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ABSTRACT

Inference for Expressed Sequence Tags (ESTs) data is considered. We focus on evaluating
the redundancy of a cDNA library and, more importantly, on comparing different libraries
on the basis of their clustering structure. The numerical results we achieve allow us to assess
the effect of an error correction procedure for EST data and to study the compatibility of
single EST libraries with respect to merged ones. The proposed method is based on a
Bayesian nonparametric approach that allows to understand the clustering mechanism that
generates the observed data. As specific nonparametric model we use the two parameter
Poisson—Dirichlet (PD) process. The PD process represents a tractable nonparametric prior
which is a natural candidate for modeling data arising from discrete distributions. It allows
prediction and testing in order to analyze the clustering structure featured by the data.
We show how a full Bayesian analysis can be performed and describe the corresponding
computational algorithm.

Key words: Bayesian nonparametrics, clustering, EST analysis, species sampling, two-parameter
Poisson—Dirichlet process.

1. INTRODUCTION

CLASSICAL SPECIES SAMPLING PROBLEMS have recently gained renewed interest due to their im-
portance in genomic applications. In such inferential problems, one is interested in the species
composition of a certain population containing an unknown number of species and only a sample drawn
from it is available. Specifically, a sample of size n, Xi,..., X,, will exhibit K,, € {1,...,n} distinct
species with frequencies (Ni, ..., Ng,), where clearly Z,.K;l N; = n. Given such a sample, interest
lies in estimating the number of new species to be observed in an additional sample of size m and in
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determining the decay of the discovery probability as a function of the sample size m. Estimators for
such quantities were first provided in Good (1953) and Good and Toulmin (1956), whereas among recent
contributions we mention Mao (2004, 2007), Wang et al. (2005), and Lijoi et al. (2007a). When samples
from different but somehow related populations are available it is often also fundamental to test whether
the two samples can be explained by the same model or, in other terms, are compatible in a suitable sense.
This happens, for instance, when analyzing ecological data about species diversity in different geographical
regions.

There is a variety of experimental platforms that give rise to data for which these issues are relevant. In
this paper, we focus on the analysis of Expressed Sequence Tags (ESTs), which naturally falls within such
a framework. Indeed, the available information about a certain cDNA library, which contains a large and
unknown number of unique genes, is represented by an ESTs basic sample of size n, each EST identifying a
specific gene or species. Since repetitions are common on these experiments, the sample consists of K, <n
distinct genes with frequencies, or expression levels, (N, ..., Nk,). Starting from these data one needs
statistical methods for assessing some features of the whole library. The above mentioned problems then
take on the interpretation of: predicting the number of new genes that will arise from further sequencing,
which provides a measure of redundancy of the library; comparing different libraries, either from the same
organism under different biological conditions, such as cancer versus normal, or from different parts of the
same organism, in order to establish, which library yields more information so to optimize the sequencing
procedure.

Before outlining the model we are going to exploit, we briefly explain how ESTs arise and which
particular EST datasets we will focus on. ESTs are created by partially sequencing the 5’ and/or the 3’ ends
of randomly isolated gene transcripts that have been converted into cDNA (Adams et al., 1991). Analysis
of ESTs constitute a cost-effective tool in genomic technologies. Their public access through dbEST, a
division of the National Center for Biotechnology Information that collects and stores information of EST
data, provides researchers with elements for identification, discovery and characterization of organisms. It
also constitutes the basis for other gene expression profiling such as cDNA microarrays. cDNA libraries
typically contain many expressed mRNAs corresponding to the same gene, hence ESTs derived from these
mRNAs might be redundant. This leads to the need of bioinformatics methods to compare, cluster and
annotate EST data. Of particular interest is the transcript abundance: this can be obtained through EST
clustering procedures and it allows to identify the abundance of mRNA species in the cDNA library. The
gene cluster profile, underlying cDNA libraries, describes the gene diversity of an organism and constitutes
an appealing source of genomic information. Therefore, the development of suitable computational and
statistical methodologies to analyze such data is of critical importance.

EST datasets have limitations when used as means to identify genome content since they only represent
a small portion of a coding sequence and their annotation, processing and assembly are prone to several
kinds of errors. Although many of these are efficiently addressed, others are difficult to avoid, such as
those arising from the imperfect nature of the enzymes used in the construction of cDNA libraries.

In this paper we use four cDNA libraries from Arabidopsis thaliana, previously prepared and studied
by Wang et al. (2004, 2005). This organism constitutes a model for understanding several biological
phenomena in plant sciences. Two libraries, namely green silique and flower bud, consist of reverse
sequenced ESTs (3); other two libraries, 2-6 weeks above-ground organs (ABGR) and root, arise from
forward sequenced ESTs (5'). A more exhaustive description of the data, as well as their availability, can
be found in Wang et al. (2004, 2005).

1.1. Bayesian nonparametric methods

Applications of Bayesian methods have recently exploited very general families of discrete nonparametric
priors within complex hierarchical mixture models for density estimation and semiparametric regression
(Miiller and Quintana, 2004). However, very little has been done when the data are actually generated by
a discrete probability distribution: in this case it would be appropriate to model the data according to a
discrete nonparametric prior. Such an argument obviously applies to species sampling problems and, in
particular, to EST analysis. Our inference approach is model-based and we assume that the EST data arise
from some (unknown) discrete probability distribution P. We take a nonparametric Bayesian perspective
and complete the model with a prior distribution for the random probability measure P. That is, we treat
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P as an infinite—dimensional random element. The use of such probability distributions on probability
distributions is characteristic for nonparametric Bayesian inference.

Among different proposals of priors, a convenient choice is represented by the two parameter Poisson—
Dirichlet process (Pitman, 1995). Such a random probability measure, denoted by P, can be defined as

o0
P=>"p Sy
j=1

where §y+ is the point mass at X;*, the random weights p;’s are independent from the X*’s and the X*’s
are i.i.d. from a continuous distribution Py. Moreover, the p;’s admit a stick-breaking representation

Jj—1 )
pi=V, [Ja-Vv)  with v; * Beta(l 0.0+ j 0)

i=1

and 0 € (0,1), & > —ao, having set by convention ]_[?=1 := 0. A useful and accessible introduction to
this, and to more general species sampling, priors can be found in Pitman (1996). In the sequel, the two
parameter Poisson—Dirichlet process will be denoted as PD(o, 8). The above structure is clearly appropriate
to model data related to the detection of species: since Py is continuous, the X*’s are distinct and denote
different species labels and p; can be seen as the random proportion with which the species X;* is present
in the population. Our main focus will be on comparing clustering structures of samples sequenced from
different libraries: since such clustering structures heavily depend on the parameters o and 6 (Pitman,
2006), it is important to specify a prior also for (o, 8). The desired comparison among populations will
then be carried out by computing Bayes factors.

Other interesting inferential applications of the two parameter PD pocess can be found in Ishwaran and
James (2001), Teh et al. (2006), and Teh (2006). It is worth noting that the popular Dirichlet process
(Ferguson, 1973) can be seen as a member of such a family of priors and corresponds to the case where
o — 0. Finally, the PD(o, 8) process belongs to a wide and tractable class of random probability measures,
introduced in Gnedin and Pitman (2005), which are said of Gibbs—type. See also Griffiths and Spano (2007)
for a study of their age—ordered frequencies.

1.2. Outline

In Section 2, we provide a description of the nonparametric model which is used to fit the data. Subsec-
tion 2.1 introduces the framework within which hypothesis testing for comparing clustering structures is
carried out. Subsection 2.2 adapts the estimators of Lijoi et al. (2007a) to this framework and describes a
Blackwell-MacQueen sampling scheme used for computing them. Section 3 is devoted to the application
to real EST data. In Subsection 3.1, we evaluate the effect of the ISO error correction procedure of
Wang et al. (2004), whereas in Subsection 3.2 we study the compatibility of individual EST libraries
with respect to merged ones. Subsection 3.3 reports results of a sensitivity analysis. Finally, Section 4
contains some concluding remarks. A complete and exhaustive description of the numerical output, on
which our predictions rely, is provided as Supplementary Material. (See online supplementary material at
www.liebertonline.com.)

2. THE BAYESIAN NONPARAMETRIC MODEL

We assume that the EST data form an exchangeable sequence (X,),>1. By de Finetti’s representation
theorem an infinitely exchangeable sequence can be characterized by a hierarchical model, with the X,,’s as
a random sample from some distribution P and a prior on P. Within the parametric Bayesian framework,
the distribution P is assumed to belong to some some parametric class and the model is completed with a
prior on the parameters. Nonparametric Bayesian inference is less restrictive by allowing P to vary within
a larger class and assuming a nonparametric prior for P. We use the two parameter Poisson—Dirichlet
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process PD(a, ) (Pitman, 1995). This is equivalent to assuming that
X;|PXp
P|(0,6) ~ PD(o, 0). )]

Note that the two parameter PD selects discrete distributions (almost surely), which is a desirable feature
in this context, in contrast to situations where one has to model continuous data. Moreover, in order to
carry out a full Bayesian analysis and, in particular, to develop a testing procedure, we specify a hyperprior
s = Ty X 1y for its parameters. This differs from the setup of Lijoi et al. (2007a) where an empirical
Bayes specification for (sigma,theta) is adopted: such an approach cannot be pursued here since it does
not allow to perform a test which compares different EST libraries.

When analyzing EST libraries, one is interested in the number of distinct genes and their expression
levels. This naturally leads us to consider the partition structure induced by model (1): a sample of n EST
data yields K, € {1,...,n} distinct gene species with corresponding frequencies N = (Ny, ..., Nk,) such
that Zf’;l N; = n. Given (o, 0), the probability distribution for K, and the frequencies /N induced by
Equation (1) coincides with Pitman’s sampling formula (Pitman, 1995), which is of the form

]_[ (9 +io)
Pr(K, =k, N = n|(0,0)] = R g(l—a)nj_l (2)
with n = (ny,...,n;) and (a), = a(a + 1)---(a + n — 1) being the ascending factorial with (a)y = 1.

The partition distribution (2) represents a generalization of the popular Ewens’ sampling formula (Ewens,
1972) which corresponds to the partition structure induced by the Dirichlet process and is recovered by
letting 0 — 0. See Arratia et al. (2003) for a stimulating account. In order to obtain the joint distribution
of K,, and N, we simply have to marginalize Equation (2) with respect to (o, 8) leading to

(9 +i0)
PrlK,=k,N =n // 1—0),. -1 75(do) mg(dO 3
[ 1= (9+1>n11:[1( Inj 1 7o (do) 79 (d0) 3)
When used for predictive purposes, we will see in Section 2.2 that Equation (3) can be interpreted as the
prior distribution on the clustering structure of an EST sequence.

