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ON CONVERGENCE RATES FOR NONPARAMETRIC POSTERIOR
DISTRIBUTIONS
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Summary

Rates of convergence of Bayesian nonparametric procedures are expressed as the maximum
between two rates: one is determined via suitable measures of concentration of the prior
around the “true” density f0, and the other is related to the way the mass is spread outside
a neighborhood of f0. Here we provide a lower bound for the former in terms of the usual
notion of prior concentration and in terms of an alternative definition of prior concentration.
Moreover, we determine the latter for two important classes of priors: the infinite–dimensional
exponential family, and the Pólya trees.

Key words: Chi-squared distance; Hellinger consistency; Posterior consistency; Posterior distri-
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1. Introduction

The Bayesian nonparametric methodology has undergone a series of criticisms from a
frequentist point of view in the last two decades. The first, set forth in Diaconis & Freedman
(1986a,b), concerned possible “frequentist” inconsistency of Bayesian nonparametric pro-
cedures. The “frequentist” or “what if” approach consists in assuming a “true” fixed dis-
tribution F0 and checking whether the sequence of posterior distributions accumulates in
suitable neighbourhoods of F0. Up to the appearance of these papers, it was commonly be-
lieved that Bayes estimates would always be consistent for distributions in the support of
the prior distribution. Consequently, their example of inconsistency, related to the estimation
of a location parameter with a Dirichlet process prior, had a remarkable impact. Whereas
the issue of weak consistency can be fixed by resorting to the “Kullback–Leibler support
condition”, due to Schwartz (1965), the question whether Bayesian nonparametric priors are
strongly or Hellinger consistent still had to be answered: indeed, within the context of density
estimation, the correct notion of convergence is the strong one. Given the criticism from a
frequentist perspective, it appeared natural to rely on frequentist tools for facing it: indeed,
Barron, Schervish & Wasserman (1999), Ghosal, Ghosh & Ramamoorthi (1999), and Petrone
& Wasserman (2002) achieved their results by resorting to uniformly consistent tests, com-
bined with the construction of suitable sieves and computation of metric entropies. A novel
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and genuinely Bayesian method for solving the issue can be found in Walker (2004), where
a simple sufficient condition in terms of summability of prior probabilities is provided. This
method has been fruitfully applied to nonparametric normal mixtures in Lijoi, Prünster &
Walker (2005). Reasons for which Bayesian consistency should be faced with Bayesian tools
are further investigated and explained in Walker, Lijoi & Prünster (2005).

Having successfully settled the issue of consistency, a second set of criticisms was
directed at rates of convergence: whereas many results on rates of convergence are known
in a classical nonparametric framework, within the Bayesian counterpart no such results are
available and, even if they were, the resulting rates would be worse than the frequentist
ones. First results on rates of convergence within infinite–dimensional models were provided
by Shen & Wasserman (2001), Ghosal, Ghosh & van der Vaart (2000), Ghosal & van der
Vaart (2001), and Ghosal (2001) relying upon a frequentist machinery and, indeed, they are
often “suboptimal” with respect to those arising from classical sieve maximum likelihood
estimators. The ultimate rate of convergence they achieve depends on two quantities: the prior
mass assigned to suitable neighbourhoods of F0, and the “entropy rate”. A new approach for
the determination of rates in Bayesian infinite–dimensional models, based on the consistency
condition of Walker (2004), has been developed by Walker, Lijoi & Prünster (2007), where
an alternative general theorem for the determination of rates is provided. This has allowed the
authors to improve on known rates for Bernstein polynomials and mixtures of the Dirichlet
process models, matching them with the frequentist rate of convergence for the sieve maximum
likelihood estimator (MLE).

Starting from the well–known fact that the posterior rate of convergence arises as the
maximum of two rates, that we denote as ηn and φn, here we examine in some detail each
of them separately. We evaluate a lower bound for φn by exploiting its connection with
concentration rates. In doing this, we consider a common notion of concentration typically
used in the literature, and an alternative description of concentration expressed in terms of the
χ2 distance on the space of densities. As can be seen in Section 2, the lower bounds in the two
cases essentially coincide with

√
(log n)/n, thus suggesting a slower overall convergence if

compared with the parametric case, where a rate of n−1/2 is typically achieved. Moreover, in
Section 3 we determine ηn for two popular classes of nonparametric priors, i.e. the infinite–
dimensional exponential family and the Pólya trees. A discussion on the relation between φn

and ηn is developed in Section 4. Proofs are postponed to the Appendix.

