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ON RATES OF CONVERGENCE FOR POSTERIOR
DISTRIBUTIONS IN INFINITE-DIMENSIONAL MODELS
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and Università degli Studi di Torino

This paper introduces a new approach to the study of rates of conver-
gence for posterior distributions. It is a natural extension of a recent approach
to the study of Bayesian consistency. In particular, we improve on current
rates of convergence for models including the mixture of Dirichlet process
model and the random Bernstein polynomial model.

1. Introduction. Recently, there have been many contributions to the theory
of Bayesian consistency for infinite-dimensional models. Most of these adopt the
“frequentist” (or “what if”) approach, which consists of generating independent
data from a “true” fixed density f0 and checking whether the sequence of posterior
distributions accumulates in Hellinger neighborhoods of f0. The determination of
sufficient conditions for Hellinger consistency has been the main goal of a number
of recent papers such as, for example, [1, 2, 5] and [12]. A summary is provided
in [8]. Their results rely upon the use of uniformly consistent tests, combined with
the construction of suitable sieves and computation of metric entropies. An alter-
native method for solving the problem can be found in [14], where a sufficient
condition in terms of the summability of prior probabilities is provided.

Here, we consider the allied problem of determining rates of convergence, that
is, the determination of a sequence (εn)n≥1 such that εn ↓ 0 and

�n

({f :d(f,f0) > Mεn}) → 0

for any constant M > 0. The above-displayed convergence can be understood ei-
ther as convergence in F∞

0 -probability or as almost sure-F∞
0 , where F0 denotes

the probability distribution associated with f0 and F∞
0 is the infinite product dis-

tribution. Among recent papers dealing with this topic, we mention [6, 7, 4] and
[13]. The key to these papers is the construction of a sieve and the use of entropies.
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The ultimate rate of convergence achieved depends on two quantities: the concen-
tration rate, which depends on the prior mass assigned to suitable neighborhoods
of f0, and the growth rate of the Hellinger entropy. A recent contribution, relying
upon information theory, is given in [15]. The aim of the present paper is to tackle
the problem based on the approach of Walker [14], which leads to improvements
in the examples we consider.

In Section 2, we first derive a useful bound for the posterior probability on the
sets of interest and then prove a general theorem for the determination of rates,
which relies upon two conditions. In Section 3, the normal mixture of Dirichlet
process and random Bernstein polynomials are considered and currently known
rates are improved.

2. Posterior convergence rates. Consider a sequence of observations
(Xn)n≥1, each taking values in some Polish space X endowed with the Borel
σ -algebra X . If F indicates the space of probability density functions with respect
to some σ -finite measure λ on X, then the Hellinger metric h on F is defined by

h(f, g) =
{∫

X

(√
f (x) −

√
g(x)

)2
λ(dx)

}1/2

for any f and g in F, and we set F to be the Borel σ -algebra of F. Suppose that
� stands for a prior distribution on (F,F ). Then the posterior distribution, given
the observations (X1, . . . ,Xn), coincides with

�n(B) =
∫
B

∏n
i=1 f (Xi)�(df )∫

F

∏n
i=1 f (Xi)�(df )

for all B in F . We assume that there exists a “true” density function f0 such
that the Xn’s are i.i.d. from f0. A sequence of posterior distributions �n is said
to be Hellinger consistent at f0 if the posterior mass on sets of the type Aε :=
{f :h(f,f0) > ε} becomes negligible as the sample size n increases. The approach
introduced in [14] relies upon the construction of a suitable covering of Aε by
Hellinger balls of radius φ < ε. The prior mass on these balls must be such that
the sum of their square roots is finite. This entails consistency. Then, when dealing
with rates, it is natural to refine the set Aε to Aεn = {f :h(f,f0) > εn} and to
consider a covering {An,j : j = 1,2, . . .} of Aεn , where each An,j has radius φn ∈
(0, εn). Consequently, we now define

Kεn = ∑
j≥1

�(An,j )
1/2,

a quantity that will be heavily relied on in this paper.
Before stating the preliminary result, let us introduce some notation. Let L

(n)
0,j =√

�(An,j ) and for any k ≥ 1, let

L
(n)
k,j :=

√∫
An,j

Rk(f )�(df ).
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Moreover, set Rk(f ) = ∏k
i=1 f (Xi)/f0(Xi) for every k = 1,2, . . . . By exploiting

the same martingale introduced in the proof of Theorem 4 in [14], one can show
that the following holds.

