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Abstract. We develop an abstract notion of integration for E¤ros measur-
able correspondences whose values are weakly compact subsets of a separable
Banach space. This notion is built on a basic monotonicity hypothesis and
the simple requirements that the integral assigns at most one value to any
single-valued correspondence and evaluates the constant functions in the ob-
vious way; linearity of the integral is not required. These hypotheses alone
guarantee that the abstract integral is relatively weakly compact-valued, and
its closed convex hull decomposes into the abstract integrals of the measurable
selections from that correspondence. We use this decomposition theorem to
prove a Fatou-type lemma and a monotone convergence theorem, and to derive
necessary and su¢ cient conditions for the linearity and parametric continuity
of the abstract integral. In turn, we apply our main results to obtain simple
characterizations of some classical set-valued integrals, and derive (possibly
nonadditive) aggregation methods for correspondences. All in all, we �nd that
abstract integration theory yields many results about particular integrals for
set-valued maps in a uni�ed manner, often with minimal recourse to measure-
theoretic arguments.

1. INTRODUCTION

Integration of set-valued maps (= correspondences = multifunctions) is a fairly
mature area within set-valued analysis, and arises as a matter of routine in a diverse
set of �elds such as control theory, mathematical economics, random set theory, and
di¤erential inclusions. The literature provides various ways of approaching this
issue. Informally speaking, the majority of these approaches are of the following
form: Given a measure space (
;�; �) and a Banach space X; (i) decide on a set
F of functions that map 
 into the set of all nonempty subsets of X; (ii) decide
on a notion of integral I to use for Borel measurable functions from (
;�; �) into
X; and (iii) de�ne the set-valued integral I as a function from F into 2X by the
formula

(1) I(F ) := fI(f) : f 2 Sel(F ) and I(f) existsg,
where Sel(F ) is the set of all Borel measurable selections from F . For lack of
a better term, we refer to such a multivalued integral as a selection integral in
what follows. In applications, it is desirable to work with closed and convex-valued
integrals. This prompts looking also at integrals that are of the form

I(F ) := cofI(f) : f 2 Sel(F ) and I(f) existsg;
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we call such an integral a regularized selection integral.
The most prominent example of a set-valued integral is surely the one of Au-

mann [7]. The original formulation of Aumann takes (
;�; �) as the unit Lebesgue
interval and X as Rn; and chooses F as the set of all measurable correspondences
from [0; 1] into Rn. The Aumann integral of any F 2 F is de�ned as

A
Z
[0;1]

F :=

(Z
[0;1]

f : f 2 Sel(F ) \ L1([0; 1])
)

where the integrals on the right-hand side are Lebesgue. Obviously, the Aumann
integral is a selection integral on F . Besides, it is well-known that the Aumann
integral is convex-valued. Thus

I(F ) := cl

 
A
Z
[0;1]

F

!
;

which is also a commonly used set-valued integral, is a regularized selection inte-
gral on F . In addition, if F contains only the measurable, integrably bounded and
closed-valued correspondences from [0; 1] to Rn; the Aumann integral on F is com-
pact and convex-valued, so it is itself a regularized selection integral (which may
take ? as a value).
These observations can be substantially generalized. Let (
;�; �) be a complete

�nite nonatomic measure space, X a separable Banach space, and let F consist of
�-integrably bounded, E¤ros measurable and closed-valued correspondences from

 to X: For any F 2 F ; de�ne

I(F ) := cl
�Z




f d� : f 2 Sel(F )
�

where the integrals on the right-hand side are Bochner. Then, I is a regularized
(nonempty-valued) selection integral on F .1
The literature provides other forms of interesting integration concepts for set-

valued maps. Some of these take on Aumann�s approach, but replace the notion
of integration for functions, adopting, for instance, the Lebesgue integral against a
�nitely additive measure (cf. [29]), or the Choquet integral against a capacity (cf.
[46]). With suitable restrictions on their domains of integration, these set-valued
integration theories yield selection integrals as well. There are also approaches that
di¤er from that of Aumann at a deeper level. For instance, if we endow ck(X);
the set of all nonempty compact and convex subsets of a separable Banach space
X; with the Hausdor¤ metric, we can use the Radström embedding theorem to
isometrically embed the resulting metric space in a Banach space Y (as a convex
cone), thereby identifying any ck(X)-valued map F on 
 with a function F̂ from 


into Y:We may then apply the Bochner integral to F̂ , and back out the �set-value�
in X to be assigned as the integral of F . This is known as the Debreu integral (a
special case of which was introduced in [13]). This integral is in general distinct
from the Aumann integral, but it reduces to it, and hence it is a selection integral
as well, under fairly general conditions (cf. [10] and [22]). Another example of
note is the set-valued Pettis integral. While it is not at all evident at the level
of its de�nition (see Section 6.3 below), it turns out that the Pettis integral is

1See [6, Section 8.6], [31, Section 2.1] and [45] for excellent reviews of the theory of Aumann
and Aumann-Bochner integration.
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also a regularized selection integral, provided F is the set of all weakly compact
and convex-valued correspondences from 
 into a Banach space X that is either
separable or has a weak�-separable dual. (See [11] and [16].)
The idea behind a selection integral is �natural,�and the review above highlights

that it is commonly adopted. It is, however, ad hoc. After all, it is not at all clear
which sorts of set-valued integration principles justify de�ning the integral of a cor-
respondence as the family of the integrals of all selections from that correspondence.
The primary objective of the present paper is, in fact, to formulate such principles
with the hope of understanding the overall structure of any selection integral. In
contrast to the existing literature on set-valued integration, our approach is thus
axiomatic. In particular, we do not start with a particular selection integral and
study its properties, nor do we investigate if a particular integral can be realized as
another type of a selection integral. Instead, informally speaking, for a given ideal
F of Banach space-valued correspondences, we aim to identify the properties to be
imposed on a correspondence I on F which would ensure I be a selection integral
or a regularized selection integral on F .
The basic outline of our contribution is in order. Let (
;�) be a measurable

space, andX a separable Banach space. Let F be an ideal of weakly compact-valued
(E¤ros) measurable correspondences from 
 to X. Our primitive is a correspon-
dence of the form I : F � X: And our primary questions are:
� When is I a selection integral?
� When is it a regularized selection integral?

Given that most set-valued integrals are either selection integrals or regularized
selection integrals, the answers to these questions are bound to point to hitherto
unseen commonalities between these integral concepts, and highlight what distin-
guishes them from other sorts of integrals.
The answers we provide to these two questions are pleasantly simple. First,

we demand that I assign either ? or a singleton to any single-valued correspon-
dence in F (allowing for the possibility that such a correspondence may not be
I-integrable). In addition, mainly to exclude trivialities, we posit that I of any con-
stant single-valued correspondence in F is the singleton that consists of the value
of that correspondence. These properties seem unimpeachable, and are satis�ed by
virtually all set-valued integration concepts in the literature. As a next step, it is
tempting to impose some form of linearity or a monotonicity condition on I. We
do not follow the �rst route, because some important selection integrals, such as
the Aumann-Choquet integral, is not additive. On the other hand, there is not an
obvious way of tracing the second route simply because the image space X lacks
an order structure in general. To circumvent this issue, we adopt a scalarization
approach. For any F;G 2 F and ` 2 X�; let us say that F is `-larger than G if for
every selection g from G there is an f 2 Sel(F ) such that ` � f majorizes ` � g: In
turn, let us say that I is `-monotonic if for every y 2 I(G) there is an x 2 I(F ) with
`(x) � `(y); whenever F is `-larger than G: Finally, we call I scalarly monotonic
if it is `-monotonic for every ` 2 X�. This property is the main engine behind
the entire development of the present work, and is discussed in fair bit of detail in
Section 3.
We call I an abstract integral on F if it is scalarly monotonic, assigns at most

a singleton to any single-valued correspondence in F , and evaluates the constant
single-valued correspondences in F in the obvious way. Our �rst main �nding
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(Theorem 4.1) is that an abstract integral comes close to being a selection integral
in the sense that co of an abstract integral always equals the co of a selection
integral. This gives a partial answer to the �rst question we posed above. As a
corollary of this result (Theorem 4.3), we obtain an essentially complete answer to
our second question: Every closed and convex-valued abstract integral on F is a
regularized selection integral. Under rather mild conditions, the converse is true as
well.
These observations, along with the fact that many interesting set-valued integrals

