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1 Introduction

The role of ethnic and cultural diversity has received increasing attention by economists

in recent years. Numerous contributions have analyzed the relationship between eth-

nic heterogeneity and socioeconomic outcomes, including public good provision, growth,

corruption and social capital. The transmission of cultural traits and the formation of

heterogeneity have also been studied theoretically and empirically. Among the first group

of studies, ethnic diversity has been shown to be associated with lower growth rates (East-

erly and Levine, 1997), more corruption (Mauro, 1995), lower contributions to local public

goods (Alesina, Baqir and Easterly, 1999), lower participation in groups and associations

(Alesina and La Ferrara, 2000) and a higher propensity to form jurisdictions to sort into

homogeneous groups (Alesina, Baqir and Hoxby, 2004). For a review of contributions on

the relationship between ethnic diversity and economic performance, see Alesina and La

Ferrara (2005). For the formation and transmission of cultural traits see, among others,

Bisin and Verdier (2000), Fernandez, Fogli and Olivetti (2004), and Giuliano (2007). The

growing interest in these topics is likely attributable to the upward trend in migration

flows and the fact that many societies are becoming increasingly heterogeneous from a

cultural point of view.

Yet the economics literature does not seem to have advanced very far in the measure-

ment of ethnic and cultural diversity. This contrasts with the breadth of the literature on

the measurement of income inequality, the traditional notion of heterogeneity employed

by economists. While we can rely on a variety of indices of economic inequality, and these

indices have been axiomatically characterized from a theoretical point of view, the eco-

nomic literature on the measurement of categorical heterogeneity is much less developed.

Virtually every empirical contribution on the topic uses the so-called index of ethno-

linguistic fractionalization (ELF ), which is a decreasing transformation of the Herfindahl
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concentration index applied to population shares. The ELF index measures the probabil-

ity that two randomly drawn individuals from the overall population belong to different

(pre-defined) ethnic groups. While ELF has the advantage of being simple to compute

and easy to interpret, its economic underpinnings seem inadequate. To our knowledge,

the only paper that attempts to provide a theoretical background for the use of ELF is

the one by Vigdor (2002). He proposes a behavioral interpretation of ELF in a model

where individuals display differential altruism. He assumes that an individual’s willing-

ness to spend on local public goods depends partly on the benefits that other members of

the community derive from the good, and that the weights of this altruistic component

vary depending on how many members of the community share the same ethnicity of

that individual. Notice that our goal here is to provide a characterization, rather than a

behavioral interpretation, of a new index of fractionalization.

The implicit contention in economic models is often that different ethnic groups may

have different preferences and this would generate conflicts of interest in economic deci-

sions. It is hard to believe that population shares would be enough to capture the extent

of divergence in preferences among society’s members. Presumably, people of different

culture or ethnicity will feel differently about each other depending on how similar they

are in other dimensions. A second channel through which ethnic or cultural diversity may

affect economic performance is the existence of possible skill complementarities among

different types. But again, it is unlikely that simple population shares will capture the

nature and extent of skill complementarities among groups.

If the rationale for including ethnic diversity effects in economic models lies in pref-

erences or technological features, then measuring fractionalization purely as a function of

population shares seems a severe limitation. Similarity between individuals should play

a role. This similarity could depend, for example, on language spoken, age, educational
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background, employment status, just to mention a few attributes. If preferences might be

induced by these other characteristics, then considering similarities between individuals

will give a better understanding of the potential conflict in economic decisions. Providing

a measure of fractionalization that accounts for the degree of similarity among agents

seems therefore an important task.

The goal of this paper is to characterize a generalized fractionalization index (GELF )

that takes as primitive the individuals and uses information on their similarities to measure

fractionalization. We propose to use as a building block a similarity matrix containing

pairwise similarity values {sij} among any two individuals i and j in society. An entry

equal to one in the matrix represents perfect similarity among individuals, an entry equal

to zero complete dissimilarity. We then rely on four axioms to characterize GELF . The

first axiom is normalization, requiring that in a society with maximal similarity our diver-

sity index takes value zero and in a society with maximal dissimilarity it takes a positive

value. The second axiom, anonymity, requires that individuals are treated impartially,

that is, our diversity measure is invariant with respect to permutations. The third ax-

iom, additivity, imposes a separability property on our index. The fourth and last axiom,

replication invariance, requires the index to be invariant with respect to replications of

the population. We prove that a diversity measure satisfies these four axioms if and only

if it is a decreasing function of the sum of similarity values in the matrix, scaled by the

square of the population size. We call this generalized index GELF and show that it

is a natural extension of ELF . More generally, depending on the metric used to mea-

sure similarity among individuals and on the level of aggregation of the information (that

is, similarity among individuals or among groups), our index nests a number of indices

used in the literature. In the limit case where the information is purely categorical (that

is, similarity is either zero or one), our measure reduces to ELF . In richer information
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settings where measuring the distance among individuals is feasible and meaningful, our

index conveys a broader measure of diversity. The flexibility of our formulation and its

suitability to being applied in very different informational environments are an advantage

of the measure we propose. Another advantage is that our index does not require that

individuals are pre-assigned to exogenously determined categories or groups. Our theoret-

ical framework can actually be used to determine an endogenous partition of society into

groups. Relevant groups may be constituted by clusters of individuals who have perfect

(or very high) similarity among themselves, and share the same (or very close) similarity

values vis-a-vis the rest of society.

We also provide an empirical illustration of how GELF can be operationalized and

what difference it makes as compared to the standard ELF index. This application

pertains to the pattern of fractionalization in the United States. Using individual level

data from the 1990 Census, we compute the two indices for all US states. We find that

the ranking of several states changes significantly when we use GELF rather than ELF .

For example, in 1990 Hawaii was the most diverse state in terms of ethnic diversity

(ELF ) and California was the fifth. When we compute GELF embedding information

on similarity in income, education and employment, as well as ethnicity, Hawaii moves

to the 42nd place and California to the 30th. This is because economic opportunities

in these states are relatively more equal across races than they are in other states. The

District of Columbia, on the other hand, is the second most fractionalized on the basis

of ELF and becomes the most fractionalized—by a wide margin—when we use GELF .

Finally, we compute grouped versions of the GELF index and show how each variable

contributes to the pattern of similarity among races.

Our paper is related to several strands of the literature. First, it naturally relates to

the economics literature on ethnic diversity and its economic effects. While the bulk of
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this literature does not focus on the specific issue of measurement, a few contributions do.

As the majority of applications have used language as a proxy for ethnicity, some authors

have criticized the use of ELF on the grounds that linguistic diversity may not correspond

to ethnic diversity. Among these, Alesina, Devleeschauwer, Easterly, Kurlat and Wacziarg

(2003) have proposed a classification into groups that combines information on language

with information on skin color. These authors propose three measures of fractionalization:

one purely linguistic, one related to religion, and one that broadly defines ethnicity by

combining language and skin color. Note that this approach differs from ours because it

defines ethnic (or linguistic, or religious) categories on the basis of certain criteria and

then applies the ELF formula to the resulting number of groups.

Other authors, in particular Fearon (2003), have criticized standard applications of

ELF on the grounds that they would fail to account for the salience of ethnic distinctions

in different contexts. For example, the same two ethnic groups may be allies in one coun-

try and opponents in another, and using simply their shares in the population would fail

to capture this. We share Fearon’s concerns on this point, and indeed we hope that our

index can be a first step towards incorporating issues of salience in the measurement of

fractionalization, albeit in a simplistic way. In particular, if one thinks that differences in

income, or education, or any other measurable characteristic may be the reason why eth-

nicity matters only in certain contexts, our GELF index already weighs ethnic categories

by their salience.

Turning to the notion of distance among ethnic groups, relatively little has been done.

Using a heuristic approach, Laitin (2000) and Fearon (2003) rely on measures of dis-

tance between languages to assess how different linguistic groups are across countries.

In particular, in his 2003 contribution Fearon proposes a measure of ‘cultural fraction-

alization’ that adapts Greenberg’s (1956) formula by weighing population shares with a
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resemblance factor that depends on the number of shared classifications between any two

languages. This measure intuitively captures the expected cultural distance between two

people drawn at random from the population. As we show below, this measure can be

derived as a special case of our GELF index. Caselli and Coleman (2006) stress the im-

portance of ethnic distance in a theoretical model and propose to measure it using surveys

of anthropologists. Finally, a few recent contributions underline the correlation between

genetic distance and pairwise income differences, trust and trade flows (Giuliano, Spilim-

bergo and Tonon, 2006, Spolaore and Wacziarg, 2009, and Guiso, Sapienza and Zingales,

forthcoming).