2.1. Hypothesis tests for comparing libraries

We consider the issue of pairwise comparison between different libraries. The main factor driving the
comparison is the kind of clustering present in the different libraries: two different libraries are considered
equivalent if they give rise to similar groupings of the observations. This, in turn, entails that they produce a
similar number of distinct genes when sampling from such libraries and can then be considered equivalent
in terms of redundancy. In this setting, a reasonable measure of redundancy is the proportion of genes,
detected in further sampling, which coincide with genes that have been already observed in the basic sample.
Note that our goal is not to assess the homogeneity by means of a test for equality of the distributions
of the data. Such a task seems not achievable in this context where: (i) data are categorical; (ii) a very
small portion of the population is observed; (iii) the supports of the distributions are unknown as well
as the number of support points. Moreover, interest relies in redundancy rather than in the labels which
identify the single genes. For this reason a sensible approach for the assessment of homogeneity versus
heterogeneity of two cDNA libraries can be traced back to a comparison of the values of the distribution
parameters responsible for the particular grouping that is observed. Within the PD(o, #) model we are
adopting, this basically reduces to comparing the parameters (o, 8) corresponding to the libraries. Suppose
there are N; and N, data from the first and second library, respectively. The model one can refer to consists
in taking

XD (B B)Y P j=12

XD\ B)E P  i=1,...N;
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with independent PD priors Isj |(c;,6;) ~PD(0;,0;), for j = 1,2, and a hyperprior x for (01, 01, 02, 6>).
To facilitate the desired inference we write the hyperprior as a mixture

m(doy, dby, doz, d6,) = Ao mo(do, dO) Lig, 0,)=(02.6,) + (1 — Ao)m((doy, dO)) mwa(doa, d02) (5, 01) (.60, (4)

where I4 is 1 whenever A is true and 0 otherwise. The value of Ay is an indication of how much, a
priori, we believe that the two libraries are equivalent. When there is equivalence, the distribution of
the vector (o1, 01, 02, 62) degenerates on a two dimensional space. On the other hand, when (o1, 0;) #
(02, 6>) we specify independent priors for (o1, 81) and (02, 6,). Finally, we suppose that 7, (do;,df;) =
jo(doj)m;e(db;), for j = 1,2, and my(do, df) = m,(do) me(df). Within this framework we are, then,
going to establish a suitable decision rule for testing

Hy : (01,61) = (02, 60,) Vs Hy : (01,6,) # (02,0,)

where (01, 01) and (02, 8,) are the parameters corresponding to the two libraries. Formally, the problem
can be given a statistical answer by resorting to a test based on the use of Bayes factors. In order to
describe the Bayes factor, set I1%)(0;, 6;) = Pr[K,gi) = k;, N; = n;|(07, 0;)] as defined in Equation (2).
Hence, the Bayes factor is

[ e Mo, 8) (0, 0) 7, (do) g (d6)
1_[§=1 fol fooo (o}, 0;) 7js(doj) 7 e(db;)

BFy = &)

We will use 2 log(BFy;) to establish whether H, must be rejected or not. See Kass and Raftery (1995) for
a discussion of Bayes factors and the indications of thresholds. An alternative test we consider is based
on the idea that o is the main parameter being responsible for the specific grouping of the data that have
been observed. Such a claim is motivated by the asymptotic behavior of K, as n diverges: indeed, K,
grows at a rate n° (Pitman, 2006, Theorem 3.8). See also Lijoi et al. (2007b) for further considerations
on this point. Hence, it is also important to verify that a rejection of the null hypothesis is not solely due
to differences in 6. To this end, we evaluate a Bayes factor for testing Hy : 01 = 0, vs H| : 01 # 0.
In order to do so, we slightly change the prior specification of the model and in place of Equation (4)
we have

n(doy, dby, doy, d6y) = my 9(d6))ma.9(d6) {Aono(dal)}lm:az + (1 - ko)nlﬂ(dal)nzﬂ(daz)ﬂal75(,2} (6)

Hence, the Bayes factor is in this case

BF), = Ll T 1H(”(0, 0;) mje(d6;) m(do) -

j=1fo i H(j)(ajaej)”j,a(daj)”j,@(dej)

2.2. Bayesian nonparametric estimators and a Blackwell-MacQueen sampling scheme

In order to interpret the testing results and to provide a comprehensive analysis of EST data, it is useful
to combine the Bayes factors with the Bayesian nonparametric estimators derived in Lijoi et al. (2007a).
Here, we briefly recall and adapt them to the case where hyperpriors on (o, 6) are specified.

Having observed a sample of size n, the probability distribution of detecting j new genes in a future
sample of size m, denoted by Pn‘f (j), is the main tool for deriving estimators of: (i) the number of new
genes in an additional sample and (ii) the probability of discovering a new gene at the (n 4+ m + 1)th
draw. To derive an expression for PX(j), consider first P,,(lk’") (j|o, 6), which denotes the probability of
recording j new tags in a future sample of size m, conditional on data with k distinct tags in the basic
sample of size n, and conditional on ¢ and 6. Indeed, we have

9 . k+j 1 9 J -
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and, additionally,

k—1 )
(0
To9(do, dB] X) o [Ti=i (0 +i0)

k
@ + 1)p— 1_[(1 —0)n;—1 o (do) g (dB).

Jj=1

Thus, the desired distribution is given by

1 o0
PX(j) = /0 /0 PED (16, 6) 75 0(dor, 40| X).

The expected number of new genes observed in a future sample of size m, given (o, 0), is

A 1 () k+0/0); .
(k.n) — 2 E —_1) T g
Em (CT, 9) - j=1] ]' ’.=0( 1) (l) (9 + n)m (n (l + k) U)m

and, hence, the Bayes estimator for the expected number of new genes is

1 o0
EX = / / E%"(q,0) 754(do, 0| X). ©)
0 0

Then, the discovery probability can be estimated by

00 0 + k + E¥"0,0)| o
A X
DX = / / i Too(do, dO]X). (10)

The highest posterior density intervals corresponding to Equations (9) and (10) can be derived in a quite
straightforward way from Equation (8).

In contrast to the case of fixed (o, 6), where the exact estimators are easily computed as in Lijoi et al.
(2007a, 2007b), in such a hierarchical setup the quantities we have been describing cannot be easily
evaluated for large values of n and m. Hence, we outline a suitable algorithm for achieving this task.

The main idea for computing integrals in Equations (9) and (10) consists in applying a generalization
of the well-known Blackwell-MacQueen Pélya urn scheme (Pitman, 1996). The implementation turns out
to be straightforward given the simple form of the predictive distributions associated to the PD(a, ) prior.
Note that, when sampling (o, 6) from the posterior one needs to implement a Gibbs sampling step. The
full conditionals are as follows

k—1
7(do|X . 0) = 74(do|K, =k, N =n) o [ [(6 +i0) ]_[(1 O, —1 7o (do) (11)

i=1 j=1

[1iZi6 +io)

7p(dO| X, 0) = my(d0| ) T

me(dO)

In computational terms it is extremely convenient to rewrite ]_[1;=1 (1=0)n; —1 in Equation (11) as ]_[;*:1 [(1—
0);—1]" where, for [ = 1,2,...,1%, r; denotes the number of genes with expression level [, i.e., r; =
Zf.(:l I, =1, where [* is the maximum level of expression. The computational advantage is due to the fact
that typically /* is much smaller than the number of distinct genes k.

We agree to denote by X[, ..., X the k labels identifying the distinct genes observed in the basic
sample X = (X, ..., X,). Moreover, recall that n; is the frequency of X;* in Xy, ..., X,,. Having this in
mind, the algorithm works as follows:

(1) Generate N pairs of (o, 6) values. In order to do so, fix an initial value oy and, then, sample 6, from
79(dO| X, 0p). Then, at iteration i € {1,..., N}
(1a) Sample o; from 7, (do|X, 6;—1)
(1b) Sample 6; from 7, (d0|X, 6;)
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. . . . (i) (i)
(2) Correspondingly to each pair (o7, 6;) in (1), simulate a sample X,/ ,..., X,

4 DY rESOrting to a

Blackwell-MacQueen urn scheme which generates X ,5 4)_, , given the data X1, ..., X, and the previously

sampled values X,S'H, .. X,S'+, ,, forany r =1,...,m as

new with probab. (6 + (k + j,—1)0)/ (@ +n+r—1)

X)S'+, = X,* with probab. (n; +m;,—1—0)/@ +n+r—-1) I =1,...,k
X,";,_l with probab. (¢;,—1 —0)/(@ +n+r—1) I =1,...,j -
where Xll Lo Xj*r—l.,r—l are the new genes, not coinciding with any of X, ..., X*, detected in
Xnt1s -y Xngr—1; myr—1 is the number of observations in X, 11, ..., X,4+r—1 that coincide with X*;
and, finally, g; ,—; is the number of observations X, 11, ..., X,+,—1 coinciding with X, ,";,_1

Hence, after a burn-in period of size Ny, the output of the algorithm is a collection of future scenarios

{(X,S'H, .. X,S'+m) : 1 = Ny,..., N} which will be used in order to evaluate the main quantities we

are interested in for inferential purposes. Letting j,f;) denote the number of new distinct genes observed
in X,S'H, .. X,§'+m, the estimator (9) is evaluated as EX ~ ST N() Z =No+1 i) whereas the discovery
probability is approximated by

! N 9,-+[k+j,§{’]a

N_N0i=N0+l O +n+m

x
DX ~

3. CLUSTERING STRUCTURE OF EST DATA

3.1. Specification of the model parameters

The implementation of the model in Equation (1) requires the specification of the prior distribution for
(o, 0), i.e., one needs to assess 7, and 7y. We have taken ¢ to be distributed according to a beta(a™, b*)
law discretized over the grid {0.01,0.02, ..., 0.99}, whereas a Poi(é) has been specified for 6. The choices
of m,, as a discretization of a continuous distribution, and of my supported by N are motivated by the
desire on one hand to calculate the exact Bayes factors and on the other to sample from the exact posterior
quantities when computing the estimators. The hyperparameters (a*,b*) and 6 are elicited by suitably
centering the priors on the empirical Bayes specification set forth in Lijoi et al. (2007a), where no prior is
introduced for (o, #). Such a specification leads to a pair (6, é) defined as

[TiZi6 +io)
@, 9)—argr(na€>§ S l:[(l_a)nj—l

Hence, we have that E[f] = 0, whereas (a*,b*) are fixed in a way that the mode of 7, is & and that
Var(o) = 1/27. Such a value of the variance is the largest compatible with the requirement that the mode
is 6. This specification is set for all the libraries to be considered and the resulting hyperparameters are
reported in Table 1. The fact that, for all EST samples, & is far away from 0, which corresponds to the
Dirichlet case, witnesses the advisability of resorting to its two parameter extension.

