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Linear functionals, or means, of discrete random probability measures
are a natural probabilistic object and the investigation of their properties have
a long and rich history. They appear in several areas of mathematics, in-
cluding statistics, combinatorics, special functions, excursions of stochastic
processes and financial mathematics, among others. Most contributions have
aimed at determining their distribution starting from a fully specified random
probability. This work addresses the inverse problem: the identification of the
base measure of a discrete random probability measure yielding a specific
mean distribution. Available results concern only the Dirichlet case for spe-
cific choices of the concentration parameter. Here we address the problem in
much greater generality and our results cover generic Dirichlet processes, the
normalized stable process and the Pitman–Yor process. In addition to their
theoretical interest, the results are of practical relevance to Bayesian non-
parametric inference, where the law of a random probability measure acts as
a prior distribution: often pre-experimental information is available about a
finite-dimensional projection of the data generating distribution, such as the
mean, rather than about an infinite-dimensional parameter. We further extend
our findings to mixture models, ubiquitous in Statistics and Machine Learn-
ing.

1. Introduction. We consider almost surely discrete random probability measures

(1) P̃ =
∑
i∈I

ωi δZi
,

on some space X, where I is countable, the sequences (ωi)i∈I and (Zi)i∈I are indepen-
dent and

∑
i∈I ωi = 1, almost surely. Moreover, the Zi’s are independent and identically

distributed from some probability measure P0 on X, termed parameter measure or base mea-
sure. Clearly, E[ P̃ ] = P0. When P0 is non-atomic, P̃ is a species sampling model, a notion
introduced in Pitman (1996). Various features of (1) have been thoroughly studied in prob-
abilistic contexts, because of their intrinsic connection with the theory of random partitions
and, in general, combinatorial stochastic processes. Among countless contributions we refer
to the seminal ones of Kingman (1975, 1978, 1982), Kallenberg (1975, 2017), Pitman (1995,
2006) and Bertoin (2006). By virtue of de Finetti’s representation theorem (de Finetti, 1937),
the law of a random probability measure may also be the directing measure, according to
the terminology of Aldous (1985), of exchangeable sequences of random elements. This pro-
vides a neat foundation of the Bayesian approach (Diaconis and Skyrms, 2018) and random
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probability measures represent key building blocks of Bayesian nonparametric procedures.
See Ghosal and van der Vaart (2017) and Müller et al. (2015).

The focus of the paper is on linear functionals of discrete random probabilities (1), given
by

(2)
∫
X
h(x)P̃ (dx) =

∑
i∈I

ωi h(Zi),

with h : X → R some measurable function such that
∫
|h|dP̃ < +∞ almost surely. These

can be seen as means of P̃ or P̃ -means as referred to by Pitman (2018). The study of dis-
tributional properties of (2) has a long and rich history dating back to von Neumann (1941)
and Watson (1956), who characterized its distribution in the case of P̃ being a Dirichlet
distribution with finite number of support points. In the infinite setup the problem has been
pioneered in Cifarelli and Regazzini (1979, 1990) for P̃ being a Dirichlet process. Diaco-
nis and Kemperman (1996) highlight several mathematical and statistical setups related to
(2). An important such instance is represented by the Markov and Hausdorff moment prob-
lems, whose investigation is framed in terms of (2) in Kerov (1993, 1998), where a link
with transition measures induced by continual Young diagrams is also established. Further
developments along this line are given in Tsilevich (1999), Kerov and Tsilevich (2004) and
Vershik, Yor and Tsilevich (2004). Another research topic, where (2) plays a prominent role,
is represented by Lévy’s arcsine laws (Lévy, 1939) and, in particular, its generalizations due
to Lamperti (1958) and Barlow, Pitman and Yor (1989) as well as the study of excursions
of Bessel processes, which are directly related to means of Pitman-Yor processes (Perman,
Pitman and Yor, 1992; Pitman and Yor, 1997a). See also James (2010); James, Lijoi and
Prünster (2008). Moreover, (2) appear also in the statistical physics literature, in relation to
zero-range process models (Pulkkinen, 2007). Connections with the theory of multivariate
hypergeometric functions have been studied in Lijoi and Regazzini (2004); Chamayou and
Wesołowski (2009), whereas further analytic properties have been derived, among others, in
Peccati (2004, 2008), El-Dakkak and Peccati (2008), Dello Schiavo (2019), Flint and Torrisi
(2021). Extensive reviews on random means can be found in Lijoi and Prünster (2009) and
Pitman (2018), whereas a historical perspective on the subject in Bayesian statistics can be
found in Lijoi and Prünster (2011).

The standard approach undertaken in the existing literature, which we have broadly dis-
cussed above, first completely specifies P̃ in (1) and then studies the properties of the cor-
responding linear functional (2). For instance, the distribution of (2) has been derived for P̃
being a Dirichlet process (Cifarelli and Regazzini, 1990), a Pitman–Yor process (James, Lijoi
and Prünster, 2008) or a normalized random measure with independent increments (Regazz-
ini, Lijoi and Prünster, 2003).

The present work pursues a different, and in a sense opposite, task as it provides an answer
to the following question: which P̃ , within a specific class of discrete random probability
measures, yields a specific distribution for the mean

∫
hdP̃ in (2)? This amounts to identify-

ing the parameter measure E[P̃ ] = P0, if there exists any, inducing the pre-specified law of
the P̃ -mean. This natural research question is still an open problem, since available results are
limited to Dirichlet random means and, moreover, impose constraints on its concentration pa-
rameter. In particular, Romik (2004) investigates transition measures induced by a hook walk
on continual Young diagrams and, by leveraging the relationship with Dirichlet means estab-
lished in Kerov (1993), successfully tackles the case of a Dirichlet process mean with unit
parameter. Furthermore, James, Roynette and Yor (2008) highlight the intriguing connec-
tion between Dirichlet random means and generalized gamma convolutions (see Bondesson,
1992). By relying on the Thorin measures associated with gamma integrals, they deduce a
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result for the Dirichlet case assuming the concentration parameter is less than 1. Here we
address the problem without resorting to the above mentioned connections to combinatorics
and generalized gamma convolutions, since these would prevent us to obtain results beyond
the Dirichlet case, which represents our main goal. Nonetheless the relationship to continual
Young diagrams established in Romik (2004) has been inspiring in the interpretation of our
results and will be further developed in Gaffi, Lijoi and Prünster (2023).

A different approach to achieve a prescribed mean distribution is present in an elegant
and stimulating paper by Hill and Monticino (1998), where the underlying random proba-
bility measure is characterized via random sequential barycenter arrays. An important point
worth clarifying is that in Hill and Monticino (1998) the unknown is the random probabil-
ity measure itself, whereas in our setup described above the unknown is the deterministic
base measure of a given class of random probability measures. While this makes the two
approaches not directly comparable, an advantage of our approach is that, in addition to in-
vestigating widely used random probability measures, we are able to explicitly determine the
unknown base measure, whereas in their setup the unknown random probability measure is
only implicitly characterized and to date neither results identifying their law nor concrete
examples are available.

These limitations have motivated this endeavour to establish both general and explicit re-
sults. In particular, we obtain explicit expressions for the base measure P0 inducing a broad
class of distributions on the mean, when P̃ is either a Dirichlet process, a normalized stable
process or a Pitman–Yor process. Interestingly, the techniques we introduce can be easily
extended, on a case-by-case basis, to situations that are ruled out by the assumptions of our
general results. We use them to discuss some noteworthy examples for which we are still
able to identify the base measure: this is helpful to gain insight about the admissible sets of
random mean distributions. From a technical perspective, taking the described inverse path
poses several challenges. Even if we rely on integral identities, known as Markov–Krein cor-
respondences or Cifarelli–Regazzini identities, as well as on generalized Cauchy–Stieltjes
transform inversion formulas, these classical tools cannot be directly applied to our case.
New proof strategies are required. Moreover, we need to assess existence and regularity for
singular integrals, in order to identify hypotheses that allow a broad class of mean densities
to be included. This allows to determine closed form expressions for the parameter measure
of Dirichlet, normalized stable and Pitman–Yor processes inducing a broad class of mean
distributions. Interestingly, our study unravels some relevant features of the underlying dis-
crete random probability measures and of the corresponding space of mean distributions. For
example, we show a surprising (at least to us) fact according to which not every absolutely
continuous law with compact support is the mean distribution of a certain discrete random
probability measure with given parameters.

