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In this paper, we provide a Doob-style consistency theorem for stationary mod-
els+ Many applications involving Bayesian inference deal with non independent
and identically distributed data, in particular, with stationary data+ However, for
such models, there is still a theoretical gap to be filled regarding the asymptotic
properties of Bayesian procedures+ The primary goal to be achieved is establish-
ing consistency of the sequence of posterior distributions+ Here we provide an
answer to the problem+ Bayesian methods have recently gained growing popular-
ity in economic modeling, thus implying the timeliness of the present paper+ Indeed,
we secure Bayesian procedures against possible inconsistencies+ No results of such
a generality are known up to now+

1. INTRODUCTION

Most commonly employed econometric models rely on the assumption of sta-
tionarity of the sequence of observations+ Statistical inference involving this
dependence structure should feature good asymptotic properties, and, among
these, consistency plays a major role+ From a classical point of view, there is a
wealth of literature on the topic providing consistency results in specific situa-
tions+ From a Bayesian point of view, no Doob-type results are available beyond
the exchangeable case+ However, because Bayesian methods are now routinely
applied to problems in which the dependence structure for the observations is
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more complicated than exchangeability, there is a need for the extension of
Doob’s theorem to these cases+

Here we will deal with stationary sequences of observations collected in time
whose probability distribution is representable as a mixture of conditionally
stationary and ergodic laws+ In other words we suppose that, conditionally on
some random element, the observations are stationary, with sample means obey-
ing the ergodic theorem+ The representation theorem we will need is given in
Maitra ~1977! and further analyzed in Aldous ~1985!+

Consider a stationary sequence of random variables ~Xn!n�1 defined on some
probability space ~V,A,P ! and taking values in a Polish space X, endowed
with the Borel s-algebra X+ Conditionally on a random element, say, u, the
sequence is stationary and ergodic and its law is characterized by the family
~Pn~{;u!!n�1 of one-step transition distributions, that is,

Pn~A;u! � P @Xn � A6X1, + + + , Xn�1;u# ∀A � X,

with P1~A;u! � P @X1 � A6u# + The random parameter u taking values in the
parameter space can be either finite- or infinite-dimensional, and one is typi-
cally interested in estimating u or a functional of u, given an n-sample of obser-
vation ~X1, + + + , Xn!+ Such estimates are known as a posterior estimates+ Here
we will deal with asymptotic properties of the sequence of predictive distribu-
tions ~Pn!n�1+ The models we will consider are characterized by the fact that
the probability distribution of the vector ~X1, + + + , Xn! admits a mixture repre-
sentation of the type

P @~X1, + + + , Xn ! � A# ��
Q

P @~X1, + + + , Xn ! � A6u#P~du!

��
Q
��

A
)
i�1

n

p~dxi 6x1, + + + , xi�1;u!�P~du!
for any set A in X n and for some probability distribution P on the parameter
space Q, with p~dx16x0;u! � p~dx16u!+ Using the terminology commonly
employed in Bayesian statistics, P acts as a prior distribution for u+ Moreover,
for any u, ) i�1

n p~dxi 6x1, + + + , xi�1;u! is a probability distribution on ~X n,X n!
that can be seen as the distribution of ~X1, + + + , Xn! given u+ If we let P`~{6u!
denote the distribution of the whole sequence ~Xn!n�1 this means that, for any
n � 1,

P`~A � X
` 6u! ��

A
)
i�1

n

p~dxi 6x1, + + + , xi�1;u! ∀A � X n+ (1)

Suppose that each p~dx 6x1, + + + , xi�1;u! admits a density with respect to some
s-finite measure l on X, that is, p~dx 6x1, + + + , xi�1;u! � f ~x 6x1, + + + , xi�1;u!
l~dx!+ With respect to these transition densities, we ask for an identifiability
condition to hold true+ This implies that f ~{ 6x1, + + + , xi�1;u!� f ~{ 6x1, + + + , xi�1;u '!
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for any u � u ' , x1, + + + , xi�1 � X and i � 1+ This is a fundamental requirement
for all statistical models+ Hence it should be always satisfied, and it will be
valid in all the examples we are going to list in the following sections+

