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Abstract. This paper considers a generalization of the Dirichlet process which is obtained
by suitably normalizing superposed independent gamma processes having increasing inte-
ger-valued scale parameter. A comprehensive treatment of this random probability mea-
sure is provided. We prove results concerning its finite-dimensional distributions, moments,
predictive distributions and the distribution of its mean. Most expressions are given in
terms of multiple hypergeometric functions, thus highlighting the interplay between Bayes-
ian Nonparametrics and special functions. Finally, a suitable simulation algorithm is
applied in order to compute quantities of statistical interest.
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1. Introduction

Since the introduction of the Dirichlet process by Ferguson (1973), there
have been several attempts at generalizations. For a review of the literature
in the area the reader is referred to Walker et al. (1999). Here we study
a particular generalized Dirichlet process obtained by the so called “nor-
malization approach”. It is well-known that the Dirichlet process can be
constructed by suitably normalizing the increments of a gamma process,
i.e. a process having independent increments and whose marginal distribu-
tion is gamma. (See Ferguson, 1973). In the same spirit, even though not
motivated by applications to Bayesian inference, Kingman (1975) derived
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a random probability measure by normalizing the so-called γ -stable sub-
ordinator. Recently, the “normalization approach” has gained new interest
in a Bayesian context. In Regazzini et al. (2003), this approach has been
used to define a novel class of priors: the normalized random measures
with independent increments (normalized RMI). Such random probability
measures, whose laws act as priors in a Bayesian nonparametric setting,
are constructed via the normalization of suitably reparameterized increas-
ing additive processes, i.e. increasing processes with independent but not
necessarily stationary increments. For the purposes of the present paper, it
is enough to recall the definition of subordinator rather than the more gen-
eral one of increasing additive process. An exhaustive account of the theory
of both subordinators and increasing additive processes can be found, e.g.,
in Sato (1999).
A stochastic process ξ = {ξt : t � 0}, defined on some probability space
(�,F,P), is an increasing Lévy process or subordinator if:

(i) for any choice of n� 1 and 0 � t0 < t1 < · · ·< tn the random variables
ξt0, ξt1 − ξt0, . . . , ξtn − ξtn−1 are independent;

(ii) the distribution of ξs+t − ξs does not depend on s;
(iii) ξ0 =0 a.s.-P;
(iv) ξ is stochastically continuous;
(v) there exists �0 ∈F with P(�0)=1 such that t �→ξt (ω) is increasing

and right continuous for each ω∈�0.

Moreover, the Laplace transform of ξt is given by E[e−λξt ]=exp[−t ∫[0+∞)
(1−

e−λv)ν(dv)] for any λ�0, where E[ · ] denotes expectation with respect to P

and ν stands for the Lévy measure corresponding to ξ . It is well-known
that a subordinator is uniquely determined by its Lévy measure ν, whose
support coincides with R

+ and which satisfies
∫
(0,+∞)

(v∧1)ν(dv)<+∞.
In this paper we study a normalized RMI first considered in Regazzini

et al. (2003). In order to define this random probability measure, let ξ be
the subordinator identified by the Lévy measure

ν(dv)= (1− e−γ v)
(1− e−v)

e−v

v
dv γ >0.

Moreover, let α be a finite measure on (R,B(R)) with α(R)=a>0, and set
A( · )=α(−∞, · ]. Correspondingly, the time–change t=A(x) yields a repa-
rameterized process ξα ={ξA(x): x ∈R}, which still preserves the monotonic-
ity property of the original process. Moreover, since ν(0,+∞)=+∞, one
has 0<ξa <+∞ a.s. –P. Hence

P̃ (−∞, x]= ξA(x)

ξa
, (1)
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defines a random probability distribution function on R and its law can
be employed as a prior for Bayesian nonparametric inference. Notice that
when γ = 1, ξ is a gamma process and P̃ is the Dirichlet process with
parameter measure α. Hence, following Regazzini et al. (2003) we term
such a random probability measure a generalized Dirichlet process with
parameters (α, γ ).

Here we restrict attention to the case in which γ is a positive integer.
This assumption allows us to look at the generalized Dirichlet process as a
random probability measure obtained by normalization of superposed inde-
pendent gamma processes with increasing integer-valued scale parameter.
Indeed, according to such a position, the Laplace transform of ξα is

E
[
e−λξA(x)]=

γ∏

j=1

(

1+ λ

j

)−A(x)
∀x ∈R, ∀λ∈R

+.

Thus ξA(x) is distributed as the convolution of γ independent gamma ran-
dom variables with parameters (j,A(x)), j = 1, . . . , γ , for every x ∈ R. In
other terms, the distribution of ξA(x) is a member of the Thorin class T ,
also known as the class of generalized gamma convolutions, with Thorin
measure µA(x) =A(x)

∑γ

j=1 δj , where δy denotes the unit point mass at y.
(See Bondesson, 1992) for a detailed treatment of this and other related
classes of distributions.

Before proceeding, it seems useful to relate the generalized Dirichlet
process to other classes of random probability measures studied in the
literature. First of all, it has to be remarked that the previous construc-
tion can be carried out for any subordinator satisfying ν(0,+∞)= +∞.
This yields a subclass of the family of normalized RMI, which, under the
additional assumption of α being non-atomic, essentially coincides with
the Poisson-Kingman models, independently proposed by Pitman (2003).
Indeed, it turns out that Poisson–Kingman models are also a subclass of
species sampling models, another class of random probability measures due
to Pitman (1996), which are defined as

P̃ ( · )=
∑

i�1

Pi δXi ( · )+


1−
∑

i�1

Pi



H( · ), (2)

where 0<Pi < 1 are random weights such that
∑

i>1 Pi � 1, independent
of the locations Xi , which are i.i.d. with some nonatomic distribution H .
Although the definition of a species sampling model provides an intuitive
and quite general framework, it leaves a difficult open problem, namely, the
concrete assignment of the random weights Pi . It is clear that such an issue
is crucial for applicability of these models. The most popular approach
for achieving this goal is the so-called “stick-breaking” procedure already
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adopted by Halmos (1944) and Freedman (1963). Stick–breaking priors, as
defined in Ishwaran and James (2001) and further developed in Ishwaran
and James (2003), contain, among others, the Dirichlet process (defined in
a stick–breaking fashion by Sethuraman (1994)), the two-parameter Pois-
son–Dirichlet process (Pitman, 1995; Pitman and Yor, 1997) and the Di-
richlet multinomial process (Muliere and Secchi, 1995). Another possible
approach for constructing random weights in (2) is to resort to Poisson–
Kingman models. Since the generalized Dirichlet process, defined as in (1)
with a nonatomic α, is a Poisson–Kingman model, this paper can also be
seen as an attempt to derive explicit expressions for quantities of statis-
tical relevance of a particular species sampling model. Another notewor-
thy example is the so-called normalized inverse Gaussian process studied in
Lijoi et al. (2004). However it is worth remarking that, in general, a nor-
malized RMI is not a species sampling model.

Throughout the paper exchangeable observations are considered. Assume
that the sequence of observations (Xn)n�1 is defined on the probability
space (�,F,P) in such a way that, conditional on the generalized Dirich-
let process P̃ , they are independent and identically distributed (i.i.d.) with
distribution P̃ .

