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In this paper, we provide a Doob-style consistency theorem for stationary mod-
els. Many applications involving Bayesian inference deal with non independent
and identically distributed data, in particular, with stationary data. However, for
such models, there is still a theoretical gap to be filled regarding the asymptotic
properties of Bayesian procedures. The primary goal to be achieved is establish-
ing consistency of the sequence of posterior distributions. Here we provide an
answer to the problem. Bayesian methods have recently gained growing popular-
ity in economic modeling, thus implying the timeliness of the present paper. Indeed,
we secure Bayesian procedures against possible inconsistencies. No results of such
a generality are known up to now.

1. INTRODUCTION

Most commonly employed econometric models rely on the assumption of sta-
tionarity of the sequence of observations. Statistical inference involving this
dependence structure should feature good asymptotic properties, and, among
these, consistency plays a major role. From a classical point of view, there is a
wealth of literature on the topic providing consistency results in specific situa-
tions. From a Bayesian point of view, no Doob-type results are available beyond
the exchangeable case. However, because Bayesian methods are now routinely
applied to problems in which the dependence structure for the observations is
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more complicated than exchangeability, there is a need for the extension of
Doob’s theorem to these cases.

Here we will deal with stationary sequences of observations collected in time
whose probability distribution is representable as a mixture of conditionally
stationary and ergodic laws. In other words we suppose that, conditionally on
some random element, the observations are stationary, with sample means obey-
ing the ergodic theorem. The representation theorem we will need is given in
Maitra (1977) and further analyzed in Aldous (1985).

Consider a stationary sequence of random variables (X,,),~, defined on some
probability space (Q, A,P) and taking values in a Polish space X, endowed
with the Borel o-algebra X. Conditionally on a random element, say, 6, the
sequence is stationary and ergodic and its law is characterized by the family
(P,(-;0)),=; of one-step transition distributions, that is,

P,(A;0) = P[X, € A|X,,...,X, ;0] VAE X,

with P;(A;0) = P[X, € A|f#]. The random parameter 6 taking values in the
parameter space can be either finite- or infinite-dimensional, and one is typi-
cally interested in estimating 6 or a functional of 8, given an n-sample of obser-
vation (X,...,X,). Such estimates are known as a posterior estimates. Here
we will deal with asymptotic properties of the sequence of predictive distribu-
tions (P,),=;. The models we will consider are characterized by the fact that
the probability distribution of the vector (Xi,...,X,) admits a mixture repre-
sentation of the type

P[(X,,...,X,) € A] = f]P’[(X,,...,Xn) € A|0]11(d6)

:J;){ HP(dxi|x1,...,x,-1;6)}1‘[((19)

Ai=1

for any set A in X" and for some probability distribution Il on the parameter
space O, with p(dx,|xy;0) = p(dx,|6). Using the terminology commonly
employed in Bayesian statistics, Il acts as a prior distribution for §. Moreover,
for any 0, [1/_, p(dx;|x,,...,x;_,;60) is a probability distribution on (X", X")
that can be seen as the distribution of (X,,...,X,,) given 6. If we let P*(-|0)
denote the distribution of the whole sequence (X,,),~, this means that, for any
n=1,

P°°(A><X°°|e)=fHp(dx,.|x1,...,xi,1;0) VA € X" 1)
Ai=1

Suppose that each p(dx|xy,...,x;_;;0) admits a density with respect to some
o-finite measure A on X, that is, p(dx|x,,...,x;_1;0) = f(x|xy,...,x;_1;0)

A(dx). With respect to these transition densities, we ask for an identifiability
condition to hold true. This implies that f (- | xy,...,x;—1;0) #f(- |x1,...,x;-1;0")
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for any 0 # 0', x,...,x;—; € X and i = 1. This is a fundamental requirement
for all statistical models. Hence it should be always satisfied, and it will be
valid in all the examples we are going to list in the following sections.

As one can see, a number of processes of common use in applications may
play the role of the mixing model in the representation theorem for the sequence
of observations. Here we highlight some interesting and useful examples.

1.1. Exchangeable Sequences

A noteworthy special example is represented by a sequence of exchangeable
observations. In this case, the de Finetti representation theorem states that the
distribution of a vector of n of those random variables can be represented as a
mixture of independent and identically distributed (i.i.d.) random variables,
that is,

IP’[(XI,...,Xn)EA]=£L{ lp(dx,-l@)}H(d@).

Hence
p(dx;|x,,...,x;_1;0) = p(dx;|0).

This describes the common setting for Bayesian applications, which parallels
the classical assumption of i.i.d. observations. The first Bayesian study of con-
sistency for this class of models dates back to the paper by Doob (1949). More
recent work has been done by Lijoi, Priinster, and Walker (2004) that inspires
the proof to the much more general theorem in the present paper.