2. A lower bound for the concentration rate

2.1. Background and notation

Some further background and notation are introduced. Consider a sequence of observa-
tions (Xn)n≥1 each taking values in some Polish space X endowed with a σ -algebra X . If F

indicates the space of probability density functions with respect to some measure λ on X, the
Hellinger metric h on F is defined by

h(f , g) =
(∫

X

(√
f (x) −

√
g(x)

)2
λ(dx)

)1/2
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for any f and g in F, and set F to be the Borel σ -algebra of F. It is well–known that
convergence in this metric is equivalent to convergence in the L1 distance, the latter being
defined by

d1(f , g) =
∫

X

|f (x) − g(x)| λ(dx)

for any f and g in F. Indeed, the following inequality holds true:

h2(f , g) ≤ d1(f , g) < h(f , g).

Moreover, it is worth noting that d1 is essentially the total variation distance on the space of
probability measures, i.e. d1(f , g) = 2 dT V (F,G) = 2 supA |F (A) − G(A)|,where F and G
are probability measures having densities f and g, respectively. Finally, two other stronger
notions of divergence between densities to be considered are the Kullback–Leibler divergence
and χ2 distance. The former is defined by

dKL(f , g) =
∫

X

g(x) log

(
g(x)

f (x)

)
λ(dx),

whereas the latter is given by

d2(f , g) =
∫

X

g2(x)

f (x)
λ(dx) − 1.

They are stronger in the sense that convergence with respect to (w.r.t.) d2 implies convergence
w.r.t. dKL which, in turn, entails convergence w.r.t. h.

In a Bayesian nonparametric framework, F can be seen as an infinite–dimensional pa-
rameter space. Hence, if � stands for a prior distribution on (F,F ), the posterior distribution,
given the observations (X1, . . ., Xn), coincides with

�n(B) =
∫
B

∏n
i=1 f (Xi) �(df )∫

F

∏n
i=1 f (Xi) �(df )

for all B in F . In order to check consistency and related rates of convergence of Bayesian
procedures according to the “frequentist” approach, one assumes that there exists a “true”
density function f0 such that the observations Xn are i.i.d. from f0. A sequence of posterior
distributions �n is said to be Hellinger consistent at f0, if the posterior mass on sets of the
type Aε = {f : h(f , f 0) > ε} becomes negligible as the sample size n increases. Having
established consistency at f0, the next step consists of determining the rate of convergence of
�n to a point–mass at f0. This issue can be formalized as the problem of finding a sequence
(εn)n≥1 such that εn ↓ 0 and

�n({f ∈ F : h(f , f0) > Mεn}) → 0 (1)

for some constant M > 0, as n → ∞. The above displayed convergence is understood as
convergence in F∞

0 –probability, where F0 denotes the probability distribution associated with
f0 and F∞

0 is the distribution of the whole sequence (Xn)n≥1 which makes the observations
Xn i.i.d. from F0. In the literature, there currently are two general approaches for tackling
the problem as described in (1). Both arrive at the conclusion that the rate of convergence is
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given by

εn = max{ηn, φn}, (2)

where the determining rates ηn and φn arise from two conceptually different sets of conditions.
In the first approach, due to Ghosal et al. (2000), ηn depends on the growth rate of the Hellinger
metric entropy whereas, in the second, due to Walker et al. (2007), ηn is determined by a
condition expressed in terms of the sum of square roots of prior probabilities. A deeper
discussion on ηn is postponed to Section 3. On the other hand, both approaches share the
same condition for the evaluation of φn: as we will shortly see, φn admits a straightforward
interpretation in terms of a prior concentration rate. In the following Subsection, we provide
a new alternative procedure for the evaluation of φn and a lower bound for it.