As one can see, a number of processes of common use in applications may
play the role of the mixing model in the representation theorem for the sequence
of observations+ Here we highlight some interesting and useful examples+

1.1. Exchangeable Sequences

A noteworthy special example is represented by a sequence of exchangeable
observations+ In this case, the de Finetti representation theorem states that the
distribution of a vector of n of those random variables can be represented as a
mixture of independent and identically distributed ~i+i+d+! random variables,
that is,

P @~X1, + + + , Xn ! � A# ��
A
�
Q
�)

i�1

n

p~dxi 6u!�P~du!+
Hence

p~dxi 6x1, + + + , xi�1;u! � p~dxi 6u!+

This describes the common setting for Bayesian applications, which parallels
the classical assumption of i+i+d+ observations+ The first Bayesian study of con-
sistency for this class of models dates back to the paper by Doob ~1949!+ More
recent work has been done by Lijoi, Prünster, and Walker ~2004! that inspires
the proof to the much more general theorem in the present paper+

1.2. Discretely Observed Diffusion Processes

Let the stochastic process X � $Xt : t � 0% be a diffusion process that is the
solution of the following stochastic differential equation:

dXt � b~Xt ;u!dt � s~Xt ;u!dBt , (2)

where $Bt : t � 0% is a standard Brownian motion and b and s satisfy suitable
conditions ensuring existence and uniqueness of the solution to ~2!+ More spe-
cifically, introduce the scale density s~x;u!� exp $�2*x *

x
@b~ y;u!0s 2~ y;u!#dy% ,

for some x * in the interior of the domain, I, of Xt +We suppose I � @l, r# , where
�` � l � r � �`+ If the following conditions are satisfied:

�
l

x *

s~x;u!dx � �`, �
x *

r

s~x;u!dx � �`

�
l

r 1

s~x;u!s 2~x;u!
dx � �`,
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then X is strongly stationary ~see, e+g+, Karatzas and Shreve, 1991, Sect+ 5+5!
and ergodic+

Take, now, an increasing sequence of positive numbers ~tn!n�1 with tn r

�` as n r �` and set Yn � Xtn + The interest of a discretely observed diffu-
sion process is crucial to a number of problems in economics and finance+ Indeed,
models of the type ~2! are routinely used to describe the behavior of stock prices,
exchange rates, and interest rates, among other interesting economic phenom-
ena+ In all these applications, data are recorded at discrete time points ~e+g+,
monthly, weekly, daily!, and then it is important to study properties of estima-
tion procedures that involve the sequence ~Yn!n�1+ Within the frequentist set-
ting, an area of research has focused on methods of estimation based on the use
of contrast functions or approximate likelihood functions, and remarkable papers
are those by Dacunha-Castelle and Florens-Zmirou ~1986!, Bibby and Sørensen
~1995!, Gourieroux, Monfort, and Renault ~1993!, Pedersen ~1995!, and Aït-
Sahalia ~2002!+ Some of these papers also consider the consistency of the sug-
gested estimation methods+ Techniques for Bayesian inference in this context
have been developed in Elerian, Chib, and Shephard ~2001!, Eraker ~2001!,
Beskos, Papaspiliopoulos, Roberts, and Fernhead ~2006!, and Roberts and
Stramer ~2001!+

1.3. Markov Processes

Another noteworthy example that falls within the class of models we deal with
is represented by stationary Markov processes+ Hence, we let ~Xn!n�1 be a sta-
tionary Markov process taking values in a general state space X, and we denote
its one-step transition density by p~{,{!+ If the process is aperiodic and irreduc-
ible, it is also ergodic+ Thus our result includes such a model+ Note that the
parameter u might in this case coincide with the transition density itself, thus
being infinite-dimensional+ Classical approaches typically involve maximum like-
lihood procedures+ See, for example, Billingsley ~1961!+ As far as the Bayesian
approach is concerned, interest in inference for stationary and ergodic Markov
chains has grown in a variety of settings and applied problems+