(e.g., the Aumann-Bochner, the closed Aumann-Bochner, the Aumann-Choquet
integrals) are abstract integrals on suitable domains, suggest that it may be worth-
while to explore the properties of abstract integrals. After deriving a Castaing-type
representation for the abstract integral (Corollary 4.4), Section 5 is devoted to this
issue. In that section, we show that closed and convex-valued abstract integrals
are always weakly compact-valued. In addition, we prove that if it is closed and
convex-valued, an abstract integral is linear i¤ it is linear for functions (Theorem
5.1), and it enjoys Fatou-type and monotone convergence properties (Theorems 5.4
and 5.5). In Section 5, we also show that Aumann identities hold for abstract inte-
grals in great generality (Proposition 5.6), and derive a basic parametric continuity
theorem for them (Theorem 5.9).
While they are of course not as sharp as the corresponding theorems for speci�c

set-valued integrals, these results nonetheless unify quite a few �ndings of set-
valued integration theory. At several instances of the exposition, we illustrate this
by showing exactly how our general �ndings for the abstract integral read in the case
of the Aumann-Bochner integral. In Section 5, we also show how to use abstract
integrals to derive �nitely additive set-valued measures, and provide conditions
under which they are order-preserving when the image space X is a Banach lattice
(Proposition 5.10).
The �nal section of the paper presents some applications. First, we use our main

results to provide axiomatic characterizations of the Aumann and the Aumann-
Bochner integrals.2 Second, we present an alternative proof for the well-known
characterization of the set-valued Pettis integral as a regularized selection integral.
Third, we introduce a new set-valued integral in the context of probability spaces,
which we dub the convex integral. This integral relates to the convex stochastic
order, and closely resembles the Herer integral of random set theory. We prove
that the convex integral is an abstract integral, and use our main decomposition
theorem to show that it is actually a regularized selection integral. In our fourth,
and �nal, application, we show that every (possibly non-additive) aggregator cor-
respondence over the family of correspondences that map into the compact subsets
of [0;1); is an abstract integral. This allows us derive several results about ag-
gregator correspondences (such as the Aumann-Choquet and the Aumann-Sugeno
aggregators) in a uni�ed manner.

2We are not aware of any such characterizations in the previous literature. One notable ex-
ception to this is the characterization of the closed Aumann integral by Ararat and Rudlo¤ [2].
However, the approach of that paper is convex-analytic, and wholly di¤erent than the present one.
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2. PRELIMINARIES

2.1. Correspondences. Let A and B be two nonempty sets. By � : A � B; we
mean a set-valued map from A to B; that is, a map from A into the collection of all
subsets of B: We henceforth refer to such a map as a correspondence, but note
that some authors prefer the terminology of multifunction and many-valued map
instead. By the range of �; we mean the set �(A) :=

S
f�(a) : a 2 Ag: In general,

any one value of � may be empty; the e¤ective domain of � is de�ned as

dom(�) := fa 2 A : �(a) 6= ?g:

If the domain and e¤ective domain of � coincide, that is, �(a) 6= ? for each a 2 A;
we refer to � as a nonempty-valued correspondence. The axiom of choice says
that for any such correspondence �; there is a map � : A ! B with �(a) 2 �(a)
for each a 2 A: Such a map � is said to be a selection from �.
If there is only one selection from �; we say that � is single-valued; in this

case we may obviously identify � with its unique selection. Nevertheless, it will
at times be convenient to have a notation that distinguishes the selection from a
single-valued correspondence and that correspondence. Consequently, for any map
� : A! B, we denote by �fg the single-valued correspondence whose only selection
is �; that is, �fg : A� B is de�ned by �fg(a) := f�(a)g:
When B is a topological (linear) space, we say that a correspondence � : A� B

is closed-valued if �(a) is closed for each a 2 A; and de�ne (weakly) compact-
valued correspondences analogously. When B is a linear space, we say that � is
convex-valued if �(a) is convex for each a 2 A:
For any correspondences � and 	 from A to B, by � v 	 we simply mean

that �(a) � 	(a) for each a 2 A: The union and intersection of � and 	 are the
correspondences �[	 and �\	 from A to B de�ned by (�[	)(a) := �(a)[	(a)
and (� \ 	)(a) := �(a) \ 	(a); respectively. These de�nitions are extended to
the case of arbitrary unions and intersections in the obvious way. Finally, for any
subset S of B; we denote the constant correspondence that maps every a 2 A
to S by �S . That is, �S : A� B is de�ned by

�S(a) := S for all a 2 A:

When � v �S ; we simply write � v S:

2.2. Measurable Correspondences and Selections. Let (
;�) be a measur-
able space and X a topological space. When we treat X itself as a measurable
space, we always have the Borel �-algebra B(X) in mind.
Let F be a correspondence from 
 to X. The inverse image of a subset S of

X under F is de�ned as

F�1(S) := f! 2 
 : F (!) \ S 6= ?g:

In turn, we say that F is �-measurable, or E¤ros measurable, if F�1(O) 2 �
for every open subset O of X: We recall that �-measurability is preserved under
countable unions. The intersection of two �-measurable correspondences from 

to X need not be �-measurable (even when X is Polish), but if one of those corre-
spondences is compact-valued, and the other closed-valued, then their intersection
is �-measurable.
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Remark 2.1. Some authors, such as Himmelberg [23], refer to E¤ros measurability
as weak measurability, reserving the term �measurable�when F�1(C) 2 � for every
closed subset C of X: It is well-known that these two notions coincide when X is
Polish, F is nonempty and closed-valued, and (
;�) is complete, that is, when there
exists a complete �-�nite measure on �: Under these conditions, �-measurability of
F is also equivalent to the graph of F; that is,

S
!2
f!g�F (!); being a �
B(X)-

measurable set. See [6, Theorem 8.1.4].

When X is a topological linear space, we denote its origin as 0X : In this case, for
any A � 
; we de�ne the restriction of F to A as the correspondence F �A: 
� X
where F �A (!) := F (!) if ! 2 A and F �A (!) := f0Xg otherwise. (Note.
F �?= �f0Xg.) It is easy to verify that F �A is �-measurable whenever A 2 �.
When this is the case, we refer to F �A as a measurable restriction of F .

Notation. Throughout this paper, and when X is a Banach space, Kw(
;�; X)
stands for the set of all �-measurable, nonempty and weakly compact-valued cor-
respondences from 
 to X. The set of all compact-valued members of Kw(
;�; X)
is, in turn, denoted as K(
;�; X): These sets are identical when X is �nite-
dimensional.

By a �-measurable selection from F; we mean a selection f from F which is
measurable as a map from (
;�) into X: In what follows, we denote the set of all �-
measurable selections from F by Sel(F ); assuming that the underlying measurable
space is implicitly understood. The Kuratowski-Ryll Nardzewski selection theorem
of [27] says that when X is a Polish space, we have Sel(F ) 6= ? for every nonempty
and closed-valued �-measurable F : 
 � X. In particular, when X is a separable
Banach space, Sel(F ) 6= ? for every F 2 Kw(
;�; X).
A correspondence F : 
� X is said to admit a Castaing representation if

F (!) = clff1(!); f2(!); :::g for every ! 2 


for some sequence (fm) in Sel(F ): It is well-known that, when X is a Polish space
and F is nonempty and closed-valued, F is �-measurable i¤ it admits a Castaing
representation.3 In particular, when X is a separable Banach space, this represen-
tation is valid for any F 2 Kw(
;�; X).

2.3. Ordering of Sets. Let X be a nonempty set and % a preorder (that is, a
re�exive and transitive binary relation) on X: One natural way to use % in order
to make 2X a preordered set is by applying the containment ordering to the %-
decreasing closures of subsets of X: This leads to the upper set-ordering %�
induced by %. Put precisely, %� is the preorder on 2X such that

A %� B i¤ for every y 2 B there is an x 2 A with x % y:

(Note. A %� ? for any A � X.)

