)
25,000 7045 (6461, 7568) .2272 (.2148, .2383)
30,000 8156 (7473, 8797) .2161 (.2036, .2278)

ABGR after ISO correction
1000 334 (301, 367) .3230 (.3203, .3257)
5000 1508 (1377, 1618) .2700 (.2631, .2758)

10,000 2758 (2588, 2982) .2324 (.2262, .2406)
15,000 3856 (3557, 4143) .2083 (.2000, .2163)
20,000 4853 (4520, 5239) .1911 (.1836, .1999)
25,000 5774 (5383, 6261) .1780 (.1706, .1872)
30,000 6640 (6182, 7249) .1676 (.1601, .1776)

The sizes of the basic samples are n D 5811 with j D 3116 distinct genes
before ISO correction and n D 5812 with j D 2883 after ISO correction.

FIG. 1. Expected number of new genes, OEX
m , for the ABGR libraries before and after ISO correction. The plot

shows the estimates using the Poisson-Dirichlet (PD) with beta-Poisson prior and the estimates derived from the Good
and Toulmin (GT) estimator.



1324 LIJOI ET AL.

TABLE 3. BAYES FACTORS (REPORTED AS 2 ln BF) FOR TESTING THE CLUSTERING STRUCTURE OF

(A) LIBRARIES BEFORE AND AFTER ISO ERROR CORRECTION AND

(B) MERGED VERSUS INDIVIDUAL LIBRARIES

Beta-Poisson prior Uniform

Test H C
0

H S
0

H C
0

H S
0

Test for ISO error correction
ABGR (ISO) vs. ABGR �11.162 �15.492 �6.058 �5.279
Root (ISO) vs. Root �11.105 �14.771 �6.446 �3.790
ABGR and Root (ISO) vs. ABGR and Root �35.392 �47.788 �30.681 �19.461

Test for merging of libraries
ABGR and Root (ISO) vs. ABGR (ISO) �37.564 �19.490 �28.862 �4.078
ABGR and Root (ISO) vs. Root (ISO) �10.857 �19.854 �5.824 �3.658
Silique and Flower bud vs. Silique 1.477 3.300 6.272 4.725
Silique and Flower bud vs. Flower bud �159.899 �168.379 �127.286 �77.492

The 2 ln BF are computed under both the Beta–Poisson and the uniform prior specifications. The null–hypotheses are
specified as HC

0
W .�; �/ D .�0; �0/ and HS

0
W � D �0.

apparent that our estimators do not incur in such a problem. Besides, it is to be noted that we can consider
additional samples of any size m.

Turning back to the problem of establishing the impact of the ISO correction on the clustering structure,
we compute log–Bayes factors for data before and after ISO error correction in Table 3. From Table 3,
the relevance of the ISO procedure is apparent. Indeed, in the three comparisons (1) ABGR after ISO
versus ABGR before ISO, (2) Root after ISO versus Root before ISO, and (3) ABGR and Root after
versus ABGR and Root before, the log Bayes factor supports a neat evidence against the null hypothesis.
Hence, the clustering structure before and after the ISO correction differs significantly. Such an evidence
highlights that without the ISO correction wrong inferences can be drawn from EST data and it should
always be performed before trying to draw conclusions from the data. In the following subsection we deal
with the problem of merging of libraries: in doing this we only consider after ISO correction data.

3.3. Merging of libraries

The machinery for hypothesis testing we have employed in the previous subsection will now be used
in order to assess the effect of merging of different libraries. In other terms, one might be interested in
evaluating whether it is equivalent to examine individual libraries prepared from different tissues of the
same organism or to analyze directly merged libraries. Once again, such an equivalence will be judged
according to the corresponding clustering structures of the data. An analysis of merging should obviously
involve libraries with the same data structure; that is, we consider merging of libraries having both either
30 or 50 ESTs. Hence, with reference to our datasets, we consider the individual ABGR and Root samples
(50 ESTs) and compare them with the union of the two samples. The same comparison is pursued with
Silique and Flower bud samples (30 ESTs).

The merged sample for the ABGR and Root library contains 11,529 ESTs with 5243 distinct genes,
whereas for the merged sample of the Silique and Flower bud library we have 17,784 ESTs with 6595
distinct genes. It is worth noting that the number of distinct genes in the merged sample is smaller than
the sum of the distinct genes within individual samples since the libraries have co–expressed genes. For
instance, the individual samples of the ABGR and of the Root libraries contain 2883 and 3126 distinct genes,
respectively: if no genes were co–expressed, the merged sample would have contained 6009 distinct
genes, whereas it exhibits just 5243.

The compatibility between libraries is investigated by resorting to the Bayes factors described in
Equations (5) and (7). The results are reported in Table 3. The values of the log Bayes factors provide
strong evidence of incompatibility between the ABGR and Root libraries with the merged library. The
same conclusion can be reached when comparing the Flower bud library with the merged of Silique and
Flower bud library. On the other hand, the log Bayes factor arising when one compares the Silique with the
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TABLE 4. EXPECTED NUMBER OF NEW GENES AND DISCOVERY PROBABILITIES AT n C m

EQUAL TO THE SIZE OF THE MERGED LIBRARIES WITH BETA–POISSON PRIOR

Basic sample n j m OEX
m

HPD(95%) n C m j C OEX
m

ODX
m

HPD(95%)

ABGR after ISO 5812 2883 5717 1700 (1573, 1813) 11,529 4583 0.2633 (0.2570, 0.2689)
Root after ISO 5891 3126 5638 1835 (1686, 2096) 11,529 4961 0.2898 (0.2824, 0.3026)
ABGR and Root after ISO 11,529 5243 0 11,529 5243 0.3192
Silique 12,330 5093 5454 1230 (1116, 1443) 17,784 6323 0.2058 (0.2032, 0.2108)
Flower Bud 5503 2564 12,281 3222 (2981, 3462) 17,784 5786 0.2204 (0.2118, 0.2290)
Silique and Flower Bud 17,784 6595 0 17,784 6595 0.2341

merged Silique and Flower bud library suggests positive evidence in favor of compatibility. This finding
could be possibly explained by the fact that Silique accounts for more than two-thirds of the merged library.

Having established the incompatibility of the libraries, it is now important to interpret the information
conveyed by the Bayes factors. Indeed, there are two main sources of incompatibility between two different
libraries: the first one is due to a too small amount of co–expressed genes and the second one is, on the
contrary, a too large amount of co–expressed genes in the two libraries. It is clearly essential to understand
which of the two causes has led to the actual rejection of the null hypothesis, since they lead to different
conclusions about the benefits of merging. Indeed, if the incompatibility is due to a very small amount of
shared genes it seems reasonable to analyze the libraries separately. Vice versa, when a large amount
of distinct genes are shared by the two libraries, it would be appropriate to work with the merged library
since the separate analysis of individual libraries would yield a waste of expensive efforts. Hence, in order
to complete the analysis, we now aim at identifying the source of incompatibility for the two cases under
investigation. To achieve this goal, we resort to our estimators for evaluating the expected number of new
genes. In particular, we need to compare the number of distinct genes between samples of the same size.
Since the merged library is of size N1 C N2, for library 1 one needs to estimate the number of new distinct
genes in an additional sample of size N2. The overall estimate of the number of distinct genes in a sample
of size N1 C N2 from library 1 is, then, obtained as a sum of the actual number observed in the basic
sample of size N1 and the estimated number in the additional sample of size N2 which is evaluated by
means of Equation (9). The same procedure is adopted for library 2. The results are reported in Table 4.