1.2. Discretely Observed Diffusion Processes

Let the stochastic process X = {X,:r = 0} be a diffusion process that is the
solution of the following stochastic differential equation:

dX, = b(X,;0)dr + o (X,;0)dB,, )

where {B,:t = 0} is a standard Brownian motion and b and o satisfy suitable
conditions ensuring existence and uniqueness of the solution to (2). More spe-
cifically, introduce the scale density s(x;6) = exp{—2 fxx*[b(y; 0)/c*(y;0)]dy},
for some x* in the interior of the domain, I, of X,. We suppose I = [/, r], where
—o0 = [ < r = +oo. If the following conditions are satisfied:

f s(x;0)dx = —oo, fs(x;H)dx=+oo
1 x*

dx < +oo,

r 1
fl s(x;0)0%(x;0)
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then X is strongly stationary (see, e.g., Karatzas and Shreve, 1991, Sect. 5.5)
and ergodic.

Take, now, an increasing sequence of positive numbers (z,),~; with 7, —
+oo as n — +oo and set ¥, = X, . The interest of a discretely observed diffu-
sion process is crucial to a number of problems in economics and finance. Indeed,
models of the type (2) are routinely used to describe the behavior of stock prices,
exchange rates, and interest rates, among other interesting economic phenom-
ena. In all these applications, data are recorded at discrete time points (e.g.,
monthly, weekly, daily), and then it is important to study properties of estima-
tion procedures that involve the sequence (Y,),~;. Within the frequentist set-
ting, an area of research has focused on methods of estimation based on the use
of contrast functions or approximate likelihood functions, and remarkable papers
are those by Dacunha-Castelle and Florens-Zmirou (1986), Bibby and Sgrensen
(1995), Gourieroux, Monfort, and Renault (1993), Pedersen (1995), and Ait-
Sahalia (2002). Some of these papers also consider the consistency of the sug-
gested estimation methods. Techniques for Bayesian inference in this context
have been developed in Elerian, Chib, and Shephard (2001), Eraker (2001),
Beskos, Papaspiliopoulos, Roberts, and Fernhead (2006), and Roberts and
Stramer (2001).

1.3. Markov Processes

Another noteworthy example that falls within the class of models we deal with
is represented by stationary Markov processes. Hence, we let (X,,),~, be a sta-
tionary Markov process taking values in a general state space X, and we denote
its one-step transition density by p(-,-). If the process is aperiodic and irreduc-
ible, it is also ergodic. Thus our result includes such a model. Note that the
parameter § might in this case coincide with the transition density itself, thus
being infinite-dimensional. Classical approaches typically involve maximum like-
lihood procedures. See, for example, Billingsley (1961). As far as the Bayesian
approach is concerned, interest in inference for stationary and ergodic Markov
chains has grown in a variety of settings and applied problems.

Here we consider a Markovian state space model based on a time series
{Y,:t = 1,...,n} whose observations are conditionally independent given an
unobserved sufficient state {X,:7r = 1,...,n}, assumed to be Markovian. The
aim is to learn about the state X,, given contemporaneously available informa-
tion. See, for example, Pitt and Shephard (1999). Moreover, and still in a Bayes-
ian setting, popular Markov chain Monte Carlo (MCMC) techniques are based
on the simulation of stationary and ergodic Markov chains. See, for example,
Chib (1996) and Chib and Greenberg (1996).

More recently an interesting approach for constructing strictly stationary AR (1)
models has been introduced by Mena and Walker (2005). The idea is to use
one-step Bayesian nonparametric predictive distributions to define the transi-
tion density of the process.
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1.4. ARCH(1) Models
Suppose (X,),= is a sequence of random variables defined by
X, =027, 3

where o> = 6, + 6, X?_, and the Z,’s are i.i.d. with a zero mean and unit vari-
ance. If 6, < exp{—#(0.5)}, where ¢ is the so-called ¢-function, then the pro-
cess (X,,),= is stationary ergodic. The parameter is, in this case, the vector § =
(6,,6,). Both a classical likelihood-based approach and Bayesian techniques
are considered, for instance, in Fiorentini, Sentana, and Shephard (2004).

1.5. Linear Processes

Let (a,(0)),= be a sequence of real numbers that is squared-summable, that is,

> la,(0))> <+  VOEO,

n=1

where © is possibly an infinite-dimensional space. Denote by {€,(0):n =
—o0,...,+oo} a stochastic process such that

E(e,(0) =0 COV(fi(e)yfj(e)) = 0-25i,j7
where §; ; = 1 if i = j and it is zero otherwise. Then the process (X,,),=; defined
by

+oo
Xn = 2 aj(g)enfj(e)
j=—o0
is stationary and ergodic. Classical inferential procedures for these processes
are accounted for in Brockwell and Davis (1996). A description of Bayesian

solutions to problem estimation can be found in West and Harrison (1997) and
Huerta and West (1999a, 1999b).