3See [9, Theorem 6.6.8].
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2.4. Numerical Ordering of Sets. Let X be a nonempty set and u a real-valued
map on X: The total preorder %u on X induced by u is de�ned as: x %u y
i¤ u(x) � u(y): In accordance with the notation introduced above, the upper set-
ordering induced by %u on 2X is denoted as %�u, that is,

A %�u B i¤ for every y 2 B there is an x 2 A with u(x) � u(y):

Clearly, for any x; y 2 X; we have fxg %�u fyg i¤ u(x) � u(y); so %�u may be
regarded as an extension of %u from X to 2X :
We note that A %�u B implies supu(A) � supu(B): The converse may fail even

in the simplest situations. For instance, [0; 1) %�id [0; 1] is false where id stands for
the identity map on R.

2.5. Numerical Ordering of Correspondences. Let (
;�) be a measurable
space and X a Banach space. For any u : X ! R; we preorder the maps from 

into X according to their values under u by using the total preorder on X induced
by u pointwise. That is, we de�ne the preorder Du on X
 as: f Du g i¤ u�f � u�g
(i.e., u(f(!)) � u(g(!)) for every ! 2 
): In turn, we use the upper set-ordering
induced by Du, that is, D�u, to order the subsets of X
: This, in turn, allows us
make Kw(
;�; X) a preordered set by comparing any two correspondences through
their selections. Put precisely, we de�ne the preorder Iu on Kw(
;�; X) by

F Iu G i¤ Sel(F ) D�u Sel(G):

In other words, for any F;G 2 Kw(
;�; X), we have

F Iu G i¤ for every g 2 Sel(G) there is an f 2 Sel(F ) with u � f � u � g:

Notice that, if f and g are �-measurable X-valued maps on (
;�); we have ffg Iu
gfg i¤ u � f majorizes u � g: The preorder Iu is thus a natural extension of the
standard (coordinatewise) ordering of measurable maps from (
;�) into X on the
basis of their u values.

3. SCALAR MONOTONICITY

3.1. Scalarly Monotonic Evaluation of Correspondences. Let (
;�) be a
measurable space and X a Banach space. Informally speaking, by an abstract inte-
gral on a subset of Kw(
;�; X); we think of a correspondence from that subset to
X which
(i) behaves like a familiar integral for single-valued correspondences, and
(ii) acts �monotonically�in a suitable sense.

We will be rather permissive about modeling (i) here; we will only ask this cor-
respondence to be at most single-valued on the set of all single-valued correspon-
dences, and to evaluate constant single-valued correspondences in the obvious way.
We do not impose any form of additivity at the outset.
The crux of the matter is to model (ii). This task is complicated by the fact

that X does not have an inherent order structure. Our proposal in this regard is to
capture the �monotonicity�of a set-valued integral by comparing the integrals of
two correspondences through the sets of integrals of the `-valuations of all selections
from these correspondences (according to the upper set-ordering) for every contin-
uous linear functional ` on X. The following de�nition introduces this property in
precise terms.
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De�nition. Let (
;�) be a measurable space, X a Banach space, and F a nonempty
subset of Kw(
;�; X): We say that a correspondence I : F � X is scalarly
monotonic if for every continuous linear functional ` on X; and every F;G 2 F ;
(2) F I` G implies I(F ) %�` I(G):
Put more explicitly, I is scalarly monotonic i¤ for every ` 2 X� and F;G 2 F ; the
statement F I` G (which means for every g 2 Sel(G) there is an f 2 Sel(F ) with
` � f � ` � g) implies that either

� I(G) = ? or;
� I(G) 6= ? and for every y 2 I(G) there is an x 2 I(F ) with `(x) � `(y):

If (2) holds for every ` 2 X� and every single-valued F;G 2 F ; we say that I is
scalarly monotonic for functions. In other words, I is scalarly monotonic for
functions i¤ for every ` 2 X� and �-measurable f; g 2 X
 with ffg; gfg 2 F ; the
inequality ` � f � ` � g implies that either

� I(gfg) = ? or;
� I(gfg) 6= ? and for every y 2 I(gfg) there is an x 2 I(ffg) with `(x) � `(y):

We next look at a few examples to illustrate this de�nition.

Example 3.1. Take any measurable space (
;�), and any nonempty family M
of �-measurable real-valued functions on 
: Put F := fffg : f 2 Mg; and let
I : F � R be any single-valued correspondence. Then, I is scalarly monotonic i¤

f � g implies I(ffg) � I(gfg)
for any f; g 2M. Thus, the notion of scalar monotonicity is a generalization of the
usual monotonicity property for real-valued integrals. �

Example 3.2. For any n 2 N; put N := f0; :::; ng; and let F stand for the set of all
nonempty compact-valued correspondences from (N; 2N ) to R. Then, I0 : F � X
de�ned by I0(F ) := �F (0); is not scalarly monotonic for functions. On the other
hand, the correspondence I1 : F � X with I1(F ) :=

�P
i2N minF (i)

	
, is scalarly

monotonic for functions, but it is not scalarly monotonic. �

As simple as they are, these examples suggest that scalar monotonicity is a rea-
sonable monotonicity property for set-valued integrals that take values in a Banach
space. We will next show that this property is satis�ed by all the classical Banach
space-valued integrals.

Notation. Throughout the paper, we denote the Pettis and the Bochner integrals
of any Banach space-valued map f on a measure space (
;�; �) by

P
Z



f d� and B
Z



f d�;

respectively, provided these integrals exist. However, when the Banach space under
consideration is Rn; either of these integrals (which then coincide) is denoted byR


f d�.

Example 3.3. Let (
;�; �) be a �nite measure space and X a Banach space. Let
P stand for the set of all Pettis �-integrable functions from 
 into X; and put
F := fffg : f 2 Pg. Finally, de�ne I : F � X by setting I(ffg) :=

�
P
R


f d�

	
.
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Then, I is scalarly monotonic. Indeed, for any ` 2 X� and f; g 2 P with `�f � `�g,
the very de�nition of the Pettis integral entails

`

�
P
Z



f d�
�
=

Z



(` � f) d� �
Z



(` � g)d� = `

�
P
Z



g d�
�
,

that is, I(ffg) %�` I(gfg): �

Notation. In what follows we will often simplify our notation by writing I(f) for
I(ffg) for any I : F � X and �-measurable f : 
! X with ffg 2 F .

Example 3.4. Let (
;�; �) be a �nite measure space and X = (X; k�k) a separable
Banach space. The Aumann-Bochner integral is de�ned as the correspondence
IA-B : Kw(
;�; X)� X with

IA-B(F ) :=

�
B
Z



f d� : f 2 Sel(F ) and f is Bochner �-integrable
�
.

In turn, we say that an F 2 Kw(
;�; X) is Aumann-Bochner integrable if
IA-B(F ) 6= ?. When X is �nite-dimensional, it is common to refer to IA-B as
the Aumann integral; in that case we use the notation IA . We say that a cor-
respondence F 2 Kw(
;�; X) is �-integrably bounded if there is a Bochner
�-integrable map h : 
! X with supx2F (!) kxk � kh(!)k for every ! 2 
.
Let F stand for the set of all �-integrably bounded members of Kw(
;�; X):

We claim that IA-B , restricted to F , is scalarly monotonic. To see this, take any
` 2 X� and F;G 2 F with F I` G, and pick an arbitrary y 2 IA-B(G): Then, y =
B
R


g d� for some Bochner �-integrable g 2 Sel(G): Since F I` G; there exists an

f 2 Sel(F ) such that `�f � `�g, and since F is �-integrably bounded, f is Bochner
�-integrable. Then, x := B

R


f d� 2 IA-B(F ); while

`(x) =

Z



(` � f) d� �
Z



(` � g) d� = `(y).