For the ABGR and Root libraries one obtains an estimated number of distinct genes (for a sample of
size N1 C N2 D 11,529) equal to 4583 and 4961, respectively. Since the merged library exhibited 5243
distinct genes, we conclude that the libraries are incompatible because too few genes are co–expressed and
a separate individual analysis is advisable. As for the Silique and Flower bud libraries, on a global sample
of size N1 C N2 D 17,784, one estimates the number of distinct genes as 6323 and 5786, respectively.
The actual number of distinct genes in the merged library is 6595 thus pointing out that the two libraries
have too few genes in common. However, unlike the previous case, only the Flower bud displays a too
small number of distinct genes to be compatible with the merged library. Hence, in both cases we get to
the conclusion of incompatibility because of the too small number of co–expressed genes.

3.4. Sensitivity analysis

In order to check the sensitivity of the results with respect to the choice of the priors, we also consider
an alternative specification, which does not make use of the information conveyed by the empirical
Bayes estimates . O�; O�/. Hence, we choose for � and � discrete uniform priors with support points
f0:01; 0:02; : : : ; 0:99g and f0; 1; : : : ; 2000g, respectively. Consequently, the point estimates for the expected
number of new genes and for the discovery probability do not depend on . O�; O�/. Moreover, when testing
the null hypothesis of compatibility between two different libraries, one does not need to deal with the
issue of properly centering the prior under the null assumption since it is uniform as well.

Tables 2–10 of the Supplementary Material report the estimates for OEX

m and ODX

m corresponding to both,
the beta–Poisson and the uniform, prior specifications. It is apparent that the influence of the different
prior is almost negligible thus providing convincing support for the robustness of the proposed method.
As for the comparison of libraries and the effect of ISO correction, the numerical output we have obtained
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under the uniform priors is reported in Table 3 here (see also Table 11 of the Supplementary Material):
one notices that the results basically replicate those obtained under the beta–Poisson prior.

4. CONCLUSION

The present paper has proposed a full Bayesian nonparametric analysis for problems of species sampling
where one is interested in (1) testing the compatibility of clustering structures featured by samples taken
from different populations; (2) estimating the number of new distinct species to be observed in an additional
sample; and (3) evaluating the discovery probability. The specific application to EST data considered in the
paper naturally fits into such a framework. However, we emphasize that the methods apply to any inferential
problem with data arising from discrete distributions with a large and unknown number of support points.
An important aspect of the proposed methodology is the robustness of the inferences with respect to the
prior specification: indeed choices of both “informative" and “non–informative" priors lead to the same
conclusions. Finally, exact computation of the Bayes factors is straightforward and the simulation algorithm
we have adopted in order to obtain predictions is simple to implement since it arises as a generalization
of the Blackwell–MacQueen urn scheme. Software is available upon request from the authors.
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Supplementary Material for

A Bayesian Nonparametric Approach for
Comparing Clustering Structures in EST Libraries

by Antonio Lijoi, Ramsés H. Mena and Igor Prünster

1 EST datasets

Expression Silique ABGR ABGR Root Root Flower ABGR+Root ABGR+Root Silique+

level l before after before after bud before after FlowerBud

1 2963 2276 1969 2505 2187 1801 3971 3333 3749

2 994 432 459 453 490 367 891 951 1270

3 440 161 182 134 133 140 299 312 566

4 222 65 69 101 121 69 185 211 295

5 124 49 58 38 37 40 105 122 182

6 73 25 28 42 51 25 59 66 109

7 59 16 17 19 22 22 37 40 80

8 42 17 20 16 19 10 32 35 49

9 27 8 7 7 7 15 26 29 48

10 19 15 19 7 8 12 21 25 33

11 16 3 2 6 6 7 14 15 21

12 14 8 9 6 7 9 11 12 20

13 15 4 4 5 6 2 11 12 16

14 4 4 4 4 4 6 11 13 17

15 10 5 6 4 5 5 5 5 10

16 9 5 6 4 5 4 8 9 14

17 5 2 2 1 1 3 4 4 12

18 6 5 6 3 4 1 4 5 10

19 7 1 1 2 2 2 2 2 7

20 1 1 1 2 5 6 3

21 3 2 2 2 2 3 3 3 6

22 1 1 4 4 8

23 2 1 1 2 2 3 3 5

24 2 2 2 1 1 3 2 2 4

25 2 1 1 1 2 2 3

26 6 2 2 2 5

27 1 1 1 1 3 3 2

28 1 1 1 2

29 1 1 1

30 2 1 1 1 2

31 1 1 1 1 1 1 1 1 3

32 2 1 1 4

33 1 1 1 1 1 3

34 2 1

35 2 1 1 2 1 1 2

36 1 1 1 1 1 1

37 2 1 1 2 2 2

38 1 1 1

39 1 1 5

1



Expression Silique ABGR ABGR Root Root Flower ABGR+Root ABGR+Root Silique+

level l before after before after bud before after FlowerBud

40 1

42 1 1

43 1 1 1 1 1 1

44 1 1 1 1 1 2

45 1

46 1 2

47 1

48 1

49 1 1 1 1

50 1 1 1

51 1 2

53 1 1

54 1

55 1

57 1 1

58 1

59 1 1

62 1

63 1

67 1

68 1

70 1 1

74 1 1

75 1

79 1

81 1

82 1

83 1

87 1

96 1 1

97 1

99 1 1

100 1

111 1

112 1

113 1

162 1

169 1

330 1

n 12330 5811 5812 5880 5891 5503 11547 11529 17784

k 5093 3116 2883 3368 3126 2564 5737 5243 6595

Table 1: EST clustering profile of Arabidopsis thaliana libraries (Source: Wang et al., 2004). The data a

presented in terms of the number of genes with expression level l.
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2 Expected number of new genes and discovery probabilites with

corresponding highest posterior density intervals

Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 383 (338,414) 0.3738 (0.3698,0.3767) 384 (345,417) 0.3752 (0.3715,0.3783)

2000 748 (689,802) 0.3576 (0.3529,0.3620) 751 (693,804) 0.3594 (0.3546,0.3639)

3000 1100 (1031,1193) 0.3440 (0.3391,0.3507) 1102 (1028,1178) 0.3460 (0.3405,0.3516)

4000 1438 (1338,1530) 0.3322 (0.3257,0.3381) 1443 (1367,1555) 0.3346 (0.3295,0.3420)

5000 1765 (1640,1903) 0.3218 (0.3144,0.3299) 1773 (1673,1890) 0.3245 (0.3184,0.3316)