In this work we provide a comprehensive treatment of the generalized
Dirichlet process. Most results are expressed in terms of multiple hypergeo-
metric functions highlighting the interplay between Bayesian Nonparametrics
and the theory of special functions. Other examples of this close connec-
tion can be found in Regazzini (1998) and Lijoi and Regazzini (2004),
where functionals of the Dirichlet process are considered. Section 2 is
devoted to the derivation of the marginal and the finite-dimensional dis-
tributions of the generalized Dirichlet process. Section 3 investigates its
structure providing expressions for its expected value, variance and covari-
ance. Moreover its predictive distributions are obtained and, by means
of a numerical example, the role of the parameter (a, γ ) is investigated.
Section 4 is devoted to the study of means of the generalized Dirichlet
process. Results concerning the posterior density of the mean, given in
Regazzini et al. (2003) are improved and the issue of the symmetry of the
distribution of a mean is considered. Section 5 shows how to simulate from
such a random probability measure and provides an illustrative example.
Proofs are deferred to the Appendix A.

2. Finite-Dimensional Distributions

An important issue when dealing with a random probability measure con-
cerns the determination of its finite-dimensional distributions. Such a task
is commonly a hard one to achieve for nonparametric priors, a notable
exception being the Dirichlet process. One of the merits of the generalized
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Dirichlet process is that its finite-dimensional distributions can be explicitly
derived in terms of multivariate hypergeometric functions.

Before stating the main result of the present section, some notations are
to be introduced. For any vector x = (x1, . . . , xn)

′ ∈ R
n, let |x| :=∑n

i=1 xi .
Denote by B1, . . . ,Bn any partition of R and set αi :=α(Bi), i= 1, . . . , n.
Moreover 	n−1 ={v = (v1, . . . , vn−1)

′ : vi �0, i=1, . . . , n−1, |v|�1} is the
(n− 1)-dimensional simplex. Finally, using the same notation as in Exton
(1976)



(N)

2 (b; c;x)=
∑

m1,... ,mN

(b1)m1 · · · (bN)mN
(c)|m|m1! · · · mN !

x
m1
1 · · ·xmNN (3)

stands for the confluent form of the fourth Lauricella hypergeometric func-
tion. Here (b)m is the Pochhammer symbol;

(b)m=b(b+1) · · · (b+m−1) for any b>0 and positive integer m,

where we assume (b)0 =1. Moreover, let 1γ−1 = (1, . . . ,1)′, J γ−1 = (1, . . . , γ−
1)′ denote (γ −1)-dimensional vectors.

PROPOSITION 1. Let P̃ be a generalized Dirichlet process with parameter
(α, γ ). The random vector (P̃ (B1), . . . , P̃ (Bn−1)) admits probability density,
with respect to the Lebesgue measure on the simplex 	n−1, given by

f (σ1, . . . , σn−1)= (γ !)a
∏n
j=1�(γαj )

σ
γα1−1
1 · · ·σγαn−1−1

n−1 (1−|σ |)γαn−1
∫ +∞

0
vγa−1e−γ v ×

×





n−1∏

j=1



(γ−1)
2 (αj1γ−1, γ αj ;vσjJ γ−1)





×

×
(γ−1)
2

(
αn1γ−1, γ αn;v(1−|σ |)J γ−1

)
dv.

In particular, the distribution of P̃ (B), for any B∈B(R), has density function
on [0,1] coinciding with

f (σ)= (γ !)a

�(γ α(B))�(γ α(Bc))
σ γα(B)−1(1−σ)γα(Bc)−1

∫ +∞

0
vγa−1e−γ v ×

×
(γ−1)
2

(
α(B)1γ−1, γ α(B);vσ J γ−1

)×
×
(γ−1)

2

(
α(Bc)1γ−1, γ α(B

c);v(1−σ)J γ−1
)

dv. (4)

From Proposition 1, it can be seen that some features of the Dirich-
let process carry over, with some modifications, to this more general case.
Looking at the density in (4), one immediately recognizes the beta den-
sity as the first factor of the product. In contrast to the Dirichlet case, its
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parameters differ from those of the Dirichlet process by the multiplicative
constant γ .

The following corollary highlights some particular cases. The results can
be deduced from Proposition 1 using a well-known integral representation
of the first Lauricella multiple hypergeometric function

F
(N)
A (a,b; c;x) =

∑

m1,... ,mN

(a)|m|(b1)m1 · · · (bN)mN
(c1)m1 · · · (cN)mN m1! · · · mN !

x
m1
1 · · ·xmNN , (5)

with |xi |<1, for each i=1, . . . ,N .

COROLLARY 2. Let P̃ be a generalized Dirichlet process with parameter
(α,2). Then the probability distribution of the vector (P̃ (B1), . . . , P̃ (Bn−1))

admits density function on the simplex 	n−1

f (σ1, . . . , σn−1)= �(2a)σ 2α1−1
1 σ

2α2−1
2 . . . (1−|σ |)2αn−1

2a
∏n
j=1�(2αj )

×

×F (n)A

(

2a,α;2α; σ1

2
, . . . ,

1−|σ |
2

)

,

where α = (α1, . . . , αn) and σ = (σ1, . . . , σn−1).

Remark. Notice that also for any other γ the finite-dimensional distri-
butions can be expressed in terms of a multiple power series, which can be
seen as a sort of generalization of Lauricella’s FA. For instance, the mar-
ginal density function in (4) can be rewritten as follows

f (σ)= σγα(B)−1(1−σ)γα(Bc)−1

B(γα(B), γ α(Bc))

(γ !)a

γ γ a
×

×
∑

i1,... ,iγ−1;j1,... ,jγ−1

(γ a)|i|+|j |(α(Bc))i1 . . . (α(B
c))iγ−1(α(B))j1 . . . (α(B))jγ−1

i1! . . . iγ−1!j1! . . . jγ−1!(γ α(Bc))|i|(γ (α(B)))|j |
×

× 2i2+j2 · · · (γ −1)iγ−1+jγ−1 σ |i|(1−σ)|j |.
Remark. The random probability measure we are considering could have

been constructed by resorting to a different line of reasoning. Indeed, one
can start from the finite-dimensional distributions given in Proposition 1
and check they satisfy suitable consistency conditions such as those given
in Regazzini (2001).

3. Moments and Predictive Distributions

It is commonly agreed that the nonparametric approach guarantees greater
flexibility to inferential procedures. However, such flexibility has to be con-
strained in order to incorporate real qualitative prior knowledge into the
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model. This is usually done by tuning some moments according to one’s
prior opinion. Walker and Damien (1998) suggest controlling the mean and
variance of P̃ .

The expected value of P̃ takes on the interpretation of a prior guess at
the shape of P̃ and is a crucial quantity in terms of prior specification.
Indeed, if P̃ is a generalized Dirichlet process with parameter (α, γ ), then

E[P̃ (B)]= α(B)

a

for any measurable set B. This follows immediately from Pitman (2003).
Having set the prior guess at the shape of P̃ through the choice of α,

one has still two degrees of freedom in order to complete the prior specifi-
cation: the total mass a and the parameter γ . At this point it is useful to
introduce the fourth Lauricella multiple hypergeometric function

F
(N)
D (a,b; c;x)=

∑

m1,... ,mN

(a)|m| (b1)m1 · · · (bN)mN
(c)|m|m1! · · · mN !

x
m1
1 · · · xmNN ,

where |xi | < 1 for any i = 1, . . . ,N . Indeed, the variance of P̃ can be
expressed as

Var[P̃ (B)]= α(B)(a−α(B))
a2

Ia,γ , (6)

with

Ia,γ := a (γ !)a�(γ a)
γ γa�(γ a+2)

γ∑

k=1

F
(γ−1)
D

(

γ a,a∗
k;γ a+2; 1

γ
J γ−1

)

(7)

having set a∗
k = (a, . . . , a+2, . . . , a)′ ∈R

γ , with a+2 being the kth element
of the vector. Details of the derivation of (6) are given in the Appendix A.