Our findings are also of practical relevance for Bayesian nonparametric modeling. In-
deed, as shown e.g. in Kessler, Hoff and Dunson (2015), in many applications one might
have enough a priori information for eliciting the distribution of an interpretable (and finite-
dimensional) parameter of a nonparametric prior, foremost its mean. Once the mean is spec-
ified, our results allow to specify the infinite-dimensional P̃ accordingly. Moreover, the re-
sults can be readily extended to cover mixture models, such as the Dirichlet process mixture
model, which are hugely popular in Statistics and Machine Learning (Orbanz and Teh, 2010;
Müller et al., 2015). These consist in random densities, f̃(y) =

∫
k(y;x) P̃ (dx) with P̃ a

discrete random probability as in (1) and k( · ; · ) some transition kernel density such as, e.g.
a Gaussian density with parameter x= (µ,σ2). Then, the corresponding mean∫

R

h(y)f̃(y)dy =

∫
h̄(x) P̃ (dx),
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where x 7→ h̄(x) =
∫
R
h(y)k(y;x) dy, is still a linear functional of P̃ . Thus, if pre-

experimental information allows for the elicitation of the law of
∫
h̄dP̃ and P̃ is identified

up to its parameter measure P0, the latter can be specified so to enforce such prior knowledge
on the mean. Regardless of the applied motivation, these results on mixtures have the merit of
showcasing that our techniques encompass means of random probability measures that can
be both discrete or absolutely continuous.

The structure of the paper is as follows. In Section 2 we recall some general concepts and
fundamental results on random means and illustrate tools that will be crucial for achieving
our goals. In Section 3 we provide our main results obtaining explicit expressions for the base
measure P0 inducing a broad class of distributions on the mean. In Section 4 we extend our
results to cover nonparametric mixtures.

2. Transformations of completely random measures and random means. An effec-
tive strategy for defining (discrete) random probability measures is through transformations
of completely random measures. Such constructions, combined together with powerful an-
alytical tools that we are going to present, have been fundamental for the study of random
means. Here we provide a brief overview of these aspects, as they play a key role also for the
derivation of the main results in the manuscript.

2.1. Completely random measures. Let X be a complete and separable metric space
equipped with the Borel σ-algebra X and M be the set of boundedly finite measures on
X endowed with the corresponding Borel σ-algebra σ(M ). A completely random measure
(CRM) µ̃ on (X,X ) is a measurable function on (Ω,F ,P) taking values in M such that for
finite collection of disjoint sets A1, . . . ,An in X , the random variables µ̃(A1), . . . , µ̃(An) are
independent. See Kingman (1967, 1993) for a detailed treatment. In the following we will fo-
cus on CRMs without drift and fixed points of discontinuity. It is important to recall that such
CRMs are almost surely discrete and that their Laplace functional admits Lévy–Khintchine
representation

(3) E
[
e−

∫
X f(x) µ̃(dx)

]
= exp

{
−
∫
R+×X

[
1− e−vf(x)

]
ν(dv,dx)

}
where f :X→R+ is any measurable function and ν is a measure on R+ ×X such that

(4)
∫
R+×B

min{v,1} ν(dv,dx)<∞

for any bounded B in X . The measure ν is known as the Lévy intensity of µ̃ and regulates
the intensity of the jumps of a CRM and their locations. By virtue of (3), it characterizes the
CRM µ̃.

Two special cases of CRM stand out for their analytical tractability: the σ-stable and
gamma CRMs. Let α be a σ-finite measure on (X,X ). Then, for σ ∈ (0,1), the CRM with
Lévy intensity

(5) ν(dv,dx) =
σ

Γ(1− σ)
v−1−σ dv α(dx).

is a σ-stable CRM µ̃σ with parameter measure α on X. Moreover, for any measurable func-
tion f : X → R+, the Laplace functional is of the form E

[
e−

∫
f dµ̃σ

]
= e−

∫
fσ dα. Hence,

for any B ∈ X , the Laplace transform of µ̃σ(B) is that of a positive stable random variable,
namely E

[
e−λµ̃σ(B)

]
= e−λσ α(B), for any λ > 0. Instead, if we consider the Lévy intensity

(6) ν(dv,dx) = e−vv−1 dv α(dx)
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a gamma CRM µ̃ is obtained. In this case, for any measurable function f : X → R+ one
has E

[
e−

∫
f dµ̃
]
= e−

∫
log(1+f)dα. Hence, for any B ∈ X the Laplace transform of µ̃(B),

evaluated at λ > 0, equals (1 + λ)−α(B). This entails that µ̃(B) is gamma distributed with
parameters (1, α(B)).

2.2. Discrete random probabilities derived from CRMs. Most discrete random probabil-
ity measures, popular in the Statistics and Machine Learning literature, can be obtained as
transformations of CRMs. See Lijoi and Prünster (2010) for a review using CRMs as unifying
concept.

The first of these transformations we consider is normalization. If 0< µ̃(X)<∞ a.s., then

(7) P̃ =
µ̃

µ̃(X)

is well defined and takes values in P , the space of probability measures on (X,X ) with
σ(P) the corresponding Borel σ-algebra. The resulting class of random probabilities is
termed normalized completely random measures. It was introduced in Regazzini, Lijoi and
Prünster (2003) on R as normalized random measures with independent increments, from
which the acronym NRMI routinely used also for normalized CRMs. Clearly, any NRMI is
characterized by its Lévy intensity ν.

The Dirichlet process (Ferguson, 1973), D̃α, is readily obtained as NRMI by considering
a gamma CRM (6) with finite α. Often it is convenient to write α := θ P0 with θ = α(X) the
concentration parameter and P0 =E[P̃ ]. Moreover, starting from the σ-stable CRM (5), one
obtains the normalized stable process (Kingman, 1975), which is henceforth referred to as
σ-stable NRMI and denoted by P̃σ .

A different transformation of the σ-stable CRM leads to Pitman–Yor process (Pitman and
Yor, 1997b) P̃σ,θ , also known as two parameter Poisson–Dirichlet process. Denote by Pσ the
law of the σ-stable CRM. For θ >−σ, define a random measure µ̃σ,θ with distribution Pσ,θ

absolutely continuous with respect to Pσ and such that

(8)
dPσ,θ

dPσ
(µ̃) =

[µ̃(X)]−θ

E[µ̃σ(X)−θ]

Note that µ̃σ,θ , obtained as polynomial titling of a σ-stable CRM, is not a CRM anymore.
Nonetheless, one can still obtain a random probability measure via normalization

P̃σ,θ =
µ̃σ,θ

µ̃σ,θ(X)
,

which is now a Pitman–Yor process.

2.3. Means. A key step for the determination of the distribution of linear functionals, or
means, of a random probability measure P̃

(9) Mh(P̃ ) :=

∫
X
h(x)P̃ (dx),

with h :X→R being some measurable function, typically consists in representing them via
suitable integral transforms and, then, applying appropriate inversion formulae. We concisely
recall the two most successful approaches to date, which we will partially exploit also in this
paper.
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A first convenient tool is the generalized Cauchy–Stieltjes transform: for a function
g : R+ →R, it is defined as

(10) Sλ[z;g] :=

∫
R+

g(x)

(z + x)λ
dx

for any λ > 0 and z ∈ C such that |arg(z)| < π. Inversion formulae for (3.1) are available
and can be found in, e.g., Sumner (1949) and Schwarz (2005). Under suitable conditions, for
instance |zβ Sλ[z;g]| is bounded at infinity for some β > 0, from Schwarz (2005) one has

(11) g(x) =− xλ

2πi

∫
W
(1 +w)λ−1 S ′

λ[xw;g] dw

where W is a contour in the complex plane starting and ending at the point w = −1 and
enclosing the origin in a counterclockwise sense, while S ′

λ[xw;g] =
d
dz Sλ[z;g] |z=xw. If

λ > 1, then one can integrate (11) by parts obtaining

g(x) =
λ− 1

2πi
xλ−1

∫
W
(1 +w)λ−2 Sλ[xw;g] dw

For the case λ= 1, (11) reduces to Widder’s inversion formula (Widder, 2015).
For the Dirichlet process case a closed form expression for the distribution of the mean

has been derived in Cifarelli and Regazzini (1990) leveraging on the inversion formula by
Sumner (1949). A similar strategy has been pursued in James, Lijoi and Prünster (2008) for
means of a Pitman–Yor process.