6000 2082 (1949,2236) 0.3126 (0.3053,0.3209) 2094 (1964,2210) 0.3156 (0.3084,0.3221)

7000 2389 (2230,2562) 0.3042 (0.2962,0.3129) 2406 (2258,2542) 0.3076 (0.3000,0.3146)

8000 2688 (2511,2890) 0.2967 (0.2884,0.3061) 2709 (2552,2876) 0.3003 (0.2928,0.3083)

9000 2981 (2776,3218) 0.2899 (0.2810,0.3002) 3004 (2830,3189) 0.2936 (0.2858,0.3019)

10000 3267 (3061,3521) 0.2836 (0.2752,0.2940) 3295 (3085,3486) 0.2876 (0.2788,0.2956)

11000 3548 (3340,3804) 0.2779 (0.2699,0.2878) 3577 (3347,3777) 0.2819 (0.2728,0.2898)

12000 3823 (3563,4113) 0.2726 (0.2632,0.2832) 3858 (3628,4090) 0.2768 (0.2682,0.2854)

13000 4093 (3821,4439) 0.2677 (0.2584,0.2796) 4133 (3850,4358) 0.2720 (0.2620,0.2800)

14000 4357 (4066,4713) 0.2631 (0.2536,0.2747) 4403 (4116,4652) 0.2676 (0.2579,0.2759)

15000 4619 (4208,4903) 0.2588 (0.2460,0.2677) 4669 (4372,4932) 0.2634 (0.2539,0.2718)

16000 4878 (4424,5172) 0.2549 (0.2414,0.2636) 4931 (4623,5240) 0.2595 (0.2501,0.2689)

17000 5132 (4670,5445) 0.2511 (0.2380,0.2600) 5190 (4889,5517) 0.2558 (0.2470,0.2654)

18000 5381 (4919,5727) 0.2475 (0.2349,0.2570) 5444 (5120,5777) 0.2523 (0.2432,0.2616)

19000 5628 (5165,6000) 0.2442 (0.2320,0.2539) 5694 (5353,6056) 0.2490 (0.2398,0.2587)

20000 5870 (5384,6271) 0.2409 (0.2287,0.2511) 5942 (5586,6314) 0.2459 (0.2367,0.2555)

21000 6110 (5602,6529) 0.2379 (0.2256,0.2481) 6186 (5817,6577) 0.2429 (0.2337,0.2526)

22000 6350 (5829,6800) 0.2351 (0.2229,0.2456) 6428 (6016,6839) 0.2400 (0.2302,0.2499)

23000 6585 (6045,7047) 0.2323 (0.2201,0.2428) 6667 (6246,7095) 0.2373 (0.2276,0.2473)

24000 6816 (6249,7309) 0.2297 (0.2173,0.2405) 6904 (6447,7341) 0.2348 (0.2245,0.2446)

25000 7045 (6461,7568) 0.2272 (0.2148,0.2383) 7140 (6671,7638) 0.2323 (0.2222,0.2431)

26000 7272 (6651,7805) 0.2248 (0.2121,0.2357) 7371 (6882,7898) 0.2299 (0.2197,0.2410)

27000 7497 (6848,8054) 0.2225 (0.2096,0.2336) 7599 (7054,8083) 0.2277 (0.2166,0.2375)

28000 7720 (7055,8312) 0.2203 (0.2074,0.2317) 7826 (7265,8337) 0.2255 (0.2144,0.2356)

29000 7939 (7176,8464) 0.2181 (0.2038,0.2280) 8050 (7480,8588) 0.2234 (0.2124,0.2337)

30000 8156 (7473,8797) 0.2161 (0.2036,0.2278) 8273 (7684,8824) 0.2213 (0.2103,0.2316)

Table 2: ABGR library. Expected number of new genes and discovery probabilities for different sizes m

of the additional sample based on the basic sample before ISO correction, which contains n = 5811 with

j = 3116 distinct genes. Estimates are reported for both prior specifications, beta–Poisson and uniform, and

arise from 200 simulated paths.

3



Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 334 (301,367 ) 0.3230 (0.3203,0.3257) 334 (299,359) 0.3246 (0.3216,0.3267)

2000 647 (588,707 ) 0.3064 (0.3021,0.3106) 650 (602,692) 0.3085 (0.3049,0.3116)

3000 946 (860,1024) 0.2923 (0.2869,0.2974) 950 (884,1007) 0.2949 (0.2905,0.2986)

4000 1233 (1130,1332) 0.2804 (0.2745,0.2861) 1240 (1164,1326) 0.2833 (0.2787,0.2885)

5000 1508 (1377,1618) 0.2700 (0.2631,0.2758) 1518 (1430,1606) 0.2731 (0.2683,0.2780)

6000 1774 (1628,1890) 0.2608 (0.2537,0.2664) 1787 (1671,1889) 0.2642 (0.2584,0.2693)

7000 2030 (1863,2160) 0.2526 (0.2451,0.2584) 2047 (1927,2178) 0.2562 (0.2506,0.2623)

8000 2279 (2107,2426) 0.2452 (0.2380,0.2513) 2299 (2172,2462) 0.2490 (0.2435,0.2560)

9000 2521 (2375,2696) 0.2385 (0.2328,0.2453) 2541 (2386,2690) 0.2423 (0.2361,0.2483)

10000 2758 (2588,2982) 0.2324 (0.2262,0.2406) 2781 (2617,2947) 0.2364 (0.2302,0.2427)

11000 2988 (2805,3234) 0.2268 (0.2206,0.2353) 3012 (2839,3204) 0.2309 (0.2247,0.2377)

12000 3212 (3024,3491) 0.2217 (0.2156,0.2308) 3241 (3060,3447) 0.2259 (0.2198,0.2328)

13000 3430 (3229,3729) 0.2169 (0.2107,0.2261) 3465 (3273,3678) 0.2212 (0.2151,0.2280)

14000 3646 (3357,3896) 0.2125 (0.2040,0.2198) 3684 (3476,3918) 0.2169 (0.2106,0.2240)

15000 3856 (3557,4143) 0.2083 (0.2000,0.2163) 3899 (3676,4137) 0.2129 (0.2064,0.2197)

16000 4062 (3775,4361) 0.2045 (0.1968,0.2124) 4110 (3869,4366) 0.2091 (0.2024,0.2161)

17000 4265 (3959,4584) 0.2008 (0.1930,0.2090) 4318 (4067,4598) 0.2055 (0.1989,0.2129)

18000 4465 (4157,4808) 0.1974 (0.1899,0.2058) 4521 (4246,4812) 0.2022 (0.1952,0.2095)

19000 4660 (4347,5014) 0.1942 (0.1869,0.2025) 4722 (4438,5012) 0.1990 (0.1921,0.2061)

20000 4853 (4520,5239) 0.1911 (0.1836,0.1999) 4919 (4608,5223) 0.1960 (0.1888,0.2031)

21000 5042 (4682,5452) 0.1883 (0.1804,0.1972) 5114 (4799,5442) 0.1932 (0.1861,0.2006)