Second, the paper relates to the literature on ethnic polarization. In her original con-

tribution, Reynal-Querol (2002) adapts the measure of polarization developed by Esteban

and Ray (1994) to the case of categorical variables, such as ethnicity or religion, and pro-

poses an index of ethnic polarization, RQ, which captures how far the distribution of

ethnic groups is from the bipolar case. Montalvo and Reynal-Querol (2005) show that

the RQ index is a more powerful predictor of the incidence of civil wars than ELF . The

authors also show that RQ is highly correlated with ELF at low levels, uncorrelated

at intermediate levels and negatively correlated at high levels. In a recent contribution

(Montalvo and Reynal-Querol, 2008), the same authors analyze the theoretical properties

of RQ and show that the explanatory power of RQ for the incidence of wars is greater

the higher the intensity of the conflict. Desmet, Ortuño-Ort́ın and Weber (2005) focus

on ethno-linguistic conflict that arises between a dominant central group and peripheral

minority groups. To this end, the authors propose an index of peripheral ethno-linguistic

diversity, PD, which can capture both the notion of diversity and of polarization. The

relationship between RQ, PD and GELF is discussed in section 4.

Third, the paper is related to the theoretical economics literature on the measurement
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of diversity. For example, Weitzman (1992) suggests an index that is primarily intended to

measure biodiversity. Moreover, the measurement of diversity has become an increasingly

important issue in the recent literature on the ranking of opportunity sets in terms of

freedom of choice, where opportunity sets are interpreted as sets of options available to a

decision maker. Examples for such studies include Weitzman (1998), Pattanaik and Xu

(2000), Nehring and Puppe (2002) and Bossert, Pattanaik and Xu (2003). A fundamental

difference between the above-mentioned contributions and the approach followed in this

paper is the informational basis employed which results in a very different set of axioms

that are suitable for a measure of diversity. Both Weitzman’s (1992) seminal paper and

the literature on incorporating notions of diversity in the context of measuring freedom of

choice proceed by constructing a ranking of sets of objects, interpreted as sets of species in

the case of biodiversity and as sets of available options in the context of freedom of choice.

On the other hand, we operate in an informationally richer environment: not only whether

a group is present may influence the measure of fractionalization, but also the relative

population shares of these groups along with the pairwise similarities among them. We

are interested in capturing a different aspect of diversity than Nehring and Puppe (2002),

namely the instrumental—as opposed to intrinsic—value of diversity, where the number

of individuals plays a key role.

Finally, ELF is also used in the literature on network formation as a measure of

heterogeneity in the underlying population, where distances in characteristics translate

into distances in connections in the network (see, for example, Moody, 2001).

The remainder of the paper is organized as follows. In section 2 we introduce the notion

of a similarity matrix, we present the formula of our diversity index, and we provide some

examples to show how it compares with the ELF index and how our framework can be

used to derive an endogenous partition of society into groups. Section 3 contains our main

7



theoretical result, namely, the axiomatic characterization of GELF . The relationship

between GELF and alternative measures that appear in the literature is discussed in

section 4. Section 5 provides an empirical illustration and section 6 concludes with a

summary of our results and possible extensions.

2 Similarity and fractionalization: notation and ex-

amples

In this section we introduce the notion of a similarity matrix, which is the building block

of our index. We then present our proposed diversity measure, GELF , and show that

the commonly employed ELF is a special case of our index. Finally, we briefly illustrate

how our framework can be used to partition the population into groups.

2.1 Similarity

While the existing literature on the measurement of fractionalization relies on exogenous

partitions of the population into groups, our starting point is a society composed of

individuals. We believe that a measure of fractionalization of a society should take as

primitive the individual and consider attributes such as ethnicity like any other personal

characteristic in determining the similarity among individuals. In our informal discussion,

we shall occasionally refer to ethnic groups in order to be in line with the literature

to which we aim at contributing. Similarly, the empirical application will also make

use of ethnic categories for comparison purposes with standard indices. However, the

characterization result we provide in this paper is very general and we do not need to

impose any predefined partition of the population into groups.

Our reasoning proceeds as follows. Imagine a society composed of individuals with
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personal characteristics, whatever they might be. Any two individuals may be perfectly

identical according to the characteristics under consideration, completely dissimilar or

similar to different degrees. For simplicity, we normalize the similarity values to be in the

interval [0, 1], assign the value one to perfect similarity and a value of zero to maximum

dissimilarity. If the society is composed of n individuals, the comparison process will

generate n2 similarity values. These values are collected in a matrix that we call the

similarity matrix. Each row i of this matrix contains the similarity values of individual i

with respect to all members of society. Naturally, all entries on the main diagonal of such

a matrix—the entries representing the similarity of each individual to itself—are equal to

one. Furthermore, a similarity matrix is symmetric: the similarity between individuals

i and j is equal to that between j and i. The possibility of including non-symmetric

similarity matrices is discussed later.

Let N denote the set of positive integers and R the set of all real numbers. The set

of all non-negative real numbers is R+ and the set of positive real numbers is R++. For

n ∈ N, Rn is Euclidean n-space and ∆n is the n-dimensional unit simplex. Furthermore,

0n is the vector consisting of n zeroes. A similarity matrix of dimension n ∈ N \ {1} is

an n × n matrix S = (sij)i,j∈{1,...,n} such that:

(a) sij ∈ [0, 1] for all i, j ∈ {1, . . . , n};

(b) sii = 1 for all i ∈ {1, . . . , n};

(c) [sij = 1 ⇒ sik = skj] for all i, j, k ∈ {1, . . . , n}.

The three restrictions on the elements of a similarity matrix have very intuitive inter-

pretations. (a) is consistent with a normalization requiring that complete dissimilarity is

assigned a value of zero and full similarity is represented by one. Clearly, this requires

that each individual has a similarity value of one when assessing the similarity to itself,

as stipulated in (b). Condition (c) requires that if two individuals are fully similar, it is
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not possible to distinguish between them as far as their similarity to others is concerned.

Because i = j is possible in (c), the conjunction of (b) and (c) implies that a similarity

matrix is symmetric. Finally, (c) implies that full similarity is transitive in the sense that,

if sij = sji = sjk = skj = 1, then sik = ski = 1 for all i, j, k ∈ {1, . . . , n}. Our char-

acterization result remains valid if restriction (c) is dropped—that is, our index can be

characterized on a larger domain where the notion of similarity is not necessarily symmet-

ric, as may be the case if the similarity values are obtained from people’s subjective views

on the degree to which they differ from others. We state our main result with restriction

(c) to emphasize that we do not need non-symmetric similarity matrices and, thus, our

characterization is not dependent on an artificially large domain. See the appendix for

details.

2.2 Measuring diversity: GELF and ELF

Let Sn be the set of all n-dimensional similarity matrices, where n ∈ N \ {1} and S =

∪n∈N\{1}Sn. A diversity measure is a function D:S → R+. The specific measure we

propose in this paper is what we call the generalized fractionalization (GELF ) index G.

It is defined as

G(S) = 1 − 1

n2

n∑

i=1

n∑

j=1

sij(1)

for all n ∈ N \ {1} and for all S ∈ Sn (or any positive multiple; clearly, multiplying

the index value by γ ∈ R++ leaves all diversity comparisons unchanged). GELF is the

expected dissimilarity between two individuals drawn at random. If the dissimilarity be-

tween two individuals i and j is given by the absolute difference between their incomes,

G may be interpreted as a variant of the well-known Gini coefficient adapted to our en-

vironment. There are axiomatizations of the Gini index and some of its generalizations

in the context of income inequality measurement (see, for instance, Donaldson and Wey-
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mark, 1980, Weymark, 1981, and Bossert, 1990). However, these characterizations are

fundamentally different from ours because we operate on a different domain—a domain

of similarity matrices rather than a domain of income vectors. In accordance with this

difference, we formulate our axioms in terms of the primitives of the framework—the

similarity matrices—rather than in terms of income vectors. This difference distinguishes

our axiomatic approach from those that appear in income inequality measurement. Fur-

thermore, because we are interested in measuring fractionalization based on similarities

rather than in measuring the inequality of income distributions, our set of axioms does

not include a ‘transfer’ property.

As an example, suppose a three-dimensional similarity matrix is given by

S =




1 1/2 1/4

1/2 1 0

1/4 0 1




.

The corresponding value of G is given by

G(S) = 1 − 1

9

[
1 +

1

2
+

1

4
+

1

2
+ 1 + 0 +

1

4
+ 0 + 1

]
=

1

2
.