A second fruitful approach relies on an inversion formula of the characteristic function due
to Gurland (1948), which was first adopted by Regazzini, Guglielmi and Di Nunno (2002).
If F is a cumulative distribution function (cdf) on R and ϕ the corresponding characteristic
function, then

(12) F (y)− F (y−) = 1− 2

π
lim

ε↓0, T↑∞

∫ T

ε

1

t
Im
[
e−iyt ϕ(t)

]
dt,

where F (x−) is the left limit of F at y and Imz stands for the imaginary part of z ∈C. Such
an inversion formula is useful for determining the distribution of ratios of random variables
and, thus, is suited for NRMIs. To see this, let h be such that

∫
|h|dµ̃ <∞ a.s. and denote

the cdf of
∫
hdP̃ by y 7→Q(y) =P[Mh(p̃)≤ y] with P̃ a NRMI. A crucial step consists in

noting that

Q(y) =P

[∫
X
[f(x)− y]µ̃(dx)≤ 0

]
,

which reduces the problem of studying a NRMI mean to the problem of studying a linear
functional of a CRM. Importantly, the characteristic functions of linear functionals of CRMs,
analogously to the Laplace functional transform (3), have Lévy–Khintchine representation in
terms of the underlying Lévy intensity measure. Therefore, from (12) one obtains

1

2
{Q(y) +Q(y−)}

=
1

2
− 1

π
lim

ϵ↓0,T↑+∞

∫ T

ϵ

1

t
Im exp

{
−
∫
X×R+

[1− eitv (h(x)−y)]ν(dv,dx)

}
dt.

See Regazzini, Lijoi and Prünster (2003) for details and James, Lijoi and Prünster (2010) for
further developments.
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3. Fixing the distribution of the mean. In this Section we provide the main results
of the paper: given a random probability measure P̃ on [0,1], our goal is to determine the
parameter measure inducing a desired distribution on the random mean

(13) M(P̃ ) :=

∫ 1

0
x P̃ (dx),

provided that such a measure is unique.

REMARK 3.1. There is no loss in generality by considering simple means (13) instead
of generic linear functionals (9) for measurable functions h :X→R such that

∫
|h|dP̃ <∞

a.s.. This follows from the fact that

(14)
∫

hdP̃
d
=

∫
x P̃h(dx)

where P̃h = P̃ ◦ h−1 is the pushforward random probability. Hence, if interest is in (2), it is
enough to re-interpret P0 as P0 ◦ h−1. Moreover, if P̃ is a normalized CRM (7) with Lévy
intensity ν(dv,dx), (14) is equivalent to saying that P̃h is obtained by normalizing a CRM
µ̃f whose Lévy intensity νh is such that∫

B

∫
A
νh(dv, dx) =

∫
h−1(B)

∫
A
ν(dv, dx)

for any A ∈ B(R+) and B ∈ B(R).

REMARK 3.2. For clarity of the exposition, in the following we assume that P̃ in (1) or,
equivalently, P0 have [0,1] support but all results can be easily extended to cover the case,
where the support of P̃ is any bounded interval of R. These assumptions are not restrictive
neither from a theoretical nor from an applied perspective. On the one hand, the extension
to the unbounded support case requires some strengthening of the hypotheses, without af-
fecting the type of results we obtain, while at the same time not providing further insights.
On the other hand, in applied contexts random probability measures with compact, or even
finite, support are typically employed as models or as approximations when it comes to the
computational implementation.

For the Dirichlet process D̃α the problem of determining the base measure α := θP0,
where θ > 0 and P0 is a probability measure on [0,1], leading to a specific probability dis-
tribution for the mean functional M(D̃α) =

∫
x D̃α(dx) was first hinted at in Cifarelli and

Regazzini (1993). For a given α, we let Qα =P ◦ (M(D̃α))
−1 stand for the probability dis-

tribution of M(D̃α). Moreover, with F denoting the set of finite and non-null measures on
([0,1],B([0,1])), define Fθ := {α ∈F : α([0,1]) = θ} and

(15) Mθ := {Qα : α ∈Fθ}.

The latter is the set of all probability distributions of the random Dirichlet mean M(D̃α) as
α varies in Fθ . According to Theorem 2 in Lijoi and Regazzini (2004) any measure α in
Fθ is determined by the corresponding distribution Qα in Mθ . This implies that, for random
Dirichlet means, the total mass θ and Qα in Mθ uniquely identify the base measure α ∈
Fθ . Furthermore, as a consequence of Theorem 10 in Lijoi and Regazzini (2004), Qα is
absolutely continuous with respect to the Lebesgue measure on [0,1] and its density function
is indicated by qα. The correspondence between qα and α is expressed by the Cifarelli–
Regazzini identity

(16) Sθ[z; qα] = exp

{
− θ

∫ 1

0
log(z + x) P0(dx)

}
z ∈C \ [−1,0]
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where Sθ denotes the generalized Cauchy–Stieltjes transform of order θ as defined in (3.1).
When θ = 1, an explicit solution to the inverse problem, that is the determination of α= P0

inducing a suitably smooth qα, can be extrapolated from Romik (2004). In this work, contin-
ual Young diagrams and the transition measure they induce on a compact interval via hook
walks are considered. See also Kerov (1993) for definitions, early results, and links to the
Markov moment problem. If the Young diagram is convex, then it can be seen as a primitive
function of a cdf, which then corresponds to a probability distribution on the compact inter-
val. In this case, the correspondence between the diagram and the induced transition measure
is the same as the one between the base measure of a Dirichlet process with concentration
parameter θ = 1 and its mean distribution. Since in Romik (2004) an explicit expression of
the derivative of the diagram as a function of the transition density is given, it is possible to
leverage such result and obtain

(17) P0([0, x]) =
1

π
arccot

(
1

π q(x)
PV
∫ 1

0

q(t)

t− x
dt

)
for P0 being the base measure of a Dirichlet process with θ = 1, q the density of the mean
distribution and PV

∫
indicating the Cauchy principal value integral. See Estrada and Kanwal

(2012) for an exhaustive account on these analytical tools. The identity (17) has been proved
for q piecewice C1 with bounded derivative. This implies that, however we choose a mean
density q with such regularity, we can explicitly identify the parameter measure P0 leading to
M(P̃ )∼ q. Hook walks on continual Young diagrams, transition measures and this surprising
connection with the Dirichlet process are further investigated in Gaffi, Lijoi and Prünster
(2023).

In the following we give an explicit expression for the cdf of the parameter measure of P̃
enforcing a broad class of distributions on the random mean for P̃ a Dirichlet, normalized
stable or Pitman–Yor process.

3.1. Base measure of a Dirichlet process. First we solve the problem for any θ ∈ (0,1).
To this end we derive a novel expression for the generalized Cauchy–Stieltjes transform of
the cumulative distribution function of the base measure of a Dirichlet process, in terms of
the transform of its mean density.

For a density function f such that∫ 1

0

f(x)

|x− t|θ
dx <∞ ∀t ∈ [0,1]

with θ ∈ (0,1), we define

(18) Iθ[f ; t ] :=

∫ 1

t

f(x)

|x− t|θ
dx∫ t

0

f(x)

|x− t|θ
dx

t ∈ (0,1].