22000 5230 (4867,5668) 0.1855 (0.1779,0.1947) 5306 (4969,5657) 0.1905 (0.1832,0.1981)

23000 5415 (5043,5855) 0.1829 (0.1754,0.1918) 5496 (5140,5864) 0.1879 (0.1805,0.1956)

24000 5596 (5218,6057) 0.1804 (0.1730,0.1894) 5684 (5315,6089) 0.1855 (0.1780,0.1937)

25000 5774 (5383,6261) 0.1780 (0.1706,0.1872) 5869 (5483,6304) 0.1832 (0.1756,0.1917)

26000 5951 (5586,6511) 0.1757 (0.1690,0.1860) 6050 (5644,6464) 0.1809 (0.1732,0.1888)

27000 6126 (5744,6704) 0.1736 (0.1668,0.1839) 6229 (5814,6666) 0.1788 (0.1711,0.1868)

28000 6301 (5904,6897) 0.1715 (0.1647,0.1818) 6406 (5974,6876) 0.1767 (0.1690,0.1851)

29000 6472 (6021,7048) 0.1695 (0.1620,0.1792) 6582 (6119,7075) 0.1748 (0.1667,0.1833)

30000 6640 (6182,7249) 0.1676 (0.1601,0.1776) 6757 (6255,7234) 0.1729 (0.1644,0.1809)

Table 3: ABGR library. Expected number of new genes and discovery probabilities for different sizes m

of the additional sample based on the basic sample after ISO correction, which contains n = 5812 with

j = 2883 distinct genes. Estimates are reported for both prior specifications, beta–Poisson and uniform, and

arise from 200 simulated paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 418 (376,453) 0.4079 (0.4041,0.4111) 416 (379,453) 0.4073 (0.4038,0.4107)

2000 820 (751,896) 0.3911 (0.3856,0.3972) 815 (754,882) 0.3908 (0.3858,0.3962)

3000 1205 (1093,1294) 0.3767 (0.3688,0.3830) 1200 (1104,1276) 0.3768 (0.3698,0.3823)

4000 1576 (1408,1682) 0.3642 (0.3534,0.3710) 1571 (1462,1678) 0.3646 (0.3574,0.3716)

5000 1935 (1714,2059) 0.3532 (0.3402,0.3604) 1929 (1774,2062) 0.3538 (0.3445,0.3618)

6000 2284 (2050,2447) 0.3434 (0.3308,0.3522) 2279 (2066,2414) 0.3443 (0.3325,0.3517)

7000 2622 (2350,2795) 0.3345 (0.3210,0.3431) 2617 (2430,2819) 0.3356 (0.3261,0.3459)

8000 2952 (2631,3129) 0.3265 (0.3117,0.3347) 2947 (2732,3186) 0.3278 (0.3176,0.3391)

9000 3275 (2907,3462) 0.3192 (0.3033,0.3274) 3272 (3010,3510) 0.3207 (0.3091,0.3313)

10000 3591 (3213,3811) 0.3126 (0.2972,0.3215) 3588 (3300,3834) 0.3142 (0.3022,0.3244)

11000 3899 (3489,4149) 0.3064 (0.2907,0.3160) 3899 (3567,4189) 0.3082 (0.2952,0.3196)

12000 4204 (3751,4463) 0.3008 (0.2844,0.3101) 4204 (3855,4541) 0.3027 (0.2897,0.3151)

13000 4504 (4025,4811) 0.2956 (0.2791,0.3061) 4505 (4033,4810) 0.2975 (0.2809,0.3083)

14000 4799 (4282,5129) 0.2907 (0.2738,0.3014) 4799 (4298,5136) 0.2927 (0.2759,0.3040)

15000 5087 (4529,5444) 0.2860 (0.2687,0.2971) 5090 (4564,5424) 0.2882 (0.2715,0.2988)

16000 5370 (4752,5744) 0.2817 (0.2633,0.2928) 5377 (4825,5729) 0.2840 (0.2672,0.2947)

17000 5650 (4999,6054) 0.2776 (0.2590,0.2891) 5660 (5062,6035) 0.2800 (0.2626,0.2910)

18000 5926 (5267,6355) 0.2737 (0.2557,0.2854) 5937 (5305,6342) 0.2762 (0.2586,0.2875)

19000 6198 (5492,6663) 0.2701 (0.2515,0.2823) 6212 (5548,6636) 0.2727 (0.2549,0.2841)

20000 6466 (5723,6958) 0.2666 (0.2478,0.2790) 6483 (5791,6928) 0.2693 (0.2515,0.2808)

21000 6730 (5967,7271) 0.2633 (0.2447,0.2764) 6751 (5996,7216) 0.2661 (0.2473,0.2776)

22000 6993 (6318,7677) 0.2601 (0.2443,0.2762) 7018 (6201,7506) 0.2631 (0.2435,0.2748)

23000 7250 (6556,7960) 0.2571 (0.2414,0.2732) 7281 (6404,7789) 0.2602 (0.2399,0.2719)

24000 7504 (6775,8227) 0.2542 (0.2382,0.2701) 7540 (6606,8071) 0.2574 (0.2365,0.2693)

25000 7758 (7003,8533) 0.2515 (0.2355,0.2679) 7796 (6829,8368) 0.2547 (0.2338,0.2671)

26000 8008 (6967,8546) 0.2489 (0.2275,0.2599) 8050 (7040,8654) 0.2521 (0.2309,0.2648)

27000 8255 (7185,8826) 0.2463 (0.2250,0.2577) 8302 (7375,9058) 0.2497 (0.2308,0.2651)

28000 8500 (7682,9371) 0.2439 (0.2281,0.2608) 8552 (7586,9319) 0.2473 (0.2283,0.2625)

29000 8744 (7938,9648) 0.2416 (0.2264,0.2586) 8798 (7826,9571) 0.2451 (0.2264,0.2599)

30000 8985 (8154,9942) 0.2394 (0.2242,0.2569) 9042 (8055,9838) 0.2429 (0.2244,0.2577)

Table 4: Root library. Expected number of new genes and discovery probabilities for different sizes m of

the additional sample based on the basic sample before ISO correction, which contains n = 5880 with

j = 3368 distinct genes. Estimates are reported for both prior specifications, beta–Poisson and uniform, and

arise from 200 simulated paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 363 (315,400) 0.3527 (0.3488,0.3556) 364 (330,399) 0.3529 (0.3501,0.3558)

2000 707 (650,812) 0.3351 (0.3311,0.3425) 707 (634,784) 0.3358 (0.3304,0.3414)

3000 1035 (907,1146) 0.3203 (0.3122,0.3273) 1035 (922,1119) 0.3213 (0.3139,0.3268)

4000 1349 (1141,1448) 0.3075 (0.2957,0.3132) 1351 (1210,1466) 0.3089 (0.3006,0.3157)

5000 1652 (1397,1783) 0.2964 (0.2831,0.3032) 1655 (1497,1806) 0.2981 (0.2896,0.3062)

6000 1943 (1606,2076) 0.2865 (0.2704,0.2929) 1949 (1768,2136) 0.2885 (0.2795,0.2977)