It is easy to show that G(S) is indeed a generalization of the commonly-employed

ethno-linguistic fractionalization (ELF ) index. The application of ELF is restricted to

an environment where the only information available is the vector p = (p1, . . . , pK) ∈ ∆K

of population shares for K ∈ N predefined groups. No partial similarity values are taken

into consideration—individuals are either fully similar or completely dissimilar, that is,

sij can assume the values one and zero only. Letting ∆ = ∪K∈N∆
K, the ELF index

E: ∆ → R+ is defined by letting

E(p) = 1 −
K∑

k=1

p2
k
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for all K ∈ N and for all p ∈ ∆K. Thus, ELF is one minus the well-known Herfindahl

index of concentration.

In our setting, the ELF environment can be described by a subset S01 = ∪n∈N\{1}Sn
01

of our class of similarity matrices where, for all n ∈ N \ {1}, for all S ∈ Sn
01 and for

all i, j ∈ {1, . . . , n}, sij ∈ {0, 1}. By properties (b) and (c), it follows that, within this

subclass of matrices, the population {1, . . . , n} can be partitioned into K ∈ N non-empty

and disjoint subgroups N1, . . . , NK with the property that, for all i, j ∈ {1, . . . , n},

sij =





1 if there exists k ∈ {1, . . . , K} such that i, j ∈ Nk;

0 otherwise.

Letting nk ∈ N denote the cardinality of Nk for all k ∈ {1, . . . , K}, it follows that

∑K
k=1 nk = n and pk = nk/n for all k ∈ {1, . . . , K}. For n ∈ N \ {1} and S ∈ Sn

01, we

obtain

G(S) = 1 − 1

n2

K∑

k=1

n2
k = 1 −

K∑

k=1

p2
k = E(p).

For example, suppose that

S =




1 1 0

1 1 0

0 0 1




,

that is, we are analyzing a society composed of three individuals. Two of them (indi-

viduals 1 and 2) are fully similar: the similarity values s12 and s21 are equal to one and,

furthermore, they have the same degree of similarity—zero—with respect to the remain-

ing member of society (individual 3). Because individual 3 is not completely similar to

anyone else, it forms a group on its own. The corresponding value of G is given by

G(S) = 1 − 1

9
[1 + 1 + 0 + 1 + 1 + 0 + 0 + 0 + 1] =

4

9
.

Because S ∈ S3
01, we can alternatively calculate this diversity value using ELF . We have
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K = 2, N1 = {1, 2}, N2 = {3}, p1 = 2/3 and p2 = 1/3. Thus,

E(p) = 1 −

[(
2

3

)2

+

(
1

3

)2
]

=
4

9
= G(S).

2.3 Partitioning society into groups

Our framework allows us to obtain population subgroups endogenously from similarity

matrices even if similarity values can assume values other than zero and one. A plausible

method of doing so is the following. Any two individuals i and j belong to the same group

if the similarity between i and j is equal to one and, moreover, the similarities of i with

respect to all other individuals k are the same as those of j. Using this process, a group

partition emerges naturally from the similarity matrix without having to impose it in

advance. This method has several advantages: (i) it releases the researcher of the choice

of the one characteristic that determines fractionalization in the society of interest; (ii) it

makes it possible to consider simultaneously multiple characteristics; (iii) it allows group

formation across characteristics; (iv) it considers the intensity of similarities between

groups.

Formally, we define a partition of {1, . . . , n} into K ∈ N non-empty and disjoint

subgroups N1, . . . , NK. By properties (b) and (c), these subgroups are such that, for all

k ∈ {1, . . . , K}, for all i, j ∈ Nk and for all h ∈ {1, . . . , n}, sij = sji = 1 and sih = shi =

shj = sjh. Thus, for all k, ` ∈ {1, . . . , K}, we can unambiguously define sk` = sij for some

i ∈ Nk and some j ∈ N`. Again using nk ∈ N to denote the cardinality of Nk for all

k ∈ {1, . . . , K}, it follows that
∑K

k=1 nk = n and pk = nk/n for all k ∈ {1, . . . , K}. For

n ∈ N \ {1} and S ∈ Sn, we obtain

G(S) = 1 − 1

n2

K∑

k=1

K∑

`=1

nkn`sk` = 1 −
K∑

k=1

K∑

`=1

pkp`sk`.(2)

Clearly, the ELF index E is obtained for the case where all off-diagonal entries of S are
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equal to zero.

To provide a numerical illustration of this case, let

S =




1 1 1/2

1 1 1/2

1/2 1/2 1




,

that is, we consider another society of three individuals. Again, two of them (individuals

1 and 2) are fully similar: the similarity values s12 and s21 are equal to one and, further-

more, they have the same degree of similarity with respect to the remaining member of

society (individual 3). This time, however, the similarity between the members of the

first group and the remaining individual is equal to 1/2 rather than zero. Individual 3 is

not completely similar to anyone, thus is in a group by itself. The corresponding index

value is

G(S) = 1 − 1

9

[
1 + 1 +

1

2
+ 1 + 1 +

1

2
+

1

2
+

1

2
+ 1

]
=

2

9
.

According to the method outlined above, we can alternatively partition the population

{1, 2, 3} into two groups N1 = {1, 2} and N2 = {3}. The population shares of these

groups are p1 = 2/3 and p2 = 1/3. We obtain the intergroup similarity values s11 = s22 =

s11 = s22 = s12 = s21 = 1 and s12 = s21 = si3 = s3i = 1/2 for i ∈ {1, 2} which, using (2),

leads to the index value

G(S) = 1 −
[(

2

3

)2

+

(
1

3

)2

+
2

3
· 1

3
· 1

2
+

2

3
· 1

3
· 1

2

]
=

2

9
.

3 A characterization of GELF

We now turn to a characterization of GELF . Our characterization relies on four axioms,

which we proceed to illustrate in order. We then state and prove the main theorem

containing the formula of our diversity index.
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3.1 Axiom 1: Normalization

Let In denote the n × n identity matrix and 1n denote the n × n matrix all of whose

entries are equal to one. Clearly, both of these matrices are in Sn and they represent

extreme cases within this class. In can be thought of as having maximal diversity: any

two distinct individuals are completely dissimilar and, therefore, each individual is in a

group by itself. 1n, on the other hand, represents maximal concentration (and, thus,

minimal diversity) because there is but a single group in the population all members of

which are fully similar. Our first axiom is a straightforward normalization property. It

requires that the value of D at 1n is equal to zero and the value of D at In is positive for

all n ∈ N \ {1}.

Given that the matrix 1n is associated with minimal diversity, it is a very plausible

restriction to require that D assumes its minimal value for these matrices. Note that this

minimal value is the same across population sizes. This is plausible because, no matter

what the population size n might be, there is but a single group of perfectly similar

individuals and, thus, there is no diversity at all.

In contrast, it would be much less natural to require that the value of D at In be

identical for all population sizes n. It is quite plausible to argue that having more distinct

groups each of which consists of a single individual leads to more diversity than a situation

where there are fewer groups containing one individual each. Our first axiom can thus be

formalized as follows.

Normalization. For all n ∈ N \ {1},

D(1n) = 0 and D(In) > 0.

15



3.2 Axiom 2: Anonymity

Our second axiom is very uncontroversial as well. It requires that individuals are treated

impartially, paying no attention to their identities. For n ∈ N \ {1}, let Πn be the set of

permutations of {1, . . . , n}, that is, the set of bijections π: {1, . . . , n} → {1, . . . , n}. For

n ∈ N \ {1}, S ∈ Sn and π ∈ Πn, Sπ is obtained from S by permuting the rows and

columns of S according to π. Anonymity requires that D be invariant with respect to

permutations.

Anonymity. For all n ∈ N \ {1}, for all S ∈ Sn and for all π ∈ Πn,

D(Sπ) = D(S).

3.3 Axiom 3: Additivity

Our third axiom is additivity. As the role of this axiom may be less obvious compared

to the two previous ones, it is worth providing a brief motivation for its use. Notions

of additivity are among the most commonly-used properties employed in axiomatic ap-

proaches not only in the context of social index numbers but also in numerous other areas

within economics. For instance, additivity plays a major role in fields such as game the-

ory (Shapley, 1953), the analysis and design of cost sharing methods (Moulin, 1995, 2002;

Moulin and Vohra, 2003; Moulin and Sprumont, 2005) and bargaining theory (Peters,

1992), to name but a few. While the exact formulation of additivity depends, of course,

on the objects to be studied (here: measures of fractionalization), the intuition behind

the principle itself is shared by the variations that can be found in the literature. Roughly

speaking (we will be more precise below), additivity means that the value of a function

(here: the value of a fractionalization index) calculated at the sum of two values of its

variables (in our case, the sum of two similarity matrices) can be obtained on the basis
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of the sum of the values of the function at the two values of its variables.