Note that limt→0 Iθ[f ; t ] =∞ and Iθ[f ; 1 ] = 0. Moreover, Iθ[f ; · ] is monotonically de-
creasing and, hence, we can consider its right continuous version, suitably modifying it in its
at most countable jump discontinuity points. With a slight abuse of notation, we denote also
this version with Iθ[ · ; t ]. Our result is as follows.

THEOREM 3.3. Let θ ∈ (0,1) and qα be the density of M(D̃α) with supp(qα) = [0,1]. If

(19)
∫ 1

0

qα(x)

|x− t|θ
dx <∞ ∀t ∈ [0,1]
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then the cdf of the base measure P0 is given by

(20) F0(t) =

{
1

θπ
arctan

(
sin(θπ)

cos(θπ) +Iθ[ qα; t ]

)
+

1

θ
1(t∗,∞)(t)

}
1(0,1)(t) + 1[1,∞)(t)

with

(21) t∗ = inf
{
t ∈ [0,1]

∣∣∣Iθ[ qα; t ]≤− cos(θπ)
}

REMARK 3.4. It is easy to verify that F0 in (20) is indeed a cdf. Clearly, F0(0) = 0,
F0(1) = 1 and F0 is increasing since Iθ[ qα; · ] is decreasing. Moreover, Iθ[ qα; · ] is right
continuous. Since

F0(t
−
∗ ) =

1

2θ
= F0(t

+
∗ ),

when the set in (21) is non-empty, F0 is also right continuous. Note that t∗ =∞ for θ < 1
2 .

REMARK 3.5. For every θ < 1, we have F0(0
+) = 0 and F0(1

−) = 1, that is the pa-
rameter measure cannot have positive mass on 0 or 1. The reason is that Dirichlet mean
densities corresponding to such parameter measures are ruled out by the integrability as-
sumption (19). Consider, for instance, α( · ) = θ0δ{0}( · ) + θ1δ{1}( · ), where θ = θ0 + θ1. In

this case M(D̃α)
d
= D̃α({1}), hence M(D̃α)∼ beta(θ1, θ0), and its density violates (19) for

t ∈ {0,1}, since θ+ 1− θi > 1 for i= 0, 1.

PROOF OF THEOREM 3.3. We start by rewriting the right-hand-side of the Cifarelli–
Regazzini identity (16). Indeed, leveraging on the fact that∫ x

0

1

t+ z
dt= log(z + x)− log(z) for Imz ̸= 0

and obtaining

exp

{
− θ

∫ 1

0
log(z + x) P0(dx)

}
= exp

{
− θ log(z)− θ

∫ 1

0

∫ 1

t
P0(dx)

dt

t+ z

}
=

=
1

(1 + z)θ
exp

{
θ

∫ 1

0

F0(t)

t+ z
dt

}
,

where F0 is the cdf of P0. Hence, the right-hand-side of (16) becomes

exp{θS1[F0;z]}= (1+ z)θ
∫ 1

0

qα(x)

(z + x)θ
dx

with S1 according to the definition in (3.1). Applying the principal value of the complex
logarithm to both sides

S1[F0;z] =
1

θ
log
{
(1 + z)θSθ[qα;z]

}
+

2k(z)πi

θ
where

k(z) :=−θ ImS1[F0;z] \ π
for \ denoting the integer division. Then, by the Cauchy–Stieltjes transform inversion for-
mula in Widder (2015), we have for t ∈ [0,1]

F0(t) = lim
ε↓0

{
− 1

θπ
Im

(
log

{
(1− t+ iε)θSθ[qα;−t+ iε]

})
+

2k(−t+ iε)

θ

}
=

= lim
ε↓0

{
− 1

θπ
Arg
(
(1− t+ iε)θSθ[qα;−t+ iε]

)
+

2k(−t+ iε)

θ

}
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where Arg(w) denotes the principal argument of w ∈C. If we write

(22) ℑε[ qα; t ] := Im

(
(1− t+ iε)θSθ[qα;−t+ iε]

)
and

(23) ℜε[ qα; t ] := Re

(
(1− t+ iε)θSθ[qα;−t+ iε]

)
then

Arg
(
(1− t+ iε)θSθ[qα;−t+ iε]

)
= arctan

(
ℑε[ qα; t ]

ℜε[ qα; t ]

)
+

+ π1{ℜε[ qα; t ]< 0}sign
(
ℑε[ qα; t ]

)
(24)

Since

lim
ε↓0

Im

(
(1− t+ iε)θ

)
= 0 and lim

ε↓0
Re

(
(1− t+ iε)θ

)
= (1− t)θ

we shall neglect a summand and obtain

lim
ε↓0

ℑε[ qα; t ] =−(1− t)θ lim
ε↓0

∫ 1

0

sin
(
θ arctan (ε/(x− t)) + θπ1(0,t)(x)

)
((x− t)2 + ε2)θ/2

qα(x)dx=

=−(1− t)θ sin(θπ)

∫ t

0

qα(x)

|x− t|θ
dx(25)

and

lim
ε↓0

ℜε[ qα; t ] = (1− t)θ lim
ε↓0

∫ 1

0

cos
(
θ arctan (ε/(x− t)) + θπ1(0,t)(x)

)
((x− t)2 + ε2)θ/2

qα(x)dx=

= (1− t)θ
{
cos(θπ)

∫ t

0

qα(x)

|x− t|θ
dx+

∫ 1

t

qα(x)

|x− t|θ
dx

}
(26)

applying Lebesgue’s dominated convergence theorem, which holds because of (19). To deal
with the indicator and sign functions in (24), it suffices to check their discontinuity points.
We have

−(1− t)θ sin(θπ)

∫ t

0

qα(x)

|x− t|θ
dx≤ 0

with equality holding for t ∈ {0,1}, while

(1− t)θ
{
cos(θπ)

∫ t

0

qα(x)

|x− t|θ
dx+

∫ 1

t

qα(x)

|x− t|θ
dx

}
⋚ 0 ⇐⇒ Iθ[qα; t]⋛− cos(θπ).

for t ̸= 0, with equality holding at most in one point, by monotonicity. Finally we just need to
prove that k(−t+ iε)→ 0 for ε ↓ 0. Since ε > 0, by properties of the Cauchy–Stieltjes trans-
form, reported for instance in Karp and Prilepkina (2012), ImS1[F0;−t+ iε]≤ 0. Hence, it
suffices to note that, as ε→ 0, one has

− ImS1[F0;−t+ iε]≤
∫ 1

0

ε

(s− t)2 − ε2
ds= arctan

(
1− t

ε

)
− arctan

(
− t

ε

)
−→ π
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As an application of the previous general result we consider two interesting cases: the
determination of the base measure of a Dirichlet process such that the corresponding mean
M(D̃α) has a uniform and a triangular distribution on [0,1].

EXAMPLE (Uniform case). Let qα(x) = 1[0,1](x). Since

Iθ[1[0,1]; t ] =

(
1− t

t

)1−θ

the cdf of P0 is

(27) F0(t) =
1

θπ
arctan

(
sin(θπ)

cos(θπ) +
(
1−t
t

)1−θ

)
+

1

θ
1(t∗,1)(t)1( 1

2
,1)(θ)

for t ∈ (0,1), where for θ ∈
(
1
2 ,1
)
t∗ :=

1

1 + (− cos(θπ))θ

In particular, for θ = 1
2

F0(t) =
2

π
arctan

√
t

1− t
t ∈ (0,1)

EXAMPLE (Triangular case). Let qα(x) = 4x1[0, 12)
(x) + 4(1− x)1[ 12 ,1]

(x). We have

Iθ[ qα; t ] =

{
(1− t)2−θ − 2

(
1
2 − t

)2−θ

t2−θ

}
1(0, 12 ]

(t) +

{
(1− t)2−θ

t2−θ − 2
(
t− 1

2

)2−θ

}
1( 1

2
,1](t).