7000 2227 (1839,2387) 0.2777 (0.2606,0.2849) 2232 (2034,2474) 0.2798 (0.2708,0.2909)

8000 2501 (2219,2861) 0.2698 (0.2582,0.2847) 2510 (2284,2797) 0.2721 (0.2625,0.2844)

9000 2767 (2459,3165) 0.2626 (0.2507,0.2779) 2778 (2527,3084) 0.2651 (0.2551,0.2773)

10000 3028 (2675,3468) 0.2561 (0.2433,0.2720) 3042 (2766,3389) 0.2588 (0.2484,0.2717)

11000 3280 (2897,3768) 0.2500 (0.2369,0.2666) 3298 (3002,3691) 0.2528 (0.2424,0.2667)

12000 3529 (3110,4039) 0.2445 (0.2309,0.2609) 3548 (3223,3984) 0.2474 (0.2366,0.2619)

13000 3768 (3302,4306) 0.2392 (0.2249,0.2557) 3792 (3447,4274) 0.2423 (0.2314,0.2575)

14000 4004 (3500,4580) 0.2344 (0.2197,0.2512) 4033 (3539,4451) 0.2377 (0.2228,0.2502)

15000 4236 (3685,4858) 0.2299 (0.2146,0.2472) 4269 (3751,4728) 0.2333 (0.2185,0.2464)

16000 4463 (3878,5142) 0.2257 (0.2101,0.2437) 4501 (3978,5041) 0.2292 (0.2149,0.2439)

17000 4688 (3783,5121) 0.2217 (0.1988,0.2327) 4729 (4173,5324) 0.2253 (0.2108,0.2409)

18000 4907 (3948,5341) 0.2180 (0.1947,0.2286) 4954 (4455,5689) 0.2217 (0.2092,0.2402)

19000 5122 (4113,5586) 0.2145 (0.1909,0.2253) 5173 (4618,5930) 0.2183 (0.2049,0.2365)

20000 5335 (4287,5838) 0.2112 (0.1876,0.2225) 5390 (4817,6197) 0.2150 (0.2017,0.2337)

21000 5545 (4436,6058) 0.2080 (0.1840,0.2191) 5603 (5004,6460) 0.2119 (0.1985,0.2310)

22000 5751 (4604,6306) 0.2050 (0.1810,0.2166) 5815 (5052,6588) 0.2090 (0.1926,0.2257)

23000 5955 (4759,6544) 0.2022 (0.1780,0.2141) 6023 (5251,6861) 0.2062 (0.1901,0.2236)

24000 6154 (4925,6766) 0.1994 (0.1754,0.2114) 6229 (5448,7129) 0.2036 (0.1878,0.2217)

25000 6353 (5094,7017) 0.1968 (0.1730,0.2094) 6430 (5626,7385) 0.2010 (0.1853,0.2196)

26000 6547 (5249,7241) 0.1943 (0.1705,0.2071) 6630 (5795,7638) 0.1986 (0.1828,0.2176)

27000 6740 (5405,7455) 0.1920 (0.1682,0.2047) 6828 (5967,7858) 0.1962 (0.1805,0.2151)

28000 6931 (5563,7682) 0.1897 (0.1660,0.2027) 7026 (6155,8104) 0.1940 (0.1785,0.2132)

29000 7120 (5720,7882) 0.1875 (0.1640,0.2003) 7220 (6330,8345) 0.1919 (0.1765,0.2113)

30000 7306 (5868,8080) 0.1854 (0.1619,0.1980) 7411 (6493,8591) 0.1898 (0.1744,0.2097)

Table 5: Root library. Expected number of new genes and discovery probabilities for different sizes m

of the additional sample based on the basic sample after ISO correction, which contains n = 5891 with

j = 3126 distinct genes. Estimates are reported for both prior specifications, beta–Poisson and uniform, and

arise from 200 simulated paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 244 (204,274) 0.2392 (0.2380,0.2401) 246 (197,274) 0.2409 (0.2393,0.2419)

2000 478 (415,533) 0.2304 (0.2286,0.2320) 482 (425,542) 0.2324 (0.2307,0.2343)

3000 703 (600,770) 0.2224 (0.2196,0.2242) 709 (648,806) 0.2247 (0.2230,0.2276)

4000 923 (838,1074) 0.2152 (0.2131,0.2190) 931 (840,1055) 0.2178 (0.2153,0.2212)

5000 1135 (997,1290) 0.2086 (0.2053,0.2123) 1146 (1042,1296) 0.2114 (0.2087,0.2153)

6000 1341 (1116,1474) 0.2026 (0.1974,0.2056) 1355 (1268,1536) 0.2055 (0.2034,0.2100)

7000 1540 (1295,1703) 0.1970 (0.1916,0.2005) 1557 (1428,1752) 0.2001 (0.1971,0.2047)

8000 1734 (1463,1906) 0.1918 (0.1862,0.1953) 1754 (1619,1974) 0.1951 (0.1921,0.2000)

9000 1921 (1701,2236) 0.1869 (0.1825,0.1931) 1945 (1796,2207) 0.1903 (0.1872,0.1959)

10000 2106 (1740,2322) 0.1824 (0.1755,0.1865) 2133 (1993,2445) 0.1860 (0.1831,0.1923)

11000 2285 (1894,2504) 0.1782 (0.1711,0.1821) 2316 (2156,2657) 0.1819 (0.1788,0.1885)

12000 2462 (2032,2702) 0.1742 (0.1668,0.1784) 2496 (2325,2867) 0.1780 (0.1748,0.1850)

13000 2635 (2185,2915) 0.1705 (0.1630,0.1752) 2673 (2485,3071) 0.1744 (0.1711,0.1816)

14000 2804 (2317,3104) 0.1670 (0.1592,0.1719) 2846 (2645,3274) 0.1710 (0.1675,0.1785)

15000 2969 (2469,3269) 0.1637 (0.1559,0.1684) 3014 (2794,3470) 0.1678 (0.1641,0.1754)

16000 3132 (2589,3437) 0.1606 (0.1524,0.1652) 3181 (2937,3663) 0.1647 (0.1608,0.1725)

17000 3292 (2708,3638) 0.1576 (0.1492,0.1627) 3345 (2997,3773) 0.1619 (0.1564,0.1685)

18000 3448 (2825,3816) 0.1548 (0.1461,0.1600) 3505 (3221,4037) 0.1591 (0.1548,0.1671)

19000 3601 (2935,3982) 0.1521 (0.1431,0.1573) 3663 (3177,4036) 0.1565 (0.1494,0.1619)

20000 3752 (3066,4159) 0.1496 (0.1405,0.1549) 3818 (3328,4226) 0.1540 (0.1470,0.1598)

21000 3900 (3189,4326) 0.1471 (0.1380,0.1526) 3971 (3678,4613) 0.1516 (0.1475,0.1604)

22000 4046 (3299,4501) 0.1448 (0.1355,0.1505) 4122 (3580,4582) 0.1493 (0.1420,0.1555)