It is also interesting to determine the covariance structure of a general-
ized Dirichlet process. It is well known that the Dirichlet process is such
that the correlation between disjoint sets is negative. Here we show that
this property extends to the generalized Dirichlet process. Let B1,B2 ∈B(R)
and set C=B1 ∩B2, then

Cov(P̃ (B1), P̃ (B2))= a α(C)−α(B1) α(B2)

a2
Ia,γ (8)

and, as a straightforward consequence, one has that

Cov(P̃ (B1), P̃ (B2))=−α(B1) α(B2)

a2
Ia,γ ,

whenever B1 and B2 are disjoint. See the Appendix A for the details about
the derivation of (8).
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Finally, in order to complete the prior specification, we can consider the
skewness coefficient which is given by

sk[P̃ (B)]= a−2α(B)

2
√
α(B)(a−α(B)) Ka,γ (9)

and

Ka,γ := 4γ γa/2 [�(γ a+2)]1/2

a1/2 (γ !)a/2 (γ a+2) [�(γ a)]1/2
×

×
∑γ

k=1 F
(γ−1)
D

(
γ a,a∗∗

k ;γ a+3; 1
γ

J γ−1

)

[∑γ

k=1 F
(γ−1)
D

(
γ a,a∗

k;γ a+2; 1
γ

J γ−1

)]3/2 , (10)

where a∗∗
k = (a, . . . , a + 3, . . . , a) with a + 3 being the kth element of the

vector.
An important goal in inferential procedures is the prediction of future

values of a random quantity based on its past outcomes. The intuitive
structure of the predictive distributions associated with the Dirichlet pro-
cess

P(Xn+1 ∈ · |X1, . . . ,Xn)= a

a+n
α( · )
a

+ n

a+n
1
n

n∑

i=1

δXi ( · )

has considerably contributed to its success. Here we show that the predic-
tive distributions of the generalized Dirichlet process still have an intuitive
closed form expression: they consist of a linear combination of the prior
guess and of a weighted version of the empirical distribution, as shown by
Pitman (2003) for Poisson–Kingman models. Moreover, the weights at issue
are expressible in terms of fourth type Lauricella multiple hyergeometric
functions.

Denote by X∗
1, . . . ,X

∗
k the k distinct observations within the sample

X1, . . . ,Xn, nj >0 terms being equal to X∗
j , for j=1, . . . , k. Consider, now,

the following notation

n=(n1, . . . , nk)
′, n+ = (n1, . . . , nk,1)′, n+

j = (n1, . . . , nj +1, . . . , nk)′

and, for q= 1, . . . , γ , introduce the measures, corresponding to a general-
ization of the Dirichlet updating mechanism,

α∗
q( · ;n, rk) :=α( · )+

k∑

i=1

ni δx∗
i
( · ) δq({ri}), (11)

where rk = (r1, . . . , rk)′ ∈ {1, . . . , γ }k. Clearly, a∗
q(n, r

k)= a+∑k
i=1 ni δq({ri})

denotes the total mass.
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PROPOSITION 3. Let P̃ be a generalized Dirichlet process with parameter
(α, γ ). If α is non-atomic, then the predictive distribution, given X1, . . . ,Xn
is of the form

P(Xn+1 ∈ · |X1, . . . ,Xn)= a

γ a+n
α( · )
a

w(n+)+

+ n

γ a+n
1
n

k∑

j=1

nj w(n
+
j ) δX∗

j
( · ),

and the weights are given by

w(n+)=
∑

rk+1 F
(γ−1)
D

(
γ a,a∗(n+, rk+1);γ a+n+1; 1

γ
J γ−1

)

∑
rk F

(γ−1)
D

(
γ a,a∗(n, rk);γ a+n; 1

γ
J γ−1

) (12)

and

w(n+
j )=

∑
rk F

(γ−1)
D

(
γ a,a∗(n+

j , r
k);γ a+n+1; 1

γ
J γ−1

)

∑
rk F

(γ−1)
D

(
γ a,a∗(n, rk);γ a+n; 1

γ
J γ−1

) (13)

with a∗(n, rk) := (a∗
1(n, r

k), . . . , a∗
γ−1(n, r

k)).

It is worth noting that the predictive distributions of the generalized Di-
richlet process, besides being interesting from a theoretical point of view,
are also useful from a computational perspective, since they are the key
ingredient for the simulation algorithm employed in Section 5 for drawing
samples from the random probability measure itself.

Let us close this section with some considerations concerning the role of
the parameters (a, γ ) in the context of prior specification. The prior opin-
ion on the unknown P̃ is reflected by the choice of the parameter measure
P0 =α/a. Further information can be taken into account by suitably choos-
ing (a, γ ). We suggest looking at the variance and skewness of P̃ . It can be
seen from (6) and (9) that these quantities can be tuned by acting on Ia,γ
and on Ka,γ . Here, we provide two tables containing values of Ia,γ and Ka,γ

corresponding to different parameter values (a, γ ). Table I shows that the
prior variance decreases as a or γ increase. Since the prior variance can also
be seen as a measure of the weight given to the prior guess P0, both a and γ
represent the degree of belief in P0: the bigger a and γ the greater is confi-
dence in P0. Furthermore, Table I points out that different pairs of (a, γ ) can
lead to very similar variance structures. Table II shows that also the skewness
decreases as a and γ increase and, moreover, that pairs, which yield to sim-
ilar a priori variances, differ significantly with respect to the skewness. For
instance, Ia,γ is equal to 0.334 and 0.34 for the the pairs (2,1) and (1,2),
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Table I. Values of Ia,γ for different choices of (a, γ )

a γ

1 2 5 10

1 0.500 0.340 0.193 0.128
2 0.334 0.209 0.112 0.074
5 0.167 0.098 0.051 0.033

10 0.091 0.052 0.026 0.018

Table II. Values of Ka,γ for different choices of (a, γ )

a γ

1 2 5 10

1 0.9428 0.8777 0.0324 2.042e-06
2 0.4396 0.1917 0.0001 2.354e-13
5 0.1488 0.0073 2.067e-11 1.352e-33

10 0.0561 0.0017 3.035e-22 7.331e-67

respectively, but, for (a, γ )= (1,2), the skewness of P̃ (B), for any B, is twice
the skewness associated to the case (2,1). Thus, within the structural con-
straints, it seems reasonable to set (a, γ ) simultaneously in such a way as to
incorporate a priori opinions on the variance and skewness.

4. Means

The study of means of random probability measures has been an important
area of research in Bayesian Nonparametrics in the past decade. For the
Dirichlet case fundamental results have been given in the pioneering works
of Cifarelli and Regazzini (1979, 1990) and, more recently, Regazzini et al.
(2002) provided a comprehensive treatment of the topic. Currently atten-
tion is devoted to the derivation of results for means of random probability
measures different from the Dirichlet process: among other contributions,
we mention Allaart (2003), Bloomer and Hill (2002), Epifani et al. (2003),
Hjort (2003), James (2002), Nieto–Barajas et al. (2004).