Since Iθ[ qα; t ] is decreasing and Iθ

[
qα;

1
2

]
= 1, the cdf of P0, for t ∈ (0,1), is

F0(t) =

{
1

θπ
arctan

(
t2−θ sin(θπ)

t2−θ cos(θπ) + (1− t)2−θ − 2
(
1
2 − t

)2−θ

)}
1(0, 12 ]

(t) +

+

{
1

θπ
arctan

( (
t2−θ − 2(t− 1

2)
2−θ
)
sin(θπ)(

t2−θ − 2(t− 1
2)

2−θ
)
cos(θπ) + (1− t)2−θ

)}
1( 1

2
,1)(t) +

+
1

θ
1(t∗,1)(t)1( 1

2
,1)(θ)

where t∗ is such that

(1− t∗)
2−θ

t2−θ
∗ − 2

(
t∗ − 1

2

)2−θ
=− cos(θπ).

Now, we deal with the case of θ > 1. Given the constructive nature of the proof of Theo-
rem 3.3, it is possible to leverage its rationale and retrieve consistent results for a large class of
densities. For θ > 1, the integrability condition (19) rules out every probability density. How-
ever, (19) is only needed to perform a limit/integral switch in (25) and (26). Hence, for any
choice of mean density q leading to explicit expressions of the generalized Cauchy–Stieltjes
transform in (22) and (23), i.e. such that the integral∫ 1

0

q(x)

(−t+ iε+ x)θ
dx
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has a tractable form, results analogous to those of Theorem 3.3 can be obtained. Yet the
set Mθ varies with θ and there is no guarantee that any absolutely continuous distribution
can be a Dirichlet(θ) mean distribution for any θ; therefore, with this procedure, one may
obtain a function which is not a cdf. This phenomenon is in line with the θ = 1 case: in
Romik (2004) a homeomorphism is built between diagrams and probability distributions on
[0,1]; however, since convex diagrams form a proper subset of all diagrams, some transition
measures are bound to correspond to non-convex diagrams, which do not represent base
probability measures. Such possibilities are treated in the following proposition and example.

PROPOSITION 3.6. Let θ ∈ (1,2) and M(D̃α)∼ qα with qα(x) = 1[0,1](x). Then the cdf
of the base measure P0 is

(28) F0(t) =

{
1

θπ
arctan

(
sin(θπ)

cos(θπ) +
(

t
1−t

)θ−1

)
+

1

θ
1(t∗,1)(t)

}
1(0,1)(t) + 1(1,∞)(t)

with

(29) t∗ =
(− cos(θπ))θ

1 + (− cos(θπ))θ
1(1, 32)

(θ)

REMARK 3.7. In contrast to the θ ∈ (0,1) case, F0 in (28) defines a distribution with
θ−1
θ masses in 0 and 1, while the rest of the mass is (symmetrically) diffuse in (0,1).

PROOF OF PROPOSITION 3.6. Since

Sθ[1[0,1],−t+ iε] =
1

θ− 1

{
1

(−t+ iε)θ−1
− 1

(1− t+ iε)θ−1

}
we have

Im
(
Sθ[1[0,1],−t+ iε]

)
=

(
t2 + ε2

) 1−θ

2

θ− 1
sin
(
(θ− 1)arctan

(ε
t

)
− (θ− 1)π

)
+

+

(
(1− t)2 + ε2

) 1−θ

2

θ− 1
sin

(
(θ− 1)arctan

(
ε

1− t

))
and

Re
(
Sθ[1[0,1],−t+ iε]

)
=

(
t2 + ε2

) 1−θ

2

θ− 1
cos
(
(θ− 1)arctan

(ε
t

)
+ (θ− 1)π

)
−

−
(
(1− t)2 + ε2

) 1−θ

2

θ− 1
cos

(
(θ− 1)arctan

(
ε

1− t

))
.

Therefore, using the notation set in (25) and (26), we obtain

lim
ε↓0

ℑε[1[0,1];−t+ iε] =
(1− t)θ

θ− 1
tθ−1 sin(θπ)

and

lim
ε↓0

ℜε[1[0,1];−t+ iε] =
(1− t)θ

1− θ
tθ−1

{
cos(θπ) +

(
t

1− t

)θ−1
}
.

Hence, proceeding as in the proof of Theorem 3.3, we obtain the desired expression.
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EXAMPLE. Let θ ∈ (2,3) and M(D̃α) ∼ qα with qα(x) = 1[0,1](x). Reasoning as in
Proposition 3.6, one again obtains

1

θπ
arctan

 sin(θπ)

cos(θπ) +
(

t
1−t

)θ−1


having disregarded additive constants. However, for θ ∈ (2,3) this is a decreasing function.
Hence, it cannot be the cdf of a probability measure. This implies that the uniform distri-
bution cannot be the mean distribution of a Dirichlet process with concentration parameter
θ ∈ (2,3).

3.2. Base measure of a σ-stable NRMI. Our goal is now to determine the base measure
P0 yielding a specific probability distribution for M(P̃σ) where, as before, P̃σ is a σ-stable
NRMI. For the case of Dirichlet means, a preliminary step consisted in establishing a corre-
spondence between Fθ and Mθ . An analogous preliminary step to verify whether a similar
correspondence holds in the σ-stable NRMI case is carried out in the following result.

PROPOSITION 3.8. The probability distribution of the mean M(P̃σ) of a σ-stable NRMI
P̃σ is determined by σ and E[P̃σ] = P0.

PROOF. We give a proof that relies on the evaluation of the moments of M(P̃σ) and
noting they do not depend on θ. It is worth noting that an alternative proof to the direct one
we provide can be given by exploiting the properties of σ-stable CRMs. Set

Z(n,k) := {m= (m1, . . . ,mn) ∈ Zn
+ :

∑
i

imi = n,
∑
i

mi = k}

where Z+ = {0,1,2, . . .} and rj =
∫ 1
0 xj P0(dx). Relying on Theorem 3.3 in Lijoi and Prün-

ster (2009) we obtain

E
[
Mn(P̃σ)

]
=

1

Γ(n)

n∑
k=1

∑
m∈Z(n,k)

n!∏n
j=1(j!)

mj mj !

n∏
j=1

(rj (1− σ)j−1)
mj

× σk θk
∫ ∞

0
ukσ−1 e−θuσ

du

=

n∑
k=1

σk−1 Γ(k)

Γ(n)

∑
m∈Z(n,k)

n!∏n
j=1(j!)

mj mj !

n∏
j=1

(rj (1− σ)j−1)
mj ,

which depends on the base measure α= θP0 only through the moments rj of P0. Hence, for
fixed P0, any θ yields the same probability distribution for M(P̃σ).

Unlike the Dirichlet process case, the previous result implies that any α in (5) such that
α = θP0 leads to the same probability distribution for M(P̃σ), regardless of the value of θ.
For this reason we henceforth set θ = 1 and focus solely on P0.

Before stating the main result, it is important to point out that the key idea of the proof
makes use of an analogue of the Cifarelli–Regazzini identity (16), for the mean of a σ-stable
NRMI. If qσ is the density function of the random mean M(P̃σ), where P̃σ is obtained by
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normalizing a σ-stable CRM with Lévy intensity as in (5) with α = P0, then, as shown in
Tsilevich (1999), one has

(30) exp

{∫
log(z + x)σ qσ(x) dx

}
=

∫
(z + x)σ P0(dx).

This identity is leveraged to obtain a novel representation of the generalized Cauchy–Stieltjes
transform of the cumulative distribution function of the base measure of a σ-stable NRMI in
terms of a suitable integral transform of its mean density. Moreover, we resort to existence
results for singular integrals, in order to formulate explicit and reasonable assumptions on the
mean density. Here, we again consider qσ and P0 supported on [0,1].