PROPOSITION 1. Suppose that Kεn < +∞ and that∑
n≥1

e−nε2
n/8Kεn < +∞,(1)

where (εn)n≥1 is a sequence such that εn → 0 and nε2
n → +∞. Then

F∞
0

(
lim inf

n

{∑
j≥1

L
(n)
n,j < e−nε2

n/16

})
= 1.(2)

PROOF. One can easily check that the identity

L
(n)
k+1,j /L

(n)
k,j =

√
fk,An,j

(Xk+1)/f0(Xk+1)

holds, given that

fk,An,j
(x) =

∫
An,j

f (x)Rk(f )�(df )
/∫

An,j

Rk(f )�(df ), k ≥ 1,

represents the predictive distribution restricted to the set An,j , whereas f0,An,j
is

the marginal density of the single observation restricted to An,j . Let Fk be the
σ -algebra generated by the observations X1, . . . ,Xk and note that

E
(
L

(n)
k+1,j |Fk

) = L
(n)
k,j {1 − h2(fk,An,j

, f0)/2}.
Since h(fk,An,j

, fj ) ≤ δn, where fj is any density in An,j , from the triangle in-
equality one has h(fk,An,j

, f0) ≥ εn − δn = γn > 0. Hence, we fix k = n to obtain

E
(
L

(n)
n+1,j

) ≤
√

�(An,j )(1 − γ 2
n /2)n+1.

Choose a sequence (ηn)n≥1 such that ηn → 0 and nηn → +∞. Apply Markov’s
inequality and the monotone convergence theorem to obtain

F∞
0

(∑
j≥1

L
(n)
n,j > e−nηn

)
≤ enηnE

(∑
j≥1

L
(n)
n,j

)
≤ enηn

∑
j≥1

E
(
L

(n)
n,j

)
.

Then

F∞
0

(∑
j≥1

L
(n)
n,j > e−nηn

)
≤ exp

{−n{− log(1 − γ 2
n /2) − ηn}} ∑

j≥1

√
�(An,j )

= exp
{−n{− log(1 − γ 2

n /2) − ηn}}Kεn.
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Setting φn = εn/2 and ηn = ε2
n/16, we have

− log(1 − γ 2
n /2) − ηn ≥ γ 2

n /2 − ηn = ε2
n/16.

Finally, condition (1) yields, by a straightforward application of the Borel–Cantelli
lemma, the result in (2). �

Here we discuss a suitable lower bound for the denominator of the posterior,
that is, In := ∫

F
Rn(f )�(df ). Regarding this point, previous contributions provide

bounds in probability rather than almost surely. Indeed, Shen and Wasserman [13]
and Ghosal, Ghosh and van der Vaart [6] give results of the type

In ≥ exp(−cnε2
n) in F∞

0 -probability

for a constant c > 0, provided that � puts sufficient mass near f0, where close-
ness is measured through a combination of the Kullback–Leibler divergence and
the L2(F0)-norm of log(f0/f ). If K(f,f0) = ∫

log(f0(x)/f (x))f0(x)λ(dx) and
V (f,f0) = ∫ {log(f0(x)/f (x))}2f0(x)λ(dx), then a neighborhood of the type
above is defined as

B(ε,f0) = {f :K(f,f0) ≤ ε2, V (f,f0) ≤ ε2}.(3)

One can now prove the following result.

THEOREM 1. Suppose that εn, δn → 0 and nε2
n, nδ2

n → +∞, and

(i) e−nδ2
n/16Kδn → 0;

(ii) for some C > 0, �{B(εn, f0)} ≥ exp(−Cnε2
n).