Regazzini et al. (2003) obtain conditions for existence and study the dis-
tribution of means of normalized RMI under prior and posterior condi-
tions. In particular, with reference to the generalized Dirichlet process at
issue, it is shown that, given a real-valued measurable function f , the mean∫

R
f (x) P̃ (dx) is finite if and only if
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∫

R

log(1+λ|f (x)|)γ α(dx)<+∞ for every λ>0. (14)

One immediately sees that (14) is equivalent to the condition derived in
Feigin and Tweedie (1989) for means of the Dirichlet process. Moreover,
in Regazzini et al. (2003) the exact prior distribution of the mean is deter-
mined. Its expression is given by

F(σ )=1
2
−(γ !)a

π

∫ +∞

0

1
s

exp

{

−1
2

γ∑

k=1

∫

R

log(k2 + s2(f (x)−σ)2)α(dx)
}

×

× sin

(
γ∑

k=1

∫

R

arctan
s(f (x)−σ)

k
α(dx)

)

ds, (15)

having denoted by F the probability distribution function of
∫

R
f (x)P̃ (dx).

As far as the posterior distribution of
∫

R
f (x)P̃ (dx) is concerned, Regazz-

ini et al. (2003) show that this is absolutely continuous with respect to the
Lebesgue measure on R and obtain its expression, by means of a limit-
ing argument, in terms of a Radon–Nikodým derivative. Here we aim at
improving this result in the sense that, under the weak additional assump-
tion of absolute continuity of the parameter measure α, we derive a com-
pletely explicit expression of the posterior density function of the mean,
which is much simpler than the one provided in Regazzini et al. (2003).
Before stating the result, we recall that I nc+h(σ)=

∫ σ
c
(σ−u)n−1

(n−1)! h(u)du is the
Liouville-Weyl fractional integral, for n� 1, and I 0

c+ represents the identity
operator. (See, e.g., Oldham and Spanier, 1974).

PROPOSITION 4. Let P̃ be a generalized Dirichlet process with parame-
ters (α, γ ). Suppose α is nonatomic and (14) is satisfied. Then, for every
σ ∈ R, the posterior density function of

∫
R
f (x)P̃ (dx), given (X1, . . . ,Xn)=

(x1, . . . , xn), is of the form

ρ(σ)=
{ 1
π
I n−1
c+ Imψ(σ) if n is even,

−1
π
I n−1
c+ Reψ(σ) if n is odd

(16)

with

ψ(σ)= �(γ a+n) γ γa ∑rk

∫ +∞
0 tn−1e −∑γ

q=1

∫
R

log(q+it (f (x)−σ))α∗
q (dx;n,rk)dt

(γ !)a �(γ a)
∑

rk F
(γ−1)
D

(
γ a,a∗(n, rk);γ a+n; 1

γ
J γ−1

) , (17)

having defined α∗
q( · ;n, rk) as in (11), and c= inf supp(α).
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As far as the Bayes estimate of a mean, under quadratic loss function,
is concerned, from Proposition 3, provided α is nonatomic and (14) is sat-
isfied, one has

E
[∫

R

f (x) P̃ (dx) |X1, . . . ,Xn

]

= w(n+)
γ a+n

∫

R

f (x)α(dx)+

+ 1
γ a+n

k∑

j=1

nj w(n
+
j ) f (X

∗
j ),

where w(n+) and w(n+
j ) are given by (12) and (13), respectively.

Studying some qualitative properties of the distribution of the mean is
also an interesting topic. In particular, we study the symmetry of the dis-
tribution of

∫
R
f (x)P̃ (dx). Such an issue has been considered by a num-

ber of authors in the Dirichlet case. In particular, Regazzini et al. (2002)
show that if the measure α ◦f −1 is symmetric, then the distribution of the
mean of Dirichlet process

∫
R
f (x)Dα(dx) is symmetric, having denoted, as

usual, by α ◦f −1 the distribution of f (X) when X has distribution α. Here
we aim at extending such a property to the generalized Dirichlet process.
Moreover, we provide an expression for a measure of symmetry such as the
skewness coefficient.

PROPOSITION 5. Let P̃ be a generalized Dirichlet process with parame-
ters (α, γ ). If α ◦ f −1 is symmetric, then the distribution of the mean of a
generalized Dirichlet process

∫
R
f (x)P̃ (dx) is symmetric as well. Further, if∫

R
|f (x)|3α(dx)<+∞ then the skewness coefficient of

∫
R
f (x)P̃ (dx) is given

by

sk
(∫

R

f (x)P̃ (dx)
)

= c sk(Y ),

where Y has distribution (α ◦f −1)/a and c is a constant equal to

2
γ a+2

√
γ γa+1(γ a+1)

(γ !)a

∑γ

r=1 F
(γ−1)
D

(
γ a,a∗∗

r 1γ−1;γ a+3; 1
γ

J γ−1

)

[∑γ

r=1 F
(γ−1)
D

(
γ a,a∗

r ;γ a+2; 1
γ

J γ−1

)]3/2

5. Simulation Algorithm

Despite the availability of explicit expressions for many quantities of statis-
tical interest, their practical use is somehow limited by the fact that they
involve multiple hypergeometric functions. For this reason, one needs to
resort to some computational scheme that allows to draw samples from
generalized Dirichlet process priors. In such a framework, knowledge of
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the predictive distributions, determined in Proposition 3, is crucial. Indeed,
most of the simulation algorithms developed in Bayesian Nonparamet-
rics rely upon variations on the Blackwell–MacQueen Pólya urn scheme
and upon the development of appropriate Gibbs sampling procedures. (See
Escobar, 1994; Mac Eachern, 1994; Escobar and West, 1995) for the Di-
richlet case and Pitman (1996) and Ishwaran and James (2001) for exten-
sions to more general random probability measures.

In our case, a sample X= (X1, . . . ,Xn) from a generalized Dirichlet pro-
cess with parameters (α, γ ) is characterized through the following gener-
alized Pólya urn scheme. Let Z1, . . . ,Zn be an i.i.d. sample from α(·)/a
and, for any i=1, . . . , n, let ni= (ni,1, . . . , ni,ki ) be the frequencies of ki dis-
tinct observations, X∗

i,1, . . . ,X
∗
i,ki

, in Xi−1 = (X1, . . . ,Xi−1). Moreover, n+
i =

(ni,1, . . . , ni,ki ,1), n+
i,j = (ni,1, . . . , ni,j + 1, . . . , ni,ki ,1). Then, the sample X

can be generated as follows: X1 =Z1 and for i=2, . . . , n

(Xi |Xi−1)=
{
Zi, with prob

{
a w(n+

i )
}
/(γ a+n)

X∗
i,j , with prob

{
nj w(n

+
i,j )

}
/(γ a+n) j =1, . . . , ki,

(18)

where w(n+
i ),w(n

+
i,j ) are given in Proposition 2.