THEOREM 3.9. Let the density qσ of M(P̃σ) be piecewise Hölder continuous and such
that

(31)
∫ 1

0
| log |x− t| | qσ(x)dx <∞

Lebesgue-almost everywhere. Then the base measure P0 has cdf given by

F0(y) =
1

π

∫ y

0
(y− t)−σ eσ

∫ 1

0
log |x−t| qσ(x)dx

{
π qσ(t) cos(σπQσ(t)) + sin(σπQσ(t))PV

∫ 1

0

qσ(x)

t− x
dx

}
dt

(32)

for any y ∈ (0,1), where Qσ is the cdf of qσ .

PROOF. First note that (z+x)σ = zσ+σ
∫ x
0 (z+ s)σ−1 ds for any x in [0,1] and Im(z) ̸=

0. This implies that∫ 1

0
(z + x)σ P0(dx) = zσ + σ

∫ 1

0
(z + s)σ−1

∫ 1

s
P0(dx) ds

= zσ + σ

∫ 1

0

1− F0(s)

(z + s)1−σ
ds

which leads to ∫ 1

0

F0(s)

(z + s)1−σ
ds=

(z + 1)σ

σ
− 1

σ

∫ 1

0
(z + x)σ P0(dx)

By virtue of the identity (30), one can rewrite the right hand side of the previous equation to
get

(33) S1−σ[z;F0] =
(z + 1)σ

σ
− 1

σ
exp

{
σ

∫ 1

0
log(z + x) qσ(x)dx

}
.

At this stage, F0 is obtained by applying an inversion formula for the generalized Cauchy–
Stieltjes transform S1−σ . To this end, we apply the following alternative version of the in-
version formula in (11), displayed in Schwarz (2005)

(34) F0(y) =

∫ y

0
(y− t)−σ∆′(t)dt,

where

(35) ∆(t) :=
1

2πi
lim
ε↓0

{S1−σ[−t− iε;F0]−S1−σ[−t+ iε;F0]} .
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This holds true whenever the involved integral does exist. Since the generalized Cauchy–
Stieltjes transform is a holomorphic function on C \R−, we have

∆(t) =
1

π
lim
ε↓0

Im(S1−σ[−t− iε; F0 ]) =
−1

πσ
lim
ε↓0

Im (Lσ(−t− iε))

because limε↓0 Im(1− t− iε)σ = 0, where

Lσ(z) := exp

{
σ

∫ 1

0
log(x+ z) qσ(x)dx

}
z ∈C.

Now, since

log(x− t− iε) =
1

2
log((x− t)2 + ε2) + i

{
arctan

(
−ε

x− t

)
− 1{(0,t)}(x)π

}
,

we have

Im (Lσ(−t− iε)) =− exp

{
σ

2

∫ 1

0
log((x− t)2 + ε2)qσ(x)dx

}
×

× sin

(
σ

∫ 1

0
arctan

(
ε

x− t

)
qσ(x)dx+ σπQσ(t)

)
.

Hence, by monotone and Lebesgue’s dominated convergence theorems (the latter of which
applies because of (31)) we obtain

(36) ∆(t) =
1

σπ
eσ

∫ 1

0
log |x−t|qσ(x)dx sin (σπQσ(t)) .

Finally, as can be found in Estrada and Kanwal (2012), we have

(37)
d

dt

(∫ 1

0
log |x− t|qσ(x)dx

)
= PV

∫ 1

0

qσ(x)

t− x
dx

whenever the Cauchy principal value integral in the right hand side exists. It is easy to show
that if qα is Hölder continuous in the singularity point t, then the principal value in (37)
exists and it is finite. See e.g. Estrada and Kanwal (2012). For arguments which weaken
this condition, involving even and odd part of the density function, see Martin and Rizzo
(1996). Hence, since qσ is piecewice Hölder continuous, (37) holds for Lebesgue-almost
every t ∈ [0,1]. Therefore, differentiating (36) and substituting in (34), we get the expression
in (32).

Also in this σ-stable NRMI setup, we consider the two noteworthy special cases of M(P̃σ)
having a uniform and a triangular distribution on [0,1] and determine the associated P0.

EXAMPLE (Uniform case). Let qσ(x) = 1[0,1](x). Since

PV
∫ 1

0

dx

t− x
= lim

ε↓0

(∫ t−ε

0
+

∫ 1

t+ε

)
dx

t− x

= lim
ε↓0

{log t− log ε− log(1− t) + log ε}= log
t

1− t
,

by Theorem 3.9 the cdf of P0 is

F0(y) = 1[1,∞)(y) +
1

eσπ

∫ y

0

(
1− t

y− t

)σ( t

1− t

)σt

×
{
π cos(σπt)− sin(σπt) log

t

1− t

}
d t 1[0,1)(y)

(38)
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EXAMPLE (Triangular case). Let qσ(x) = 4x1[0, 12)
(x)+4(1−x)1[ 12 ,1]

(x). If t ∈
[
0, 12
)

then

PV
∫ 1

0

qσ(x)

t− x
dx= 4 lim

ε↓0

{∫ t−ε

0
+

∫ 1

2

t+ε

}
x

t− x
dx+ 4

∫ 1

1

2

1− x

t− x
dx

= 4 lim
ε↓0

{
−t+ ε− t log ε+ t log t− 1

2
log

(
1

2
− t

)
+ tε+ t log ε

}
+

+ 2− 4(1− t) log(1− t) + 4(1− t) log

(
1

2
− t

)
=

= 2t log t− 2(1− t) log(1− t) + 2(1− 2t) log

∣∣∣∣12 − t

∣∣∣∣
A similar expression holds true when t ∈

[
1
2 ,1
]
. Moreover, for any t ∈ (0,1) one has∫ 1

0
log |t− x| qσ(x)dx= 2t2 log t+ 2(1− t)2 log(1− t)− 4

(
t− 1

2

)2

log

∣∣∣∣t− 1

2

∣∣∣∣
Hence by Theorem 3.9

F0(y) =
1

π

∫ y

0
(y− t)−σ (1− t)2σ(1−t)2 t2σt

2∣∣1
2 − t

∣∣4σ(t− 1

2
)2

×

×

{
π qσ(t) cos(σπQσ(t))− sin(σπQσ(t)) log

t2t
∣∣t− 1

2

∣∣2(1−2t)

(1− t)2(1−t)

}
dt

for y ∈ (0,1), where Qσ(t) = 1[1,∞)(t) + 2t2 1[0, 12)
(t) +

{
−2t2 + 4t− 1

}
1[ 12 ,1)

(t)

3.3. Base measure of a Pitman–Yor process. In order to determine the base measure P0

leading to a specific distribution of a Pitman–Yor mean, we need three ingredients. The first
one is our general result in Theorem 3.9. The second one is a useful representation of Pitman–
Yor means as a combination of Dirichlet and σ-stable NRMI means given in Theorem 2.1
of James, Lijoi and Prünster (2008). Specifically, let qσ be the density of M(P̃σ) with P̃σ

a σ-stable NRMI with base measure P0 and consider a Dirichlet process with base measure
α(B) = θ

∫
B qσ(x)dx for any Borel set B. Then one has

(39)
∫

x P̃σ,θ(dx)
d
=

∫
x D̃α(dx)

with E[P̃σ,θ] = P0. Hence, a Pitman–Yor(σ, θ) mean has the same distribution as a Dirichlet
mean with concentration parameter θ and base measure Q given by a normalized σ-stable
mean. The third ingredient is a novel identity that can be regarded as a real version of the
original Cifarelli–Regazzini identity. This result is crucial to obtain sufficient conditions on
the density of a Pitman–Yor mean, which allow to recover an expression of the cdf of the base
measure by combining results on Dirichlet and σ-stable means via the distributional identity
(39).