Then �n(Aεn) → 0 in F∞
0 -probability when δn ≤ φεn for some sufficiently small

φ > 0.

PROOF. Now,

�n(Aεn) ≤ ∑
j≥1

�n(An,j ) ≤ ∑
j≥1

√
�n(An,j ) = ∑

j≥1

L
(n)
n,j /

√
In

and so

�n(Aεn) ≤ exp[−n{ε2
n/16 + n−1(log In)/2}]

in F∞
0 -probability. Moreover, by Lemma 8.1 in [6], condition (ii) implies that

In ≥ exp{−n(1 + C)ε2
n} in F∞

0 -probability.

Hence, n(ε2
n/8 + n−1 log In) → +∞ in F∞

0 -probability when δn ≤ φεn and (1 +
C)φ2 < 1/8. The result follows. �

A sequence (εn)n≥1 satisfying (ii) in Theorem 1 is also referred to as prior
concentration rate. As a simple illustration of condition (i), one can consider the
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discrete prior which puts mass �k on the density fk . If
∑

k≥1
√

�k < +∞ then

Kεn is bounded by this sum and hence condition (i) reduces to e−nε2
n/16 → 0, which

is trivially satisfied for εn = λn/
√

n for any λn → ∞.
Before moving on to consider specific priors, we need to modify the above

results, relying on the technique of Lijoi, Prünster and Walker [9], which was de-
veloped for establishing consistency of the mixture of Dirichlet process model.
Let N(δ,S, d) denote the minimum number of balls of radius at most δ, with
respect to the metric d , needed to cover the space S. This is also known as
the δ-covering number of S. Moreover, introduce a collection of sets {Bn,k :k ≥
1} which, for any n ≥ 1, forms a partition of F. Accordingly, we denote by
{An,k,j : j = 1, . . . ,N(εn,Bn,k, h)} an εn-covering of Bn,k with respect to the
Hellinger distance h. Hence, one can easily check that

√
�(Bn,k) =

√√√√√N(εn,Bn,k,h)∑
j=1

�(An,k,j )

(4)

≥ 1

N(εn,Bn,k, h)

N(εn,Bn,k,h)∑
j=1

√
�(An,k,j ).

Next, it is clear that the family {An,k,j : j = 1, . . . ,N(εn,Bn,k, h), k ≥ 1} is a par-
tition of F into sets of diameter, with respect to the Hellinger distance, at most εn.
Finally, using (4), one can write

Kεn =
∞∑

k=1

N(εn,Bn,k,h)∑
j=1

√
�(An,k,j ) ≤

∞∑
k=1

N(εn,Bn,k, h)
√

�(Bn,k).

Hence, we are interested in establishing, for some sequence (εn)n≥1 such that
εn → 0 and nε2

n → +∞ as n → ∞, the validity of

e−nε2
n

∞∑
k=1

N(εn,Bn,k, h)
√

�(Bn,k) → 0.

3. Illustrations. In the examples that follow, we show that the rate of conver-
gence is governed by the concentration rate. In particular, we look at mixtures of
Dirichlet processes and the random Bernstein polynomial model.

3.1. Normal mixture of Dirichlet process. The most widely used prior distrib-
ution for density estimation is undoubtedly the normal mixture of Dirichlet process
(MDP) introduced by Lo [10] and later popularized by Escobar and West [3]. Such
a random density function is given by

f
σ,P

(x) = φσ ∗ P =
∫

φσ (x − θ)P (dθ),(5)
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where the kernel φσ is the density function of the normal distribution with mean
zero and variance σ 2. Moreover, P is a Dirichlet process with parameter measure
α(·), and σ has a prior distribution which we denote by µ. The issue of strong
consistency for the model (5) has been studied in [5] and [9], whereas rates are
determined in [7].