Some other Pólya urn Gibbs sampler methods can be based on the
above scheme in order to fit general semiparametric settings. For example,
we can consider the following hierarchical model

(Yi |Xi, θ) ind∼ L(Yi |Xi, θ), i=1, . . . , n

(Xi |P) iid∼ P
(19)

θ ∼ L(θ)

P ∼ P̃ (α, γ ),

where P̃ (α, γ ) denotes a generalized Dirichlet process with prior guess
α(·)/a. Model (19), with P̃ corresponding to the Dirichlet process, has been
popularized by Escobar and West (1995). Further implications of its par-
tially exchangeable structure on the partitioning of the observations are
carefully examined in Petrone and Raftery (1997). Integrating out over P
in (19) we get

(Yi |Xi, θ) ind∼ L(Yi |Xi, θ), i=1, . . . , n

(X1, . . . ,Xn) ∼ L(X1, . . . ,Xn) (20)

θ ∼ L(θ),

where L(X1, . . . ,Xn) denotes the joint law of X = (X1, . . . ,Xn) character-
ized by the Pólya urn (18). Following Ishwaran and James (2001), a Gibbs



296 ANTONIO LIJOI ET AL.

sampler algorithm can be used to sample from the posterior distribution
L(X, θ |Y ) of (20). Having denoted by X−i the vector X with the ith coor-
dinate deleted, we proceed by iteratively drawing samples from the distribu-
tions of (Xi |X−i , θ,Y ), for i= 1, . . . , n, and the distribution of (θ |X,Y ).
Each iteration of the algorithm consists of two steps:

(i) for each i = 1, . . . , n, generate Xi values from the conditional
distribution

P (Xi ∈ · |X−i , θ,Y )=q∗
i,0 P (Xi ∈ · | θ, Yi)+

ki∑

j=1

q∗
i,j δX∗

j
(·), (21)

where the mixing proportions are given by

q∗
i,0 ∝

{
aw(n+

i )

γ a+n
}∫

X
f (Yi |X,θ)α(dX) and

q∗
i,j ∝

{
ni,jw(n

+
i,j )

γ a+n

}

f (Yi |X∗
j , θ),

subject to the constraint
∑ki

j=0 q
∗
i,j = 1. Here f denotes the density

corresponding to L(Y |X,θ) and α(·) the distribution corresponding to
α(·)/a.

(ii) generate θ from a probability distribution whose density function is
given by

L(dθ |X,Y )∝L(dθ)
n∏

i=1

f (Yi |Xi, θ). (22)

Some other Gibbs sampler methods can be also generalized such as the
acceleration method described in Ishwaran and James (2001).

The added computational difficulty when using a generalized Dirichlet
process (γ > 1) as a nonparametric prior, rather than a Dirichlet process,
derives from the complexity of the weight functions. These functions have
to be computed k + 1 times within each step of the Pólya urn scheme,
which makes the algorithms slow. However, if γ = 2 or γ = 3 then F

(γ−1)
D

reduces to the Gauss or the Appell hypergeometric function, respectively.
These functions can be quickly computed by means of commonly used
software packages. If γ �4, one can determine a numerical approximation
of the weights by relying on formula (A3) given in the Appendix. Further
simplification is due to the fact that the weights are invariant with respect
to permutations of the components of the vector n = (n1, . . . , nk). There-
fore, we only need to compute the weights corresponding to the unique
set of partitions of the integer n, representing the sample size in the Pólya
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urn. For example, if n = 4 then we have n(1) = 4, (n(1), n(2)) = (1,3) or
(n(1), n(2))= (2,2), (n(1), n(2), n(3))= (1,1,2) and (n(1), . . . , n(4))= (1,1,1,1)
as unique partitions, from which, for instance, the weights corresponding to
(n1, n2, n3)= (1,2,1) are expressed as (w1,w2,w3)= (w(1),w(3),w(2)). Hence,
we can construct a table with all the possible weights to be read within the
sampling algorithms instead of computing them each time is needed. The
number π(n) of partitions of an integer n as a sum of positive integers can
be found by the recursion formula

π(n)=
n∑

j=1

(−1)j+1
[

π

(

n− 1
2
j (3j −1)

)

+π
(

n− 1
2
j (3j +1)

)]

.

For other recursion formulas as well as algorithms to find the partitions
we refer to Skiena (1990). It is also worth noticing that the weights are
independent from the sample, which implies that the same weights-database
works for any sample of the same size.

EXAMPLE. Let us consider a data set Y = (Y1, . . . , Y40), where the
first 20 observations are drawn from a normal distribution N(2,1) and
Y21, . . . , Y40 from a normal distribution N(7,1). We then consider the fol-
lowing hierarchical model to describe such data:

(Yi |Xi, θ) ind∼ N(Yi |Xi;1), i=1, . . . , n

(Xi |P) iid∼ P

P ∼ P̃ (a, γ ).

We compare the performance of different random probability measures
with the same prior guess at the shape of P̃ coinciding with a normal dis-
tribution with mean Y and variance two times the range of the data. When
considering the generalized Dirichlet process, we fix a=1 and consider the
two random probability measures corresponding to γ = 2 and γ = 3. For
the sake of comparison with the Dirichlet process, we set the total mass a∗

in order to match its variance with the variance of each of the two general-
ized Dirichlet processes above. Hence, if we notice from Equation (7) that
in the Dirichlet case Ia∗,1 = 1/(a∗ + 1), then the Dirichlet process matches
the variance of P̃ (α, γ ) if a∗ =I−1

a,γ −1. Hence, for a=1 and γ =2 we have
a∗ =1.93, whereas for a=1 and γ =3 we have a∗ =2.77.

Given this, we construct the database with the 31185 different weights
corresponding to the partition of n= 39 and then carry out 10,000 itera-
tions from the generalized Pólya urn Gibbs sampler. Table III features the
weights for a specific partition of 39 = 19 + 9 + 8 + 3 and for different val-
ues of γ . In general, increasing the value of γ leads to an increase in the
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Table III. Weights from a generalized Dirichlet process with parameter a = 1 and γ =
1,2, . . . ,10. The weights correspond to the partition of 39 given by (n1, n2, n3, n4) =
(19,9,8,3)

γ w0 w1 (n1 =19) w2 (n2 =9) w3 (n3 =8) w4 (n4 =3) w1/w4

1 0.025 0.475 0.225 0.200 0.075 6.333

2 0.048 0.463 0.219 0.194 0.073 6.376

3 0.070 0.455 0.213 0.189 0.070 6.462

4 0.090 0.449 0.208 0.185 0.068 6.594

5 0.107 0.443 0.204 0.180 0.066 6.763
6 0.122 0.439 0.200 0.177 0.063 6.952

7 0.134 0.435 0.197 0.174 0.061 7.145
8 0.145 0.431 0.195 0.171 0.059 7.328
9 0.154 0.427 0.193 0.169 0.057 7.494

10 0.161 0.424 0.191 0.168 0.056 7.641

0.0

0.1

0.2

–1 1 3 5 7 9 11 13 15

~P(a=1,γ=2)
Dirichlet(a*=1.93)
Model

0.0

0.1

0.2

–1 1 3 5 7 9 11 13 15

~P(a=1,γ=3)
Dirichlet(a*=2.77)
Model

Figure 1. Posterior density estimates corresponding to 10,000 MCMC drawings.

weight given to the prior guess at the shape (w0), but at the same time it
also increases the relative weight of the groups with higher frequencies. As
shown in the last column of Table III, the relative weight given to n1 =19
with respect to n4 =3 increases along with γ . This suggests a sort of rein-
forcing mechanism working for the generalized Dirichlet process. Figure 1
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shows the smoothed MC estimates for the posterior densities resulting from
the generalized Pólya urn Gibbs sampler. Note that, with the same num-
ber of iterations, the use of a generalized Dirichlet process provides a more
accurate fitting than the corresponding Dirichlet process. This suggests that
the generalized Dirichlet process prior may represent a fruitful alternative
to the more commonly used Dirichlet process and might stimulate further
investigation on specific applications with real datasets.