23000 4191 (3420,4668) 0.1426 (0.1332,0.1483) 4270 (3931,4962) 0.1471 (0.1427,0.1561)

24000 4334 (3547,4830) 0.1404 (0.1312,0.1463) 4418 (4067,5133) 0.1450 (0.1406,0.1541)

25000 4475 (3663,4984) 0.1384 (0.1291,0.1443) 4563 (3927,5052) 0.1430 (0.1352,0.1491)

26000 4611 (3791,5146) 0.1364 (0.1272,0.1424) 4705 (4057,5206) 0.1411 (0.1333,0.1471)

27000 4747 (3894,5302) 0.1345 (0.1252,0.1406) 4845 (4152,5358) 0.1392 (0.1311,0.1453)

28000 4880 (4001,5443) 0.1327 (0.1233,0.1387) 4983 (4301,5538) 0.1374 (0.1296,0.1438)

29000 5012 (4095,5592) 0.1310 (0.1214,0.1370) 5120 (4711,6012) 0.1357 (0.1312,0.1457)

30000 5143 (4211,5735) 0.1293 (0.1198,0.1353) 5255 (4525,5866) 0.1341 (0.1261,0.1407)

Table 6: Silique library. Expected number of new genes and discovery probabilities for different sizes m

of the additional sample based on the basic sample, which contains n = 12330 with j = 5093 distinct genes.

Estimates are reported for both prior specifications, beta–Poisson and uniform, and arise from 200 simulated

paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 321 (286,358) 0.3118 (0.3084,0.3153) 321 (292,353) 0.3132 (0.3103,0.3163)

2000 627 (556,674) 0.2970 (0.2911,0.3009) 628 (579,676) 0.2988 (0.2946,0.3029)

3000 917 (853,990) 0.2844 (0.2797,0.2898) 921 (857,987) 0.2866 (0.2818,0.2916)

4000 1196 (1116,1293) 0.2737 (0.2684,0.2801) 1203 (1115,1276) 0.2763 (0.2703,0.2812)

5000 1464 (1367,1577) 0.2643 (0.2585,0.2711) 1476 (1378,1572) 0.2672 (0.2612,0.2732)

6000 1724 (1587,1835) 0.2561 (0.2486,0.2622) 1740 (1640,1854) 0.2593 (0.2536,0.2657)

7000 1975 (1821,2102) 0.2487 (0.2409,0.2551) 1995 (1886,2125) 0.2521 (0.2464,0.2588)

8000 2220 (2067,2365) 0.2421 (0.2349,0.2489) 2244 (2118,2380) 0.2457 (0.2396,0.2522)

9000 2458 (2303,2615) 0.2361 (0.2293,0.2429) 2486 (2343,2627) 0.2398 (0.2334,0.2461)

10000 2692 (2521,2851) 0.2307 (0.2237,0.2372) 2723 (2570,2876) 0.2345 (0.2281,0.2409)

11000 2921 (2756,3124) 0.2257 (0.2194,0.2335) 2954 (2750,3115) 0.2296 (0.2215,0.2359)

12000 3145 (2982,3355) 0.2211 (0.2152,0.2288) 3183 (2997,3375) 0.2251 (0.2182,0.2323)

13000 3364 (3199,3572) 0.2169 (0.2112,0.2240) 3408 (3229,3633) 0.2210 (0.2147,0.2290)

14000 3578 (3405,3800) 0.2129 (0.2072,0.2201) 3629 (3432,3853) 0.2172 (0.2106,0.2247)

15000 3789 (3603,4012) 0.2091 (0.2034,0.2161) 3844 (3634,4081) 0.2136 (0.2069,0.2211)

16000 3996 (3795,4243) 0.2057 (0.1997,0.2130) 4057 (3832,4309) 0.2102 (0.2034,0.2178)

17000 4200 (3996,4449) 0.2024 (0.1966,0.2095) 4264 (4016,4510) 0.2069 (0.1997,0.2141)

18000 4401 (4179,4655) 0.1994 (0.1933,0.2063) 4470 (4214,4720) 0.2039 (0.1968,0.2109)

19000 4600 (4368,4866) 0.1965 (0.1904,0.2034) 4672 (4401,4927) 0.2011 (0.1938,0.2079)

20000 4796 (4550,5079) 0.1938 (0.1876,0.2008) 4872 (4562,5120) 0.1984 (0.1904,0.2047)

21000 4989 (4732,5294) 0.1912 (0.1850,0.1985) 5067 (4774,5343) 0.1958 (0.1885,0.2026)

22000 5182 (4923,5501) 0.1888 (0.1827,0.1962) 5263 (4955,5551) 0.1934 (0.1860,0.2002)

23000 5370 (5102,5710) 0.1864 (0.1804,0.1940) 5455 (5114,5740) 0.1910 (0.1832,0.1976)

24000 5555 (5273,5902) 0.1842 (0.1780,0.1917) 5643 (5317,5945) 0.1888 (0.1815,0.1955)

25000 5738 (5448,6109) 0.1820 (0.1759,0.1898) 5831 (5484,6125) 0.1867 (0.1792,0.1930)

26000 5919 (5606,6308) 0.1799 (0.1736,0.1878) 6015 (5650,6333) 0.1846 (0.1770,0.1912)

27000 6099 (5776,6487) 0.1780 (0.1716,0.1856) 6199 (5810,6514) 0.1827 (0.1748,0.1890)

28000 6275 (5947,6699) 0.1761 (0.1698,0.1842) 6380 (6001,6736) 0.1808 (0.1734,0.1878)

29000 6452 (6061,6844) 0.1743 (0.1670,0.1816) 6561 (6128,6898) 0.1790 (0.1708,0.1854)

30000 6626 (6258,7069) 0.1726 (0.1659,0.1806) 6739 (6294,7079) 0.1773 (0.1691,0.1836)

Table 7: Flower bud library. Expected number of new genes and discovery probabilities for different sizes

m of the additional sample based on the basic sample, which contains n = 5503 with j = 2564 distinct

genes. Estimates are reported for both prior specifications, beta–Poisson and uniform, and arise from 200

simulated paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 343 (306,379) 0.3382 (0.3365,0.3398) 343 (304,372) 0.3383 (0.3364,0.3396)

2000 678 (622,746) 0.3288 (0.3265,0.3317) 677 (612,734) 0.3292 (0.3263,0.3317)

3000 1003 (937,1100) 0.3203 (0.3177,0.3242) 1001 (920,1093) 0.3209 (0.3176,0.3247)

4000 1321 (1222,1433) 0.3126 (0.3089,0.3168) 1319 (1230,1439) 0.3134 (0.3100,0.3181)

5000 1628 (1502,1747) 0.3053 (0.3009,0.3095) 1629 (1514,1786) 0.3065 (0.3023,0.3122)

6000 1929 (1779,2075) 0.2987 (0.2937,0.3036) 1934 (1791,2118) 0.3002 (0.2952,0.3065)

7000 2224 (2019,2360) 0.2926 (0.2861,0.2968) 2231 (2077,2473) 0.2942 (0.2892,0.3021)