In view of the arbitrary choice of y; this proves IA-B(F ) %�` IA-B(G): �
3.2. Ideals and Bornologies of Correspondences. While the more general case
of closed-valued correspondences is of obvious interest, the integration theory that
we develop in this paper applies only to weakly-compact valued correspondences.
Consequently, any domain of integration considered below will be a subclass of
Kw(
;�; X). In general, we will only ask of such a subclass to contain the zero
function and to be closed under taking subsets and �nite unions. In a few instances,
we will also need it to include all constant single-valued correspondences.

De�nition. Let (
;�) be a measurable space, and X a Banach space (whose origin
is denoted as 0X). A nonempty subset F of Kw(
;�; X) is said to be an ideal
in Kw(
;�; X) if �f0Xg 2 F and for any F;G 2 Kw(
;�; X); we have (i) F 2 F
whenever F v G 2 F , and (ii) F [ G 2 F whenever F;G 2 F . If, in addition,
�fxg 2 F for every x 2 X, we say that F is a bornology in Kw(
;�; X).4

As we shall see, an ideal in Kw(
;�; X) has a su¢ ciently rich structure to serve
as a domain for set-valued integrals, while most set-valued integrals are actually

4In point-set topology, a bornology on a nonempty set S is de�ned as a family of subsets of S
that contains all singletons, and is closed under �nite unions and taking subsets. Our terminology
is patterned after this concept.
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de�ned on a bornology in Kw(
;�; X). For the moment, we only point to the
following obvious facts.

Lemma 3.1. Let (
;�) and X be as in the de�nition above, and let F be an ideal
in Kw(
;�; X). Then:
a. F is closed under measurable selections, that is, ffg 2 F for every f 2 Sel(F )

and F 2 F ;
b. F is closed under measurable restrictions, that is, F �A 2 F for any F 2 F

and A 2 �:
Proof. Part (a) is trivial. On the other hand, as F is an ideal, F̂ := F [�f0Xg 2

F . Obviously, F �A v F̂ while it is readily checked that F �A is �-measurable
(whence F �A 2 Kw(
;�; X)) for any A 2 �: Since F is an ideal in Kw(
;�; X);
therefore, F �A 2 F . �

As for examples, we note that the set of all �-measurable, nonempty �nite-valued
correspondences from 
 to X is a bornology in Kw(
;�; X). More generally, for
any �nite measure � on �; the collection of all �-integrably bounded members of
Kw(
;�; X) is a bornology in Kw(
;�; X). (By contrast, in general, the set of
all Aumann-Bochner integrable members of Kw(
;�; X) is not an ideal; it does
not even have to be closed under measurable selections.) Finally, in the context
of non-additive integration (Section 6.5), one often works with ideals like fF 2
Kw(
;�;R) : F v [0;1)g that are not bornologies.

3.3. AWeak Compactness Lemma. A special case of the measurable maximum
theorem �see [1, Theorem 18.19] �says that the correspondence ! 7! fx 2 F (!) :
'(x) = sup'(F (!))g on 
 is �-measurable, where X is a Polish space, ' 2 C(X);
and F 2 K(
;�; X): In the sequel, we will need a version of this theorem in which
X is a separable Banach space and F is known only to be weakly compact-valued.
As we were unable to locate this type of a result in the literature, we provide a
proof for it here (even though the argument closely follows that of [23] to deduce
Filippov�s implicit function theorem from Castaing�s theorem, and the measurable
maximum theorem from Filippov�s theorem.)

Notation. Let X = (X; k�k) be a normed linear space, y 2 X and S a nonempty
subset of X: In the rest of the paper, we denote the in�mum distance between y
and S by dist(y; S); that is,

dist(y; S) := inf
x2S

ky � xk .

Lemma 3.2. Let (
;�) be a measurable space and X a separable Banach space.
For any weakly continuous ' : X ! R and F 2 Kw(
;�; X), the correspondence
H : 
� X de�ned by

H(!) := argmax
x2F (!)

'(x);

belongs to Kw(
;�; X).
Proof. Take any ' and F as in the statement of the lemma, and note that H

is a nonempty and weakly compact-valued correspondence by Weierstrass�extreme
value theorem. De�ne v : 
 ! R by v(!) := maxf'(x) : x 2 F (!)g: We claim
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that v is �-measurable. To prove this, apply Castaing�s theorem to �nd a se-
quence (fm) in Sel(F ) such that F (!) = clff1(!); f2(!); :::g for every ! 2 
: Then,
since ' is continuous (being weakly continuous), we have v(!) = supf'(x) : x 2
ff1(!); f2(!); :::gg for every ! 2 
: Being the supremum of a countable collection
of �-measurable real-valued maps, therefore, v is �-measurable.
For any y 2 X; we de�ne dy : 
! [0;1) by

dy(!) := dist(y;H(!)).

We will show below that dy is �-measurable for each y 2 X. As this is equivalent
to say that H is �-measurable, this will complete our proof. (See, for instance, [9,
Proposition 6.5.8].)
For each positive integer k; let us de�ne Hk : 
� X by

Hk(!) :=
�
x 2 F (!) : j'(x)� v(!)j < 1

k

	
;

and note that H v Hk. Next, for any (y; k) 2 X � N; de�ne the real-valued map
dy;k on 
 by

dy;k(!) := dist(y;Hk(!));

and note that

fdy;k < tg =
1[
m=1

�
fky � fmk < tg \

�
j' � fm � vj < 1

k

	�
.

It readily follows from this observation that dy;k is �-measurable, for each (y; k) 2
X � N.
Now, H(!) = H1(!)\H2(!)\��� for each ! 2 
. Moreover, sinceH v ��� v H2 v

H1; we have dy;1 � dy;2 � � � � � dy: Consequently, supk2N dy;k(!) � dy(!) for every
(y; !) 2 X � 
. To derive a contradiction, suppose this inequality holds strictly
for some (y; !) 2 X � 
. Then, there exists an " > 0 with dy;k(!) < dy(!)� " for
all k 2 N. On the other hand, for every positive integer k; there is an xk 2 Hk(!)
such that ky � xkk � dy;k(!) + "=2; whence ky � xkk < dy(!)� "=2: By de�nition
of Hk; we have xk 2 F (!) and j'(xk)� v(!)j < 1=k; for every k 2 N. Since F (!)
is weakly compact, the Eberlein-�mulian theorem entails that there is a strictly
increasing sequence (km) of positive integers such that (xkm) converges weakly to
some x 2 F (!): Since ' is weakly continuous, we have '(xkm) ! '(x); so as
j'(xkm)� v(!)j < 1=km for each m; we must have '(x) = v(!); that is, x 2 H(!):
It follows that dy(!) � ky � xk : But then, since k�k is weakly lower semicontinuous
�see, for instance, [1, Lemma 6.22] �we get

dy(!) � ky � xk � lim inf ky � xkmk � dy(!)� "
2 ;

a contradiction. Conclusion:

sup
k2N

dy;k(!) = dy(!) for every (y; !) 2 X � 
.

Since each dy;k is �-measurable, therefore, dy is �-measurable, for every y 2 X: As
we have noted above, this means that H is �-measurable. �

The following is the main result of this section.
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Lemma 3.3. Let (
;�) be a measurable space and X a separable Banach space. Let
F be an ideal in Kw(
;�; X), and take any I : F � X such that jI(F )j � 1 when-
ever F is single-valued. If I is scalarly monotonic for functions, then co