We focus on the case in which the support of µ coincides with the interval
[σ,σ ], where 0 < σ < σ < +∞, and we suppose that f0 = φσ0 ∗ P0. This is the
same setting considered in [7]: when either P0 has compact support or α has sub-
Gaussian tails, they achieve the best rate of (logn)κ/

√
n for κ ≥ 1. In particular, for

the usual Gaussian tails for α, κ = 3/2. Although these models allow the desirable
prior concentration rate [condition (ii) of Theorem 1] of (logn)/

√
n, the worse

entropy estimate determines their rate.
We, on the other hand, can obtain the target rate (logn)/

√
n in more general

models. To this end, we introduce sets of the type

F σ
σ ,a,δ = ⋃

σ≤σ≤σ

{φσ ∗ P :P([−a, a]) ≥ 1 − δ},

where a > 0. Moreover, recall that the inequality h2(f, g) ≤ ‖f − g‖1 yields

N
(√

δ,F ∗, h
) ≤ N(δ,F ∗,‖ · ‖1)(6)

for any collection of density functions F ∗. Now, from [5] the upper bound for the
L1-metric entropy of set F σ

σ,a,δ is given by

logN(δ,F σ
σ,a,δ,‖ · ‖1) ≤ aCδ,

where Cδ = Kσ−1δ−1 log(1/δ) for some constant K . Hence, in view of (6), one
finds that

logN(δ,F σ
σ,a,δ2, h) ≤ −2aK

σ
δ−2 log(δ).(7)

Now, for each n let (an,j )j≥1 be an increasing sequence of positive numbers such
that an,j ↑ +∞ as j → +∞, and for j ≥ 2 set

G σ
σ,an,j ,δ2

n
:= ⋃

σ≤σ≤σ

{φσ ∗ P :P([−an,j+1, an,j+1]) ≥ 1 − δ2
n,

P ([−an,j , an,j ]) < 1 − δ2
n},

while setting

G σ
σ ,an,1,δ

2
n
:= ⋃

σ≤σ≤σ

{φσ ∗ P :P([−an,1, an,1]) > 1 − δ2
n}.

Such sets cover the support of the distribution of the mixture of Dirichlet process
defined in (5). It is obvious that for j ≥ 2, G σ

σ,an,j ,δ2
n

is included in F σ
σ,an,j ,δ2

n
, so

logN(δn,G
σ
σ,an,j ,δ2

n
, h) ≤ Cδ2

n
an,j .
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This suggests that for each j ≥ 2, G σ
σ,an,j ,δ2

n
has a finite Hellinger δn-covering

{Cn,j,l : l = 1, . . . ,Nn,j }, where Nn,j ≤ [exp(Cδ2
n
an,j )] + 1 and [x] stands for the

integer part of x > 0. Hence, setting

Bn,j = {P :P([−an,j+1, an,j+1]) ≥ 1 − δ2
n,P ([−an,j , an,j ]) < 1 − δ2

n}
for j ≥ 2, one has

Kδn ≤ Nn,1 + ∑
j≥2

Nn,j

√
�(G σ

σ,an,j ,δ2
n
) ≤ Nn,1 + ∑

j≥2

Nn,j

√
Dα(Bn,j ),

where Dα is the law of the Dirichlet process with parameter α. If Vn,j :=
[−an,j , an,j ]c, then Bn,j ⊂ {P :P(Vn,j ) > δ2

n}. By the Markov inequality,

Dα(Bn,j ) ≤ Dα

({P :P(Vn,j ) > δ2
n}

) ≤ cα(Vn,j )/δ
2
n

for some constant c and, thus, one has

Kδn ≤ Nn,1 + ∑
j≥2

c1/2δ−1
n exp{an,jCδ2

n
− a2

n,j }

when, as we assume, α([−a, a]c) ≤ exp(−2a2). Hence, if we put, for j ≥ 2, an,j =
jCδ2

n
, then the summand in the bound for Kδn is bounded by

c1/2
∑
j≥2

δ−1/2
n exp{−(j − 1)2C2

δ2
n
},

which goes to zero as n → +∞. Now, Nn,1 is the Hellinger δn-covering number
of the set {P :P([−an,1, an,1]) > 1 − δ2

n}. According to [7], it is the case that

Nn,1 ≤ L1 exp{(log(1/δn))
2}

when an,1 ≤ L2
√

(log(1/δn)) for constants L1 and L2. So, exp{−nδ2
n}Kδn → 0

when exp{−nδ2
n + (log(1/δn))