A crucial feature of additivity is that it entails a separability property: the contribution

of any variable to the overall index value can be assessed in isolation, without having to

know the values of the other variables. Thus, additivity properties are often linked to

independence conditions of various forms. To take a simple example, consider a function f

of three real-valued variables. f can be interpreted as an index number assigning welfare or

inequality values to income distributions involving three individuals, for instance. Suppose

we want to compare the value of f at (x, y, z) to the value of f at (x′, y′, z), that is, we

want to examine which of the values f(x, y, z) and f(x′, y′, z) exceeds the other or if the

two values are the same. Note that the value of the third variable is the same in the

two vectors to be compared—namely, z. Independence demands that the comparison of

the values of f at (x, y, z) and at (x′, y′, z) be independent of the value of z—that is, if

z is replaced with z′ in both vectors to be compared, the relative ranking of the vectors

according to f should not change. In consequence, the influence of the first two variables

on f can be assessed without reference to the value of the third variable. For instance,

independence requires that f(2, 3, 1) is greater than or equal to f(6, 1, 1) if and only if

f(2, 3, 13) is greater than or equal to f(6, 1, 13): as long as the third variable has the

same value in the vectors to be compared (in our example, 1 or 13 but it could be any

value whatsoever), it does not matter what this value is. This type of independence

property is a consequence of additivity, suitably formulated for the environment under

consideration. See, for instance, Blackorby, Primont and Russell (1978) for a detailed

discussion of separability properties and their link to notions of additivity.

With a minor qualification to be discussed shortly, additivity means in our context that

fractionalization is additive in similarity matrices in the sense that the fractionalization

of the normalized sum of two matrices is the sum of the fractionalization values for the
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original matrices, corrected to account for the normalization in the definition of the sum.

Note that an additive structure is occasionally imposed without formulating it explicitly

as an axiom on the primitives of the problem. See, for instance, Esteban and Ray (1994)

who consider polarization measures that can be expressed as additive functions of entities

that do not represent the primitives of the setup, and then impose further axioms on

these derived entities rather than the primitives. In contrast, our formulation imposes

all axioms on the primitives of the problem. Our additivity property is standard, except

that we have to respect the restrictions imposed by the definition of Sn. In particular,

we cannot simply add two similarity matrices S and T of dimension n because, according

to ordinary matrix addition, all entries on the diagonal of the sum S + T will be equal to

two rather than one and, therefore, S + T is not an element of Sn. For that reason, we

define the following operation ⊕ on the sets Sn by letting, for all n ∈ N \ {1} and for all

S, T ∈ Sn, S ⊕ T = (sij ⊕ tij)i,j∈{1,...,n} with

sij ⊕ tij =





1 if i = j;

sij + tij if i 6= j.

The standard additivity axiom has to be modified in another respect in our setting.

Because the diagonal is unchanged when moving from S and T to S ⊕ T , it would be

questionable to require the value of D at S ⊕ T to be given by the sum of D(S) and

D(T ) because, in doing so, we would double-count the diagonal elements in S and in

T . Therefore, this sum has to be corrected by the value of D at In, and we obtain the

following axiom.

Additivity. For all n ∈ N \ {1} and for all S, T ∈ Sn such that (S ⊕ T ) ∈ Sn,

D(S ⊕ T ) = D(S) + D(T ) − D(In).
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3.4 Axiom 4: Replication invariance

With the partial exception of the normalization condition (which implies that our diversity

measure assumes the same value for the matrix 1n for all population sizes n), the first

three axioms apply to diversity comparisons involving fixed population sizes only. Our last

axiom imposes restrictions on comparisons across population sizes. We consider specific

replications and require the index to be invariant with respect to these replications. The

scope of the axiom is limited to what we consider clear-cut cases and, therefore, represents

a rather mild variable-population requirement. In particular, consider the n-dimensional

identity matrix In. As argued before, this matrix represents an extreme degree of diversity:

each individual is in a group by itself and shares no similarities with anyone else. Now

consider a population of size nm where there are m copies of each individual i ∈ {1, . . . , n}

such that, within any group of m copies, all similarity values are equal to one and all other

similarity values are equal to zero. Thus, this particular replication has the effect that,

instead of n groups of size one that do not have any similarity to other groups, now we have

n groups each of which consists of m identical individuals and, again, all other similarity

values are equal to zero. As before, the population is divided into n homogeneous groups

of equal size. Adopting a relative notion of diversity, it would seem natural to require

that diversity has not changed as a consequence of this replication. To provide a precise

formulation of the resulting axiom, we use the following notation. For n, m ∈ N \ {1}, we

define the matrix Rn
m = (rij)i,j∈{1,...,nm} ∈ Snm by

rij =





1 if ∃h ∈ {1, . . . , n} such that i, j ∈ {(h − 1)m + 1, . . . , hm};

0 otherwise.

Now we can define our replication invariance axiom.
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Replication invariance. For all n, m ∈ N \ {1},

D(Rn
m) = D(In).

3.5 Characterization

The four axioms introduced earlier in this section characterize GELF , as we state in the

following theorem.

Theorem 1 A diversity measure D:S → R+ satisfies normalization, anonymity, addi-

tivity and replication invariance if and only if D is a positive multiple of

G(S) = 1 − 1

n2

n∑

i=1

n∑

j=1

sij

for all n ∈ N \ {1} and for all S ∈ Sn.

Proof. That any positive multiple of G satisfies the axioms is straightforward to verify.

Conversely, suppose D is a diversity measure satisfying normalization, anonymity, addi-

tivity and replication invariance. Let n ∈ N \ {1}, and define the set X n ⊆ Rn(n−1)/2

by

X n = {x = (xij) i∈{1,...,n−1}
j∈{i+1,...,n}

| ∃S ∈ Sn such that sij = xij for all i ∈ {1, . . . , n − 1}

and for all j ∈ {i + 1, . . . , n}}.

Define the function F n:X n → R by letting, for all x ∈ X n,

F n(x) = D(S) − D(In)(3)

where S ∈ Sn is such that sij = xij for all i ∈ {1, . . . , n− 1} and for all j ∈ {i+1, . . . , n}.

This function is well-defined because Sn contains symmetric matrices with ones on the

main diagonal only. Because D is bounded below by zero, it follows that F n is bounded

20



below by −D(In). Furthermore, the additivity of D implies that F n satisfies Cauchy’s

basic functional equation

F n(x + y) = F n(x) + F n(y)(4)

for all x, y ∈ X n such that (x + y) ∈ X n; see Aczél (1966, section 2.1). We have to

address a slight complexity in solving this equation because the domain X n of F n is not

a Cartesian product, which is why we provide a few further details rather than invoking

the corresponding standard result immediately.

Fix i ∈ {1, . . . , n− 1} and j ∈ {i+1, . . . , n}, and define the function fn
ij: [0, 1] → R by

fn
ij(xij) = F n(xij; 0

n(n−1)/2−1)

for all xij ∈ [0, 1], where the vector (xij; 0
n(n−1)/2−1) is such that the component corre-

sponding to ij is given by xij and all other entries (if any) are equal to zero. Note that

this vector is indeed an element of X n and, therefore, fn
ij is well-defined. The function fn

ij

is bounded below because F n is and, as an immediate consequence of (4), it satisfies the

Cauchy equation

fn
ij(xij + yij) = fn

ij(xij) + fn
ij(yij)(5)

for all xij, yij ∈ [0, 1] such that (xij + yij) ∈ [0, 1]. Because the domain of fn
ij is an

interval containing the origin and fn
ij is bounded below, the only solutions to (5) are

linear functions; see Aczél (1966, section 2.1). Thus, there exists cn
ij ∈ R such that

F n(xij; 0
n(n−1)/2−1) = fn

ij(xij) = cn
ijxij(6)

for all xij ∈ [0, 1].

Let S ∈ Sn. By additivity, the definition of F n and (6),

F n
(
(sij) i∈{1,...,n−1}

j∈{i+1,...,n}

)
=

n−1∑

i=1

n∑

j=i+1

F n(sij; 0
n(n−1)/2−1) =

n−1∑

i=1

n∑

j=i+1

fn
ij(sij) =

n−1∑

i=1

n∑

j=i+1

cn
ijsij
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and, defining dn = D(In) and substituting into (3), we obtain

D(S) =
n−1∑

i=1

n∑

j=i+1

cn
ijsij + dn.(7)

Now fix i, k ∈ {1, . . . , n− 1}, j ∈ {i+1, . . . , n} and ` ∈ {k +1, . . . , n}, and let S ∈ Sn

be such that sij = sji = 1 and all other off-diagonal entries of S are equal to zero. Let

the bijection π ∈ Πn be such that π(i) = k, π(j) = `, π(k) = i, π(`) = j and π(h) = h for

all h ∈ {1, . . . , n} \ {i, j, k, `}. By (7), we obtain

D(S) = cn
ij + dn and D(Sπ) = cn

k` + dn,

and anonymity implies cn
ij = cn

k`. Therefore, there exists cn ∈ R such that cn
ij = cn for all

i ∈ {1, . . . , n − 1} and for all j ∈ {i + 1, . . . , n}, and substituting into (7) yields

D(S) = cn
n−1∑

i=1

n∑

j=i+1

sij + dn

for all n ∈ N \ {1} and for all S ∈ Sn.