Appendix A

Proof (of Proposition 1). The argument we shall use basically relies upon
the representation of the density function of the sum of independent
gamma r.v.’s in terms of the confluent form 


(n)

2 , of the fourth Lauricella
function. (See Exton, 1976). Hence, for any B ∈B(R), the density function
of ξα(B) is

fξα(B)(v)=
(γ !)α(B)

�(γ α(B))
e−γ v vγα(B)−1 


(γ−1)
2 (α(B)1γ−1;γα(B);v J γ−1).

(A1)

In order to determine the density function of the vector
(
ξα(B1)

ξa
, . . . ,

ξα(Bn−1)

ξa

)

= (P̃ (B1), . . . , P̃ (Bn−1)),

we use (A1) with the fact that ξa
d=∑n

i=1 ξαi , having set αi =α(Bi), for i=
1, . . . , n. The density function of (ξα1, . . . , ξαn) is given by

f (v1, . . . , vn)=
(γ !)a e−γ |v|

{∏n
j=1 v

γαj−1
j

}

∏n
j=1�(γαj )

n∏

j=1



(γ−1)
2 (αj 1γ−1;γαj ;vj J γ−1)

and, considering the transformed random vector (Y1, . . . , Yn−1) =
(ξα1, . . . , ξαn−1, ξa), it is easy to determine the corresponding density func-
tion which coincides with

f (y1, . . . , yn−1, y)=
(γ !)a e−γy

{∏n−1
j=1 y

γαj−1
j

}
(y−|Y |)γαn−1

∏n
j=1�(γαj )

×
n−1∏

j=1



(γ−1)
2 (αj 1γ−1;γαj ;yj J γ−1)


(γ−1)
2

×(αn 1γ−1;γαn; (y−|Y |)J γ−1).
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Finally, the required density is obtained by the variable transformation σj =
yj/y, for j =1, . . . , n−1, and σ =y, and integration over σ . �

Proof (of Corollary 2). Since in the case γ =2, 
2 reduces to the conflu-
ent hypergeometric function 1F1, one simply needs to interchange the oper-
ation of integration and multiple summation to obtain

f (σ1, . . . , σn−1)=
2a σ 2α1−1

1 · · · σαn−1−1
n−1 (1−|σ |)αn−1

∏n
j=1�(2αj )

×

×
∑

m1,... ,mn

(α1)m1 · · · (αn)mnσm1
1 · · · σmn−1

n−1 (1−|σ |)mn
(2α1)m1 · · · (2αn)mnm1! · · · mn! ×

×
∫ +∞

0
σ 2a+|m|−1e−2σ dσ

and the result follows by solving the gamma integral. �

Details for the determination of (6), (8) and (9). From Proposition 1
in James et al. (2004), variance, covariance and skewness of a normalized
RMI based upon a subordinator are given by (6), (8) and (9), respectively,
with Ia,γ defined as

Ia,γ =a
∫ +∞

0
u e−a ψ(u)

∫ +∞

0
v2 e−uv ν(dv)du,

where ψ stands for the Laplace exponent of the random measure at issue
and ν is the Lévy measure and Ka,γ given by

Ka,γ = a
∫ +∞

0 u2 e−a ψ(u) ∫ +∞
0 v3 e−uv ν(dv)du

I3/2
a,γ

.

Hence, in the case of a generalized Dirichlet process with parameter (α, γ )
one has

Ia,γ =a (γ !)a
γ−1∑

k=0

∫ +∞

0

u
∏γ

j=1(j +u)a
∫ +∞

0
v e−(u+k+1)v dv du

=a (γ !)a
γ∑

k=1

∫ +∞

0

u

(u+k)2 ∏γ

j=1(j +u)a du

=a
γ∑

k=1

k−2
∫ +∞

0
uE

[
e−u(ηk+ζ (γ )a )

]
du=a

γ∑

k=1

k−2 E

[
1

(ηk + ζ (γ )a )2

]

,
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where ηk is a Gamma(k,2) random variable and ζ
(γ )
a

d = ∑γ

j=1Z
∗
j , the Z∗

j s
being independent and Gamma(j, a) r.v.s. Moreover, ηk and ζ

(γ )
a are inde-

pendent. If Yk =ηk + ζ (γ )a , the density function of Yk coincides with

fk(y)= (γ !)a k2

�(γ a)

∫ y

0
(y−x) e−k(y−x) xγ a−1 e−γ x 
(γ−1)

2 (a 1γ−1;γ a;x J γ−1)dx

and the change of variable z=g1(x)=x/y yields

fk(y)= (γ !)a k2

�(γ a)
yγa+1 e−ky ×

×
∫ 1

0
zγa−1(1− z) e−(γ−k)yz 
(γ−1)

2 (a 1γ−1;γ a;yzJ γ−1)dz.

Hence, turning back to the computation of Ia,γ , use the Fubini theorem to
obtain

Ia,γ =a
γ∑

k=1

k−2
∫ +∞

0
y−2 fk(y)dy

= a(γ !)a

�(γ a)

γ∑

k=1

∫ 1

0
zγa−1(1− z)×

×
∫ +∞

0
yγa−1e−[k+(γ−k)z]y
(γ−1)

2 (a 1γ−1;γ a; zy J γ−1)dy dz

=a(γ !)a
γ∑

k=1

∫ 1

0

zγa−1(1− z)
[k+ (γ −k)z]γ a ×

×F (γ−1)
D

(

γ a, a 1γ−1;γ a; z

k+ (γ −k)z J γ−1

)

dz

and the last equality follows from (2.4.10) in Exton (1976). Now use the
fact that, for any x ∈ [0,1)n, a>0 and bi >0 (i=1, . . . , n), F (n)D (a,b;a;x)=∏n
i=1(1−xi)−bi in order to obtain

Ia,γ = a (γ !)a

γ γ a

γ∑

k=1

∫ 1

0

vγa−1(1−v)
[γ − (γ −k)v]2

F
(γ−1)
D

(

γ a, a 1γ−1;γ a; v
γ

J γ−1

)

dv

= a (γ !)a

γ γ a

γ∑

k=1

∫ 1

0
vγa−1(1−v)

[

1− (γ −k)v
γ

]−2 γ−1∏

j=1

[

1− jv

γ

]−a
dv

= a (γ !)a�(γ a)
γ γa�(γ a+2)

γ∑

k=1

F
(γ−1)
D

(

γ a,a∗
k;γ a+2; 1

γ
J γ−1

)
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having employed the change of variable z=g2(v)= kv/[γ − (γ − k)v], (A3)
in Lauricella (1893) and having set a∗

k = (a, . . . , a + 2, . . . , a) with a + 2
being the kth element of the vector.

Using arguments analogous to those employed for determining Ia,γ one has

Ja :=a
∫ +∞

0
u2e−aψ(u)

∫ +∞

0
v3 e−uv ν(dv)du

= 4a(γ !)a�(γ a)
�(γ a+3) γ γ a

γ∑

r=1

F
(γ−1)
D

(

γ a,a∗∗
r ;γ a+3; 1

γ
J γ−1

)

, (A2)

where a∗∗
r = (a, . . . , a + 3, . . . , a) with a + 3 being the rth element of the

vector. Using (A2) and some simple algebra, one obtains Ka,γ .