2.2. The lower bound

Two notions are introduced which will be used to evaluate prior concentration around
f0 and, consequently, φn. The first one, not considered before, is defined with respect to the
χ2– distance d2, and will be denoted by

π (βn) = �({f ∈ F : d2(f , f0) < βn}), (3)

where (βn)n≥1 is a sequence of positive numbers with βn → 0 as n → ∞. In the sequel,
when dealing with the χ2–distance we will require f0 to be in the χ2–support of the prior.
This entails that π (β) > 0 for all β > 0. Standard arguments, see for example Barron et al.
(1999), can be used to show that χ2–sets are measurable. The other notion, introduced in
Wong & Shen (1995), is based on a combination of the Kullback–Leibler divergence and the
L2(F0)–norm of log(f0/f ). If V (f , f0) = ∫

(log(f0(x)/f (x)))2 f0(x)λ(dx), a neighbourhood
in terms of which concentration is measured can be defined as

B(δn, f0) = {f ∈ F : dKL(f , f0) ≤ δ2
n, V (f , f0) ≤ δ2

n}. (4)

Hence, �(B(δn, f 0)) can be used to define a measure of prior concentration around f 0. Let
us now set

In =
∫

F

Rn(f ) �(df ),

where Rn(f ) = ∏
n
i=1f (Xi)/f 0(Xi). The interest in In is due to the fact that it coincides

with the denominator of the posterior, rewritten in terms of Rn(f ). Hence, when one aims at
establishing both consistency and convergence rates, it is essential to achieve an appropriate
lower bound for In. Indeed, the sequence (φn)n≥1 defining the overall rate in (2) must be such
that φn → 0, nφ2

n → +∞ and In > e−nφ2
n in F∞

0 –probability. This important aspect is dealt
with in the following lemma, which relates φn with βn in (3).

Lemma 1. Assume that f 0 is in the χ2–support of � and let (βn)n≥1 be a positive sequence
such that βn → 0. Then In > e−nφ2

n in F∞
0 –probability if

e−nφ2
n

(1 + βn)n

π (βn)
→ 0. (5)
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An implication of the statement of Lemma 1 is the fact that the sufficient condi-
tion (5) leads to an interesting connection between φn and βn. Indeed, if βn ↓ 0 is such
that

π (βn) > exp(−cn log(1 + βn)) (6)

for some c > 0 for all large n, then βn can be termed the χ2 prior concentration rate. From
(5), if βn is the χ2 prior concentration rate, then one can take

φn = κ

√
− log π (βn)

n
+ log(1 + βn) < κ

√
(1 + c) log(1 + βn), (7)

for some κ > 1, in (2). Clearly, one has φn → 0 and nφ2
n → ∞. It is possible to deduce a

lower bound for the χ2 prior concentration rate which, combined with (5), yields a lower
bound for φn when φn is measured in terms of the χ2 prior concentration rate. Recall that �

does not have point masses in F if �({f }) = 0 for any f in F, a natural requirement in a
nonparametric setting.

Theorem 1. Suppose � does not have point masses in F and f 0 is in the χ2–support of �.
Then βn > C (log n)−α nτ−1, for α > 1 and τ ∈ (0, 1), and

φn > C ′
√

log n

n

for n large enough.

Hence, if one evaluates φn in terms of the χ2 prior concentration rate, a lower bound for
the overall rate εn is essentially equal to

√
(log n)/n.

Another approach for evaluating φn is based on the concentration on balls around f 0,
defined as in (4). If

�{B(φn, f0)} ≥ exp
( − Cnφ2

n

)
, (8)

then φn is termed the prior concentration rate without any further specification since it is the
one most widely used. The usefulness of this type of concentration can be seen from some
recent contributions in the literature, such as, e.g., Shen & Wasserman (2001) and Ghosal
et al. (2000), where it is shown that, if φn is the prior concentration rate according to (8), then
In > e−c nφ2

n in F∞
0 –probability, for some positive constant c. Analogously to what has been

done for the χ2 prior concentration rate, we can provide a lower bound for φn when this is
evaluated in terms of the usual prior concentration rate.

Theorem 2. Suppose � does not have point masses in F and �(B(ε, f 0)) > 0 for any ε >

0. Then φn ≥ C ′√(log n)/n for n large enough.

The above statement yields a similar conclusion to Theorem 1 in terms of a lower bound
for the overall rate εn. Indeed, if this is evaluated in terms of the usual prior concentration
rate, we have that the rate of convergence cannot be faster than

√
(log n)/n. Hence, using two

different notions of concentration around the true f 0 yields the same lower bound for εn. This
finding suggests that a nonparametric Bayesian procedure cannot achieve the parametric rate
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of convergence of n−1/2. This is not a surprising fact since, in the nonparametric case, one
has to spread the prior mass on an infinite–dimensional parameter space.