Normalization requires

D(1n) = cn n(n − 1)

2
+ dn = 0

and, therefore, dn = −cnn(n − 1)/2 for all n ∈ N \ {1}. Using normalization again, we

obtain

D(In) = −cn n(n − 1)

2
> 0

which implies cn < 0 for all n ∈ N \ {1}. Thus,

D(S) = cn

n−1∑

i=1

n∑

j=i+1

sij − cn n(n − 1)

2
(8)

for all n ∈ N \ {1} and for all S ∈ Sn.

Let n be an even integer greater than or equal to four. By replication invariance and

(8),

D(R2
n/2) = cn n

2

(n

2
− 1

)
− cn n(n − 1)

2
= −c2 = D(I2).
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Solving, we obtain

cn = 4
c2

n2
.(9)

Now let n be an odd integer greater than or equal to three. Thus, q = 2n is even, and

the above argument implies

cq = 4
c2

q2
=

c2

n2
.(10)

Furthermore, replication invariance requires

D(Rn
2 ) = D(R

q/2
2 ) = cq q

2
− cq q(q − 1)

2
= −cn n(n − 1)

2
= D(In).

Solving for cn and using the equality q = 2n, it follows that cn = 4cq and, combined with

(10), we obtain (9) for all odd n ∈ N \ {1} as well.

Substituting into (8), simplifying and defining γ = −2c2 > 0, it follows that, for all

n ∈ N \ {1} and for all S ∈ Sn,

D(S) = 4
c2

n2

n−1∑

i=1

n∑

j=i+1

sij − 2
c2

n2
n(n − 1)

= 2
c2

n2

n∑

i=1

n∑

j=1
j 6=i

sij − 2c2 + 2
c2

n

= −2c2


1 − 1

n2

n∑

i=1

n∑

j=1
j 6=i

sij −
1

n




= −2c2

[
1 − 1

n2

n∑

i=1

n∑

j=1

sij

]

= γG(S).

4 Alternative and related approaches

In this section we discuss the differences between GELF and related indices proposed

in various literatures. We start briefly with the linguistics and statistical literature and
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compare GELF with Greenberg’s (1956) index and with the quadratic entropy index

(QE). We then proceed with the economics literature, focusing on the indices of ethnic

polarization (RQ) and peripheral diversity (PD).

What is known in the economics literature as ELF is, in the statistical literature,

the Gini-Simpson index, introduced first by Gini (1912) and then by Simpson (1949) as a

measure of diversity of the multinomial distribution. The same index has been proposed by

the linguist Greenberg (1956) who termed it the ‘A index.’ In his 1956 article, Greenberg

suggested a way to measure the degree of resemblance among K languages. Indicating

by rk` ≥ 0 the resemblance between language k and `, the proposed B index is:

B = 1 −
K∑

k=1

K∑

`=1

pkp`rk`.

This is the index used by Fearon (2003) in his empirical contribution on cultural fraction-

alization.

In an independent contribution, Rao (1982) suggested exactly the same generalization

of ELF , the quadratic entropy index (QE), in order to take into account different distance

values, dk` ≥ 0, of different pairs of categories, k and `. As opposed to Greenberg (1956),

Rao (1984) and Rao and Nayak (1985) provide various axiomatizations of the measure.

QE is an index that, rewritten in the settings of our paper, considers distances other than

zero–one between individuals belonging to different groups, that is

QE =
K∑

k=1

K∑

`=1

pkp`dk`.

Recall the definition of sk` in section 2 and the formula for GELF (2). Letting dk` = 1−sk`,

we immediately see that GELF is QE, and hence B, when the population is partitioned

ex-ante into groups on the basis of a characteristic.

The inspection of the indices B and QE gives further insights into the relationship

between GELF and ELF. As we said above, GELF is the expected dissimilarity between
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two individuals drawn at random from the population. ELF is the likelihood that two

randomly drawn individuals belong to different (exogenous) categories. Rewriting ELF

as 1 −
∑K

k=1 pkpk, we see that ELF can be interpreted as one minus a weighted sum of

population shares pk, where the weights are these shares themselves. GELF , on the other

hand, is its natural generalization: it can be written as one minus a weighted sum of the

population shares. However, the weight assigned to pk is now not merely pk itself but a

considerably more refined expression that takes account of the similarities of the group

members to the individuals in other groups. In calculating GELF , each individual counts

in two capacities. Through its membership in its own group, an individual contributes to

the population share of the group. In addition, there is a secondary contribution via the

similarities to individuals of other groups.

It should be noted that, when the distance values are differences in income, QE is

twice the well-known absolute Gini coefficient. The latter, when normalized by mean

income, is one among the most popular indices of income inequality.

In economics, the index of ethnic polarization RQ (see Reynal-Querol, 2002, and

Montalvo and Reynal-Querol, 2005) shares a structure similar to that of ELF and of

GELF . It is defined by

RQ = 1 −
K∑

k=1

(
1/2 − pk

1/2

)2

pk.

As is the case for ELF , RQ employs a weighted sum of population shares. The weights

employed in RQ capture the deviation of each group from the maximum polarization

share 1/2 as a proportion of 1/2. Analogously to ELF , underlying the formula of RQ is

the implicit assumption that any two groups are either completely similar or completely

dissimilar and, thus, the weights depend on population shares only.

The index of peripheral diversity PD (see Desmet, Ortuño-Ort́ın and Weber, 2005) is a

specification of the original Esteban and Ray (1994) polarization index. It is derived from
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the alienation-identification framework proposed by Esteban and Ray (1994), applied to

distances between languages spoken rather than to income distances as in Esteban and

Ray (1994). Desmet, Ortuño-Ort́ın and Weber (2005) distinguish between the effective

alienation felt by the dominant group and that of the minorities. In particular, expressed

in the setting of our paper, the index is defined by

PD =

K∑

k=1

[
p1+α

k (1 − s0k) + pkp
1+α
0 (1 − s0k)

]
,

where α ∈ R is a parameter indicating the importance given to the identification compo-

nent, 0 is the dominant group and the other K are minority groups. When α < 0, PD is

an index of peripheral diversity; when α > 0, PD is an index of peripheral polarization.

The structure of this index is different from that of those previously discussed. As is

the case for GELF , it does incorporate a notion of dissimilarity between groups, given

by the complement to one of the similarity value. On the other hand, as opposed to

the previous indices, the identification component plays a crucial role enhancing (when

α > 0) or diminishing (when α < 0) the alienation produced by distances between groups.

An additional difference to the other indices discussed in this section is the distinction

between the dominant groups and the minorities.

5 An empirical illustration

In this section we provide an application of GELF to the pattern of diversity in the

United States. Our goal is to compare the extent of diversity across states taking into

account different dimensions of similarity among individuals, in particular: racial identity,

household income, education and employment status.
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5.1 Method and results

The data set used is the 5 percent IPUMS from the 1990 Census. We use individual level

information on all household heads in the sample and record the following characteristics:

(a) Race. Each individual is attributed to one of five racial groups, that is, (i) White;

(ii) Black; (iii) American Indian, Eskimo or Aleutian; (iv) Asian or Pacific Islander; and

(v) Other. The last category includes any other race except the four mentioned. The

1990 Census does not identify Hispanic as a separate racial category. However, Alesina,

Baqir and Easterly (1999), who construct ELF from the same five categories, report that

the category Hispanic (obtained from a different source) has a correlation of more than

0.9 with the category Other in the Census data.

(b) Income. Total household income.

(c) Education. The years of education of the individual.

(d) Employment. Each individual is attributed to one of four categories, namely, (i)

Civilian employed or armed forces, at work; (ii) Civilian employed or armed forces, with

a job but not at work; (iii) Unemployed; and (iv) Not in labor force.

Drawing on the above information, we construct GELF in several ways. The first,

and most general, is an implementation of formula (1) that takes into account all four

dimensions at the same time without imposing an exogenous partition into groups. The

second and third approaches rely on an ex-ante partition of the population and implement

the grouped version of GELF , expression (2). Specifically, the five racial groups described

under (a) are used in our illustration to generate the partition. We then measure the

similarity among these groups along the remaining dimensions. The choice of race as the

exogenously given category is purely instrumental to comparing our results to the widely

used ELF index that relies exclusively on racial shares. Obviously, depending on the

specific application, the grouping could be done on the cleavage that is most relevant for
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the phenomenon under study. The idea underlying this second set of results is to propose

a way to compute GELF that is less data intensive and to see whether the qualitative

pattern of results differs from that obtained using the full similarity matrix. This second

set of results, in turn, is obtained under two alternative methods. The first requires the

availability of the entire distribution of individual characteristics, and can be used when

individual survey data is available. The second relies only on aggregate data on mean

characteristics by group.