Proof (of Proposition 3). Under the hypothesis of diffuseness of α, Pit-
man (2003) shows that the predictive distributions corresponding to nor-
malized RMIs based upon subordinators is of the form

�
(n+1)
k+1 (n1, . . . , nk,1)

n�
(n)
k (n1, . . . , nk)

α( · )+ 1
n

k∑

j=1

�
(n+1)
k (n1, . . . , nj +1, . . . , nk)

�
(n)
k (n1, . . . , nk)

δX∗
j
( · ),

(A3)

having defined �
(n)
k (n1, . . . , nk)=

∫ +∞
0 un−1 e−aψ(u) ∏k

j=1µnj (u)du and, for
j=1, . . . , k , µnj (u)=

∫
(0,+∞)

vnj e−uv ν(dv). (See also James, 2002; Prünster,
2002) for different derivations of this result. Since, by construction, the
generalized Dirichlet process prior lies within this subclass of normalized
RMI, let us first determine �(n)

k (n1, . . . , nk). In our case

µnj (u)=
γ−1∑

r=0

∫ +∞

0
vnj−1e−(u+r+1)v dv=�(nj )

γ∑

r=1

(u+ r)−nj (A4)

so that

�
(n)
k (n1, . . . , nk)=

k∏

j=1

�(nj )
∑

rk

∫ +∞

0
un−1






γ∏

j=1

(j +u)−a





{
k∏

i=1

(ri +u)−ni
}

du

=
k∏

j=1

�(nj )
∑

rk

1
r
n1
1 · · · rnkk

∫ +∞

0
un−1 E

[
e−uVa,k] du

=�(n)





k∏

j=1

�(nj )






∑

rk

1
r
n1
1 · · · rnkk

E
[
V −n
a,k

]
,

where Va,k
d=∑γ

q=1 Y
∗
q with the Y ∗

q s being independent Gamma(q, a∗
q(n, r

k))

random variables. Recall the notation a∗(n, rk) :=(a∗
1(n, r

k), . . . , a∗
γ−1(n, r

k)).
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The density function of Va,k can be expressed in terms of the confluent
form of the fourth Lauricella function thus yielding

�
(n)
k (n1, . . . , nk)=

(γ !)a�(n)
∏k
j=1�(nj )

�(γ a+n) ×

×
∑

rk

∫ +∞

0
zγa−1e−γ z
(γ−1)

2 (a∗(n, rk);γ a+n; zJ γ−1)dz

= (γ !)a �(n)
∏k
j=1�(nj )

γ γa �(γ a+n) �(γ a)×

×
∑

rk

F
(γ−1)
D

(

γ a, a∗(n, rk);γ a+n; 1
γ

J γ−1

)

where we have exploited the variable transformation z = g(v)= v/γ and
(2.4.10) in Exton (1976). Now one has to compute (A3) and rearrange the
terms appropriately in order to obtain the desired result. �

Proof (of Proposition 4). In order to derive the posterior distribu-
tion we start by discretizing the generalized Dirichlet process accord-
ing to the procedure proposed in Regazzini et al. (2003). It essentially
consists in discretizing the random probability measure and the sample
along a tree of nested partitions, which, at level m, is made up of sets
Bm,0,Bm,1, . . . ,Bm,km+1 with Bm,0 = (−∞,−Rm) and Bm,km+1 = (Rm,+∞).
Moreover, let Rm be such that limm Rm=+∞ and let max1�i�km |Bm,i |→0
as m→+∞, where |B| is the length of the interval B. The discretized ran-
dom mean, at level m of the tree, will be of the form

∫
R
f (x)P̃m(dx)=

∑km+1
j=0 f (bm,j )P̃ (Bm,j ), where bm,j is any point in Bm,j for j=1, . . . , km and

bm,0 = −Rm, bm,km+1 =Rm. Denote, as previously, by x∗
1 , . . . , x

∗
k the k dis-

tinct observations within the sample, nj > 0 terms being equal to x∗
j , for

j = 1, . . . , k. Whenever the j -th distinct element, x∗
j , lies in Bm,i , it is as

if we had observed bm,i . Note that, whatever tree of partitions has been
chosen, there always exists m∗ such that for every m>m∗ the k distinct
observations within the sample fall in k distinct sets of the partition. In
Proposition 3 of Regazzini et al. (2003) it is proved that a posterior density
function of the discretized mean is given by

(−1)n

µ
(n)
m (x)

∂n

∂r
ns1
m,s1 ...∂r

nsk
m,sk

I n−1
a+ F(σ ;rm,0,...,rm,km+1)

∣
∣
∣
∣
(rm,0,...,rm,km+1)=(f (bm,0),...,f (bm,km+1))

,

(A5)

where µ(n)m indicates the discretized marginal distribution of (X1, . . . ,Xn)

and F the prior distribution function of the discretized mean. In the case
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of generalized Dirichlet process (A5) becomes

(−1)n

πµ
(n)
m (x)

I n−1
a+ Im

∫ +∞

0

1
t

∂n

∂r
ns1
m,s1 . . . ∂r

nsk
m,sk

exp




−

γ∑

q=1

km+1∑

j=0

log(q+ it (rm,j −σ))αm,j





dt. (A6)

Now it is useful to rewrite the derivative inside (A6) as

∂n

∂r
ns1
m,s1 . . . ∂r

nsk
m,sk

exp





−

γ∑

q=1

km+1∑

j=0

log(q+ it (rm,j −σ))αm,j






=
(

k∏

l=1

αm,sl

)

exp





−

γ∑

q=1

km+1∑

j=0

log(q+ it (rm,j −σ))αm,j






k∏

l=1

�
nsl
αm,sl

(t),

(A7)

where � is defined as

�
nsl
αm,sl

(t) := e
∑γ

q=1 log(q+it (rm,sl−σ))αm,sl

αm,sl
×

×




∂nsl

∂r
nsl
m,sl

exp





−

γ∑

q=1

log(q+ it (rm,sl −σ))αm,sl










. (A8)

Now we move on to computing an explicit expression for µ(n)m . Indeed, one
has

µ(n)m (x)=E
[
ξ−n
a ξ

ns1
αm,s1

· · · ξnskαm,sk
]

= 1
�(n)

∫ +∞

0
un−1 E

[

exp(−uξa)
k∏

l=1

ξ
nsl
αm,sl

]

du

=
(∏k

l=1 αm,sl

)

�(n)

∫ +∞

0
un−1

γ∏

q=1

(

1+ u

q

)−a k∏

l=1

	
nsl
αm,sl

(u)du (A9)

having set

	
nsl
αm,sl

(u)=
∏γ

q=1

(
1+ u

q

)αm,sl

αm,sl





∂nsl

∂unsl

γ∏

q=1

(

1+ u

q

)−αm,sl




. (A10)
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Inserting (A7) and (A9) into (A6), one obtains

(−1)n(n−1)!
π

In−1
a+ Im

∫ +∞
0

1
t

exp
{
−∑γ

q=1

∑km+1
j=0 log(q+ it (rm,j −σ))αm,j

}∏k
l=1�

−nsl
αm,sl

dt

∫ +∞
0 un−1

∏γ

q=1

(
1+ u

q

)−a∏k
l=1	

nsl
αm,sl

(u)du
.