3. On the determination of ηn

In the previous section we focussed on the evaluation of φn in (2), whereas the present
Section is devoted to investigating ηn. In doing this we undertake the approach set forth
in Walker et al. (2007). To this end, take the set Aηn

= {f : h(f , f0) > ηn} and consider a
covering {An,j : j = 1, 2, . . .} of Aηn

, where each An,j has radius, w.r.t. the Hellinger distance,
τn ∈ (0, ηn). Consequently, define Kηn

= ∑
j≥1 �(An,j )1/2. From Walker et al. (2007), we

recall the general theorem to be exploited for the determination of the rate of convergence.

Theorem 3. Suppose ηn, φn → 0 and nη2
n, nφ2

n → +∞ and

(i) e−nη2
n/16 Kηn

→ 0,
(ii) for some C > 0, �(B(φn, f 0)) ≥ exp(−Cnφ2

n).

Then �n(Aφn
) → 0 in F∞

0 –probability when ηn ≤ C ′φn for some small enough C ′ > 0.

Note that condition (ii) above, previously referred to as the usual prior concentration
rate, can be replaced by the condition in terms of the χ2 prior concentration rate, as seen
in the previous Section. We now focus on condition (i) and determine ηn for two important
examples: the infinite–dimensional exponential family studied in Leonard (1978) and Lenk
(1988, 1991), and the Pólya tree priors investigated in Lavine (1992) and Mauldin et al.
(1992). See Müller & Quintana (2004) for references on various applications of these classes
of priors. It has to be remarked that, to date, nothing is known for both priors in terms of rates
of convergence.

3.1. Infinite–dimensional exponential family

A random density function belongs to the infinite–dimensional exponential family if it
can be represented as

f (x) = exp


 ∞∑

j=1

θjφj (x) − c(�)


 ,

where the {θj} are independent normal random variables with zero means and variances
{σ 2

j}, the {φj} are an orthonormal basis on [0, 1] and c(�) is the normalizing constant.
Conditions for consistency of such a model have been derived in Barron et al. (1999) and by
Walker (2004). In the latter paper it has been shown that

Kδ ≤
∞∏

j=1

(
1 + ψj/δ

3/2
)

for positive {ψj}, which depend on the variances {σ 2
j}. The sum of the ψj s to a finite number

is sufficient for Kδ < +∞ for all δ > 0, which implies consistency. See Walker (2004) for
details.
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Consider condition (i) of Theorem 3. The rate sequence ηn is derived. Putting ψj = e−j

and denoting by [x] the integer part of x > 0, we have

log Kδ ≤
∞∑

j=1

log(1 + exp(−j + [−1.5 log δ]))

=
[−1.5 log δ]∑

j=1

log(1 + exp(−j + [−1.5 log δ]))

+
∞∑

j=[−1.5 log δ]+1

log(1 + exp(−j + [−1.5 log δ])).

The second sum is clearly bounded by
∑∞

j=[−1.5 log δ]+1 exp(−j + [−1.5 log δ]) which is easily
seen to be bounded by a finite number log M not depending on δ. For the first sum, it can be
bounded by

∑[−1.5 log δ]
j=1 (log(δ3/2 + e−j ) − 1.5 log δ) and note that, for small enough δ, one

has δ3/2 + e−j < 1. Hence, it follows that log Kδ < (−1.5 log δ)2 + log M and so Kδ < M

exp(9/4(log(1/δ))2). Now taking any positive sequence (ηn)n≥1, we have

Kηn
< M exp(9/4

(
log(1/ηn))2

)
and then it can be seen that Condition (i) of Theorem 3 is satisfied with

ηn = C
log n√

n
.