8000 2514 (2279,2672) 0.2869 (0.2798,0.2916) 2522 (2368,2802) 0.2887 (0.2839,0.2974)

9000 2798 (2539,2963) 0.2815 (0.2742,0.2862) 2805 (2639,3129) 0.2835 (0.2785,0.2930)

10000 3077 (2778,3271) 0.2766 (0.2684,0.2818) 3087 (2907,3457) 0.2786 (0.2736,0.2891)

11000 3351 (3015,3559) 0.2719 (0.2631,0.2773) 3361 (2957,3597) 0.2741 (0.2631,0.2804)

12000 3621 (3245,3838) 0.2675 (0.2580,0.2729) 3634 (3235,3935) 0.2698 (0.2595,0.2776)

13000 3887 (3454,4104) 0.2633 (0.2529,0.2685) 3903 (3499,4239) 0.2658 (0.2557,0.2742)

14000 4149 (3698,4382) 0.2594 (0.2489,0.2647) 4167 (3726,4528) 0.2620 (0.2514,0.2706)

15000 4408 (3934,4659) 0.2557 (0.2451,0.2612) 4428 (3947,4807) 0.2583 (0.2473,0.2671)

16000 4661 (4171,4922) 0.2521 (0.2415,0.2577) 4685 (4187,5105) 0.2549 (0.2438,0.2643)

17000 4911 (4402,5183) 0.2487 (0.2381,0.2543) 4940 (4409,5380) 0.2517 (0.2403,0.2611)

18000 5158 (4624,5449) 0.2454 (0.2347,0.2513) 5189 (4649,5684) 0.2485 (0.2373,0.2588)

19000 5402 (4834,5697) 0.2423 (0.2313,0.2481) 5437 (4858,5951) 0.2455 (0.2339,0.2559)

20000 5642 (5060,5959) 0.2394 (0.2284,0.2453) 5681 (4980,6120) 0.2427 (0.2290,0.2512)

21000 5881 (5265,6233) 0.2366 (0.2253,0.2430) 5923 (5292,6468) 0.2399 (0.2280,0.2502)

22000 6117 (5491,6486) 0.2339 (0.2228,0.2404) 6161 (5494,6704) 0.2373 (0.2250,0.2472)

23000 6350 (5715,6741) 0.2313 (0.2203,0.2380) 6398 (5697,6981) 0.2347 (0.2223,0.2451)

24000 6578 (5910,6987) 0.2287 (0.2175,0.2356) 6634 (5908,7279) 0.2323 (0.2198,0.2435)

25000 6804 (6106,7251) 0.2263 (0.2149,0.2336) 6867 (6037,7465) 0.2300 (0.2160,0.2401)

26000 7028 (6334,7497) 0.2239 (0.2129,0.2314) 7096 (6347,7816) 0.2278 (0.2155,0.2396)

27000 7251 (6546,7741) 0.2217 (0.2108,0.2293) 7322 (6524,8031) 0.2256 (0.2128,0.2369)

28000 7472 (6748,7997) 0.2195 (0.2086,0.2275) 7546 (6741,8310) 0.2235 (0.2109,0.2354)

29000 7690 (6934,8227) 0.2174 (0.2063,0.2254) 7769 (6920,8534) 0.2214 (0.2085,0.2331)

30000 7905 (7110,8446) 0.2154 (0.2040,0.2232) 7990 (7141,8838) 0.2195 (0.2069,0.2321)

Table 8: ABGR & Root library. Expected number of new genes and discovery probabilities for different

sizes m of the additional sample based on the merged basic samples before ISO correction, which

contain n = 11547 with j = 5737 distinct genes. Estimates are reported for both prior specifications,

beta–Poisson and uniform, and arise from 200 simulated paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 289 (246,324) 0.2841 (0.2824,0.2854) 291 (259,322) 0.2861 (0.2848,0.2873)

2000 569 (515,634) 0.2745 (0.2725,0.2768) 573 (530,624) 0.2768 (0.2752,0.2788)

3000 839 (769,947) 0.2658 (0.2635,0.2694) 844 (783,919) 0.2684 (0.2662,0.2711)

4000 1102 (990,1242) 0.2580 (0.2544,0.2624) 1109 (1008,1180) 0.2608 (0.2575,0.2632)

5000 1356 (1211,1524) 0.2507 (0.2465,0.2557) 1366 (1254,1467) 0.2539 (0.2503,0.2570)

6000 1604 (1416,1789) 0.2442 (0.2389,0.2494) 1617 (1505,1767) 0.2475 (0.2441,0.2520)

7000 1844 (1631,2068) 0.2380 (0.2324,0.2440) 1861 (1711,2012) 0.2416 (0.2373,0.2458)

8000 2081 (1814,2319) 0.2324 (0.2256,0.2384) 2099 (1946,2288) 0.2361 (0.2320,0.2411)

9000 2312 (1986,2575) 0.2272 (0.2193,0.2335) 2330 (2176,2529) 0.2309 (0.2270,0.2360)

10000 2537 (2182,2823) 0.2223 (0.2141,0.2289) 2559 (2398,2788) 0.2262 (0.2222,0.2318)

11000 2757 (2397,3100) 0.2177 (0.2097,0.2253) 2781 (2614,3035) 0.2216 (0.2177,0.2276)

12000 2973 (2587,3318) 0.2134 (0.2052,0.2207) 3001 (2817,3276) 0.2175 (0.2134,0.2236)

13000 3184 (2745,3571) 0.2093 (0.2004,0.2172) 3218 (3028,3529) 0.2136 (0.2095,0.2203)

14000 3393 (2943,3851) 0.2055 (0.1967,0.2145) 3429 (3217,3758) 0.2098 (0.2054,0.2166)

15000 3597 (2960,3931) 0.2019 (0.1898,0.2082) 3637 (3398,3968) 0.2063 (0.2015,0.2129)

16000 3796 (3285,4318) 0.1984 (0.1891,0.2079) 3842 (3582,4187) 0.2030 (0.1980,0.2096)

17000 3994 (3267,4377) 0.1952 (0.1824,0.2019) 4045 (3763,4435) 0.1998 (0.1946,0.2071)

18000 4188 (3722,4885) 0.1921 (0.1841,0.2039) 4242 (3957,4662) 0.1968 (0.1916,0.2043)

19000 4378 (3915,5137) 0.1891 (0.1815,0.2016) 4438 (4150,4888) 0.1939 (0.1889,0.2017)

20000 4567 (3962,5247) 0.1863 (0.1766,0.1972) 4630 (4339,5112) 0.1912 (0.1862,0.1993)

21000 4751 (4120,5464) 0.1836 (0.1738,0.1946) 4820 (4544,5325) 0.1885 (0.1840,0.1968)

22000 4934 (4255,5672) 0.1810 (0.1708,0.1921) 5008 (4728,5555) 0.1860 (0.1816,0.1947)

23000 5115 (4414,5887) 0.1786 (0.1683,0.1899) 5193 (4903,5770) 0.1836 (0.1791,0.1925)