2. CONSISTENCY FOR STATIONARY MODELS

Here we wish to prove an asymptotic result that is known to hold in the ex-
changeable case. Let us first set the parameter space ® to be complete and
separable with respect to some suitable metric and indicate with o (®) the cor-
responding Borel o-algebra. According to the assumptions outlined in Sec-
tion 1, for any n = 1 and 6 € 0, the probability distribution P[(X,,...,X,) €
-|6] admits a density with respect to the product measure A" on X", and we
denote such a density by 4,,(-|0), that is,

]:ED[(X17 ""Xn) e A|0] = f hn(xl" . '7xﬂ|0))\n(dx17' . "dxn)’

A
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and h,(x,...,x,10) =11"—, f(x;|x,,...,x,_,;0). To evaluate distance between
any two densities on X, we consider the Hellinger distance, which is well known
to be equivalent to the L-metric, defined as follows:

1/2
dy(f,8) = {L[\/f(x) - \/g(x)]zz\(dx)} :

We simply denote by P, the law of the whole sequence of observations when
the value of the parameter is #. Moreover, if II,, denotes the conditional distri-
bution of 6, given the sample x,...,x,, it can be represented as

Hf(xi|xla ooy Xmp30)I1(d6)
i=1

Hf(xi|x1"' "xi—l;a)H(da)

0i=1

I, (d6) =

Finally, let 8, stand for the point mass at x.

THEOREM 1. Suppose the model in (1) is identifiable. Then, there exists a
random element 0 such that

IT,(A) — 85(A) a.s.

as n — oo, for any A in o (0), and the distribution of 9 coincides with I1. More-
over, 0 is essentially unique.

Proof. Before entering the details of the proof we outline the strategy we
will follow. As a first step, we work with a general prior on a space of density
functions and show that the posterior admits an almost sure weak limit. This
result is used to show that the sequence of predictive densities converges. Next,
we translate the problem to fit it to the model (1), where the prior is defined on
the (possibly infinite-dimensional) parameter space ®. This allows the identi-
fication of a function §: Q — © that is shown to be measurable. Finally, using
a representation theorem, we show that the distribution of § is the distribution
IT appearing in (1).

Let Q be a distribution on the space F of density functions (with respect to
some o-finite measure A) on the complete and separable metric space X. More-
over, let F denote the Borel o-algebra on F. If X, ..., X,, is a sequence of obser-
vations generated by

n
Hf('xi|xl’ . '~7~xi71)7
i=1
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the posterior distribution of fis given by

Hf(xi|xl’ ’xifl)Q(df)

i=1

0,(A) = =

n

Hf(xi|x1,--wxi—1)Q(df)

Fi=1

Let f,(x) denote the predictive density (with respect to A) of the (n + 1)th obser-
vation given the previous n, that is,

£, =Lf(XIx1,---,xn)Qn(df)-

Moreover, f,4 is the predictive density restricted to set A C F, namely,

ff(x|xla e ’xn)Qn(df)

an(X) = . Qn(A) Vx € X.

Note that

Jua(X,41) 0, (A) ff(xr1+l‘xl""’xn)Qn(df)

n+1

) lj[f(-xi|xl"~"xi*1)Q(df)

m(xyy .oy Xyiy)

m(Xxy, ..., X,41) m(xy,...,x,)

where m(xy,...,x,) = [p II'—, f(x;|x,,...,x,_,)O(df) is the marginal density
of the vector of observations (X,...,X,). Hence it follows that

Q11+](A) _ an(xn+l)
0,4 fulx,0)

Because for any set A in F, E[Q,(A)|X,,...,X,—1] = Q,—(A), almost surely,
the martingale convergence theorem implies

0,(A) > Q. (A) as.

“)

Thus, exploiting tightness of E[Q,] = Q (for all n = 1), by Theorem 2.2 in
Berti, Pratelli, and Rigo (2006), one has that Q. is a random probability mea-
sure and Q, converges weakly (almost surely) to Q... At this point we will
need to introduce a slight modification of the Hellinger distance between any
two densities, f and g, which coincides with
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h(f8) = 1—L\If(X)g(X)/\(dX)~

Set o, to be the o-algebra generated by (X, ..., X,). By virtue of (4) one has
]E{Qr]:{l—zl (A)|0-n} = Qr]:/z(A){l - h(an’f;l)}'
Consider, now, the martingale (Sy, o )y=; defined by