Specifically, when comparing two different libraries, the denominator of the Bayes factors in Equa-
tions (5) and (7) is evaluated by choosing 7;, and 7;¢ as above, for j = 1,2. Moreover we need to
define the distributions ;o corresponding to the null hypothesis in Equations (6) and (4). To this end,
let N; and N, denote as before the sizes of the basic sample from library 1 and 11brary 2, respectively.
For my = mg,ms, in Equation (6) we set: my, is Poi(6y), with 6y := (N191 + N292)/(N1 + Ny); 7o,
is a discretized beta distribution with mode oy = (N167 + N»62)/(Ny + N,) and variance 1/27. When
performing a test involving only o, we use as a prior mp in Equation (4) the previous discretized beta 7.
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TABLE 1. (6, 6) REPRESENT THE EMPIRICAL
BAYES SPECIFICATION OF (o, 6)

Library G 6 a* b*

Silique 043 1186 3.03 2.69
ABGR before ISO 0.66 409 3.10 1.08
ABGR after ISO 0.59 471 3.33 1.62
Root before ISO 0.66 536 3.10 1.08
Root after ISO 0.59 599 3.33 1.62
Flower Bud 0.64 267 3.19 1.23
ABGR and Root before 0.6 891 3.31 1.54
ABGR and Root after 0.51 1048 3.29 2.20
Silique and Flower bud 0.45 1210 3.11 2.58

The hyperprior for @ is then a Poi(é) and for o it is a Beta(a™, b™), where
(a*,b™) are fixed so to have the mode in 6 and the variance equal to 1/27.

3.2. ISO error correction

As mentioned above, EST data play a crucial role in gene annotation and inference of the number of
expressed genes in the transcriptome of an organism. However, a major problem for predicting the discovery
of new genes is due to the EST clustering error: this affects the basic sample on which predictions are
based. As pointed out and thoroughly discussed in Wang et al. (2004), errors from different sources can
bias the number of observed genes upward by 35-40%. Such a problem is especially relevant for 5’
ESTs such as the ABGR and Root data considered here, whereas errors are less frequent for 3" ESTs
such as Silique and Flowerbud data. It is to be noted that for 5" ESTs, the false separation error (to be
understood as insufficient overlap (ISO) between ESTs from the same gene) can cause up to 80% of all the
clustering errors: hence, ESTs present a higher number of distinct genes than they actually should. Wang
et al. (2004) proposed a method, termed ISO error correction, for overcoming this problem. Given this
procedure corrects a large portion of the transcripts errors, the data, after its application, can be considered
“good” data.

Here, we face the problem of establishing how much inferences are affected by the ISO error. We
perform such an analysis by comparing EST data of the same library before and after having applied
the ISO correction procedure: it is clear that, if the clustering structure of the data before and after ISO
correction is compatible in a suitable sense, also inferences based on these data will be different but
compatible with the hypothesis that the underlying model is the same. We first consider the estimates of
the expected number of new genes. From Tables 2-5 of the Supplementary Material a steady change in the
estimates after the ISO correction is apparent. Indeed, the estimate of the expected number of new genes
decreases by a percentage ranging between 15% and 20%. The same phenomenon can be observed with
reference to the discovery probabilities. Table 2 here reports the expected number of new genes and the
discovery probabilities (both with corresponding highest posterior density intervals) for the ABGR data
before and after ISO correction at selected values. More exhaustive results for this case can be found in
Tables 2 and 3 of the Supplementary Material. Still for the ABGR data, Figure 1 displays our Bayesian
estimates for E,;’f ’s. For comparison purposes, we also report a plot of the corresponding Good—Toulmin
frequentist estimator (Good and Toulmin, 1956): as it is well-known that such an estimator features reliable
predictions only up to m = n. In contrast, for the Bayesian nonparametric estimator the relative dimension
of m with respect to n is not an issue.

Since, in the analysis of EST data, prediction is required also for future samples significantly larger than
the basic sample, recently there have been various proposals of alternative frequentist estimators which
partially overcome this drawback allowing prediction up to m = 2n (Mao, 2007; Lijoi et al., 2007c).
In particular, Wang et al. (2005) report the estimates of E,;’f , before and after the ISO correction, for
additional samples of size at most equal to 2n. They also point out that their method underestimates the
actual expected number of new genes. By comparing our estimates with those in Wang et al. (2005) it is
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TABLE 2. EXPECTED NUMBER OF NEW GENES AND DISCOVERY
PROBABILITIES FOR DIFFERENT SIZES OF THE ADDITIONAL
SAMPLE m COMPUTED FOR THE ABGR LIBRARY BEFORE AND

AFTER ISO ERROR CORRECTION OF THE BASIC SAMPLE

m EX HPD(95%) DX HPD(95%)
ABGR before ISO correction
1000 383 (338, 414) 3738 (.3698, .3767)
5000 1765 (1640, 1903) 3218 (.3144, .3299)
10,000 3267 (3061, 3521) 2836 (2752, .2940)
15,000 4619 (4208, 4903) 2588 (.2460, .2677)
20,000 5870 (5384, 6271) 2409 (.2287, 2511)
25,000 7045 (6461, 7568) 2272 (2148, .2383)
30,000 8156 (7473, 8797) 2161 (.2036, .2278)
ABGR after ISO correction
1000 334 (301, 367) 3230 (.3203, .3257)
5000 1508 (1377, 1618) 2700 (2631, .2758)
10,000 2758 (2588, 2982) 2324 (.2262, .2406)
15,000 3856 (3557, 4143) 2083 (.2000, .2163)
20,000 4853 (4520, 5239) 1911 (.1836, .1999)
25,000 5774 (5383, 6261) .1780 (.1706, .1872)
30,000 6640 (6182, 7249) .1676 (.1601, .1776)

The sizes of the basic samples are n = 5811 with j = 3116 distinct genes

before ISO correction and n = 5812 with j = 2883 after ISO correction.

| |——- PD-ABGR before ISO
---------- PD-ABGR after ISO
| | = GT-ABGR before ISO
| |—— GT-ABGR after ISO

P Y B E U R A B
0 1000 2000 3000 4000 5000 6000

PRI IS S S S S S N S S TSNS S SN S S S |
7000 8000 9000 10000 11000 12000 13000

1323

FIG. 1. Expected number of new genes, EA,;’f , for the ABGR libraries before and after ISO correction. The plot
shows the estimates using the Poisson-Dirichlet (PD) with beta-Poisson prior and the estimates derived from the Good
and Toulmin (GT) estimator.
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TABLE 3. BAYES FACTORS (REPORTED AS 2In BF) FOR TESTING THE CLUSTERING STRUCTURE OF
(A) LIBRARIES BEFORE AND AFTER ISO ERROR CORRECTION AND
(B) MERGED VERSUS INDIVIDUAL LIBRARIES

Beta-Poisson prior Uniform
Test Hf HS Hf HS

Test for ISO error correction

ABGR (ISO) vs. ABGR —11.162 —15.492 —6.058 —-5.279

Root (ISO) vs. Root —11.105 —14.771 —6.446 —3.790

ABGR and Root (ISO) vs. ABGR and Root —35.392 —47.788 —30.681 —19.461
Test for merging of libraries

ABGR and Root (ISO) vs. ABGR (ISO) —37.564 —19.490 —28.862 —4.078

ABGR and Root (ISO) vs. Root (ISO) —10.857 —19.854 —5.824 —3.658

Silique and Flower bud vs. Silique 1.477 3.300 6.272 4.725

Silique and Flower bud vs. Flower bud —159.899 —168.379 —127.286 —77.492

The 2InBF are computed under both the Beta—Poisson and the uniform prior specifications. The null-hypotheses are
specified as HOC : (0,0) = (00, 6p) and H(f 10 = 0p.

apparent that our estimators do not incur in such a problem. Besides, it is to be noted that we can consider
additional samples of any size m.

Turning back to the problem of establishing the impact of the ISO correction on the clustering structure,
we compute log—Bayes factors for data before and after ISO error correction in Table 3. From Table 3,
the relevance of the ISO procedure is apparent. Indeed, in the three comparisons (1) ABGR after ISO
versus ABGR before ISO, (2) Root after ISO versus Root before ISO, and (3) ABGR and Root after
versus ABGR and Root before, the log Bayes factor supports a neat evidence against the null hypothesis.
Hence, the clustering structure before and after the ISO correction differs significantly. Such an evidence
highlights that without the ISO correction wrong inferences can be drawn from EST data and it should
always be performed before trying to draw conclusions from the data. In the following subsection we deal
with the problem of merging of libraries: in doing this we only consider after ISO correction data.

3.3. Merging of libraries

The machinery for hypothesis testing we have employed in the previous subsection will now be used
in order to assess the effect of merging of different libraries. In other terms, one might be interested in
evaluating whether it is equivalent to examine individual libraries prepared from different tissues of the
same organism or to analyze directly merged libraries. Once again, such an equivalence will be judged
according to the corresponding clustering structures of the data. An analysis of merging should obviously
involve libraries with the same data structure; that is, we consider merging of libraries having both either
3’ or 5’ ESTs. Hence, with reference to our datasets, we consider the individual ABGR and Root samples
(5 ESTs) and compare them with the union of the two samples. The same comparison is pursued with
Silique and Flower bud samples (3’ ESTs).

The merged sample for the ABGR and Root library contains 11,529 ESTs with 5243 distinct genes,
whereas for the merged sample of the Silique and Flower bud library we have 17,784 ESTs with 6595
distinct genes. It is worth noting that the number of distinct genes in the merged sample is smaller than
the sum of the distinct genes within individual samples since the libraries have co—expressed genes. For
instance, the individual samples of the ABGR and of the Root libraries contain 2883 and 3126 distinct genes,
respectively: if no genes were co—expressed, the merged sample would have contained 6009 distinct
genes, whereas it exhibits just 5243.

The compatibility between libraries is investigated by resorting to the Bayes factors described in
Equations (5) and (7). The results are reported in Table 3. The values of the log Bayes factors provide
strong evidence of incompatibility between the ABGR and Root libraries with the merged library. The
same conclusion can be reached when comparing the Flower bud library with the merged of Silique and
Flower bud library. On the other hand, the log Bayes factor arising when one compares the Silique with the
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TABLE 4. EXPECTED NUMBER OF NEW GENES AND DISCOVERY PROBABILITIES AT 1 + m
EQUAL TO THE SIZE OF THE MERGED LIBRARIES WITH BETA—POISSON PRIOR

Basic sample n j m  EX  HPD95%) n+m j+EX DX HPD(95%)
ABGR after 1SO 5812 2883 5717 1700 (1573, 1813) 11,529 4583  0.2633 (0.2570, 0.2689)
Root after ISO 5891 3126 5638 1835 (1686,2096) 11,529 4961  0.2898 (0.2824, 0.3026)
ABGR and Root after ISO 11,529 5243 0 11,529 5243 0.3192

Silique 12,330 5093 5454 1230 (1116, 1443) 17,784 6323  0.2058 (0.2032,0.2108)
Flower Bud 5503 2564 12281 3222 (2981,3462) 17,784 5786  0.2204 (0.2118,0.2290)
Silique and Flower Bud 17,784 6595 0 17,784 6595 0.2341

merged Silique and Flower bud library suggests positive evidence in favor of compatibility. This finding
could be possibly explained by the fact that Silique accounts for more than two-thirds of the merged library.