S
fI(f) : f 2

Sel(F )g is weakly compact for any F 2 F .
Proof. Fix an arbitrary F 2 F : If I(f) = ? for every f 2 Sel(F ); there remains

nothing to prove, so we assume otherwise. For an arbitrarily �xed ` 2 X�; we
de�ne the correspondence H`;F : 
� X by H`;F (!) := argmaxf`(x) : x 2 F (!)g:
Since a linear functional is continuous i¤ it is weakly continuous, Lemma 3.2 ap-
plies: H`;F 2 Kw(
;�; X): In turn, by the Kuratowski-Ryll Nardzewski selection
theorem, Sel(H`;F ) 6= ?:
Note that Sel(H`;F ) � Sel(F ); and pick any ' 2 Sel(H`;F ): By de�nition of H`;F ;

we have `('(!)) � `(x) for every ! 2 
 and x 2 F (!): In particular, ` � ' � ` � f
for any f 2 Sel(F ): Since F 2 F and F is closed under selections, ffg 2 F
for each f 2 Sel(F ) and, in particular, 'fg 2 F : As I is scalarly monotonic for
functions, therefore, I(') %�` I(f) for every f 2 Sel(F ): Since we are in the case
where I(f) 6= ? for some f 2 Sel(F ); it follows that I(') 6= ? and `(I(')) � `(I(f))
for every f 2 Sel(F ) with I(f) 6= ?. Moreover, applying this reasoning with �`
playing the role of ` shows that there is a � 2 Sel(F ) such that I(�) 6= ? and
`(I(�)) � `(I(f)) for every f 2 Sel(F ) with I(f) 6= ?. Therefore, the supremum of
j`j on

S
fI(f) : f 2 Sel(F )g is attained. As ` is linear and continuous, the same is

true for cl(co(
S
fI(f) : f 2 Sel(F )g)). Since the latter set is also weakly closed and

` is arbitrary in X�; we may invoke James�weak compactness theorem to conclude
that co

S
fI(f) : f 2 Sel(F )g is weakly compact in X: �

The following example specializes Lemma 3.3 to the case of the Aumann-Bochner
integral (Example 3.4), thereby illustrating how the present approach may be useful
in concrete situations.

Example 3.5. Let (
;�; �) be a complete, �nite and nonatomic measure space,
andX a separable Banach space. Let F stand for the set of all �-integrably bounded
members of Kw(
;�; X); and take an arbitrary F 2 F . We have seen in Example
3.4 that IA-B jF is scalarly monotonic. By Lemma 3.3, therefore, co(IA-B(F )) is
weakly compact. But it is well-known that cl(IA-B(F )) is convex,5 and this implies
that co(IA-B(F )) equals cl(IA-B(F )): Also for the same reason, cl(IA-B(F )) equals
the weak closure of IA-B(F ): Conclusion: IA-B is a relatively weakly compact-valued
correspondence on F . �

The observation derived in Example 3.5 is by no means new. However, the
typical way this result is proved in the literature is by �rst showing that Sel(F ) is
relatively weakly compact in L1(�;X) �see, for instance, [14] and [45] �and then
exploiting the fact that f 7!

R


f d� is a weak-to-weak continuous map from this

space into X: In contrast, the method a¤orded by Lemma 3.3 seems a bit simpler,
and attacks the issue of weak compactness of IA-B directly.

Example 3.6. Let (
;�; �); X and F be as in the previous example. We de�ne
the closed Aumann-Bochner integral as the correspondence I : F � X with
I(F ) := cl(IA-B(F )): We wish to show that this integral is scalarly monotonic as

5See, for instance, [45, Theorem 6.2] where the assertion is obtained as an easy consequence of
Uhl�s theorem of [42].
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well. To this end, take any ` 2 X� and F;G 2 F with F I` G. To prove that
I(F ) %�` I(G); pick any y 2 I(G) which means B

R


gm d� ! y for some sequence

(gm) of Bochner �-integrable maps in Sel(G): Since F I` G; for each m there is
an fm 2 Sel(F ) with ` � fm � ` � gm. Since F is �-integrably bounded, each fm is
Bochner �-integrable. But, by what we have seen in the previous example, I(F ) is
weakly compact. It then follows from the Eberlein-�mulian theorem that there is
a subsequence (fmk

) of (fm) such that

x := weak�limB
Z



fmk
d� 2 I(F ):

In turn,

`(x) = lim `

�
B
Z



fmk
d�
�
= lim

Z



(` � fmk
) d� � lim

Z



(` � gmk
)d� = `(y),

which proves our claim. �

3.4. I-Integrability. Let (
;�) be a measurable space and X a Banach space.
For any nonempty F � Kw(
;�; X) and I : F � X; we say that a correspondence
F 2 F is I-integrable if I(f) 6= ? for at least one f 2 Sel(F ): The following lemma
shows that under the scalar monotonicity hypothesis, the set of all I-integrable
correspondences and the e¤ective domain of I coincide.

Lemma 3.4. Let (
;�) be a measurable space and X a separable Banach space.
Let F be an ideal in Kw(
;�; X), and take any scalarly monotonic I : F � X:
Then, for any F 2 F the following are equivalent:
a. F is I-integrable;
b. F 2 dom(I);
c. I(f) 6= ? for every f 2 Sel(F ):
Proof. Take any F 2 F . As F is an ideal, ffg 2 F for every f 2 Sel(F ). Suppose

F is I-integrable so that there is an f 2 Sel(F ) with I(f) 6= ?. For any ` 2 X�

we trivially have F I` ffg, so scalar monotonicity of I yields I(F ) %�` I(f) 6= ?;
whence I(F ) 6= ?. This proves that (a) implies (b). Next, take any F 2 dom(I).
Fix any ` 2 X�; and proceed as in the proof of Lemma 3.3 to �nd two selections '
and � of F such that ` � ' � ` � f � ` � � for every f 2 Sel(F ): Then, 'fg I` F;
so by scalar monotonicity of I, we �nd I(') %�` I(F ) 6= ?; whence I(') 6= ?: But
�` � � � �` � '; so �fg I�` 'fg; and again by scalar monotonicity of I; we �nd
I(�) 6= ?: Finally, for any f 2 Sel(F ); since ` � f � ` � �; we may use scalar
monotonicity of I one more time to get I(f) 6= ?. Thus: (b) implies (c). That (c)
implies (a) is trivial. �

4. THE ABSTRACT INTEGRAL

4.1. The Abstract Integral. The following de�nition introduces the central con-
cept of this paper.

De�nition. Let (
;�) be a measurable space, X a Banach space, and F an ideal
in Kw(
;�; X). We say that a correspondence I : F � X is an abstract integral
if
(i) jI(F )j � 1 whenever F is single-valued;
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(ii) I is scalarly monotonic; and
(iii) I(�fxg) = fxg for every x 2 X with �fxg 2 F .

(Note. I(�f0Xg) = f0Xg for any such I.) If the restriction of a correspondence
I : Kw(
;�; X)� X to F is an abstract integral, we say that I acts as an abstract
integral on F .

The following are a few immediate examples. Others will be given in Section 6.

Example 4.1. In the context of the de�nition above, assume that X is not trivial,
set F = Kw(
;�; X); and �x an arbitrary point x0 in Xnf0Xg: De�ne I : F � X
and J : F � X by I(F ) := ? and J(F ) := fx0g; respectively. These correspon-
dences satisfy the requirements (i) and (ii), but they are not abstract integrals as
they fail the requirement (iii). �

Example 4.2. As in Example 3.2, put N := f0; :::; ng; and let F stand for the
set of all nonempty compact-valued correspondences from (N; 2N ) to R, which is a
bornology in K(N; 2N ;R): Consider the following correspondences from F to R:

I1(F ) :=

(
1

n+1

X
i2N

minF (i)

)
; I2(F ) :=

(
1

n+1

X
i2N

maxF (i)

)
;

and I3(F ) := F (0) [ F (1). None of these are abstract integrals; I1 and I2 are not
scalarly monotonic while I3 fails the condition (i) above. By contrast, I4(F ) :=
I1(F ) [ I2(F ) and I5(F ) := F (0) de�ne abstract integrals on F . �

Example 4.3. Let (
;�; �) be a complete probability space, X a separable Banach
space, and set F := fF 2 Kw(
;�; X) : F is �-integrably boundedg: Then, the
Aumann-Bochner integral acts as an abstract integral on F (Example 3.4). If � is
nonatomic, then the closed Aumann-Bochner integral is an abstract integral on F
as well (Example 3.6). �

Remark 4.1. Let (
;�); X and F be as in the de�nition above. Let I : F � X be
an abstract integral. Then, coI is an abstract integral on F . (Here, of course, coI is
de�ned pointwise, that is, coI(F ) := co(I(F )).) Since coI agrees with I for single-
valued members of F , to prove this we only need to check its scalar monotonicity.
To this end, take any F;G 2 F and ` 2 X� with F I` G: If y 2 coI(G); then
y =