PROPOSITION 3.10. Let qα be the density of the mean M(D̃α), with α = P0. If qα is
piecewise Hölder continuous, then

(40) cos
(
πP0 ([ 0, t )) +

π

2
P0 ({t})

)
e−

∫ 1

0
log |x−t|P0(dx) = PV

∫ 1

0

qα(x)

x− t
dx

for Lebesgue-almost every t ∈ [0,1].
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PROOF. Consider the Cifarelli–Regazzini identity (16) for θ = 1, which becomes

(41) exp

{
−
∫ 1

0
log(z + x) P0(dx)

}
=

∫ 1

0

qα(x)

z + x
dx z ∈C \ [−1,0]

Substituting z = −t+ iε, with t ∈ [0,1] and ε > 0, and taking the real part we have on the
left hand side

cos

(
−
∫ 1

0

{
arctan

(
ε

x− t

)
+ π1[0,t)(x) +

π

2
1{t}(x)

}
P0(dx)

)
×

× exp

{
−
∫ 1

0
log
√

(x− t)2 + ε2P0(dx)

}
and on the right hand side ∫ 1

0

x− t

(x− t)2 + ε2
qα(x)dx.

Since qα is piecewice Hölder continuous, we get

lim
ε↓0

∫ 1

0

x− t

(x− t)2 + ε2
qα(x)dx= PV

∫ 1

0

qα(x)

x− t
dx

and the limit is finite for Lebesgue-almost every t ∈ [0,1]. Hence, taking the limit for ε ↓ 0
also in the left hand side, by virtue of the monotone convergence theorem, we obtain (40).
Note that, a fortiori, ∫ 1

0
| log |x− t| | P0(dx)<∞

for Lebesgue-almost every t ∈ [0,1].

Now we are in a position to state and prove the general result for Pitman–Yor means. Together
with the identity in Proposition 3.10, regularity results for singular integrals are employed to
determine suitable assumptions on the mean density.

THEOREM 3.11. Consider a Pitman–Yor process with parameters (σ,1), P̃σ,1. Assume
the density qσ,1 of its mean M(P̃σ,1) is piecewise C1 with piecewise Hölder continuous
derivative. Then the base measure P0 of P̃σ,1 has cdf given by

F0(y) =
1

π

∫ y

0
(y− t)−σ eσ

∫ 1

0
log |x−t| qσ(x)dx

{
π qσ(t) cos(σπQσ(t)) + sin(σπQσ(t)) PV

∫ 1

0

qσ(x)

t− x
dx

}
dt

(42)

with qσ having cdf given by

(43) Qσ(t) =
1

π
arccot

(
1

π qσ,1(t)
PV
∫ 1

0

qσ,1(x)

x− t
dx

)
PROOF. The result follows in a straightforward way by resorting to the distributional iden-

tity in (39), which allows to apply iteratively the representation in (17) and Theorem 3.9. We
only need to check that the conditions on qσ,1 are sufficient to apply the results for Dirichlet
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and σ-stable NRMI means. First, since qσ,1 is piecewice C1 with bounded derivative, by (17),
Qσ as defined in (43) is the cdf of the base measure of a Dirichlet process whose mean has
density qσ,1.
Now, since qσ,1 is piecewise Hölder continuous, we can apply Proposition 3.10 and obtain

(44) cos (πQσ (t)) exp

{
−
∫ 1

0
log |x− t| qσ(x)dx

}
= PV

∫ 1

0

qσ,1(x)

x− t
dx

for Lebesgue-almost every t ∈ [0,1]. Therefore we immediately recover the integrability con-
dition (31) on qσ . Hence in order to apply Theorem 3.9, we only need the Hölder continuity
of qσ , which is used in the proof to establish the derivative in (37). But, as recalled in Martin
and Rizzo (1996), the derivative of the singular integral

PV
∫ 1

0

f(x)

x− t
dx

exists and it is equal to the hypersingular integral

H
∫ 1

0

f(x)

(x− t)2
dx

named Hadamard finite part integral, whenever the density f is Hölder continuous with
Hölder continuous derivative. Therefore, since this is the case for qσ,1, both sides of (44)
are differentiable, (37) holds and we can apply Theorem 3.9.

REMARK 3.12. An extension of Theorem 3.11 to cover the case of a generic linear func-
tional (2) rather than a simple mean is readily achieved by noting that (39) can be rewritten
as

(45)
∫

f(x) P̃σ,θ(dx)
d
=

∫
x D̃qσ(dx)

where now qσ is the density function of
∫
f dP̃σ and E[P̃σ,θ] =E[P̃σ] = P0.

The following Corollary of Proposition 3.10 highlights the connection between a Pitman–
Yor mean density and the mean density of the σ-stable NRMI obtained by normalizing the
σ-stable CRM underling the Pitman–Yor, according to the construction displayed in (8).

COROLLARY 3.13. Let qσ,1 be the density of the mean M(P̃σ,1) of a Pitman–Yor process
with parameters (σ,1). If qσ,1 is piecewise Hölder continuous, then

(46)
cos (πQσ(t))

1− t
exp

{
PV
∫ 1

0

Qσ(x)

x− t
dx

}
= PV

∫ 1

0

qσ,1(x)

x− t
dx

for Lebesgue-almost every t ∈ (0,1), where Qσ is the mean distribution function of the nor-
malized σ-stable P̃σ in (8).

PROOF. In view of representation (39), it suffices to apply Proposition 3.10, as done in
the proof of Theorem 3.11, and consider that∫ 1

0
log |x− t|qσ(x)dx=

∫ 1

0

Qσ(t)−Qσ(x)

x− t
dx+Qσ(t) log t+ (1−Qσ(t)) log(1− t)

and

PV
∫ 1

0

Qσ(x)

x− t
dx=Qσ(t)PV

∫ 1

0

1

x− t
dx+

∫ 1

0

Qσ(x)−Qσ(t)

x− y
dx=(47)

=Qσ(t) log

(
1− t

t

)
−
∫ 1

0

Qσ(t)−Qσ(x)

x− y
dx
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Note that, by Proposition 3.10, the Hölder continuity of qσ,1 entails that qσ integrates log-
arithmic singularities, which in turns implies the existence (and finiteness) of the principal
value in (47).

We close this section with an application of Theorem 3.11 to the uniform case, that is
determine the parameter measure that makes the distribution of M(P̃σ,1) uniform on [0,1].
Set qσ,1(x) = 1(0,1)(x) and from (43) we get

(48) Qσ(x) = 1[1,∞)(x) +
1

π
arccot

(
1

π
log

1− x

x

)
1(0,1)(x).

Denote by qσ the density function corresponding to Qσ . Finally, set

ξ(t) =
1

t(1− t)

∫ 1

0
(1− x− t) qσ(x) dx

+
2

t(1− t)

∫ 1

0

(log |t− x|)
(
log 1−x

x

)
π2 + log2 1−x

x

qσ(x) dx

(49)

for any t ∈ (0,1). By virtue of Theorem 3.11 one can state the following

PROPOSITION 3.14. The distribution of the mean M(P̃σ,1) of a Pitman–Yor process with
parameters (σ,1) is uniform on (0,1) if and only if its base measure P0 has cdf

(50) F0(y) =
1

π
eσ

∫ 1

0
log |y−x| qσ(x)dx {π qσ(t) cos(σπQσ(t)) + ξ(y) sin(σπQσ(t))}

for any y ∈ (0,1), where Qσ and ξ are as in (48) and (49), respectively.

PROOF. The density function corresponding to (48) is

qσ(x) =
1

x(1− x)

1{
π2 + log2 1−x

x

} 1(0,1)(x).
As for the evaluation of the principal value integral appearing in (42), note that(∫ t−ε

0
+

∫ 1

t+ε

)
1

x(t− x)

1{
π2 + log2 1−x

x

} dx

=
1

t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

x

1{
π2 + log2 1−x

x

} dx

+
1

t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

t− x

1{
π2 + log2 1−x

x

} dx=: I1,ε + I2,ε.

To shorten the notation below, set ζ1,ε = (log ε)/{π2 + log2[(1− t+ ε)/(t− ε)]} and ζ2,ε =
(log ε)/{π2 + log2[(1− t− ε)/(t+ ε)]}. A simple change of variable leads to

I2,ε =
1

t

∫ t

ε

1

y

1{
π2 + log2 1−t+y

t−y

} dy− 1

t

∫ 1−t

ε

1

y

1{
π2 + log2 1−t−y

t+y

} dy

=
1

t

−ζ1,ε + 2

∫ t

ε

(log y)
(
log 1−t+y

t−y

)
(t− y)(1− t+ y)

{
π2 + log2 1−t+y

t−y

}2 dy
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+ ζ2,ε + 2

∫ 1−t

ε

(log y)
(
log 1−t−y

t+y

)
(t+ y)(1− t− y)

{
π2 + log2 1−t−y

t+y

}2 dy

 .