Having established the incompatibility of the libraries, it is now important to interpret the information
conveyed by the Bayes factors. Indeed, there are two main sources of incompatibility between two different
libraries: the first one is due to a too small amount of co—expressed genes and the second one is, on the
contrary, a too large amount of co—expressed genes in the two libraries. It is clearly essential to understand
which of the two causes has led to the actual rejection of the null hypothesis, since they lead to different
conclusions about the benefits of merging. Indeed, if the incompatibility is due to a very small amount of
shared genes it seems reasonable to analyze the libraries separately. Vice versa, when a large amount
of distinct genes are shared by the two libraries, it would be appropriate to work with the merged library
since the separate analysis of individual libraries would yield a waste of expensive efforts. Hence, in order
to complete the analysis, we now aim at identifying the source of incompatibility for the two cases under
investigation. To achieve this goal, we resort to our estimators for evaluating the expected number of new
genes. In particular, we need to compare the number of distinct genes between samples of the same size.
Since the merged library is of size N; 4 N,, for library 1 one needs to estimate the number of new distinct
genes in an additional sample of size N,. The overall estimate of the number of distinct genes in a sample
of size N; + N, from library 1 is, then, obtained as a sum of the actual number observed in the basic
sample of size N; and the estimated number in the additional sample of size N, which is evaluated by
means of Equation (9). The same procedure is adopted for library 2. The results are reported in Table 4.

For the ABGR and Root libraries one obtains an estimated number of distinct genes (for a sample of
size N; + N, = 11,529) equal to 4583 and 4961, respectively. Since the merged library exhibited 5243
distinct genes, we conclude that the libraries are incompatible because too few genes are co—expressed and
a separate individual analysis is advisable. As for the Silique and Flower bud libraries, on a global sample
of size N1 + N>, = 17,784, one estimates the number of distinct genes as 6323 and 5786, respectively.
The actual number of distinct genes in the merged library is 6595 thus pointing out that the two libraries
have too few genes in common. However, unlike the previous case, only the Flower bud displays a too
small number of distinct genes to be compatible with the merged library. Hence, in both cases we get to
the conclusion of incompatibility because of the too small number of co—expressed genes.

3.4. Sensitivity analysis

In order to check the sensitivity of the results with respect to the choice of the priors, we also consider
an alternative specification, which does not make use of the information conveyed by the empirical
Bayes estimates (G, é). Hence, we choose for o and 6 discrete uniform priors with support points
{0.01,0.02,...,0.99} and {0, 1, ..., 2000}, respectively. Consequently, the point estimates for the expected
number of new genes and for the discovery probability do not depend on (6, é). Moreover, when testing
the null hypothesis of compatibility between two different libraries, one does not need to deal with the
issue of properly centering the prior under the null assumption since it is uniform as well.

Tables 2—10 of the Supplementary Material report the estimates for E ,;’f and DA,;’f corresponding to both,
the beta—Poisson and the uniform, prior specifications. It is apparent that the influence of the different
prior is almost negligible thus providing convincing support for the robustness of the proposed method.
As for the comparison of libraries and the effect of ISO correction, the numerical output we have obtained
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under the uniform priors is reported in Table 3 here (see also Table 11 of the Supplementary Material):
one notices that the results basically replicate those obtained under the beta—Poisson prior.

4. CONCLUSION

The present paper has proposed a full Bayesian nonparametric analysis for problems of species sampling
where one is interested in (1) testing the compatibility of clustering structures featured by samples taken
from different populations; (2) estimating the number of new distinct species to be observed in an additional
sample; and (3) evaluating the discovery probability. The specific application to EST data considered in the
paper naturally fits into such a framework. However, we emphasize that the methods apply to any inferential
problem with data arising from discrete distributions with a large and unknown number of support points.
An important aspect of the proposed methodology is the robustness of the inferences with respect to the
prior specification: indeed choices of both “informative" and “non—informative" priors lead to the same
conclusions. Finally, exact computation of the Bayes factors is straightforward and the simulation algorithm
we have adopted in order to obtain predictions is simple to implement since it arises as a generalization
of the Blackwell-MacQueen urn scheme. Software is available upon request from the authors.
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1 EST datasets

Expression | Silique | ABGR | ABGR | Root Root | Flower | ABGR+Root | ABGR+Root | Silique+
level [ before after before | after | bud before after FlowerBud
1 2963 2276 1969 2505 2187 | 1801 3971 3333 3749
2 994 432 459 453 490 367 891 951 1270
3 440 161 182 134 133 140 299 312 566
4 222 65 69 101 121 69 185 211 295
5 124 49 58 38 37 40 105 122 182
6 73 25 28 42 51 25 59 66 109
7 59 16 17 19 22 22 37 40 80
8 42 17 20 16 19 10 32 35 49
9 27 8 7 7 7 15 26 29 48
10 19 15 19 7 8 12 21 25 33
11 16 3 2 6 6 7 14 15 21
12 14 8 9 6 7 9 11 12 20
13 15 4 4 5 6 2 11 12 16
14 4 4 4 4 4 6 11 13 17
15 10 5 6 4 5 5 5 5 10
16 9 5 6 4 5 4 8 9 14
17 5 2 2 1 1 3 4 4 12
18 6 5 6 3 4 1 4 5 10
19 7 1 1 2 2 2 2 2 7
20 1 1 1 2 5 6 3
21 3 2 2 2 2 3 3 3 6
22 1 1 4 4 8
23 2 1 1 2 2 3 3 5
24 2 2 2 1 1 3 2 2 4
25 2 1 1 1 2 2 3
26 6 2 2 2 5
27 1 1 1 1 3 3 2
28 1 1 1 2
29 1 1 1
30 2 1 1 1 2
31 1 1 1 1 1 1 1 1 3
32 2 1 1 4
33 1 1 1 1 1 3
34 2 1
35 2 1 1 2 1 1 2
36 1 1 1 1 1 1
37 2 1 1 2 2 2
38 1 1 1
39 1 1 5
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before

ABGR

after

Root

before

Root
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bud

ABGR+Root

before

ABGR+Root

after

Silique+
FlowerBud

40
42
43
44
45
46
47
48
49
50
51
53
54
55
57
58
59
62
63
67
68
70
74
75
79
81
82
83
87
96
97
99
100
111
112
113
162
169
330

1

1
1
2

[\

1

n

12330

5811

5812

5880

5891

5503

11547

11529

17784

k

5093

3116

2883

3368

3126

2564

5737

5243

6595

Table 1: EST clustering profile of Arabidopsis thaliana libraries (Source: Wang et al., 2004). The data a

presented in terms of the number of genes with expression level [.




2 Expected number of new genes and discovery probabilites

corresponding highest posterior density intervals

with

Beta-Poisson prior Uniform prior

m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)

1000 || 383 (338,414) | 0.3738 | (0.3698,0.3767) || 384 (345,417) | 0.3752 | (0.3715,0.3783)
2000 || 748 (689,802) | 0.3576 | (0.3529,0.3620) || 751 (693,804) | 0.3594 | (0.3546,0.3639)
3000 || 1100 | (1031,1193) | 0.3440 | (0.3391,0.3507) || 1102 | (1028,1178) | 0.3460 | (0.3405,0.3516)
4000 || 1438 | (1338,1530) | 0.3322 | (0.3257,0.3381) || 1443 | (1367,1555) | 0.3346 | (0.3295,0.3420)
5000 || 1765 | (1640,1903) | 0.3218 | (0.3144,0.3299) || 1773 | (1673,1890) | 0.3245 | (0.3184,0.3316)
6000 || 2082 | (1949,2236) | 0.3126 | (0.3053,0.3209) || 2094 | (1964,2210) | 0.3156 | (0.3084,0.3221)
7000 || 2389 | (2230,2562) | 0.3042 | (0.2962,0.3129) | 2406 | (2258,2542) | 0.3076 | (0.3000,0.3146)
8000 || 2688 | (2511,2890) | 0.2967 | (0.2884,0.3061) || 2709 | (2552,2876) | 0.3003 | (0.2928,0.3083)
9000 || 2981 | (2776,3218) | 0.2899 | (0.2810,0.3002) || 3004 | (2830,3189) | 0.2936 | (0.2858,0.3019)
10000 || 3267 | (3061,3521) | 0.2836 | (0.2752,0.2940) || 3295 | (3085,3486) | 0.2876 | (0.2788,0.2956)
11000 || 3548 | (3340,3804) | 0.2779 | (0.2699,0.2878) || 3577 | (3347,3777) | 0.2819 | (0.2728,0.2898)
12000 || 3823 | (3563,4113) | 0.2726 | (0.2632,0.2832) || 3858 | (3628,4090) | 0.2768 | (0.2682,0.2854)
13000 || 4093 | (3821,4439) | 0.2677 | (0.2584,0.2796) || 4133 | (3850,4358) | 0.2720 | (0.2620,0.2800)
14000 || 4357 | (4066,4713) | 0.2631 | (0.2536,0.2747) || 4403 | (4116,4652) | 0.2676 | (0.2579,0.2759)
15000 || 4619 | (4208,4903) | 0.2588 | (0.2460,0.2677) || 4669 | (4372,4932) | 0.2634 | (0.2539,0.2718)
16000 || 4878 | (4424,5172) | 0.2549 | (0.2414,0.2636) || 4931 | (4623,5240) | 0.2595 | (0.2501,0.2689)
17000 || 5132 | (4670,5445) | 0.2511 | (0.2380,0.2600) || 5190 | (4889,5517) | 0.2558 | (0.2470,0.2654)
18000 || 5381 | (4919,5727) | 0.2475 | (0.2349,0.2570) || 5444 | (5120,5777) | 0.2523 | (0.2432,0.2616)
19000 || 5628 | (5165,6000) | 0.2442 | (0.2320,0.2539) || 5694 | (5353,6056) | 0.2490 | (0.2398,0.2587)
20000 || 5870 | (5384,6271) | 0.2409 | (0.2287,0.2511) || 5942 | (5586,6314) | 0.2459 | (0.2367,0.2555)
21000 || 6110 | (5602,6529) | 0.2379 | (0.2256,0.2481) || 6186 | (5817,6577) | 0.2429 | (0.2337,0.2526)
22000 || 6350 | (5829,6800) | 0.2351 | (0.2229,0.2456) | 6428 | (6016,6839) | 0.2400 | (0.2302,0.2499)
23000 || 6585 | (6045,7047) | 0.2323 | (0.2201,0.2428) || 6667 | (6246,7095) | 0.2373 | (0.2276,0.2473)
24000 || 6816 | (6249,7309) | 0.2297 | (0.2173,0.2405) || 6904 | (6447,7341) | 0.2348 | (0.2245,0.2446)
25000 || 7045 | (6461,7568) | 0.2272 | (0.2148,0.2383) | 7140 | (6671,7638) | 0.2323 | (0.2222,0.2431)
26000 || 7272 | (6651,7805) | 0.2248 | (0.2121,0.2357) || 7371 | (6882,7898) | 0.2299 | (0.2197,0.2410)
27000 || 7497 | (6848,8054) | 0.2225 | (0.2096,0.2336) || 7599 | (7054,8083) | 0.2277 | (0.2166,0.2375)
28000 || 7720 | (7055,8312) | 0.2203 | (0.2074,0.2317) || 7826 | (7265,8337) | 0.2255 | (0.2144,0.2356)
29000 || 7939 | (7176,8464) | 0.2181 | (0.2038,0.2280) || 8050 | (7480,8588) | 0.2234 | (0.2124,0.2337)
30000 || 8156 | (7473,8797) | 0.2161 | (0.2036,0.2278) | 8273 | (7684,8824) | 0.2213 | (0.2103,0.2316)

Table 2: ABGR library. Expected number of new genes and discovery probabilities for different sizes m

of the additional sample based on the basic sample before ISO correction, which contains n = 5811 with

j = 3116 distinct genes. Estimates are reported for both prior specifications, beta—Poisson and uniform, and

arise from 200 simulated paths.