Pk
�iyi for some k 2 N; �1; :::; �k � 0 with

Pk
�i = 1; and y1; :::; yk 2 I(G):

By scalar monotonicity of I; for each i 2 f1; :::; kg there is an xi 2 I(F ) with
`(xi) � `(yi); so `(x) � `(y) holds for x :=

Pk
�ixi 2 coI(F ). �

Remark 4.2. Condition (iii) of the de�nition above suggests that an abstract integral
is really an averaging operator. For instance, in the context of Example 4.3, but
where (
;�; �) is a �nite measure space with 0 < �(
) 6= 1, the Aumann-Bochner
integral is not an abstract integral on F while 1

�(
)IA-B is. If one wishes to view
an abstract integral as an aggregation operator, condition (iii) should be replaced
with the following:
(iii�) There exists a � > 0 such that I(�fxg) = f�xg for every x 2 X with

�fxg 2 F .
The theory presented below would adjust easily to capture this more general sit-
uation, but with slightly more convoluted statements. For expositional purposes,
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therefore, we will work with condition (iii) in what follows. As a consequence, the
speci�c set-valued integrals we use will either be normalized (as in Example 4.2) or
will be de�ned on a probability space. �

4.2. Decomposition Theorems. We proceed with our investigation of the ab-
stract integral. As a �rst order of business, we show that the closed convex hull of
the abstract integral of an E¤ros measurable correspondence decomposes into the
closed convex hull of the abstract integral of the measurable selections from that
correspondence.

Theorem 4.1. Let (
;�) be a measurable space, X a separable Banach space, and
F an ideal in Kw(
;�; X). Then, for any abstract integral I : F � X and F 2 F ,
we have

(3) co(I(F )) = co

0@ [
f2Sel(F )

I(f)

1A .
In what follows, for any normed linear space X; we view the dual space X� as a

normed linear space relative to the operator norm (which we denote by k�k�), and
let BX stand for the closed unit ball of X: The following elementary fact of convex
analysis will facilitate the proof of Theorem 4.1.

Lemma 4.2. Let X be a normed linear space and L a dense subset of X�. Let A
and B be two subsets of X such that cl(`(A)) = `(B) for every ` 2 L: If L = X�;
or B is bounded, we have co(A) = co(B):

Proof. As the proof of the case where L = X� is easier, we only concentrate
on the case where B is bounded. If either A or B is empty, then both of these
sets are empty, so our claim holds trivially. We thus assume that both A and B
are nonempty. Take an element x of Xnco(B): Then, by the separating hyperplane
theorem, we can �nd real numbers a and " > 0; and an `0 2 X�, such that

sup `0(co(B)) � a� " < a+ " < `0(x):

Now set C := co(B)[fxg; and note that C is a bounded subset of X, so there is a
real number � > 0 such that �C � BX : Moreover, as L is dense in X�; there exists
an ` 2 L with k`� `0k� < �": Then,

sup
z2C

j`(z)� `0(z)j = 1
� sup
y2�C

j`(y)� `0(y)j � 1
� k`� `0k

�
< ";

and it follows that sup `(co(B)) < a < `(x): As `(A) � `(B) by hypothesis, there-
fore, x is not in A: Conclusion: A � co(B); and hence, co(A) � co(B): This, in
particular, shows that A is bounded. Conversely, suppose there is an element x
in co(B)nco(A): Then, using again the separating hyperplane theorem along with
the previous density argument (which applies because A is bounded), we �nd a real
number a and an ` 2 L such that sup `(co(A)) < a < `(x): Put � := a�sup `(co(A)):
Since x 2 cl(co(B)); we have xm ! x for some sequence (xm) in co(B): Moreover,

`(co(B)) = co(`(B)) = co(cl(`(A))) � co(`(A)) = cl(`(co(A)));
so for every m; there is a ym 2 co(A) with j`(ym)� `(xm)j < �=2: As `(ym) � a� �
for each m; therefore, `(xm) < a � �=2; so, since xm ! x; we �nd `(x) � a � �=2,
a contradiction. We conclude that co(A) = co(B): �
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Proof of Theorem 4.1. Let I : F � X be an abstract integral, and take any
F 2 F : If F is not I-integrable, Lemma 3.4 implies (3) with both sides being ?.
Assume, then, F is I-integrable. It then follows from Lemma 3.4 that I(F ) 6= ?,
and I(f) 6= ? for every f 2 Sel(F ): Since I is an abstract integral, therefore, for
every f 2 Sel(F ) there is an xf 2 X with I(f) = fxfg:
Let us �x an arbitrary ` 2 X�; and proceed as in the proof of Lemma 3.3 to �nd

a ' 2 Sel(F ) with ` � ' � ` � f for all f 2 Sel(F ): Then, 'fg I` F while 'fg 2 F
(Lemma 3.1). So, by scalar monotonicity of I; we �nd I(') %�` I(F ) 6= ?: Thus:
`(x') � sup `(I(F )): But, as ' 2 Sel(F ); we trivially have F I` 'fg; so, again by
scalar monotonicity of I; sup `(I(F )) � `(x'): Thus: `(x') = sup `(I(F )):Moreover,
applying this reasoning with �` playing the role of ` yields `(x�) = inf `(I(F ))
for some � 2 Sel(F ): Since co(`(I(F ))), which equals cl(`(co(I(F )))), is a closed
interval, therefore,

(4) cl(`(co(I(F )))) = [`(x�); `(x')]:

On the other hand, by the choice of � and '; we have ` �' � ` � f � ` �� for every
f 2 Sel(F ): Thus, by scalar monotonicity of I on F , we have `(x') � `(xf ) � `(x�)
for every f 2 Sel(F ): So, by (4) and because � and ' belong to Sel(F );

cl(`(co(I(F )))) � ` (fxf : f 2 Sel(F )g) � f`(x�); `(x')g:

Using (4) again, then,

cl(`(co(I(F )))) = co (`(fxf : f 2 Sel(F )g)) = `(cofxf : f 2 Sel(F )g):

Since ` 2 X� is arbitrary here, we may then apply Lemma 4.2 (with A := co(I(F ))
and B := cofxf : f 2 Sel(F )g) to conclude that

co(co(I(F ))) = co(cofxf : f 2 Sel(F )g):

Since the closed convex hull of the convex hull of a set is equal to the closed convex
hull of that set, this completes our proof. �

Remark 4.3. Let (
;�); X and F be as in Theorem 4.1, and let I : F � X be
an abstract integral. We have noted in Remark 4.1 that coI is an abstract integral
on F . We now show that this is also true for J := coI (de�ned pointwise). Since
J agrees with I for single-valued members of F , we only need to verify its scalar
monotonicity. To this end, take any F;G 2 F and ` 2 X� with F I` G; and any y 2
J(G): Then lim ym = y for some sequence (ym) in coI(G): By scalar monotonicity
of coI; for each m there is an xm 2 coI(F ) with `(xm) � `(ym): Moreover, applying
Theorem 4.1 to coI yields J(F ) = co

S
f2Sel(coF ) I(f); and hence, by Lemma 3.3,

we may conclude that J(F ) is weakly compact. By the Eberlein-�mulian theorem,
therefore, there is a subsequence (xmk

) of (xm) such that weak-limxmk
= x for some

x 2 J(F ): But then `(x) = lim `(xmk
) � lim `(ymk

) = `(y); and we are done. �

For closed and convex-valued correspondences, Theorem 4.1 turns into a char-
acterization result.