2} → 0, which occurs when nδ2
n − (log(1/δn))

2 →
+∞. Clearly, δn = M(logn)/

√
n for some large enough M is sufficient. Hence,

for example, we obtain an overall rate of convergence (logn)/
√

n with normal
α when the true mixing distribution P0 has sub-Gaussian tails. This improves on
Ghosal and van der Vaart [7], who obtain a rate of (logn)3/2/

√
n in this case.

3.2. Random Bernstein polynomials. Another important prior for density es-
timation is the so-called random Bernstein polynomial introduced in [11]. Such a
random density admits the representation

b(x;k,F ) =
k∑

j=0

[
F(j/k) − F

(
(j − 1)/k

)]
β(x; j, k − j + 1),

where β(x;a, b) is the beta density with parameters a, b > 0. In the previous rep-
resentation, F is a random distribution function, usually chosen to be a Dirichlet
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process, and k has distribution p and is independent of F . Assuming f0 is in
the Kullback–Leibler support of the prior, consistency of such priors has been
established in [12] and [14], where it has been shown that strong consistency
holds under a suitable tail condition on p. Rates of convergence have been de-
termined in [4]. In Theorem 2.3 of [4], it is shown that the prior concentration rate
is (logn)1/3/n1/3 and that the entropy rate is (logn)5/6/n1/3, thus leading to an
overall convergence rate of (logn)5/6/n1/3.

Following our bound for Kεn in Section 2, define Bj to be the set of Bernstein
polynomials of order j . Using the upper bound N(εn,Bj ,h) ≤ (C/εn)

j provided
by [4], we have

Kεn ≤
an,1∑
r=1

(C/εn)
r√pr +

∞∑
j=1

an,j+1∑
r=an,j+1

(C/εn)
r√pr.

Here we have introduced, for each n, an increasing sequence of reals (an,j )j≥1

which will be determined later on. Using the inequality
∑M

r=1 cr ≤ McM for c > 1,
we have

Kεn ≤ an,1(C/εn)
an,1 +

∞∑
j=1

(C/εn)
an,j+1(an,j+1 − an,j )

√
pan,j

.

Here we have assumed that the pk’s are decreasing for all large k and we will also
assume that pk ≤ exp(−4k log k) for all large k. Therefore, putting an,j = Cj/εn,
we have the summand term for the bound of Kεn bounded by

Cε−1
n

∞∑
j=1

exp{(j + 1)Cε−1
n log(C/εn) − 2jCε−1

n log(jC/εn)},

which is bounded by Cε−1
n

∑∞
j=1 exp{−2jCε−1

n log j}. In turn, this sum is
bounded by D/εn as n → +∞ for some constant D; the term j = 1 ensures
this. Returning to the first term in the bound for Kεn , we are interested in finding
εn for which ε−1

n exp{−nε2
n} → 0 and exp{−nε2

n + Cε−1
n log(C/εn)} → 0, when

nε2
n − Cε−1

n log(C/εn) → +∞. This clearly happens when

εn = M(logn)1/3/n1/3

for sufficiently large M . Consequently, under the conditions of Theorem 2.3 in
[4], we obtain a rate of convergence of (logn)1/3/n1/3, which is the rate of con-
vergence for the sieve MLE, whereas Ghosal [4] obtains a rate of (logn)5/6/n1/3.
Note that with lighter tails for p, namely pk < exp(−2k2), we can obtain a rate of
(logn)/

√
n for εn, but the overall rate will remain at (logn)1/3/n1/3.

Acknowledgments. We wish to thank Catia Scricciolo for helpful remarks.
We are grateful to two referees for comments that led to improvements and, in
particular, to one referee who pointed out an inaccuracy in an earlier version of the
paper.
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