Beta-Poisson prior Uniform prior
m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)
1000 || 334 (301,367 ) | 0.3230 | (0.3203,0.3257) || 334 (299,359) | 0.3246 | (0.3216,0.3267)
2000 || 647 (588,707 ) | 0.3064 | (0.3021,0.3106) || 650 (602,692) | 0.3085 | (0.3049,0.3116)
3000 || 946 (860,1024) | 0.2923 | (0.2869,0.2974) || 950 (884,1007) | 0.2949 | (0.2905,0.2986)
4000 1233 | (1130,1332) | 0.2804 | (0.2745,0.2861) || 1240 | (1164,1326) | 0.2833 | (0.2787,0.2885)
5000 1508 | (1377,1618) | 0.2700 | (0.2631,0.2758) || 1518 | (1430,1606) | 0.2731 | (0.2683,0.2780)
6000 1774 | (1628,1890) | 0.2608 | (0.2537,0.2664) || 1787 | (1671,1889) | 0.2642 | (0.2584,0.2693)
7000 || 2030 | (1863,2160) | 0.2526 | (0.2451,0.2584) | 2047 | (1927,2178) | 0.2562 | (0.2506,0.2623)
8000 || 2279 | (2107,2426) | 0.2452 | (0.2380,0.2513) || 2299 | (2172,2462) | 0.2490 | (0.2435,0.2560)
9000 || 2521 | (2375,2696) | 0.2385 | (0.2328,0.2453) || 2541 | (2386,2690) | 0.2423 | (0.2361,0.2483)
10000 || 2758 | (2588,2982) | 0.2324 | (0.2262,0.2406) || 2781 | (2617,2947) | 0.2364 | (0.2302,0.2427)
11000 || 2988 | (2805,3234) | 0.2268 | (0.2206,0.2353) || 3012 | (2839,3204) | 0.2309 | (0.2247,0.2377)
12000 || 3212 | (3024,3491) | 0.2217 | (0.2156,0.2308) || 3241 | (3060,3447) | 0.2259 | (0.2198,0.2328)
13000 || 3430 | (3229,3729) | 0.2169 | (0.2107,0.2261) || 3465 | (3273,3678) | 0.2212 | (0.2151,0.2280)
14000 || 3646 | (3357,3896) | 0.2125 | (0.2040,0.2198) || 3684 | (3476,3918) | 0.2169 | (0.2106,0.2240)
15000 || 3856 | (3557,4143) | 0.2083 | (0.2000,0.2163) || 3899 | (3676,4137) | 0.2129 | (0.2064,0.2197)
16000 || 4062 | (3775,4361) | 0.2045 | (0.1968,0.2124) || 4110 | (3869,4366) | 0.2091 | (0.2024,0.2161)
17000 || 4265 | (3959,4584) | 0.2008 | (0.1930,0.2090) || 4318 | (4067,4598) | 0.2055 | (0.1989,0.2129)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)

N NN NGNS

18000 || 4465 | (4157,4808 0.1974 | (0.1899,0.2058 4521 | (4246,4812) | 0.2022 | (0.1952,0.2095)
19000 || 4660 | (4347,5014 0.1942 | (0.1869,0.2025 4722 | (4438,5012) | 0.1990 | (0.1921,0.2061)
20000 || 4853 | (4520,5239 0.1911 | (0.1836,0.1999) 4919 | (4608,5223) | 0.1960 | (0.1888,0.2031)
21000 || 5042 | (4682,5452 5114 | (4799,5442) | 0.1932 | (0.1861,0.2006)
22000 || 5230 | (4867,5668 5306 | (4969,5657) | 0.1905 | (0.1832,0.1981)
23000 || 5415 | (5043,5855 5496 | (5140,5864) | 0.1879 | (0.1805,0.1956)
24000 || 5596 | (5218,6057 5684 | (5315,6089) | 0.1855 | (0.1780,0.1937)
25000 || 5774 | (5383,6261 5869 | (5483,6304 0.1832 | (0.1756,0.1917)
26000 || 5951 | (5586,6511 6050 | (5644,6464 0.1809 | (0.1732,0.1888)
27000 || 6126 | (5744,6704 6229 | (5814,6666 0.1788 | (0.1711,0.1868)
28000 || 6301 | (5904,6897 6406 | (5974,6876 0.1767 | (0.1690,0.1851)
29000 || 6472 | (6021,7048 6582 | (6119,7075 0.1748 | (0.1667,0.1833)
30000 || 6640 | (6182,7249 6757 | (6255,7234 0.1729 | (0.1644,0.1809)
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Table 3: ABGR library. Expected number of new genes and discovery probabilities for different sizes m
of the additional sample based on the basic sample after ISO correction, which contains n = 5812 with
7 = 2883 distinct genes. Estimates are reported for both prior specifications, beta—Poisson and uniform, and

arise from 200 simulated paths.



Beta-Poisson prior Uniform prior
m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)
1000 || 418 (376,453) | 0.4079 | (0.4041,0.4111) || 416 (379,453) | 0.4073 | (0.4038,0.4107)
2000 || 820 (751,896) | 0.3911 | (0.3856,0.3972) || 815 (754,882) | 0.3908 | (0.3858,0.3962)
3000 1205 | (1093,1294) | 0.3767 | (0.3688,0.3830) || 1200 | (1104,1276) | 0.3768 | (0.3698,0.3823)
4000 1576 | (1408,1682) | 0.3642 | (0.3534,0.3710) || 1571 | (1462,1678) | 0.3646 | (0.3574,0.3716)
5000 1935 | (1714,2059) | 0.3532 | (0.3402,0.3604) || 1929 | (1774,2062) | 0.3538 | (0.3445,0.3618)
6000 || 2284 | (2050,2447) | 0.3434 | (0.3308,0.3522) | 2279 | (2066,2414) | 0.3443 | (0.3325,0.3517)
7000 || 2622 | (2350,2795) | 0.3345 | (0.3210,0.3431) || 2617 | (2430,2819) | 0.3356 | (0.3261,0.3459)
8000 || 2952 | (2631,3129) | 0.3265 | (0.3117,0.3347) || 2947 | (2732,3186) | 0.3278 | (0.3176,0.3391)
9000 || 3275 | (2907,3462) | 0.3192 | (0.3033,0.3274) || 3272 | (3010,3510) | 0.3207 | (0.3091,0.3313)
10000 || 3591 | (3213,3811) | 0.3126 | (0.2972,0.3215) || 3588 | (3300,3834) | 0.3142 | (0.3022,0.3244)
11000 || 3899 | (3489,4149) | 0.3064 | (0.2907,0.3160) || 3899 | (3567,4189) | 0.3082 | (0.2952,0.3196)
12000 || 4204 | (3751,4463) | 0.3008 | (0.2844,0.3101) || 4204 | (3855,4541) | 0.3027 | (0.2897,0.3151)
13000 || 4504 | (4025,4811) | 0.2956 | (0.2791,0.3061) || 4505 | (4033,4810) | 0.2975 | (0.2809,0.3083)
14000 || 4799 | (4282,5129) | 0.2907 | (0.2738,0.3014) || 4799 | (4298,5136) | 0.2927 | (0.2759,0.3040)
15000 || 5087 | (4529,5444) | 0.2860 | (0.2687,0.2971) || 5090 | (4564,5424) | 0.2882 | (0.2715,0.2988)
16000 || 5370 | (4752,5744) | 0.2817 | (0.2633,0.2928) || 5377 | (4825,5729) | 0.2840 | (0.2672,0.2947)
17000 || 5650 | (4999,6054) | 0.2776 | (0.2590,0.2891) || 5660 | (5062,6035) | 0.2800 | (0.2626,0.2910)
18000 || 5926 | (5267,6355) | 0.2737 | (0.2557,0.2854) || 5937 | (5305,6342) | 0.2762 | (0.2586,0.2875)
19000 || 6198 | (5492,6663) | 0.2701 | (0.2515,0.2823) || 6212 | (5548,6636) | 0.2727 | (0.2549,0.2841)
20000 || 6466 | (5723,6958) | 0.2666 | (0.2478,0.2790) || 6483 | (5791,6928) | 0.2693 | (0.2515,0.2808)
21000 || 6730 | (5967,7271) | 0.2633 | (0.2447,0.2764) || 6751 | (5996,7216) | 0.2661 | (0.2473,0.2776)
22000 || 6993 | (6318,7677) | 0.2601 | (0.2443,0.2762) || 7018 | (6201,7506) | 0.2631 | (0.2435,0.2748)
23000 || 7250 | (6556,7960) | 0.2571 | (0.2414,0.2732) || 7281 | (6404,7789) | 0.2602 | (0.2399,0.2719)
24000 || 7504 | (6775,8227) | 0.2542 | (0.2382,0.2701) || 7540 | (6606,8071) | 0.2574 | (0.2365,0.2693)
25000 || 7758 | (7003,8533) | 0.2515 | (0.2355,0.2679) | 7796 | (6829,8368) | 0.2547 | (0.2338,0.2671)
26000 || 8008 | (6967,8546) | 0.2489 | (0.2275,0.2599) || 8050 | (7040,8654) | 0.2521 | (0.2309,0.2648)
27000 || 8255 | (7185,8826) | 0.2463 | (0.2250,0.2577) || 8302 | (7375,9058) | 0.2497 | (0.2308,0.2651)
28000 || 8500 | (7682,9371) | 0.2439 | (0.2281,0.2608) || 8552 | (7586,9319) | 0.2473 | (0.2283,0.2625)
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29000 || 8744 | (7938,9648 0.2416 | (0.2264,0.2586 8798 | (7826,9571 0.2451 | (0.2264,0.2599)
30000 || 8985 | (8154,9942 0.2394 | (0.2242,0.2569 9042 | (8055,9838 0.2429 | (0.2244,0.2577)
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Table 4: Root library. Expected number of new genes and discovery probabilities for different sizes m of
the additional sample based on the basic sample before ISO correction, which contains n = 5880 with
7 = 3368 distinct genes. Estimates are reported for both prior specifications, beta—Poisson and uniform, and

arise from 200 simulated paths.