Theorem 4.3. Take (
;�); X; and F as in Theorem 4.1, and let I : F � X be
a closed and convex-valued correspondence such that jI(F )j � 1 whenever F is
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single-valued. Then, I is an abstract integral if, and only if, it is scalarly monotonic
for functions, I(�fxg) = fxg for all x 2 X with �fxg 2 F , and

(5) I(F ) = co

0@ [
f2Sel(F )

I(f)

1A
for every F 2 F :
Proof. In view of Theorem 4.1, we only need to prove the �if� part of the

assertion. To this end, assume that I is scalarly monotonic for functions, and that
(5) holds. The theorem will be proved if we can show that I is scalarly monotonic.
To this end, take any ` 2 X� and F;G 2 F with F I` G: If I(G) = ?; we
trivially have I(F ) %�` I(G); so assume otherwise. Then, by (5), I(g) 6= ? (whence
jI(g)j = 1) for some g 2 Sel(G):
Let us de�ne S := fx : fxg = I(f) for some f 2 Sel(F )g and T := fx : fxg = I(g)

for some g 2 Sel(G)g. We know that T is nonempty. In addition, since F I` G
and I is scalarly monotonic for functions, S is nonempty and sup `(S) � sup `(T ):
By linearity of `; then,

(6) sup `(co(S)) � sup `(co(T )):
Moreover, by Lemma 3.3, cl(co(S)) is weakly compact in X: As continuity and
weak continuity are equivalent for any linear functional on a normed linear space, it
follows that `(cl(co(S))) is compact, and this implies `(cl(co(S))) � cl(`(co(S))): As
the converse of this containment follows readily from the continuity of `; therefore,
we have `(co(S)) = cl(`(co(S))); and similarly, `(co(T )) = cl(`(co(T ))). It then
follows from (6) that max `(co(S)) � max `(co(T )). As co(S) = I(F ) and co(T ) =
I(G) by (5), we �nd I(F ) %�` I(G); as desired. �

Theorems 4.1 and 4.3 are our answers to the two basic questions posed in the
Introduction. In the framework of Theorem 4.1, if I is an �integral� on F that
assigns to any single-valued correspondence ? or a singleton, evaluates constant
single-valued correspondences in the obvious way, and is scalarly monotonic, it
comes very close to being a selection integral. Put precisely, under these conditions,
even if I may fail to be a selection integral, co(I) is sure to be the closed and convex
hull of a selection integral. On the other hand, the axiomatization of the structure of
regularized selection integrals is complete. Theorem 4.3 says that I is a regularized
selection integral provided that it is closed and convex-valued, scalarly monotonic,
and assigns to any single-valued correspondence a unique value.

4.3. A Castaing-Type Representation for the Abstract Integral. When X
is a re�exive and separable Banach space (or more generally, a Banach space with
a separable dual), it is possible to obtain a representation of the abstract integral
that has a �avor of the Castaing representation of E¤ros measurable correspon-
dences that map to a Polish space. In particular, in that case, we can express a
closed and convex-valued abstract integral of a correspondence as the closed convex
hull of the union of the abstract integrals of countably many selections from that
correspondence.

Corollary 4.4. Let (
;�) be a measurable space and X a re�exive and separable
Banach space. Let F be an ideal in Kw(
;�; X), and I : F � X an abstract
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integral. Then, for every F 2 F there is a sequence (fm) in Sel(F ) with

(7) co(I(F )) = co (I(f1) [ I(f2) [ � � �) .
Proof. Take any F 2 F ; and assume F is I-integrable, for otherwise (7) holds

trivially. Then, by Lemma 3.4, I(F ) 6= ?; and for every f 2 Sel(F ) there is an
xf 2 X with I(f) = fxfg: Since X is a re�exive and separable Banach space, X� is
separable.6 Let L be a countable dense set in X�; and enumerate it as f`1; `2; :::g:
For any m 2 N; we proceed exactly as in the last paragraph of the proof of Theorem
4.1 to �nd two maps 'm and �m in Sel(F ) such that

[`m(x�m); `m(x'm)] = cl(`m(co(I(F )))) = `m(cofxf : f 2 Sel(F )g):
Therefore, for the sequence (fm) with f2i�1 := 'i and f2i := �i for each i =
1; 2; :::; we have cl(`(co(I(F )))) = `(cofxf1 ; xf2 ; :::g) for every ` 2 L. Note also
that, by Lemma 3.3, cofxf1 ; xf2 ; :::g is relatively weakly compact in X, and hence
it is bounded. We may then apply Lemma 4.2 (with A := co(I(F )) and B :=
cofxf1 ; xf2 ; :::g) to conclude that co(I(F )) = cofxf1 ; xf2 ; :::g. �

5. PROPERTIES OF THE ABSTRACT INTEGRAL

The decomposition results of Section 4.2 allow us identify the general properties
of an abstract integral which it inherits from its single-valued version. Many of the
results we present in this section are inheritance theorems of this form.

5.1. Basic Properties of the Abstract Integral. Throughout this subsection,
(
;�); X; and F are as in Theorem 4.1, and I : F � X is a closed and convex-
valued abstract integral.

Property 1. (Weak Compactness) I is weakly compact-valued.

Property 2. (Monotonicity) I(F ) � I(G) for any F;G 2 F with F v G.

Property 3. (Homogeneity) Given any � 2 R, if I(�F ) = �I(F ) for every single-
valued F 2 F with �F 2 F ; then I(�F ) = �I(F ) for every F 2 F with �F 2 F .

Property 1 is an immediate consequence of Lemma 3.3 and Theorem 4.3, while
the other two readily follow from Theorem 4.3 alone. In passing, we note that
Property 2 entails

I(F \G) � I(F ) \ I(G) � I(F ) [ I(G) � I(F [G)
for any F;G 2 F such that F \G 2 F .
In the statements of the following two properties, we assume that F is a bornol-

ogy in Kw(
;�; X); that is, it is an ideal in Kw(
;�; X) that includes all constant
single-valued correspondences. The domain of integration in most (but not all; see
Section 6.5) applications are of this form.

Property 4. (Range of the Abstract Integral) I(F ) � co(F (
)) for every F 2 F
with a relatively weakly compact range.

To see this, take any F 2 F such that K := weak-cl(F (
)) is weakly compact.
Next, let f be any �-measurable selection from F: We claim that I(f) � co(f(
)):

6See [30, Corollary 1.12.12].
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To derive a contradiction, suppose this is false. In that case I(f) = fxg for some
x 2 XnS where S := co(f(
)): By the separating hyperplane theorem, there is an
` 2 X� with `(x) > sup `(S): On the other hand, as weak-cl(f(
)) is weakly compact
(because it is contained in K) and ` is weakly continuous, there exists a y 2 weak-
cl(f(
)) with `(y) � `(z) for all z 2 weak-cl(f(
)). Since weak-cl(f(
)) � S; we
have `(x) > `(y): But �fyg I` f so

fyg = I(�fyg) %�` I(f) = fxg;
that is, `(y) � `(x); a contradiction.
We have just proved that I(f) � co(f(
)); whence I(f) � co(F (
)); for every

f 2 Sel(F ): By Theorem 4.3, therefore, I(F ) � co(F (
)); as desired.

Property 5. (Integration of Constants) I(�S) = S for any nonempty, convex and
weakly compact S � X with �S 2 F .

By Theorem 4.3,

I(�S) = co
[

f2Sel(�S)

I(f) � co
[
x2S

I(�fxg) = co(S) = S

for any such S � X: Conversely, Property 4 implies I(�S) � S:

5.2. On the Linearity of the Abstract Integral. An abstract integral need
not be additive in general; see Section 6.5 for some concrete examples. Indeed, an
obvious necessary condition for this is that the integral act additively across single-
valued correspondences. Somewhat surprisingly, it turns out that this condition is
also su¢ cient in most situations of interest.
Let us �rst clarify the notion of additivity we adopt here. Let (
;�) be a

measurable space, X a Banach space, and F an ideal in Kw(
;�; X). For any
abstract integral I : F � X; we say that I is additive if

(8) I(F +G) = I(F ) + I(G)

for all F;G 2 F with F +G 2 F . We say that it is additive for functions if (8)
holds for all single-valued F;G 2 F with F +G 2 F .7

Theorem 5.1. Let (
;�) be a measurable space, X a separable Banach space, and
F an ideal in Kw(
;�; X). Let I : F � X be a closed and convex-valued abstract
integral. Then, I is additive if, and only if, it is additive for functions.

We recall the following elementary lemma from convex analysis.