Note also that(∫ t−ε

0
+

∫ 1

t+ε

)
1

(1− x)(t− x)

1{
π2 + log2 1−x

x

} dx

=− 1

1− t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

1− x

1{
π2 + log2 1−x

x

} dx

+
1

1− t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

t− x

1{
π2 + log2 1−x

x

} dx=: J1,ε + J2,ε.

Moreover, J2,ε = tI2,ε/(1− t), for i= 1,2.

4. Application to mixture models. Our findings are also of practical relevance for
Bayesian nonparametric modeling, where random probability measures play a fundamen-
tal role, since their law acts as nonparameteric prior distribution. When one has enough a
priori information for eliciting the distribution of the mean (or some linear functional), as is
often the case, our results allow to specify the corresponding infinite-dimensional P̃ accord-
ingly. This represents an important step forward in nonparametric prior elicitation. However,
random probability measures are typically not used to model directly the data but rather as
main ingredient of more complex models, most notably mixture models, which are ubiqui-
tous in the Statistics and Machine Learning literature (Orbanz and Teh, 2010; Müller et al.,
2015).

Letting Y be a complete and separable metric space equipped with the Borel σ-algebra Y ,
a random mixture density (absolutely continuous with respect to some σ-finite measure ν on
Y) is defined as

(51) f̃(y) =

∫
X
k(y;x) P̃ (dx)

where {k( · ;x) : x ∈ X} is a collection of density functions on Y indexed by a parameter
taking values in X. When P̃ is a Dirichlet process one obtains the popular Dirichlet process
mixture introduced by Lo (1984). Mixtures based on σ-stable NRMIs or Pitman–Yor pro-
cesses represent valid alternatives with appealing features especially in terms of clustering
and robustness. See, e.g., Ishwaran and James (2001), Lijoi, Mena and Prünster (2007) and
Barrios et al. (2013).

Also for mixture models, the procedure of assigning a prescribed distribution of the mean,
such as in, e.g., Kessler, Hoff and Dunson (2015), and then determining the underlying base
measure P0, is of great interest. In this scenario the data are assumed exchangeable from
f̃ in (51), namely Y1, . . . , Yn | f̃

iid∼ f̃ for any n ≥ 1. Hence, one could aim at specifying
the base measure P0 of P̃ in (51) such that a prescribed distribution for the random mean∫
Y y f̃(y)ν(dy) is attained. As for cases discussed in Section 3, the distribution of the popu-

lation mean E[Yi | f̃ ] is easier to elicit from experts’ opinions since it is a univariate random
element.

Here we thus extend the results of the previous section to cover mixture models. This is
achieved by combining Remark 3.1 with the observation that studying a linear functional of
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the mixture (51) reduces to studying a (different) linear functional of the underlying P̃ , since

(52)
∫
Y
g(y) f̃(y)ν(dy) =

∫
X
h(x) P̃ (dx)

where h(x) =
∫
Y g(y)k(y;x)ν(dy). This strategy was applied in Nieto-Barajas, Prünster and

Walker (2004) and James, Lijoi and Prünster (2010) for deriving the distribution of means
of Dirichlet process and NRMI mixtures. From (52), it follows immediately that Theorems
3.3, 3.9 and 3.11 hold also for mixture models by suitably adapting the specification of f .
Furthermore, note that the mixture procedure allows to extend our results on discrete random
probability measures to absolutely continuous ones.

THEOREM 4.1. Let f̃ be a mixture density as in (51) and let q be the density of the
corresponding mean (52) for g :Y→R+ a measurable function.

(a) Assume P̃ = D̃α in (51), α = P0, q is pointwise C1 with bounded derivative and
supp(q) = [0,1]. Then

(53) P0 ◦ h−1([0, x]) =
1

π
arccot

(
1

π qα(x)
PV
∫ 1

0

qα(t)

t− x
dt

)
for any x ∈ (0,1), where h(x) =

∫
Y g(y)k(y;x)ν(dx).

Instead, for α= θP0 with θ ∈ (0,1) and q also satisfying condition (19), we have

(54) P0 ◦ h−1([0, x]) =
1

θπ
arctan

(
sin(θπ)

cos(θπ) +Iθ[ q; x ]

)
+

1

θ
1(x∗,∞)(x)

for any x ∈ (0,1), where Iθ is defined in (18) and

x∗ = inf
{
x ∈ [0,1]

∣∣∣Iθ[ qα; x ]≤− cos(θπ)
}

(b) Assume P̃ = P̃σ in (51) with P0 =E[P̃σ] and q also satisfies condition (31) Lebesgue-
almost everywhere. Then

P0 ◦ h−1([0, x]) =
1

π

∫ x

0
(x− t)−σ eσ

∫ 1

0
log |s−t| q(s)ds

{
π q(t) cos(σπQ(t)) + sin(σπQ(t))PV

∫ 1

0

q(s)

t− s
ds

}
dt

(55)

for any x ∈ (0,1), where Q is the distribution function of the mean (52).

The expressions in (53), (54) and (55) can be used to determine the parameter measure
yielding a specified probability distribution for a mean of a mixture model governed by either
a Dirichlet or a σ-stable NRMI.

As for the practical implications of Theorem 4.1, we recall that in Bayesian density es-
timation problems the availability of P0 is crucial for the implementation of computational
algorithms that evaluate functionals of the posterior distribution, given exchangeable obser-
vations Y1, . . . , Yn from f̃ . For example, in the Pólya urn Gibbs sampler one has to generate
a sample from a distribution that is proportional to

∫
X k(y;x)P0(dx). This is straightfor-

ward if P0 is conjugate to k( · ;x), but also for the non-conjugate scenario well-established
algorithms are available (see e.g. MacEachern and Müller, 1998; Neal, 2000). The latter rep-
resents the most likely if P0 is fixed according to Theorem 4.1 so to ensure that a certain
density function qα of the mean

∫
Y g(y) f̃(y)ν(dy) is attained.

We conclude describing an example involving the σ-stable case.
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EXAMPLE. Consider f̃ as in (51) with P̃ = P̃σ . Moreover, set k(y;x) = x e−xy1(0,∞)(y)

and g(y) = y, which leads to h(x) = x−1 in (52). Thus, the goal is to determine the base
measure P0 that induces a specified distribution for the mean of a σ-stable NRMI mixture of
exponential densities: if we set qσ(x) = 1[0,1](x), it can be easily seen that

P0 ◦ g−1((0, x]) = 1[1,∞)(x) +
eσ

π

∫ x

0
(x− t)−σ (1− t)σ(1−t) tσt

×
{
π cos(σπt)− sin(σπt) log

1− t

t

}
dt 1(0,1)(x).

This implies that supp(P0) = [1,∞) and

P0((0, x]) = 1[1,∞)(x)

{
1− eσ xσ

π

∫ 1/x

0
(1− xt)−σ (1− t)σ(1−t) tσt

×
[
π cos(σπt)− sin(σπt) log

1− t

t

]
dt

}
.

One can proceed in a similar fashion for different linear functionals of interest such as g(y) =
1[T,∞)(y) for some T > 0, which yields h(x) = exp{−xT}. The distribution of the mean of
the mixture is the distribution of an average survival probability

∫
exp{−xT} P̃σ(dx) at T .

Assuming again a uniform distribution is the desired mean distribution, P0 has to be of the
form

P0((0, x]) = 1[0,∞)(x)

{
1− eσ

π

∫ e−xT

0

(
e−xT − t

)−σ
(1− t)σ(1−t) tσt

×
[
π cos(σπt)− sin(σπt) log

1− t

t

]
dt

}
.
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