24000 5293 (4312,5835) 0.1762 (0.1623,0.1839) 5377 (4960,5862) 0.1813 (0.1751,0.1886)

25000 5468 (4464,6016) 0.1739 (0.1600,0.1815) 5559 (5122,6058) 0.1791 (0.1727,0.1864)

26000 5643 (4610,6220) 0.1718 (0.1578,0.1796) 5736 (5290,6243) 0.1770 (0.1706,0.1842)

27000 5815 (4750,6425) 0.1697 (0.1557,0.1777) 5911 (5441,6432) 0.1749 (0.1684,0.1821)

28000 5983 (5169,6903) 0.1676 (0.1572,0.1795) 6084 (5599,6639) 0.1729 (0.1663,0.1804)

29000 6151 (5317,7115) 0.1657 (0.1553,0.1778) 6257 (5749,6827) 0.1710 (0.1643,0.1785)

30000 6315 (5460,7300) 0.1638 (0.1534,0.1759) 6428 (5913,7017) 0.1692 (0.1625,0.1768)

Table 9: ABGR & Root library. Expected number of new genes and discovery probabilities for different

sizes m of the additional sample based on the merged basic samples after ISO correction, which contain

n = 11529 with j = 5243 distinct genes. Estimates are reported for both prior specifications, beta–Poisson

and uniform, and arise from 200 simulated paths.
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Beta-Poisson prior Uniform prior

m ÊX
m HPD(95%) D̂X

m HPD(95%) ÊX
m HPD(95%) D̂X

m HPD(95%)

1000 217 (186,256) 0.2147 (0.2140,0.2156) 218 (189,250) 0.2157 (0.2150,0.2165)

2000 429 (358,490) 0.2092 (0.2076,0.2106) 431 (383,487) 0.2103 (0.2092,0.2116)

3000 636 (532,738) 0.2041 (0.2018,0.2062) 637 (578,720) 0.2053 (0.2039,0.2071)

4000 837 (683,956) 0.1992 (0.1961,0.2017) 841 (741,937) 0.2006 (0.1985,0.2027)

5000 1033 (836,1190) 0.1947 (0.1909,0.1978) 1039 (935,1170) 0.1962 (0.1941,0.1989)

6000 1226 (991,1420) 0.1905 (0.1861,0.1942) 1234 (1113,1382) 0.1921 (0.1898,0.1951)

7000 1414 (1127,1634) 0.1866 (0.1814,0.1906) 1424 (1281,1597) 0.1883 (0.1856,0.1916)

8000 1599 (1227,1814) 0.1828 (0.1764,0.1866) 1610 (1438,1806) 0.1846 (0.1815,0.1882)

9000 1781 (1365,2021) 0.1793 (0.1724,0.1834) 1790 (1603,2001) 0.1811 (0.1778,0.1849)

10000 1958 (1509,2219) 0.1760 (0.1687,0.1802) 1969 (1772,2208) 0.1779 (0.1745,0.1819)

11000 2131 (1697,2471) 0.1728 (0.1660,0.1781) 2145 (1921,2408) 0.1748 (0.1711,0.1791)

12000 2302 (1815,2681) 0.1698 (0.1624,0.1756) 2319 (2084,2616) 0.1718 (0.1681,0.1766)

13000 2471 (1958,2891) 0.1670 (0.1594,0.1731) 2489 (2209,2800) 0.1691 (0.1647,0.1738)

14000 2639 (2061,3066) 0.1643 (0.1560,0.1704) 2657 (2385,3004) 0.1664 (0.1623,0.1716)

15000 2801 (2196,3276) 0.1617 (0.1533,0.1682) 2822 (2552,3197) 0.1638 (0.1599,0.1693)

16000 2962 (2320,3479) 0.1592 (0.1506,0.1661) 2985 (2690,3392) 0.1614 (0.1573,0.1671)

17000 3119 (2451,3668) 0.1568 (0.1481,0.1640) 3146 (2837,3592) 0.1591 (0.1549,0.1652)

18000 3275 (2575,3848) 0.1545 (0.1456,0.1618) 3303 (2963,3777) 0.1569 (0.1523,0.1632)

19000 3429 (2692,4039) 0.1523 (0.1432,0.1599) 3459 (3099,3961) 0.1547 (0.1501,0.1612)

20000 3580 (2795,4216) 0.1502 (0.1408,0.1579) 3613 (3249,4151) 0.1527 (0.1481,0.1594)

21000 3729 (2842,4296) 0.1482 (0.1378,0.1549) 3764 (3393,4318) 0.1507 (0.1461,0.1575)

22000 3876 (2971,4469) 0.1463 (0.1359,0.1531) 3914 (3530,4499) 0.1488 (0.1442,0.1558)

23000 4021 (3088,4631) 0.1444 (0.1340,0.1512) 4063 (3672,4683) 0.1469 (0.1424,0.1542)

24000 4165 (3192,4783) 0.1426 (0.1320,0.1494) 4211 (3780,4845) 0.1452 (0.1403,0.1524)

25000 4308 (3295,4949) 0.1409 (0.1301,0.1477) 4356 (3904,5036) 0.1435 (0.1384,0.1511)

26000 4448 (3412,5109) 0.1392 (0.1284,0.1461) 4498 (4029,5201) 0.1418 (0.1367,0.1495)

27000 4587 (3518,5245) 0.1376 (0.1267,0.1443) 4638 (4144,5370) 0.1402 (0.1350,0.1480)

28000 4725 (3620,5399) 0.1360 (0.1250,0.1428) 4777 (4274,5558) 0.1387 (0.1334,0.1468)

29000 4860 (3737,5569) 0.1345 (0.1235,0.1414) 4916 (4256,5607) 0.1372 (0.1304,0.1443)

30000 4994 (3843,5746) 0.1330 (0.1220,0.1402) 5052 (4371,5761) 0.1357 (0.1289,0.1429)

Table 10: Silique & Flower bud library. Expected number of new genes and discovery probabilities for

different sizes m of the additional sample based on the merged basic samples, which contain n = 17784

with j = 6595 distinct genes. Estimates are reported for both prior specifications, beta–Poisson and uniform,

and arise from 200 simulated paths.
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3 Interpretation of Bayes factors for merged libraries

Basic sample n j m ÊX
m HPD(95%) n + m j + ÊX

m D̂X
m HPD(95%)

ABGR after ISO 5812 2883 5717 1712 (1609,1817) 11529 4595 0.2666 (0.2613,0.2720)

Root after ISO 5891 3126 5638 1843 (1694,2062) 11529 4969 0.2918 (0.2842,0.3030)

ABGR & Root after ISO 11529 5243 0 11529 5243 0.3167

Silique 12330 5093 5454 1242 (1141,1369) 17784 6335 0.2087 (0.2061,0.2119)

Flower Bud 5503 2564 12281 3256 (3049,3413) 17784 5820 0.2243 (0.2167,0.2300)

Silique & Flower Bud 17784 6595 0 17784 6595 0.2331

Table 11: Expected number of new genes and discovery probabilities at n+m equal to the size of the merged

libraries with uniform prior.
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