5.2 Similarity of individuals

To implement our index (1), we start from the variables (a) to (d) and apply principal

component analysis. To extract principal components, we employ a polychoric correlation

matrix to take into account the fact that some of our variables are categorical (see for

example, Kolenikov and Angeles, 2009). Specifically, we extract for each individual i a

synthetic measure xi, the first principal component, that we employ to compute pairwise

distances among all individuals living in the same state, that is, |xi − xj|. To generate

similarity values sij that are bounded between zero and one, we normalize this distance

by the difference between the maximum and the minimum value of the xi in the entire

US sample, and we subtract the resulting value from one. Once we have the full set of

similarity values {sij}i,j∈{1,...,n} computation of (1) is straightforward. We refer to this

index as GELF with no further specifications.

[Insert Figure 1]

The main result of our empirical analysis is summarized in figure 1. On the horizontal

axis we plot values of ethno-linguistic fractionalization (ELF ) for all states in the US

in 1990. The vertical axis reports the corresponding value of GELF . While the two
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are positively correlated, their relationship is far from linear: the correlation coefficient

is only 0.59. In particular, states like Hawaii, California and Nevada are much more

heterogeneous if one only looks at racial shares than if all dimensions are considered jointly.

This is because in these states the distribution of income, education and employment is

relatively more similar among races than in other states. At the opposite end we have

states like Alaska, Kentucky, Rhode Island, Massachusetts and in general New England,

where diversity measured in terms of racial shares is relatively low, but different races

differ in the distribution of the remaining characteristics to such an extent that they are

actually more diverse when the full similarity GELF is employed.

[Insert Table 1]

Table 1 provides the counterpart to the graphical analysis, as it reports the full set

of states listed in decreasing order of ethno-linguistic fractionalization, the corresponding

values of ELF , GELF and the difference in ranks between ELF and GELF for each

state. We prefer to rely on a comparison of ranks because the absolute values of the two

indices are not comparable. In particular, in the last column of table 1 we report the

difference ELFrank − GELFrank, so that negative values indicate that a given state

is less fractionalized according to GELF than according to ELF , while positive values

indicate the opposite. The magnitude of the difference gives a rough approximation of

how big a difference it makes for a particular state to use one index over the other, in

terms of relative rankings.

5.3 Similarity of distributions

Once the population is exogenously partitioned into racial groups, we can assess the

distance among these groups by comparing the distributions of individual characteristics
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such as income, education, employment. We refer to the indices as GroupedGELFincome

etc. Consider for example income. We first estimate non-parametrically the distributions

of household income by race of the head of the household, f̂k (y). The estimation method

applied in the paper is the adaptive or variable kernel modified to take into account

sample weights attached to each observation in each group. After estimating the densities

of household income by race, we measure the overlap among them, implying that two

racial groups whose income distributions perfectly overlap are considered perfectly similar.

The measure of overlap of distributions applied is the Kolmogorov measure of variation

distance:

Kovk` =
1

2

∫ ∣∣∣f̂k(y) − f̂ `(y)
∣∣∣ dy.

Kovk` is a measure of the lack of overlap between groups k and `. It ranges between zero

and one, taking value zero if f̂k(y) = f̂ `(y) for all y ∈ R and one if f̂k(y) and f̂ `(y) do

not overlap at all. The distance is sensitive to changes in the distributions only when

both take positive values, being insensitive to changes whenever one of them is zero. It

will not change if the distributions move apart, provided that there is no overlap between

them or that the overlapping part remains unchanged. The resulting measure of similarity

between any two groups k and `, that we employ to implement formula (2) for grouped

GELF , is

sk` = 1 − Kovk`.

This method is also applied on the distribution of the synthetic measure xi obtained for

each individual in each group by principal component analysis. In this case we estimate

f̂k(x), the distribution of the synthetic measure by race, compute the Kolmogorov measure

of variation distance and the measure of similarity as described above. The results are

displayed in table 2.

[Insert Table 2]
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States in table 2 are listed in decreasing order of GELF and two additional in-

dices (with the corresponding ranks) are reported. The first index, which we denote as

GroupedGELFd, employs the Kolmogorov distance among distributions of the synthetic

index to compute similarity values that are the used in formula (2). The second index,

denoted as GroupedGELF , is simpler in that only the average value of the synthetic in-

dex for each racial group is used when computing distances (differences). While the use of

means or of the entire distribution yield very similar results, the comparison with GELF

suggests that for some states the exogenous definition of racial categories does make a

difference: these are the same states for which the difference between ELF and GELF

in figure 1 was more pronounced. In this sense, and not surprisingly, the GroupedGELF

index calculated according to (2) is more similar to ELF than the GELF index (1)

calculated on the full similarity matrix.

5.4 Similarity of means

As an alternative to the distance among distributions, we compute a crude measure of

similarity based on the expected value of the distribution of the characteristic analyzed.

This is to illustrate the performance of GELF in case of grouped data or poor availability

of information in the data set.

We can measure similarity with respect to continuous or to categorical variables. For

continuous variables, such as household income or education, we indicate by λk the sample

mean of the distribution for group k, by λMax the maximum mean value among all groups

in all states, and by λMin the minimum. Then we can compute sk` for each state as

sk` = 1 −
∣∣∣∣

λk − λ`

λMax − λMin

∣∣∣∣ .(11)

Note that expression (11) is bounded between zero and one by construction.
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For categorical variables like employment, we create a dummy variable that assumes

the value one if the household head is employed, and zero if it is unemployed or not in the

labor force. We have also experimented with a different definition where one corresponds

to households whose head is employed or not in the labor force, and zero to unemployed.

The results were not significantly affected and are available from the authors. Indicating

by δk the sample means of this variable for group k (that is, the share of the population

assuming value one), similarity between any two groups k and ` is

sk` = 1 −
∣∣δk − δ`

∣∣ .

Again, sample weights are used in the computations for these variables.

[Insert Table 3 and Figure 2]

Results are contained in table 3. We denote as GroupedGELFincome the index obtained

when distance among racial groups is measured solely in terms of differences in average

income, as GroupedGELFedu when differences is in average years of education, and as

GroupedGELFempl when the difference is in the share of people employed. For each index,

we report the value and the rank, and states are still listed in decreasing order of the full

similarity GELF . The results are quite informative and are more easily visualized through

figure 2. Panel A of the figure plots the original values of ELF on the horizontal axis

against GroupedGELFincome on the vertical. The two measures are closely correlated with

two extreme outliers: Hawaii is much less fractionalized when we use GroupedGELFincome

than when we use ELF , while the opposite occurs for the District of Columbia. The

intuition is similar to that provided when commenting on figure 1: in states like Hawaii

or California average income levels are relatively more similar among races than they are

in DC or in Connecticut, for example. A similar picture is offered in panel B with respect

to years of education. Interestingly, however, when we look at employment levels (panel
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C) the relationship between the two indices becomes hump-shaped. The maximum value

of diversity according to GroupedGELFempl corresponds to intermediate levels of ethnic

fractionalization; on the other hand, very low or very high levels of ELF translate into

middle range values of diversity when both race and similarity in employment status are

taken into account. A possible interpretation of this result is that sizeable differences in

employment status (such as high unemployment levels for minorities) may be politically

difficult to sustain in states where a relatively high fraction of the population is non-white.

On the other hand, the same does not hold for income, as if income differences were more

easily acceptable compared to the universal right of access to employment.

While only suggestive and illustrative, the above analysis highlights some of the poten-

tial benefits that may derive from the use of fractionalization indices that do not simply

rely on population shares, but also try to incorporate information on other dimensions

along which individuals may differ.

6 Concluding remarks

The main purpose of this paper is to provide a theoretical foundation and an empirical

illustration of a new measure of ethnic diversity. Unlike the most commonly used ELF

index, our generalized version GELF makes use of a broader informational base. Instead

of limiting the relevant variables to the population shares of predefined groups, we start out

with a notion of similarity among individuals and calculate our index value accordingly.

It is possible to derive a partition into groups endogenously, and the standard ELF index

emerges as a special case when no partial similarity is allowed. The results of our empirical

application suggest that accounting for the extent of similarity among individuals in

observable dimensions other than race may indeed alter the picture of ethnic diversity in
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the United States. In places like New England or Washington DC racial fractionalization

is magnified when similarity in income, education or employment is taken into account;

in places like California the opposite occurs.