Beta-Poisson prior Uniform prior

m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)

1000 || 363 (315,400) | 0.3527 | (0.3488,0.3556) || 364 (330,399) | 0.3529 | (0.3501,0.3558)
2000 | 707 (650,812) | 0.3351 | (0.3311,0.3425) || 707 (634,784) | 0.3358 | (0.3304,0.3414)
3000 1035 | (907,1146) | 0.3203 | (0.3122,0.3273) || 1035 | (922,1119) | 0.3213 | (0.3139,0.3268)
4000 1349 | (1141,1448) | 0.3075 | (0.2957,0.3132) || 1351 | (1210,1466) | 0.3089 | (0.3006,0.3157)
5000 1652 | (1397,1783) | 0.2964 | (0.2831,0.3032) || 1655 | (1497,1806) | 0.2981 | (0.2896,0.3062)
6000 1943 | (1606,2076) | 0.2865 | (0.2704,0.2929) || 1949 | (1768,2136) | 0.2885 | (0.2795,0.2977)
7000 || 2227 | (1839,2387) | 0.2777 | (0.2606,0.2849) || 2232 | (2034,2474) | 0.2798 | (0.2708,0.2909)
8000 || 2501 | (2219,2861) | 0.2698 | (0.2582,0.2847) | 2510 | (2284,2797) | 0.2721 | (0.2625,0.2844)
9000 || 2767 | (2459,3165) | 0.2626 | (0.2507,0.2779) || 2778 | (2527,3084) | 0.2651 | (0.2551,0.2773)
10000 || 3028 | (2675,3468) | 0.2561 | (0.2433,0.2720) || 3042 | (2766,3389) | 0.2588 | (0.2484,0.2717)
11000 || 3280 | (2897,3768) | 0.2500 | (0.2369,0.2666) || 3298 | (3002,3691) | 0.2528 | (0.2424,0.2667)
12000 || 3529 | (3110,4039) | 0.2445 | (0.2309,0.2609) || 3548 | (3223,3984) | 0.2474 | (0.2366,0.2619)
13000 || 3768 | (3302,4306) | 0.2392 | (0.2249,0.2557) || 3792 | (3447,4274) | 0.2423 | (0.2314,0.2575)
14000 || 4004 | (3500,4580) | 0.2344 | (0.2197,0.2512) || 4033 | (3539,4451) | 0.2377 | (0.2228,0.2502)
15000 || 4236 | (3685,4858) | 0.2299 | (0.2146,0.2472) || 4269 | (3751,4728) | 0.2333 | (0.2185,0.2464)
16000 || 4463 | (3878,5142) | 0.2257 | (0.2101,0.2437) || 4501 | (3978,5041) | 0.2292 | (0.2149,0.2439)
17000 || 4688 | (3783,5121) | 0.2217 | (0.1988,0.2327) || 4729 | (4173,5324) | 0.2253 | (0.2108,0.2409)
18000 || 4907 | (3948,5341) | 0.2180 | (0.1947,0.2286) || 4954 | (4455,5689) | 0.2217 | (0.2092,0.2402)
19000 || 5122 | (4113,5586) | 0.2145 | (0.1909,0.2253) || 5173 | (4618,5930) | 0.2183 | (0.2049,0.2365)
20000 || 5335 | (4287,5838) | 0.2112 | (0.1876,0.2225) || 5390 | (4817,6197) | 0.2150 | (0.2017,0.2337)
21000 || 5545 | (4436,6058) | 0.2080 | (0.1840,0.2191) | 5603 | (5004,6460) | 0.2119 | (0.1985,0.2310)
22000 || 5751 | (4604,6306) | 0.2050 | (0.1810,0.2166) || 5815 | (5052,6588) | 0.2090 | (0.1926,0.2257)
23000 || 5955 | (4759,6544) | 0.2022 | (0.1780,0.2141) || 6023 | (5251,6861) | 0.2062 | (0.1901,0.2236)
24000 || 6154 | (4925,6766) | 0.1994 | (0.1754,0.2114) || 6229 | (5448,7129) | 0.2036 | (0.1878,0.2217)
25000 || 6353 | (5094,7017) | 0.1968 | (0.1730,0.2094) | 6430 | (5626,7385) | 0.2010 | (0.1853,0.2196)
26000 || 6547 | (5249,7241) | 0.1943 | (0.1705,0.2071) || 6630 | (5795,7638) | 0.1986 | (0.1828,0.2176)
27000 || 6740 | (5405,7455) | 0.1920 | (0.1682,0.2047) || 6828 | (5967,7858) | 0.1962 | (0.1805,0.2151)
28000 || 6931 | (5563,7682) | 0.1897 | (0.1660,0.2027) || 7026 | (6155,8104) | 0.1940 | (0.1785,0.2132)
29000 || 7120 | (5720,7882) | 0.1875 | (0.1640,0.2003) || 7220 | (6330,8345) | 0.1919 | (0.1765,0.2113)
30000 || 7306 | (5868,8080) | 0.1854 | (0.1619,0.1980) || 7411 | (6493,8591) | 0.1898 | (0.1744,0.2097)

Table 5: Root library. Expected number of new genes and discovery probabilities for different

sizes m

of the additional sample based on the basic sample after ISO correction, which contains n = 5891 with

7 = 3126 distinct genes. Estimates are reported for both prior specifications, beta—Poisson and uniform, and

arise from 200 simulated paths.



Beta-Poisson prior Uniform prior
m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)
1000 || 244 (204,274) | 0.2392 | (0.2380,0.2401) || 246 (197,274) | 0.2409 | (0.2393,0.2419)
2000 || 478 (415,533) | 0.2304 | (0.2286,0.2320) || 482 (425,542) | 0.2324 | (0.2307,0.2343)
3000 || 703 (600,770) | 0.2224 | (0.2196,0.2242) || 709 (648,806) | 0.2247 | (0.2230,0.2276)
4000 || 923 (838,1074) | 0.2152 | (0.2131,0.2190) || 931 (840,1055) | 0.2178 | (0.2153,0.2212)
5000 1135 | (997,1290) | 0.2086 | (0.2053,0.2123) || 1146 | (1042,1296) | 0.2114 | (0.2087,0.2153)
6000 1341 | (1116,1474) | 0.2026 | (0.1974,0.2056) || 1355 | (1268,1536) | 0.2055 | (0.2034,0.2100)
7000 1540 | (1295,1703) | 0.1970 | (0.1916,0.2005) || 1557 | (1428,1752) | 0.2001 | (0.1971,0.2047)
8000 1734 | (1463,1906) | 0.1918 | (0.1862,0.1953) || 1754 | (1619,1974) | 0.1951 | (0.1921,0.2000)
9000 1921 | (1701,2236) | 0.1869 | (0.1825,0.1931) || 1945 | (1796,2207) | 0.1903 | (0.1872,0.1959)
10000 || 2106 | (1740,2322) | 0.1824 | (0.1755,0.1865) || 2133 | (1993,2445) | 0.1860 | (0.1831,0.1923)
11000 || 2285 | (1894,2504) | 0.1782 | (0.1711,0.1821) || 2316 | (2156,2657) | 0.1819 | (0.1788,0.1885)
12000 || 2462 | (2032,2702) | 0.1742 | (0.1668,0.1784) || 2496 | (2325,2867) | 0.1780 | (0.1748,0.1850)
13000 || 2635 | (2185,2915) | 0.1705 | (0.1630,0.1752) || 2673 | (2485,3071) | 0.1744 | (0.1711,0.1816)
14000 || 2804 | (2317,3104) | 0.1670 | (0.1592,0.1719) || 2846 | (2645,3274) | 0.1710 | (0.1675,0.1785)
15000 || 2969 | (2469,3269) | 0.1637 | (0.1559,0.1684) || 3014 | (2794,3470) | 0.1678 | (0.1641,0.1754)
16000 || 3132 | (2589,3437) | 0.1606 | (0.1524,0.1652) || 3181 | (2937,3663) | 0.1647 | (0.1608,0.1725)
17000 || 3292 | (2708,3638) | 0.1576 | (0.1492,0.1627) || 3345 | (2997,3773) | 0.1619 | (0.1564,0.1685)
18000 || 3448 | (2825,3816) | 0.1548 | (0.1461,0.1600) || 3505 | (3221,4037) | 0.1591 | (0.1548,0.1671)
)
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19000 || 3601 | (2935,3982) | 0.1521 | (0.1431,0.1573) || 3663 | (3177,4036) | 0.1565 | (0.1494,0.1619)
20000 || 3752 | (3066,4159) | 0.1496 | (0.1405,0.1549) || 3818 | (3328,4226) | 0.1540 | (0.1470,0.1598)
21000 || 3900 | (3189,4326 3971 | (3678,4613) | 0.1516 | (0.1475,0.1604)
22000 || 4046 | (3299,4501 4122 | (3580,4582) | 0.1493 | (0.1420,0.1555)
23000 || 4191 | (3420,4668 4270 | (3931,4962) | 0.1471 | (0.1427,0.1561)
24000 || 4334 | (3547,4830 4418 | (4067,5133) | 0.1450 | (0.1406,0.1541)
25000 || 4475 | (3663,4984 4563 | (3927,5052) | 0.1430 | (0.1352,0.1491)
26000 || 4611 | (3791,5146 4705 | (4057,5206) | 0.1411 | (0.1333,0.1471)
27000 || 4747 | (3894,5302 4845 | (4152,5358) | 0.1392 | (0.1311,0.1453)
28000 || 4880 | (4001,5443 4983 | (4301,5538) | 0.1374 | (0.1296,0.1438)
29000 || 5012 | (4095,5592 5120 | (4711,6012) | 0.1357 | (0.1312,0.1457)
30000 || 5143 | (4211,5735 5255 | (4525,5866) | 0.1341 | (0.1261,0.1407)

0.1471 | (0.1380,0.1526
0.1448 | (0.1355,0.1505
0.1426 | (0.1332,0.1483
0.1404 | (0.1312,0.1463
0.1384 | (0.1291,0.1443
0.1364 | (0.1272,0.1424
0.1345 | (0.1252,0.1406
0.1327 | (0.1233,0.1387
0.1310 | (0.1214,0.1370
0.1293 | (0.1198,0.1353
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Table 6: Silique library. Expected number of new genes and discovery probabilities for different sizes m
of the additional sample based on the basic sample, which contains n = 12330 with 7 = 5093 distinct genes.
Estimates are reported for both prior specifications, beta—Poisson and uniform, and arise from 200 simulated

paths.