Sy = > [OV2(A) — 02 (A1 = h(fous £V (5)

n=1
N
= 0V (A) — Q'*(A) + 21 0,2 (A) h( fou—vyasfu)s

where we have obviously set Qy(A) := Q(A). Because E(S,) = 0 we have
e[S 0 W h(fuf)} =1, ©)

from which it follows that
Q;/Z(AE) h(anELfn) —0 as.
as n tends to +oo, which in turn yields

h(fores f) =0 as.

as n — +oo. Because Q,, is a random probability measure, for any w € () there
exists a density f* in F such that Q.,(A€) > 0 for all € > 0, where A = {f €
F:h(f,f*) <e€}. In particular, A€ can be chosen in such a way that Q,(dA€) = 0,
where dA€ is the boundary of set A€, If £,*(x,,+,) = f*(xp41lx15. .+, X,), Dy vir-
tue of the triangular inequality one has

h(f;n.f;k) = h(fmanf) + h(anﬂf;q*)-

Because the first summand tends to zero, we only need to care about the sec-
ond one. To this end, using convexity of &(-,-), one obtains

0,(df)
Q0,(A)’

B(Furer ) = j BOAL)

which implies that
h(f f5)— 0 as. (7)

To exploit the last limiting result in the setting of the model (1), one has to inter-
pret Q as the prior on F induced by IT on ®, and II,, is the (almost sure) weak
limit of the sequence I1,, corresponding to Q... Hence, working now on the space
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0, we have f, = [o f(-|x1,...,x,,0)11(d0) and £* = f(-|x,...,x,,0%). It can
now be shown that such a 6 is unique. To this end, suppose that the conver-
gence in (7) holds true also for some other ** € O. If /,* = f(-|x/, ..., x,,0™),
from

h(.f;z*’f;z**) = h(fn*’fn) + h(fn*‘(? n)

one has h(f", ) — 0, almost surely, and by the identifiability assumption, it
follows that 6% = 0**.

Now, let : Q — © be a function that associates to each w a parameter value
0 such that TI,(A€) > 0, for any € > 0. Such a function is measurable. Indeed,
for any B € o (0),

6~ '(B) Cl{w € Q:11(B) > 0}.

On the other hand, if w € Q is such that IT,,(B) > 0, there exists a parameter 6
in B such that 6 is in the support of II,. This means that

6-'(B) D{w € Q:11_(B) >0},

and measurability of # follows from the fact that Il is a random probability
measure. Moreover, equality between the preceding two sets implies

I, = d5.
By virtue of the stationarity assumption, a theorem due to Maitra (1977) implies
that there exists some random element 7 with values in ® such that, con-

ditional on 7}, the distribution of the observations can be represented (almost
surely) as

Hf(xi|x1,-~,xi—1§‘7))~
i=1

We aim to show that § = 4, almost surely. If P;(B|xy,...,x,) =
Jef(x]|x1,...,x,;7)A(dx) for any B in X, then

E{Pﬁ(3|x15-~~7xn)} = ]P)[Xn-%—l € B|X1,...,Xn] :f PG(B|x15-~~’xn)Hn(d0)
€

O

= f PO(B|X17~~ '7xn)E[Hoo(d6)|xl’~- -7-xn]
®

xly"'7xn:|7

=E [J@P,,(Bbcl, e, x,) 11, (d6)
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where the last equality follows from the definition of conditional expectation.
Because P;(B|xy,...,x,) and [¢ Py(B|xy, ..., x,)II,(d6) are bounded, one has

() ]

= f PH(B|x1’ e ’xn)Hoo(da) = P(;(B|X1, . '-9-xn)’
[C]

]E[P‘f](B|xl"-"xn)‘x(oo)] = E[f PB(B|x1"--’xn)Hoo(d0)
(€]

where the last equality follows from the fact that IT, = 85 and X * denotes the
whole sequence of observations. Moreover, 7 is measurable with respect to the
o-algebra generated by X . Hence

P.(B) = P;(B) a.s.

for every B in X. This entails § = 7 (almost surely). Hence the result follows.
|

3. CONCLUDING REMARKS

We have obtained a quite remarkable result regarding the asymptotic properties
of Bayesian procedures for stationary models. Bayesians can be confident in
carrying out analysis of models much more general than those based on the
common assumption of exchangeability. An open question that remains is the
case of nonstationary data, for which we are not able to extend the result of
the present paper because of the lack of a suitable representation theorem. The
proof to Theorem 1 can still be used to state that the sequence of posterior
distributions converges to a point mass at a random parameter, but there is no
guarantee that this random parameter is the one that generates the sequence.
Indeed, in this more general case one can still assume that the joint distribution
of the observations is written as a mixture with respect to the distribution of
some parameter. However, the representation theorem does not apply, and the
mixing parameter from which the data are generated is not identifiable. This is
an important remark because it means that a Bayesian analysis of nonstation-
ary data could lead to an answer in the form of the posterior converging to a
point mass at the wrong parameter.
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