Here we consider a Markovian state space model based on a time series
$Yt : t � 1, + + + , n% whose observations are conditionally independent given an
unobserved sufficient state $Xt : t � 1, + + + , n% , assumed to be Markovian+ The
aim is to learn about the state Xt , given contemporaneously available informa-
tion+ See, for example, Pitt and Shephard ~1999!+Moreover, and still in a Bayes-
ian setting, popular Markov chain Monte Carlo ~MCMC! techniques are based
on the simulation of stationary and ergodic Markov chains+ See, for example,
Chib ~1996! and Chib and Greenberg ~1996!+

More recently an interesting approach for constructing strictly stationary AR~1!
models has been introduced by Mena and Walker ~2005!+ The idea is to use
one-step Bayesian nonparametric predictive distributions to define the transi-
tion density of the process+
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1.4. ARCH(1) Models

Suppose ~Xn!n�1 is a sequence of random variables defined by

Xn � sn
2 Zn , (3)

where sn
2 � u1 � u2 Xn�1

2 and the Zn’s are i+i+d+ with a zero mean and unit vari-
ance+ If u2 � exp $�c~0+5!% , where c is the so-called c-function, then the pro-
cess ~Xn!n�1 is stationary ergodic+ The parameter is, in this case, the vector u�
~u1,u2!+ Both a classical likelihood-based approach and Bayesian techniques
are considered, for instance, in Fiorentini, Sentana, and Shephard ~2004!+

1.5. Linear Processes

Let ~an~u!!n�1 be a sequence of real numbers that is squared-summable, that is,

(
n�1

6an~u!62 � �` ∀u � Q,

where Q is possibly an infinite-dimensional space+ Denote by $en~u! : n �
�`, + + + ,�`% a stochastic process such that

E~en~u!! � 0 Cov~ei ~u!, ej ~u!!� s 2di, j ,

where di, j � 1 if i � j and it is zero otherwise+ Then the process ~Xn!n�1 defined
by

Xn � (
j��`

�`

aj ~u!en�j ~u!

is stationary and ergodic+ Classical inferential procedures for these processes
are accounted for in Brockwell and Davis ~1996!+ A description of Bayesian
solutions to problem estimation can be found in West and Harrison ~1997! and
Huerta and West ~1999a, 1999b!+

2. CONSISTENCY FOR STATIONARY MODELS

Here we wish to prove an asymptotic result that is known to hold in the ex-
changeable case+ Let us first set the parameter space Q to be complete and
separable with respect to some suitable metric and indicate with s~Q! the cor-
responding Borel s-algebra+ According to the assumptions outlined in Sec-
tion 1, for any n � 1 and u � Q, the probability distribution P @~X1, + + + , Xn! �
{6u# admits a density with respect to the product measure ln on X

n , and we
denote such a density by hn~{6u!, that is,

P @~X1, + + + , Xn ! � A6u# ��
A

hn~x1, + + + , xn 6u!ln~dx1, + + + ,dxn !,
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and hn~x1, + + + , xn6u!�) i�1
n f ~xi 6x1, + + + , xi�1;u!+ To evaluate distance between

any two densities on X, we consider the Hellinger distance, which is well known
to be equivalent to the L1-metric, defined as follows:

dH ~ f, g! � ��
X

@M f ~x! � Mg~x!# 2
l~dx!�102

+

We simply denote by Pu the law of the whole sequence of observations when
the value of the parameter is u+ Moreover, if Pn denotes the conditional distri-
bution of u, given the sample x1, + + + , xn, it can be represented as

Pn~du! �
)
i�1

n

f ~xi 6x1, + + + , xi�1;u!P~du!

�
Q
)
i�1

n

f ~xi 6x1, + + + , xi�1;u!P~du!

+

Finally, let dx stand for the point mass at x+

THEOREM 1+ Suppose the model in (1) is identifiable. Then, there exists a
random element Du such that

Pn~A!r d Du~A! a.s.

as nr `, for any A in s~Q! , and the distribution of Du coincides with P. More-
over, Du is essentially unique.