Now we have to derive the limiting posterior density. Before proceeding, it
is worth to check that, by virtue of the diffuseness of α, for (A8) and (A10)
the following relations hold true

�
nsl
αm,sl

= (−1)−nsl (nsl −1)! (it)nsl
γ∑

p=1

(
p+ it (rm,sl −σ)

)−nsl +o(αm,sl )

	
nsl
αm,sl

= (−1)−nsl (nsl −1)!
γ∑

p=1

(

1+ u

p

)−nsl
+o(αm,sl ).

Given this, by letting m tend to +∞, Theorem 35.7 in Billingsley (2003)
and dominated convergence lead to write the limiting posterior density as
(16) with

ψ(y)=
(n−1)!

∫ +∞
0 tn−1e−∑γ

q=1
∫
R

log(q+it (f (x)−σ))α(dx)∏k
l=1

∑γ

p=1

(
p+ it (f (x∗

l )−σ)
)−nl dt

∫ +∞
0 un−1

∏γ

q=1

(
1+ u

q

)−a∏k
l=1

∑γ

p=1

(
1+ u

p

)−nl
du

,

= (n−1)!
∑

rk

∫ +∞
0 tn−1e−∑γ

q=1
∫
R

log(q+it (f (x)−σ))α(dx)∏k
l=1

(
ri + it (f (x∗

l )−σ)
)−nl dt

∑
rk

∫ +∞
0 un−1

{
∏γ

q=1

(
1+ u

q

)−a}∏k
l=1

(
1+ u

ri

)−nl
du

.

(A11)

The result follows by the definition of α∗
q( · ;n, rk) given in (11) and by sim-

plifying the denominator as in the proof of Proposition 3. �

Proof (of Proposition 5). From the results obtained in Regazzini et al.
(2003) it follows immediately that

∫
R
f (x)P̃ (dx) is equal in distribution to∫

R
xP̃ ′(dx), where P̃ ′ is a generalized Dirichlet process with parameter (α ◦

f −1, γ ). Hence, we confine ourselves, with no loss of generality, to studying
the symmetry of the distribution of

∫
R
xP̃ (dx). If α is symmetric, then for

proving symmetry one can exploit the expression of the probability distri-
bution function F of

∫
R
xP̃ (dx) in (15) derived in Regazzini et al. (2003).

Indeed, note that the symmetry of α implies that F(−σ)=1−F(σ ), for any
σ ∈R, by a simple change of variable.

Let us now consider the problem of determining the skewness coeffi-
cient of the random mean

∫
R
xP̃ (dx). Indicate by mk and m̄k, respectively,
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the kth moment and the kth centered moment of a random variable with
distribution α( · )/a. Our aim is to show that E

[ ∫
R
xP̃ (dx)−m1

]3 =c m̄3 for
some constant c. One immediately verifies that

E
[∫

R

xP̃ (dx)−m1

]3

=E
[∫

R

xP̃ (dx)
]3

−3m1 E
[∫

R

xP̃ (dx)
]2

+2m3
1.

(A12)

Let us start by computing E
[∫

R
xP̃ (dx)

]3
. To this end we discretize the

generalized Dirichlet process according to the same procedure employed in
the proof of Proposition 3. Refer to that proof for the notation and set
P̃ (Bm,i)= P̃m,i and α(Bm,i)=αm,i . Thus, at level m of the tree of partitions
one has

E

[
km+1∑

i=0

bm,i P̃m,i

]3

=
km+1∑

i=0

b3
m,i E[P̃ 3

m,i ]+6
∑

i1<i2

b2
m,i1
bm,i2 E[P̃ 2

m,i1
P̃m,i2 ]+

+6
∑

i1<i2<i3

bm,i1bm,i2bm,i3 E[P̃m,i1P̃m,i2P̃m,i3 ] (A13)

As far as the computation of E[P̃ 3
m,i ] is concerned one has that

E[P̃ 3
m,i ]=E

[
1

�(3)

∫ +∞

0
u2e−uξa ξ 3

αm,i
du

]

= 1
2

∫ +∞

0
u2E

[

− d3

du3
e−uξαm,i

]

E
[
e−uξ(a−αm,i )

]
du

= 1
2

∫ +∞

0
u2

[

− d3

du3
e−αm,iψ(u)

]

e−(a−αm,i )ψ(u)du

= αm,i

2

∫ +∞

0
u2e−aψ(u)[µ3(u)+3αm,iµ1(u)µ2(u)

]
du+

+αm,i
2

∫ +∞

0
u2e−aψ(u)α2

m,iµ
3
1(u)du,

where µj is defined as in (A4) and ψ stands, as previously, for the char-
acteristic exponent of the reparameterized subordinator used for defining
the generalized Dirichlet process. By means of repeated integration by parts
one obtains

αm,i

2

∫ +∞

0
u2e−aψ(u)α2

m,iµ
3
1(u)du

= α3
m,i

a3
[1−Ia,γ ]− α3

m,i

a3

∫ +∞

0
u2e−aψ(u)µ1(u)µ2(u)du, (A14)
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where the expression of Ia,γ is given in (7). Exploitation of (A14), some
algebra, integration by parts of

∫ +∞
0 u2e−aψ(u)µ1(u)µ2(u)du and (A2) lead

to write

E[P̃ 3
m,i ]=

αm,ia
2 −3α2

m,i +2α3
m,i

2a3
aJa + 3α2

m,ia−3α3
m,i

a3
Ia,γ + α3

m,i

a3
.

Now we are left with calculating E[P̃ 2
m,i1
P̃m,i2 ] and E[P̃m,i1P̃m,i2P̃m,i3 ]. This

can be achieved proceeding as for E[P̃ 3
m,i ] and one obtains

E[P̃ 2
m,i1
P̃m,i2 ]=

2α2
m,i1
αm,i2 −αm,i1αm,i2a

2a3
Ja +

+αm,i1αm,i2a−3α2
m,i1
αm,i2

a3
Ia,γ + α2

m,i1
αm,i2

a3

E[P̃m,i1P̃m,i2P̃m,i3 ]=
αm,i1αm,i2αm,i3

a3
Ja + 3αm,i1αm,i2αm,i3

a3
Ia,γ +

+αm,i1αm,i2αm,i3
a3

.

Now inserting these expressions into (A13), letting m tend to infinity and,
finally, rearranging the terms appropriately we obtain

E
[∫

R

xP̃m(dx)
]3

= Ja
2
m̄3 +3Ia,γ

[
m1m2 −m3

1

]+m3
1. (A15)

The derivation of E
[∫

R
xP̃ (dx)

]2
can be carried out in a similar fashion,

yielding

E
[∫

R

xP̃m(dx)
]2

=m2
1 −Ia,γ (m2

1 +m2). (A16)

Inserting now (A15) and (A16) into (A12) leads to

E
[∫

R

xP̃ (dx)−m1

]3

=
2a(γ !)a�(γ a)

∑γ

r=1 F
(γ−1)
D

(
γ a,a∗∗

r 1γ−1;γ a+3; 1
γ

J γ−1

)

�(γ a+3) γ γ a
m̄3,

where, as previously, a∗∗
r = (a, . . . , a + 3, . . . , a)′ ∈ R

γ with a + 3 being
the rth element of the vector. Similar arguments lead to show that
Var[

∫
x P̃ (dx)]=Ia,γ m̄2 and the conclusion follows. �
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