Before concluding, we would like to stress an important methodological point. While

in this paper we characterize GELF on the basis of similarities among individuals, our

approach is silent on how these similarities should be defined. In particular, our approach

is fully compatible with a setting in which the notion of continuous distance does not

apply (that is, individuals are either fully similar or fully dissimilar, in which case our

primitives sij take on the values zero or one only), as well as with a setting in which it

is meaningful to think of similarity among individuals in a continuous way. In addition,

our index allows to incorporate a multidimensional concept of similarity, as opposed to

a single dimension. We view this flexibility as an advantage of our approach, and one

that makes our index applicable in many different settings. Our choice in the empirical

illustration was guided by the attempt to compare our results with well known patterns in

the economics literature on ethnic fractionalization in the US. We chose as dimensions of

similarity ethnicity, household income, education and employment status since we believe

that these are important aspects of the US economy that could influence the behavior

of individuals. However, the choice of variables to be employed in the measurement

of similarity could include very different aspects and should be guided by the specific

application that one has in mind.

Finally, the application of our index is not limited to studies involving ethno-linguistic

fractionalization. The generalized index that we propose may be applied to various areas

in economics, including for example industrial organization. GELF is an index of diver-

sity, and the difference between one and the index value can be interpreted as an index

of concentration. Embedding information on similarity among firms in a concentration
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index may yield different results than the traditional Herfindahl index, which is purely

based on market shares.

Appendix

In this appendix, we illustrate that our characterization result is unchanged if the set of

similarity matrices Sn consists of all n× n matrices S satisfying conditions (a) and (b) of

section 2, but not necessarily (c). This is achieved by some straightforward modifications

of the definitions used in the proof of theorem 1.

That any positive multiple of G satisfies the axioms on the larger domain as well is,

again, straightforward to verify. Conversely, suppose D is a diversity measure defined on

the larger domain satisfying normalization, anonymity, additivity and replication invari-

ance. Let n ∈ N \ {1}, and define the set X n ⊆ Rn(n−1)/2 by

X n = {x = (xij) i∈{1,...,n}
j∈{1,...,n}\{i}

| ∃S ∈ Sn such that sij = xij for all i ∈ {1, . . . , n}

and for all j ∈ {1, . . . , n} \ {i}}.

Define the function F n:X n → R by letting, for all x ∈ X n,

F n(x) = D(S) − D(In)(12)

where S ∈ Sn is such that sij = xij for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} \ {i}.

Because D is bounded below by zero, it follows that F n is bounded below by −D(In).

Furthermore, the additivity of D implies that F n satisfies Cauchy’s basic functional equa-

tion

F n(x + y) = F n(x) + F n(y)(13)

for all x, y ∈ X n such that (x + y) ∈ X n; see Aczél (1966, section 2.1).
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Fix i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, and define the function fn
ij: [0, 1] → R by

fn
ij(xij) = F n(xij; 0

n(n−1)−1)

for all xij ∈ [0, 1], where the vector (xij; 0
n(n−1)−1) is such that the component correspond-

ing to ij is given by xij and all other entries (if any) are equal to zero. The function fn
ij

is bounded below because F n is and, as an immediate consequence of (13), it satisfies the

Cauchy equation

fn
ij(xij + yij) = fn

ij(xij) + fn
ij(yij)(14)

for all xij, yij ∈ [0, 1] such that (xij + yij) ∈ [0, 1]. Because the domain of fn
ij is an

interval containing the origin and fn
ij is bounded below, the only solutions to (14) are

linear functions; see Aczél (1966, section 2.1). Thus, there exists cn
ij ∈ R such that

F n(xij; 0
n(n−1)−1) = fn

ij(xij) = cn
ijxij(15)

for all xij ∈ [0, 1].

Let S ∈ Sn. By additivity, the definition of F n and (15),

F n
(
(sij) i∈{1,...,n}

j∈{1,...,n}\{i}

)
=

n∑

i=1

n∑

j=1
j 6=i

F n(sij; 0
n(n−1)−1) =

n∑

i=1

n∑

j=1
j 6=i

fn
ij(sij) =

n∑

i=1

n∑

j=1
j 6=i

cn
ijsij

and, defining dn = D(In) and substituting into (12), we obtain

D(S) =

n∑

i=1

n∑

j=1
j 6=i

cn
ijsij + dn.(16)

Now fix i, k ∈ {1, . . . , n}, j ∈ {1, . . . , n} \ {i} and ` ∈ {1, . . . , n} \ {k}, and let S ∈ Sn

be such that sij = 1 and all other off-diagonal entries of S are equal to zero. Let the

bijection π ∈ Πn be such that π(i) = k, π(j) = `, π(k) = i, π(`) = j and π(h) = h for all

h ∈ {1, . . . , n} \ {i, j, k, `}. By (16), we obtain

D(S) = cn
ij + dn and D(Sπ) = cn

k` + dn,
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and anonymity implies cn
ij = cn

k`. Therefore, there exists cn ∈ R such that cn
ij = cn for all

i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} \ {i}, and substituting into (16) yields

D(S) = cn
n−1∑

i=1

n∑

j=i+1

sij + dn

for all n ∈ N \ {1} and for all S ∈ Sn.

Normalization requires

D(1n) = cnn(n − 1) + dn = 0

and, therefore, dn = −cnn(n − 1) for all n ∈ N \ {1}. Using normalization again, we

obtain

D(In) = −cnn(n − 1) > 0

which implies cn < 0 for all n ∈ N \ {1}. Thus,

D(S) = cn

n∑

i=1

n∑

j=1
j 6=i

sij − cnn(n − 1)(17)

for all n ∈ N \ {1} and for all S ∈ Sn.

Let n be an even integer greater than or equal to four. By replication invariance and

(17),

D(R2
n/2) = cnn

(n

2
− 1

)
− cnn(n − 1) = −c2 = D(I2).

Solving, we obtain

cn = 2
c2

n2
.(18)

Now let n be an odd integer greater than or equal to three. Thus, q = 2n is even, and

the above argument implies

cq = 2
c2

q2
=

c2

2n2
.(19)

Furthermore, replication invariance requires

D(Rn
2 ) = D(R

q/2
2 ) = cqq − cqq(q − 1) = −cnn(n − 1) = D(In).
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Solving for cn and using the equality q = 2n, it follows that cn = 4cq and, combined with

(19), we obtain (18) for all odd n ∈ N \ {1} as well.

Substituting into (17), simplifying and defining γ = −2c2 > 0, it follows that, for all

n ∈ N \ {1} and for all S ∈ Sn,

D(S) = 2
c2

n2

n∑

i=1

n∑

j=1
j 6=i

sij − cnn(n − 1)

= 2
c2

n2

n∑

i=1

n∑

j=1

sij − 2
c2

n2
n − 2

c2

n2
n(n − 1)

= −2c2

[
1 − 1

n2

n∑

i=1

n∑

j=1

sij

]

= γG(S).
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Table 1: GELF and ELF in the US. 

      Difference 
State name State abb. ELF ELF rank GELF GELF rank (ELF rank-GELF rank)

Hawaii HI 0.5245 1 0.0668 42 -41 
District of Columbia DC 0.5032 2 0.0767 1 1 
Mississipi MS 0.4344 3 0.0737 3 0 
Louisiana LA 0.4165 4 0.0731 4 0 
California CA 0.4042 5 0.0681 30 -25 
Maryland MD 0.3975 6 0.0709 12 -6 
South Carolina SC 0.3940 7 0.0722 6 1 
Georgia GA 0.3885 8 0.0716 9 -1 
New York NY 0.3644 9 0.0690 23 -14 
Alabama AL 0.3577 10 0.0717 7 3 
Texas TX 0.3534 11 0.0697 21 -10 
North Carolina NC 0.3425 12 0.0703 15 -3 
New Mexico NM 0.3332 13 0.0698 19 -6 
Virginia VA 0.3259 14 0.0717 8 6 
Alaska AK 0.3225 15 0.0738 2 13 
Illinois IL 0.3069 16 0.0688 24 -8 
New Jersey NJ 0.3005 17 0.0703 14 3 
Delaware DE 0.2904 18 0.0697 20 -2 
Oklahoma OK 0.2640 19 0.0696 22 -3 
Michigan MI 0.2591 20 0.0686 26 -6 
Tennessee TN 0.2566 21 0.0701 16 5 
Arkansas AR 0.2546 22 0.0688 25 -3 
Arizona AZ 0.2509 23 0.0679 34 -11 
Florida FL 0.2324 24 0.0677 35 -11 
Nevada NV 0.2248 25 0.0639 51 -26 
Ohio OH 0.2037 26 0.0686 27 -1 
Connecticut CT 0.1967 27 0.0700 17 10 
Missouri MO 0.1958 28 0.0698 18 10 
Pennsylvania PA 0.1821 29 0.0683 29 0 
Colorado CO 0.1815 30 0.0680 33 -3 
Washington WA 0.1637 31 0.0684 28 3 
Indiana IN 0.1574 32 0.0669 41 -9 
Massachusetts MA 0.1535 33 0.0710 11 22 
Kansas KS 0.1501 34 0.0669 40 -6 
Kentucky KY 0.1354 35 0.0728 5 30 
Rhode Island RI 0.1290 36 0.0712 10 26 
Wisconsin WI 0.1145 37 0.0671 39 -2 
Oregon OR 0.1054 38 0.0673 38 0 
Utah UT 0.1033 39 0.0664 45 -6 
Montana MT 0.1027 40 0.0665 44 -4 
South Dakota SD 0.1015 41 0.0660 47 -6 
Nebraska NE 0.0980 42 0.0659 49 -7 
Wyoming WY 0.0856 43 0.0661 46 -3 
Idaho ID 0.0797 44 0.0657 50 -6 
Minnesota MN 0.0788 45 0.0681 32 13 
North Dakota ND 0.0718 46 0.0659 48 -2 
West Virginia WV 0.0674 47 0.0708 13 34 
Iowa IA 0.0503 48 0.0666 43 5 
New Hampshire NH 0.0321 49 0.0675 37 12 
Vermont VT 0.0240 50 0.0677 36 14 
Maine ME 0.0238 51 0.0681 31 20   