3.2. Pólya tree priors

Pólya tree priors are random densities defined according to a suitable tree of nested
partitions of the interval [0, 1]. Here we do consider binary partitions, so that at level k the
sets Bk,j , with j = 1, . . . , 2k , partition [0, 1]. To each of these sets associate a random variable
θk,j having a Beta(ak , ak) distribution restricted to Bk,j when j is odd, whereas θk,j = 1 −
θk,j−1 when j is even. If

∑
k≥1 a−1

k < ∞, a random density function, with respect to the
Lebesgue measure on [0, 1], is defined by

f̃ (x) = lim
k→∞

2k

k∏
j=1

θk,j (x),

where j (x) identifies the specific set, at level k within the tree of partitions, where x lies.
Sufficient conditions for consistency have been provided by Barron et al. (1999) and signifi-
cantly improved in Walker (2004). Such a definition of Pólya trees yields some analogy with
the infinite–dimensional exponential family in terms of the derivation of Kδ . Indeed, if we
set bj ≈ δj /4, δj = γ j δ, (γ j )j≥1 a positive sequence such that

∑
j≥1 γj < ∞, from Walker

(2004) one can deduce that

log Kδ ≤
∑
j≥1

log

(
1 + M a

1/4
j

(
1 − 4b2

j

)aj /2−1/2√
δj

)
≤

∑
j≥1

log

(
1 + M ′ a1/4

j e−2aj b
2
j√

δj

)

≤
∑
j≥1

2j−1 log

(
1 + ψj

δ5/2

)
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for some positive constants M and M ′, and the last inequality follows from exp(−λδ2) <

1/(λδ2) for all λ > 0. Finally, for the sake of simplicity we fixed ψj = C ′ a−3/4
j γ

−5/2
j . If we,

now, take ψj = exp(−ej ),

log Kδ ≤
∞∑

j=1

2j−1 log(1 + exp(−(ej + 2.5 log δ))). (9)

Note that the specific choice of ψj suggests that aj = exp (4 ej /3) γ
−10/3
j . As for the infinite–

dimensional exponential family, we split the right hand side of (9) into two sums: one from j

= 1 to j = [log(−2.5 log δ)] and the other from j = [log(−2.5 log δ)] + 1 to +∞. The latter
is bounded by a finite number log C for all δ > 0, whereas for the first term we can write∑[log(−2.5 log δ)]

j=1 2j−1(log(exp(−ej ) + δ5/2) − 2.5 log δ). For small enough δ this is bounded
by 2log(−2.5logδ) (−2.5 log δ) and so logKδ < (−2.5 log δ)2 + logC. Hence we arrive to the
conclusion that Condition (i) of Theorem 3 is satisfied with

ηn = C
log n√

n
.

4. Discussion

A natural question at this point is which of the two rates, φn and ηn, in (2) dominates
in determining the overall rate of convergence. Recall that φn stems from the evaluation of
a suitable concentration rate and ηn can be either determined via (i) in Theorem 3 or via the
growth rate of the metric entropy according to the approach set forth in Ghosal et al. (2000).
It is our opinion that φn should dominate. On the one side this statement is supported by
intuition. On the other side, the behaviour of specific priors seems to suggest a sort of general
dominance. For example, for the Bernstein polynomial prior (Petrone, 1999a,b), Ghosal
(2001) showed that, if f 0 is a Bernstein polynomial itself, φn = √

(log n)/n. But, in the more
interesting case in which f 0 is just required to satisfy some suitable regularity conditions and
needs not be of Bernstein type, then φn = (log n)1/3/n1/3. Moreover, as noted in Walker et al.
(2007), if the weights in the Bernstein representation decay sufficiently fast, one can attain
ηn = log n/

√
n. Hence, in this case, φn clearly dominates over ηn and determines the rate of

convergence. As for the two priors examined in the previous Section, we obtained an estimate
of ηn which does not depend on the specific f 0 and is close to the lower bound for φn. If one
allows f 0 to be reasonably general, intuition suggests that the prior concentration increases
(as also happens for the Bernstein case) and one expects φn to dominate over ηn = log n/

√
n.