Proof+ Before entering the details of the proof we outline the strategy we
will follow+ As a first step, we work with a general prior on a space of density
functions and show that the posterior admits an almost sure weak limit+ This
result is used to show that the sequence of predictive densities converges+ Next,
we translate the problem to fit it to the model ~1!, where the prior is defined on
the ~possibly infinite-dimensional! parameter space Q+ This allows the identi-
fication of a function Du :V r Q that is shown to be measurable+ Finally, using
a representation theorem, we show that the distribution of Du is the distribution
P appearing in ~1!+

Let Q be a distribution on the space F of density functions ~with respect to
some s-finite measure l! on the complete and separable metric space X+More-
over, let F denote the Borel s-algebra on F+ If X1, + + + ,Xn is a sequence of obser-
vations generated by

)
i�1

n

f ~xi 6x1, + + + , xi�1!,
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the posterior distribution of f is given by

Qn~A! �

�
A
)
i�1

n

f ~xi 6x1, + + + , xi�1!Q~df !

�
F

)
i�1

n

f ~xi 6x1, + + + , xi�1!Q~df !

+

Let fn~x! denote the predictive density ~with respect to l! of the ~n � 1!th obser-
vation given the previous n, that is,

fn~x! ��
F

f ~x 6x1, + + + , xn !Qn~df !+

Moreover, fnA is the predictive density restricted to set A � F, namely,

fnA~x! �

�
A

f ~x 6x1, + + + , xn !Qn~df !

Qn~A!
∀x � X+

Note that

fnA~xn�1!Qn~A! ��
A

f ~xn�16x1, + + + , xn !Qn~df !

�

�
A
)
i�1

n�1

f ~xi 6x1, + + + , xi�1!Q~df !

m~x1, + + + , xn�1!

m~x1, + + + , xn�1!

m~x1, + + + , xn !
,

where m~x1, + + + , xn!� *F ) i�1
n f ~xi 6x1, + + + , xi�1!Q~df ! is the marginal density

of the vector of observations ~X1, + + + , Xn!+ Hence it follows that

Qn�1~A!

Qn~A!
�

fnA~xn�1!

fn~xn�1!
+ (4)

Because for any set A in F, E @Qn~A!6X1, + + + , Xn�1# � Qn�1~A!, almost surely,
the martingale convergence theorem implies

Qn~A!r Q`~A! a+s+

Thus, exploiting tightness of E @Qn# � Q ~for all n � 1!, by Theorem 2+2 in
Berti, Pratelli, and Rigo ~2006!, one has that Q` is a random probability mea-
sure and Qn converges weakly ~almost surely! to Q`+ At this point we will
need to introduce a slight modification of the Hellinger distance between any
two densities, f and g, which coincides with
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h~ f, g! � 1 ��
X

Mf ~x!g~x!l~dx!+

Set sn to be the s-algebra generated by ~X1, + + + , Xn!+ By virtue of ~4! one has

E $Qn�1
102 ~A!6sn % � Qn

102~A!$1 � h~ fnA , fn !%+

Consider, now, the martingale ~SN ,sN !N�1 defined by

SN � (
n�1

N

@Qn
102~A!� Qn�1

102 ~A!$1 � h~ fnA , fn !%# (5)

� QN
102~A!� Q102~A!� (

n�1

N

Qn�1
102 ~A! h~ f~n�1!A , fn�1!,

where we have obviously set Q0~A! :� Q~A!+ Because E ~Sn! � 0 we have

E �(
n

Qn
102~A! h~ fnA , fn !� � 1, (6)

from which it follows that

Qn
102~Ae ! h~ fnAe , fn !r 0 a+s+

as n tends to �`, which in turn yields

h~ fnAe , fn !r 0 a+s+

as nr �`+ Because Q` is a random probability measure, for any v � V there
exists a density f * in F such that Q`~Ae ! � 0 for all e � 0, where Ae � $ f �
F : h~ f, f *!� e% + In particular, Ae can be chosen in such a way that Q`~]Ae!� 0,
where ]Ae is the boundary of set Ae + If fn

*~xn�1!� f *~xn�16x1, + + + , xn!, by vir-
tue of the triangular inequality one has

h~ fn , fn
*! � h~ fn , fnAe !� h~ fnAe , fn

*!+

Because the first summand tends to zero, we only need to care about the sec-
ond one+ To this end, using convexity of h~{,{!, one obtains

h~ fnAe , fn
*! � �

Ae
h~ f, fn

*!
Qn~df !