Beta-Poisson prior Uniform prior

m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)

1000 || 321 (286,358) | 0.3118 | (0.3084,0.3153) || 321 (292,353) | 0.3132 | (0.3103,0.3163)
2000 || 627 (556,674) | 0.2970 | (0.2911,0.3009) || 628 (579,676) | 0.2988 | (0.2946,0.3029)
3000 || 917 (853,990) | 0.2844 | (0.2797,0.2898) || 921 (857,987) | 0.2866 | (0.2818,0.2916)
4000 1196 | (1116,1293) | 0.2737 | (0.2684,0.2801) || 1203 | (1115,1276) | 0.2763 | (0.2703,0.2812)
5000 1464 | (1367,1577) | 0.2643 | (0.2585,0.2711) || 1476 | (1378,1572) | 0.2672 | (0.2612,0.2732)
6000 1724 | (1587,1835) | 0.2561 | (0.2486,0.2622) || 1740 | (1640,1854) | 0.2593 | (0.2536,0.2657)
7000 1975 | (1821,2102) | 0.2487 | (0.2409,0.2551) || 1995 | (1886,2125) | 0.2521 | (0.2464,0.2588)
8000 || 2220 | (2067,2365) | 0.2421 | (0.2349,0.2489) | 2244 | (2118,2380) | 0.2457 | (0.2396,0.2522)
9000 || 2458 | (2303,2615) | 0.2361 | (0.2293,0.2429) | 2486 | (2343,2627) | 0.2398 | (0.2334,0.2461)
10000 || 2692 | (2521,2851) | 0.2307 | (0.2237,0.2372) || 2723 | (2570,2876) | 0.2345 | (0.2281,0.2409)
11000 || 2921 | (2756,3124) | 0.2257 | (0.2194,0.2335) || 2954 | (2750,3115) | 0.2296 | (0.2215,0.2359)
12000 || 3145 | (2982,3355) | 0.2211 | (0.2152,0.2288) || 3183 | (2997,3375) | 0.2251 | (0.2182,0.2323)
13000 || 3364 | (3199,3572) | 0.2169 | (0.2112,0.2240) || 3408 | (3229,3633) | 0.2210 | (0.2147,0.2290)
14000 || 3578 | (3405,3800) | 0.2129 | (0.2072,0.2201) || 3629 | (3432,3853) | 0.2172 | (0.2106,0.2247)
15000 || 3789 | (3603,4012) | 0.2091 | (0.2034,0.2161) || 3844 | (3634,4081) | 0.2136 | (0.2069,0.2211)
16000 || 3996 | (3795,4243) | 0.2057 | (0.1997,0.2130) || 4057 | (3832,4309) | 0.2102 | (0.2034,0.2178)
17000 || 4200 | (3996,4449) | 0.2024 | (0.1966,0.2095) || 4264 | (4016,4510) | 0.2069 | (0.1997,0.2141)
18000 || 4401 | (4179,4655) | 0.1994 | (0.1933,0.2063) || 4470 | (4214,4720) | 0.2039 | (0.1968,0.2109)
19000 || 4600 | (4368,4866) | 0.1965 | (0.1904,0.2034) || 4672 | (4401,4927) | 0.2011 | (0.1938,0.2079)
20000 || 4796 | (4550,5079) | 0.1938 | (0.1876,0.2008) || 4872 | (4562,5120) | 0.1984 | (0.1904,0.2047)
21000 || 4989 | (4732,5294) | 0.1912 | (0.1850,0.1985) || 5067 | (4774,5343) | 0.1958 | (0.1885,0.2026)
22000 || 5182 | (4923,5501) | 0.1888 | (0.1827,0.1962) || 5263 | (4955,5551) | 0.1934 | (0.1860,0.2002)
23000 || 5370 | (5102,5710) | 0.1864 | (0.1804,0.1940) || 5455 | (5114,5740) | 0.1910 | (0.1832,0.1976)
24000 || 5555 | (5273,5902) | 0.1842 | (0.1780,0.1917) || 5643 | (5317,5945) | 0.1888 | (0.1815,0.1955)
25000 || 5738 | (5448,6109) | 0.1820 | (0.1759,0.1898) | 5831 | (5484,6125) | 0.1867 | (0.1792,0.1930)
26000 || 5919 | (5606,6308) | 0.1799 | (0.1736,0.1878) || 6015 | (5650,6333) | 0.1846 | (0.1770,0.1912)
27000 || 6099 | (5776,6487) | 0.1780 | (0.1716,0.1856) || 6199 | (5810,6514) | 0.1827 | (0.1748,0.1890)
28000 || 6275 | (5947,6699) | 0.1761 | (0.1698,0.1842) || 6380 | (6001,6736) | 0.1808 | (0.1734,0.1878)
20000 || 6452 | (6061,6844) | 0.1743 | (0.1670,0.1816) || 6561 | (6128,6898) | 0.1790 | (0.1708,0.1854)
30000 || 6626 | (6258,7069) | 0.1726 | (0.1659,0.1806) || 6739 | (6294,7079) | 0.1773 | (0.1691,0.1836)

Table 7: Flower bud library. Expected number of new genes and discovery probabilities for different sizes

m of the additional sample based on the basic sample, which contains n = 5503 with j = 2564 distinct

genes. Estimates are reported for both prior specifications, beta—Poisson and uniform, and arise from 200

simulated paths.



Beta-Poisson prior Uniform prior
m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)
1000 || 343 (306,379) | 0.3382 | (0.3365,0.3398) || 343 (304,372) | 0.3383 | (0.3364,0.3396)
2000 || 678 (622,746) | 0.3288 | (0.3265,0.3317) || 677 (612,734) | 0.3292 | (0.3263,0.3317)
3000 1003 | (937,1100) | 0.3203 | (0.3177,0.3242) || 1001 | (920,1093) | 0.3209 | (0.3176,0.3247)
4000 1321 | (1222,1433) | 0.3126 | (0.3089,0.3168) || 1319 | (1230,1439) | 0.3134 | (0.3100,0.3181)
5000 1628 | (1502,1747) | 0.3053 | (0.3009,0.3095) || 1629 | (1514,1786) | 0.3065 | (0.3023,0.3122)
6000 1929 | (1779,2075) | 0.2987 | (0.2937,0.3036) || 1934 | (1791,2118) | 0.3002 | (0.2952,0.3065)
7000 || 2224 | (2019,2360) | 0.2926 | (0.2861,0.2968) | 2231 | (2077,2473) | 0.2942 | (0.2892,0.3021)
8000 || 2514 | (2279,2672) | 0.2869 | (0.2798,0.2916) || 2522 | (2368,2802) | 0.2887 | (0.2839,0.2974)
9000 || 2798 | (2539,2963) | 0.2815 | (0.2742,0.2862) || 2805 | (2639,3129) | 0.2835 | (0.2785,0.2930)
10000 || 3077 | (2778,3271) | 0.2766 | (0.2684,0.2818) || 3087 | (2907,3457) | 0.2786 | (0.2736,0.2891)
11000 || 3351 | (3015,3559) | 0.2719 | (0.2631,0.2773) || 3361 | (2957,3597) | 0.2741 | (0.2631,0.2804)
12000 || 3621 | (3245,3838) | 0.2675 | (0.2580,0.2729) || 3634 | (3235,3935) | 0.2698 | (0.2595,0.2776)
13000 || 3887 | (3454,4104) | 0.2633 | (0.2529,0.2685) || 3903 | (3499,4239) | 0.2658 | (0.2557,0.2742)
14000 || 4149 | (3698,4382) | 0.2594 | (0.2489,0.2647) || 4167 | (3726,4528) | 0.2620 | (0.2514,0.2706)
15000 || 4408 | (3934,4659) | 0.2557 | (0.2451,0.2612) || 4428 | (3947,4807) | 0.2583 | (0.2473,0.2671)
16000 || 4661 | (4171,4922) | 0.2521 | (0.2415,0.2577) || 4685 | (4187,5105) | 0.2549 | (0.2438,0.2643)
17000 || 4911 | (4402,5183) | 0.2487 | (0.2381,0.2543) || 4940 | (4409,5380) | 0.2517 | (0.2403,0.2611)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)

NB NGNS N N2

18000 || 5158 | (4624,5449 0.2454 | (0.2347,0.2513 5189 | (4649,5684) | 0.2485 | (0.2373,0.2588)
19000 || 5402 | (4834,5697 0.2423 | (0.2313,0.2481 5437 | (4858,5951) | 0.2455 | (0.2339,0.2559)
20000 || 5642 | (5060,5959 0.2394 | (0.2284,0.2453) 5681 | (4980,6120) | 0.2427 | (0.2290,0.2512)
21000 || 5881 | (5265,6233 5923 | (5292,6468) | 0.2399 | (0.2280,0.2502)
22000 || 6117 | (5491,6486 6161 | (5494,6704) | 0.2373 | (0.2250,0.2472)
23000 || 6350 | (5715,6741 6398 | (5697,6981) | 0.2347 | (0.2223,0.2451)
24000 || 6578 | (5910,6987 6634 | (5908,7279) | 0.2323 | (0.2198,0.2435)
25000 || 6804 | (6106,7251 6867 | (6037,7465 0.2300 | (0.2160,0.2401)
26000 || 7028 | (6334,7497 7096 | (6347,7816 0.2278 | (0.2155,0.2396)
27000 || 7251 | (6546,7741 7322 | (6524,8031 0.2256 | (0.2128,0.2369)
28000 || 7472 | (6748,7997 7546 | (6741,8310 0.2235 | (0.2109,0.2354)
29000 || 7690 | (6934,8227 7769 | (6920,8534 0.2214 | (0.2085,0.2331)
30000 || 7905 | (7110,8446 7990 | (7141,8838 0.2195 | (0.2069,0.2321)

NIPENGNGEND NN NS SN NN NNt SN N

0.2366 | (0.2253,0.2430
0.2339 | (0.2228,0.2404
0.2313 | (0.2203,0.2380
0.2287 | (0.2175,0.2356
0.2263 | (0.2149,0.2336
0.2239 | (0.2129,0.2314
0.2217 | (0.2108,0.2293
0.2195 | (0.2086,0.2275
0.2174 | (0.2063,0.2254
0.2154 | (0.2040,0.2232

o D oD oo o

NN N NN NS

Table 8: ABGR & Root library. Expected number of new genes and discovery probabilities for different
sizes m of the additional sample based on the merged basic samples before ISO correction, which
contain n = 11547 with j = 5737 distinct genes. Estimates are reported for both prior specifications,

beta—Poisson and uniform, and arise from 200 simulated paths.