A final remark concerns a comparison with the frequentist sieve maximum likelihood
estimator. For example, if the prior is a normal mixture of the Dirichlet process (Lo, 1984),
in Walker et al. (2007) it is shown, under suitable conditions, that φn coincides with ηn and
the rate of convergence is log n/

√
n. This is also the best rate of convergence achievable

by the sieve MLE, as shown by Ghosal & van der Vaart (2001). Moreover, in the Bernstein
case, the above mentioned rate εn = (log n)1/3/n1/3 coincides with the one of the corresponding
sieve MLE determined by Ghosal (2001). It might not be a coincidence that, in cases where
one is able to show that the concentration rate dominates, the posterior rate of convergence is
the same as the rate of convergence for the frequentist sieve MLE.
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5. Appendix

A1. Proof of Lemma 1. Define

In,A =
∫

A

Rn(f ) �(df ).

Then

F∞
0

(
In < e−nδ2

n

) = F∞
0

(
I−1
n > enδ2

n

)
< e−nδ2

n E0
(
I−1
n

)
,

where E0 denotes the expectation computed w.r.t. the probability distribution F∞
0 . Now it is

easy to check that

In+1,A

In,A

= fn,A(Xn+1)

f0(Xn+1)
,

where fn,A(x) = ∫
A

f (x) �n(df )/�n(A) is, for any A in F , the predictive density with the
posterior restricted and normalized to A. Therefore,

E0
(
I−1
n+1,A | Fn

) = I−1
n,A (1 + d2(fn,A, f0)).

Here Fn = σ (X1, . . . , Xn). Due to the convexity of the d2 metric, setting A = {f ∈ F :
d2(f , f0) < βn} yields

E0
(
I−1
n+1,A | Fn

)
< I−1

n,A (1 + βn),

and hence

E0
(
I−1
n,A

)
<

(1 + βn)n

π (βn)
.

This follows because I 0,A = π (βn). Using the obvious inequality that I−1
n < I−1

n,A, we have
that

E0
(
I−1
n

)
<

(1 + βn)n

π (βn)
.

Consequently,

F∞
0

(
In < e−nδ2

n

) → 0

when (5) holds true. �

A.2. Proof of Theorem 1 and Theorem 2. The proofs of both results require the following
preliminary lemma.

Lemma 2. Assume the prior � does not have point masses on F. If βn ↓ 0, then

lim sup
n

β−1
n π (βn) < +∞. (10)

Analogously, one finds that lim supn δ−2
n �(B(δn, f0)) < ∞.
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Proof. We have that

π (βn) < �({f : h(f , f0) < βn}) < �({f : |F (A) − F0(A)| < βn})
for any set A in X . The fact that � does not have point masses implies that the probability
distribution of F(A) is either absolutely continuous w.r.t. the Lebesgue measure on [0, 1]
or it is singular. In the first case, if g is the density function of F (A), choose A such that
g(F 0(A)) < +∞ and g is continuous at F 0(A). Then

�({f : |F (A) − F0(A)| < βn}) =
∫ F0(A)+βn

F0(A)−βn

g(s) ds

and

lim
n

β−1
n

∫ F0(A)+βn

F0(A)−βn

g(s) ds = 2g(F0(A)) < +∞.

If the distribution of F (A) is singular, then its density is, almost everywhere, 0 and (10) is
trivially true. The statement for δ−2

n �(B(δn, f 0)) follows immediately due to the analogous
inclusion of sets used at the beginning of this proof. �

Proof of Theorem 1. From Lemma 1 it follows that there exists a constant K such that π (βn)
≤ Kβn for n large enough. Now, if we allow βn to be such that

π (βn) > exp(−cn log(1 + π (βn)/K)), (11)

then we have

π (βn) > exp(−cn log(1 + βn)),

i.e. βn is the χ2 prior concentration rate. Hence, by (7) one has

φn = κ
√

− log(π (βn))/n + log(1 + βn).

The fastest possible π (βn) consistent with inequality (11) is given by (log n)−α nτ−1 for α >

0 and τ ∈ (0, 1). By Lemma 2, for large enough n one has βn > K(log n)−α nτ−1. The lower
bound for φn, at this point, is immediate. �

Proof of Theorem 2. By virtue of Lemma 2 we have �(B(φn, f 0)) < M φ2
n for some positive

constant M. Hence the inequality (8) is valid if

�(B(φn, f0)) > exp(−C ′n�(B(φn, f0))).

For this we can take �(B(φn, f 0)) = (log n)β/nα and yet the best possible rate is obtained
with α = β = 1. So, φn > M ′√(log n)/n for some positive constant M ′. �
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