Qn~A
e !
,

which implies that

h~ fn , fn
*!r 0 a+s+ (7)

To exploit the last limiting result in the setting of the model ~1!, one has to inter-
pret Q as the prior on F induced by P on Q, and P` is the ~almost sure! weak
limit of the sequence Pn corresponding to Q`+ Hence, working now on the space
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Q, we have fn � *Q f ~{6x1, + + + , xn,u!P~du! and fn
* � f ~{6x1, + + + , xn,u*!+ It can

now be shown that such a u* is unique+ To this end, suppose that the conver-
gence in ~7! holds true also for some other u** � Q+ If fn

**� f ~{6x1, + + + , xn,u**!,
from

h~ fn
*, fn

**! � h~ fn
*, fn !� h~ fn

**, fn !

one has h~ fn
*, fn

**!r 0, almost surely, and by the identifiability assumption, it
follows that u* � u**+

Now, let Du :Vr Q be a function that associates to each v a parameter value
u such that P`~Ae ! � 0, for any e � 0+ Such a function is measurable+ Indeed,
for any B � s~Q!,

Du�1~B! � $v � V :P`~B! � 0%+

On the other hand, if v � V is such that P`~B! � 0, there exists a parameter u
in B such that u is in the support of P`+ This means that

Du�1~B! � $v � V :P`~B! � 0%,

and measurability of Du follows from the fact that P` is a random probability
measure+ Moreover, equality between the preceding two sets implies

P` � d Du +

By virtue of the stationarity assumption, a theorem due to Maitra ~1977! implies
that there exists some random element Ih with values in Q such that, con-
ditional on Ih, the distribution of the observations can be represented ~almost
surely! as

)
i�1

n

f ~xi 6x1, + + + , xi�1; Ih!+

We aim to show that Du � Ih, almost surely+ If P Ih~B 6x1, + + + , xn! �
*B f ~x 6x1, + + + , xn; Ih!l~dx! for any B in X, then

E $P Ih~B 6x1, + + + , xn !% � P @Xn�1 � B 6x1, + + + , xn #��
Q

Pu~B 6x1, + + + , xn !Pn~du!

��
Q

Pu~B 6x1, + + + , xn !E @P`~du!6x1, + + + , xn #

� E��
Q

Pu~B 6x1, + + + , xn !P`~du!� x1, + + + , xn� ,
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where the last equality follows from the definition of conditional expectation+
Because P Ih~B 6x1, + + + , xn! and *QPu~B 6x1, + + + , xn!P`~du! are bounded, one has

E @P Ih~B 6x1, + + + , xn !6x ~`! # � E��
Q

Pu~B 6x1, + + + , xn !P`~du!� x ~`!�
��

Q

Pu~B 6x1, + + + , xn !P`~du!� P Du~B 6x1, + + + , xn !,

where the last equality follows from the fact that P`� d Du and X ~`! denotes the
whole sequence of observations+ Moreover, Ih is measurable with respect to the
s-algebra generated by X ~`! + Hence

P Ih~B! � P Du~B! a+s+

for every B in X+ This entails Du � Ih ~almost surely!+ Hence the result follows+
�

3. CONCLUDING REMARKS

We have obtained a quite remarkable result regarding the asymptotic properties
of Bayesian procedures for stationary models+ Bayesians can be confident in
carrying out analysis of models much more general than those based on the
common assumption of exchangeability+ An open question that remains is the
case of nonstationary data, for which we are not able to extend the result of
the present paper because of the lack of a suitable representation theorem+ The
proof to Theorem 1 can still be used to state that the sequence of posterior
distributions converges to a point mass at a random parameter, but there is no
guarantee that this random parameter is the one that generates the sequence+
Indeed, in this more general case one can still assume that the joint distribution
of the observations is written as a mixture with respect to the distribution of
some parameter+ However, the representation theorem does not apply, and the
mixing parameter from which the data are generated is not identifiable+ This is
an important remark because it means that a Bayesian analysis of nonstation-
ary data could lead to an answer in the form of the posterior converging to a
point mass at the wrong parameter+
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