Beta-Poisson prior Uniform prior
m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)
1000 || 289 (246,324) | 0.2841 | (0.2824,0.2854) || 291 (259,322) | 0.2861 | (0.2848,0.2873)
2000 || 569 (515,634) | 0.2745 | (0.2725,0.2768) || 573 (530,624) | 0.2768 | (0.2752,0.2788)
3000 || 839 (769,947) | 0.2658 | (0.2635,0.2694) || 844 (783,919) | 0.2684 | (0.2662,0.2711)
4000 1102 | (990,1242) | 0.2580 | (0.2544,0.2624) || 1109 | (1008,1180) | 0.2608 | (0.2575,0.2632)
5000 1356 | (1211,1524) | 0.2507 | (0.2465,0.2557) || 1366 | (1254,1467) | 0.2539 | (0.2503,0.2570)
6000 1604 | (1416,1789) | 0.2442 | (0.2389,0.2494) || 1617 | (1505,1767) | 0.2475 | (0.2441,0.2520)
7000 1844 | (1631,2068) | 0.2380 | (0.2324,0.2440) || 1861 | (1711,2012) | 0.2416 | (0.2373,0.2458)
8000 || 2081 | (1814,2319) | 0.2324 | (0.2256,0.2384) || 2099 | (1946,2288) | 0.2361 | (0.2320,0.2411)
9000 || 2312 | (1986,2575) | 0.2272 | (0.2193,0.2335) || 2330 | (2176,2529) | 0.2309 | (0.2270,0.2360)
10000 || 2537 | (2182,2823) | 0.2223 | (0.2141,0.2289) || 2559 | (2398,2788) | 0.2262 | (0.2222,0.2318)
11000 || 2757 | (2397,3100) | 0.2177 | (0.2097,0.2253) || 2781 | (2614,3035) | 0.2216 | (0.2177,0.2276)
12000 || 2973 | (2587,3318) | 0.2134 | (0.2052,0.2207) || 3001 | (2817,3276) | 0.2175 | (0.2134,0.2236)
13000 || 3184 | (2745,3571) | 0.2093 | (0.2004,0.2172) || 3218 | (3028,3529) | 0.2136 | (0.2095,0.2203)
14000 || 3393 | (2943,3851) | 0.2055 | (0.1967,0.2145) || 3429 | (3217,3758) | 0.2098 | (0.2054,0.2166)
15000 || 3597 | (2960,3931) | 0.2019 | (0.1898,0.2082) || 3637 | (3398,3968) | 0.2063 | (0.2015,0.2129)
16000 || 3796 | (3285,4318) | 0.1984 | (0.1891,0.2079) || 3842 | (3582,4187) | 0.2030 | (0.1980,0.2096)
17000 || 3994 | (3267,4377) | 0.1952 | (0.1824,0.2019) || 4045 | (3763,4435) | 0.1998 | (0.1946,0.2071)
18000 || 4188 | (3722,4885) | 0.1921 | (0.1841,0.2039) || 4242 | (3957,4662) | 0.1968 | (0.1916,0.2043)
19000 || 4378 | (3915,5137) | 0.1891 | (0.1815,0.2016) || 4438 | (4150,4888) | 0.1939 | (0.1889,0.2017)
20000 || 4567 | (3962,5247) | 0.1863 | (0.1766,0.1972) || 4630 | (4339,5112) | 0.1912 | (0.1862,0.1993)
21000 || 4751 | (4120,5464) | 0.1836 | (0.1738,0.1946) | 4820 | (4544,5325) | 0.1885 | (0.1840,0.1968)
22000 || 4934 | (4255,5672) | 0.1810 | (0.1708,0.1921) || 5008 | (4728,5555) | 0.1860 | (0.1816,0.1947)
23000 || 5115 | (4414,5887) | 0.1786 | (0.1683,0.1899) || 5193 | (4903,5770) | 0.1836 | (0.1791,0.1925)
24000 || 5293 | (4312,5835) | 0.1762 | (0.1623,0.1839) || 5377 | (4960,5862) | 0.1813 | (0.1751,0.1886)
25000 || 5468 | (4464,6016) | 0.1739 | (0.1600,0.1815) || 5559 | (5122,6058) | 0.1791 | (0.1727,0.1864)
26000 || 5643 | (4610,6220) | 0.1718 | (0.1578,0.1796) || 5736 | (5290,6243) | 0.1770 | (0.1706,0.1842)
27000 || 5815 | (4750,6425) | 0.1697 | (0.1557,0.1777) || 5911 | (5441,6432) | 0.1749 | (0.1684,0.1821)
28000 || 5983 | (5169,6903) | 0.1676 | (0.1572,0.1795) || 6084 | (5599,6639) | 0.1729 | (0.1663,0.1804)
29000 || 6151 | (5317,7115) | 0.1657 | (0.1553,0.1778) || 6257 | (5749,6827) | 0.1710 | (0.1643,0.1785)
30000 || 6315 | (5460,7300) | 0.1638 | (0.1534,0.1759) || 6428 | (5913,7017) | 0.1692 | (0.1625,0.1768)

)
)
)
)
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Table 9: ABGR & Root library. Expected number of new genes and discovery probabilities for different
sizes m of the additional sample based on the merged basic samples after ISO correction, which contain
n = 11529 with j = 5243 distinct genes. Estimates are reported for both prior specifications, beta—Poisson

and uniform, and arise from 200 simulated paths.
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Beta-Poisson prior Uniform prior

m EX | HPD(95%) | DX HPD(95%) EX | HPD(95%) | DX HPD(95%)

1000 || 217 (186,256) | 0.2147 | (0.2140,0.2156) || 218 (189,250) | 0.2157 | (0.2150,0.2165)

2000 || 429 (358,490) | 0.2092 | (0.2076,0.2106) || 431 (383,487) | 0.2103 | (0.2092,0.2116)
637 (578,720) | 0.2053 | (0.2039,0.2071)

3000 636 (532,738) 0.2041 | (0.2018,0.2062
4000 837 (683,956) 0.1992 | (0.1961,0.2017 841 (741,937) 0.2006 | (0.1985,0.2027)

5000 1033 (836,1190) 0.1947 | (0.1909,0.1978) 1039 (935,1170) 0.1962 | (0.1941,0.1989)
6000 1226 (991,1420) 0.1905 | (0.1861,0.1942 1234 | (1113,1382) | 0.1921 | (0.1898,0.1951)
7000 1414 | (1127,1634 0.1866 | (0.1814,0.1906 1424 | (1281,1597) | 0.1883 | (0.1856,0.1916)
8000 1599 | (1227,1814 0.1828 | (0.1764,0.1866 1610 | (1438,1806) | 0.1846 | (0.1815,0.1882)
9000 1781 | (1365,2021 0.1793 | (0.1724,0.1834 1790 | (1603,2001) | 0.1811 | (0.1778,0.1849)
10000 1958 | (1509,2219 0.1760 | (0.1687,0.1802 1969 | (1772,2208) | 0.1779 | (0.1745,0.1819)
11000 || 2131 | (1697,2471 0.1728 | (0.1660,0.1781 2145 | (1921,2408) | 0.1748 | (0.1711,0.1791)

)

)

)

)

NN NS N

12000 || 2302 | (1815,2681) | 0.1698 | (0.1624,0.1756) || 2319 | (2084,2616) | 0.1718 | (0.1681,0.1766)
13000 || 2471 | (1958,2891) | 0.1670 | (0.1594,0.1731) || 2489 | (2209,2800) | 0.1691 | (0.1647,0.1738)
14000 || 2639 | (2061,3066) | 0.1643 | (0.1560,0.1704) || 2657 | (2385,3004) | 0.1664 | (0.1623,0.1716)
15000 || 2801 | (2196,3276) | 0.1617 | (0.1533,0.1682) | 2822 | (2552,3197) | 0.1638 | (0.1599,0.1693)
16000 || 2962 | (2320,3479) | 0.1592 | (0.1506,0.1661) || 2985 | (2690,3392) | 0.1614 | (0.1573,0.1671)
17000 || 3119 | (2451,3668) | 0.1568 | (0.1481,0.1640) || 3146 | (2837,3592) | 0.1591 | (0.1549,0.1652)
18000 || 3275 | (2575,3848) | 0.1545 | (0.1456,0.1618) || 3303 | (2963,3777) | 0.1569 | (0.1523,0.1632)
19000 || 3429 | (2692,4039) | 0.1523 | (0.1432,0.1599) || 3459 | (3099,3961) | 0.1547 | (0.1501,0.1612)
20000 || 3580 | (2795,4216) | 0.1502 | (0.1408,0.1579) || 3613 | (3249,4151) | 0.1527 | (0.1481,0.1594)
21000 || 3729 | (2842,4296) | 0.1482 | (0.1378,0.1549) || 3764 | (3393,4318) | 0.1507 | (0.1461,0.1575)
22000 || 3876 | (2971,4469) | 0.1463 | (0.1359,0.1531) || 3914 | (3530,4499) | 0.1488 | (0.1442,0.1558)
23000 || 4021 | (3088,4631) | 0.1444 | (0.1340,0.1512) || 4063 | (3672,4683) | 0.1469 | (0.1424,0.1542)
24000 || 4165 | (3192,4783) | 0.1426 | (0.1320,0.1494) || 4211 | (3780,4845) | 0.1452 | (0.1403,0.1524)
25000 || 4308 | (3295,4949) | 0.1409 | (0.1301,0.1477) || 4356 | (3904,5036) | 0.1435 | (0.1384,0.1511)
26000 || 4448 | (3412,5109) | 0.1392 | (0.1284,0.1461) || 4498 | (4029,5201) | 0.1418 | (0.1367,0.1495)
27000 || 4587 | (3518,5245) | 0.1376 | (0.1267,0.1443) || 4638 | (4144,5370) | 0.1402 | (0.1350,0.1480)
28000 || 4725 | (3620,5399) | 0.1360 | (0.1250,0.1428) || 4777 | (4274,5558) | 0.1387 | (0.1334,0.1468)
29000 || 4860 | (3737,5569) | 0.1345 | (0.1235,0.1414) || 4916 | (4256,5607) | 0.1372 | (0.1304,0.1443)
30000 || 4994 | (3843,5746) | 0.1330 | (0.1220,0.1402) || 5052 | (4371,5761) | 0.1357 | (0.1289,0.1429)

T oo o o oD oo
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Table 10: Silique & Flower bud library. Expected number of new genes and discovery probabilities for
different sizes m of the additional sample based on the merged basic samples, which contain n = 17784
with j = 6595 distinct genes. Estimates are reported for both prior specifications, beta—Poisson and uniform,

and arise from 200 simulated paths.
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3 Interpretation of Bayes factors for merged libraries

[ Basic sample | n [ 4 [ m | BX ] uPDO5%) [[n+m | j+EX ] DX | HPDO%) |
ABGR after ISO 5812 | 2883 || 5717 | 1712 | (1609,1817) || 11529 | 4595 | 0.2666 | (0.2613,0.2720)
Root after ISO 5891 | 3126 || 5638 | 1843 | (1694,2062) || 11529 | 4969 || 0.2018 | (0.2842,0.3030)
ABGR & Root after ISO | 11529 | 5243 0 11520 | 5243 || 0.3167
Silique 12330 | 5093 || 5454 | 1242 | (1141,1369) || 17784 | 6335 | 0.2087 | (0.2061,0.2119)
Flower Bud 5503 | 2564 || 12281 | 3256 | (3049,3413) || 17784 | 5820 | 0.2243 | (0.2167,0.2300)
Silique & Flower Bud 17784 | 6595 0 17784 6595 0.2331

Table 11: Expected number of new genes and discovery probabilities at n+m equal to the size of the merged

libraries with uniform prior.
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