 



 
 
Table 2: GELF and GroupedGelf (Kolmogorov and Average) in the US. 
 

State GELF GELF rank GroupedGELF_d GroupedGELF_d rank GroupedGELF GroupedGELF rank 

HI 0.0668 42 0.0917 6 0.0588 13 
DC 0.0767 1 0.2306 1 0.1864 1 
MS 0.0737 3 0.1161 2 0.1061 2 
LA 0.0731 4 0.1070 3 0.0951 3 
CA 0.0681 30 0.0793 9 0.0586 14 
MD 0.0709 12 0.0675 14 0.0564 16 
SC 0.0722 6 0.0974 4 0.0879 4 
GA 0.0716 9 0.0850 7 0.0758 6 
NY 0.0690 23 0.0701 12 0.0617 10 
AL 0.0717 7 0.0810 8 0.0727 7 
TX 0.0697 21 0.0783 10 0.0646 8 
NC 0.0703 15 0.0701 13 0.0613 12 
NM 0.0698 19 0.0656 17 0.0614 11 
VA 0.0717 8 0.0752 11 0.0637 9 
AK 0.0738 2 0.0966 5 0.0875 5 
IL 0.0688 24 0.0664 15 0.0576 15 
NJ 0.0703 14 0.0661 16 0.0541 18 
DE 0.0697 20 0.0545 19 0.0510 20 
OK 0.0696 22 0.0365 26 0.0303 26 
MI 0.0686 26 0.0558 18 0.0516 19 
TN 0.0701 16 0.0432 24 0.0356 25 
AR 0.0688 25 0.0543 20 0.0475 21 
AZ 0.0679 34 0.0440 23 0.0558 17 
FL 0.0677 35 0.0448 22 0.0388 23 
NV 0.0639 51 0.0363 27 0.0285 29 
OH 0.0686 27 0.0392 25 0.0364 24 
CT 0.0700 17 0.0481 21 0.0407 22 
MO 0.0698 18 0.0291 31 0.0252 31 
PA 0.0683 29 0.0324 29 0.0294 27 
CO 0.0680 33 0.0348 28 0.0293 28 
WA 0.0684 28 0.0257 35 0.0184 37 
IN 0.0669 41 0.0284 32 0.0241 32 
MA 0.0710 11 0.0310 30 0.0256 30 
KS 0.0669 40 0.0261 34 0.0216 33 
KY 0.0728 5 0.0202 41 0.0146 42 
RI 0.0712 10 0.0247 36 0.0197 36 
WI 0.0671 39 0.0272 33 0.0213 34 
OR 0.0673 38 0.0168 44 0.0125 45 
UT 0.0664 45 0.0222 39 0.0180 39 
MT 0.0665 44 0.0222 38 0.0184 38 
SD 0.0660 47 0.0243 37 0.0201 35 
NE 0.0659 49 0.0182 43 0.0148 41 
WY 0.0661 46 0.0189 42 0.0157 40 
ID 0.0657 50 0.0214 40 0.0145 43 
MN 0.0681 32 0.0157 46 0.0114 46 
ND 0.0659 48 0.0164 45 0.0128 44 
WV 0.0708 13 0.0123 47 0.0097 47 
IA 0.0666 43 0.0085 48 0.0058 48 
NH 0.0675 37 0.0052 49 0.0040 49 
VT 0.0677 36 0.0044 50 0.0020 51 
ME 0.0681 31 0.0043 51 0.0030 50 

 



 
 
Table 3: GELF and GroupedGelf (income, education, employment) in the US. 
 

State GELF rank GroupedGELF_income rank GroupedGELF_edu rank GroupedGELF_empl rank

DC 1 0.2880 1 0.2436 1 0.1426 29 
AK 2 0.0936 10 0.0825 8 0.2261 5 
MS 3 0.1181 2 0.1048 2 0.1748 23 
LA 4 0.1181 3 0.0836 6 0.1960 16 
KY 5 0.0249 36 0.0063 46 0.1169 34 
SC 6 0.1054 5 0.0905 4 0.1943 17 
AL 7 0.0937 9 0.0618 14 0.2023 11 
VA 8 0.0938 8 0.0675 12 0.2100 9 
GA 9 0.1161 4 0.0690 11 0.2021 12 
RI 10 0.0285 33 0.0190 35 0.1151 36 
MA 11 0.0401 25 0.0259 26 0.1332 32 
MD 12 0.1028 6 0.0581 16 0.2117 8 
WV 13 0.0135 44 0.0039 49 0.0631 47 
NJ 14 0.0936 11 0.0596 15 0.2140 7 
NC 15 0.0827 13 0.0568 18 0.2081 10 
TN 16 0.0555 22 0.0236 29 0.1845 20 
CT 17 0.0709 17 0.0435 21 0.1615 25 
MO 18 0.0353 30 0.0174 37 0.1575 26 
NM 19 0.0625 19 0.0751 9 0.2300 4 
DE 20 0.0735 16 0.0533 19 0.2004 14 
TX 21 0.0840 12 0.0830 7 0.2346 3 
OK 22 0.0396 26 0.0254 28 0.2013 13 
NY 23 0.0967 7 0.0674 13 0.2349 2 
IL 24 0.0778 15 0.0576 17 0.2156 6 

AR 25 0.0564 20 0.0389 22 0.1849 19 
MI 26 0.0629 18 0.0356 23 0.1917 18 
OH 27 0.0475 24 0.0257 27 0.1617 24 
WA 28 0.0230 37 0.0209 34 0.1411 30 
PA 29 0.0396 27 0.0229 30 0.1499 28 
CA 30 0.0779 14 0.0851 5 0.2522 1 
ME 31 0.0028 51 0.0025 51 0.0233 51 
MN 32 0.0169 40 0.0067 45 0.0737 45 
CO 33 0.0361 29 0.0330 25 0.1531 27 
AZ 34 0.0556 21 0.0733 10 0.1965 15 
FL 35 0.0552 23 0.0480 20 0.1790 22 
VT 36 0.0031 50 0.0034 50 0.0235 50 
NH 37 0.0047 49 0.0051 48 0.0313 49 
OR 38 0.0129 46 0.0156 39 0.0963 38 
WI 39 0.0264 35 0.0153 40 0.1033 37 
KS 40 0.0265 34 0.0209 33 0.1304 33 
IN 41 0.0304 32 0.0178 36 0.1337 31 
HI 42 0.0325 31 0.0940 3 0.1166 35 
IA 43 0.0054 48 0.0056 47 0.0482 48 
MT 44 0.0175 39 0.0131 41 0.0935 40 
UT 45 0.0168 41 0.0211 32 0.0945 39 
WY 46 0.0150 43 0.0171 38 0.0796 43 
SD 47 0.0188 38 0.0084 43 0.0922 41 
ND 48 0.0131 45 0.0073 44 0.0674 46 
NE 49 0.0162 42 0.0119 42 0.0899 42 
ID 50 0.0117 47 0.0224 31 0.0745 44 
NV 51 0.0394 28 0.0330 24 0.1811 21 

 



Figure 1: GELF and ELF in the US 
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Figure 2, Panel A: GroupedGELF (income) and ELF in the US 
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Figure 2, Panel B: GroupedGELF (education) and ELF in the US 
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Figure 2, Panel C: GroupedGELF (employment) and ELF in the US 
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