Lemma 5.2. Let A and B be two nonempty sets in a normed linear space X such
that co(A) is weakly compact. Then, co(A+B) = co(A) + co(B):

Proof. An elementary convexity argument yields co(A + B) = co(A)+ co(B):
It is also readily checked that cl(co(A+B)) � cl(co(A))+ cl(co(B)): To prove the
converse containment, observe that cl(co(B)) is a closed and convex, and hence
weakly closed, subset of X: Since co(A) is weakly compact, and the sum of a closed
and a compact set is closed in a normed linear space, we �nd that cl(co(A))+

7Here F+G is understood as pointwise de�ned Minkowski sums, which is to say F+G : 
� X
is de�ned as (F +G)(!) := F (!) +G(!):
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cl(co(B)) is a weakly closed and convex set in X: This set is thus a closed set that
contains co(A+B); so we have cl(co(A+B)) � cl(co(A))+ cl(co(B)): �

Proof of Theorem 5.1. Take any F;G 2 F with F +G 2 F . We claim:
(9) Sel(F +G) = Sel(F ) + Sel(G):

The � part of this assertion is trivially true. To see the converse containment, take
any h 2 Sel(F +G): De�ne the correspondence 	 : 
� X �X by

	(!) := f(x; y) 2 X �X : x+ y = h(!)g:
Since X is separable, every open subset of X �X can be written as the union of
countably many sets each of which is the product of two open subsets of X: But
	�1(O � U) = h�1(O + U) 2 � for any open O;U � X: It follows that 	 is �-
measurable. Given this fact, it is readily checked that (F �G) \	 is a nonempty
closed-valued �-measurable correspondence from 
 to X �X: By the Kuratowski-
Ryll Nardzewski selection theorem, therefore, there exists a  2 Sel((F �G) \	):
If we denote the �rst and second component functions of  by f and g; respectively,
we get f 2 Sel(F ), g 2 Sel(G) and f + g = h; so h 2 Sel(F )+Sel(G); as we sought.
The additivity assertion is now readily proved. Note �rst that by Theorem 4.3,

(9), and additivity for functions,

I(F +G) = co
[

h2Sel(F+G)

I(h) = co
[

f2Sel(F )
g2Sel(G)

I(f + g) = co
[

f2Sel(F )
g2Sel(G)

(I(f) + I(g)).

Consequently, by Lemma 3.3 and Lemma 5.2,

I(F +G) = co

0@ [
f2Sel(F )

I(f) +
[

g2Sel(G)

I(g)

1A = co
[

f2Sel(F )

I(f) + co
[

g2Sel(G)

I(g).

In view of Theorem 4.3, we conclude that I(F +G) = I(F ) + I(G). �

When (
;�); X, F and I are as in Theorem 5.1, the notions of I being linear and
linear for functions are de�ned in the obvious way. In turn, combining Theorem
5.1 and Property 3 of the previous section, we see that I is linear i¤ it is linear for
functions.

5.3. Set-Valued Measures Induced by Abstract Integrals. This subsection
digresses brie�y from the theory of abstract integration. Its objective is to demon-
strate that we can de�ne a set-valued measure from an abstract integral much the
same way this concept is de�ned through the Aumann integral.
Let (
;�) be a measurable space and X a separable Banach lattice. As usual,

we denote the positive cone of X by X+. In turn, we order the dual space X� by
means of the so-called dual cone X�

+ := f` 2 X� : `(x) � 0 for every x 2 X+g; it is
well-known that this makes X� itself a Banach lattice. Besides, x 2 X+ i¤ `(x) � 0
for every ` 2 X�

+:
Recall that a nonempty-valued correspondence M : �� X is said to be �nitely

additive ifM(AtB) =M(A)+M(B) for any disjoint A;B 2 �: Following Artstein
[3], we say that M is a �nitely additive set-valued measure on � if M is
�nitely additive, M(?) = f0Xg; and M v X+: In this context, a correspondence
F : 
� X is called positive if F v X+.
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The following result builds a bridge between abstract integration and set-valued
measures.

Proposition 5.3. Let (
;�) be a measurable space and X a separable Banach
lattice. Let F be an ideal in Kw(
;�; X). Take any closed and convex-valued
abstract integral I : F � X, and any positive F 2 F . If I is additive for functions,
thenMI;F : �� X, de�ned by MI;F (A) := I(F �A); is a �nitely additive set-valued
measure on �.

Proof. By Lemma 3.1, MI;F is well-de�ned. Let us then �x an arbitrary A 2
�, and take any f 2 Sel(F �A): By positivity of F , we have f(!) 2 X+ for all
! 2 
; so ` � f � 0 for every ` 2 X�

+: By scalar monotonicity of I, and because
I(�f0Xg) = f0Xg 6= ?, we have I(f) 6= ?, that is, I(f) = fxg for some x 2 X; and
`(x) � `(0X) = 0 for every ` 2 X�

+: As we have noted above, this implies x 2 X+:
Conclusion: I(f) � X+ for every f 2 Sel(F �A); and MI;F is nonempty-valued.
Combining this observation with Theorem 4.3 shows thatMI;F (A) = I(F �A) � X+

for every A 2 �: As it is plain that MI;F (?) = I(F �?) = I(�f0Xg) = f0Xg; and
Theorem 5.1 implies the �nite additivity of MI;F ; we are done. �

5.4. Convergence Theorems for the Abstract Integral. For any sequence
(Sm) of nonempty subsets of X; the (Kuratowski-Painlevé) lower limit of (Sm) is
de�ned as

lim inf Sm := fx 2 X : dist(x; Sm)! 0g .
It is easy to check that lim inf Sm is precisely the set of limits of all sequences (xm)
where xm 2 Sm for each m: Since dist(�; S) is convex i¤ S is a convex set in X; the
lower limit of (Sm) is sure to be convex, provided that each Sm is convex. Moreover,

lim inf Sm =
\

(mk)2m

cl
[
k�1

Smk

wherem is the set of all strictly increasing sequences of positive integers ([9, Propo-
sition 5.2.2]). This is a convenient formulation to infer the fact that the lower limit
of (Sm) is always closed. Thus, lim inf Sm is a closed and convex set whenever
each Sm is convex. If, in addition, (Sm) is an increasing sequence in the sense that
S1 � S2 � � � �; the formula above reduces to lim inf Sm = cl(

S
m�1 Sm). In that

case, we write

limSm = cl
[
m�1

Sm;

and say that Sm converges to cl(S1 [ S2 [ � � �).8
Now let (
;�) be a measurable space, X a separable Banach space, and F an

ideal in Kw(
;�; X). Let I : F � X be an abstract integral. We say that a
correspondence F 2 Kw(
;�; X) is I-integrably bounded if

sup
x2F (!)

kxk � kg(!)k for all ! 2 


8This is a special case of the standard Kuratowski-Painlevé convergence criterion. The upper
limit of (Sm) is de�ned as lim supSm := fx 2 X : lim inf dist(x; Sm) = 0g : In turn, (Sm) is said
to be convergent if lim inf Sm = lim supSm; and the common limit is denoted as limS: It is easily
veri�ed that when S1 � S2 � ���; (Sm) is convergent, and limSm equals the closure of S1[S2[���.
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for some �-measurable function g : 
 ! X such that gfg is I-integrable. In turn,
following Khan and Sagara [25], we say that a sequence (Fm) in Kw(
;�; X) is
I-well-dominated if there is an I-integrably bounded F 2 Kw(
;�; X) such that
Fm v F for each m � 1: Plainly, these concepts are patented after the notion of
integrable boundedness of a correspondence with respect to a measure.
Finally, we say that I satis�es the dominated convergence property for

functions if for any sequence (fm) in F such that (i) (lim fm)fg 2 F ; and (ii)
there is a �-measurable function g : 
 ! X such that gfg is I-integrable and
kfm(!)k � kg(!)k for all m 2 N and ! 2 
, we have

lim I(fm) = I(lim fm).

For example, the Aumann-Bochner integral satis�es the dominated convergence
property for functions where we take F as the set of all �-integrably bounded
members of Kw(
;�; X); with � being any �nite measure on 
: This is a classical
result of Bochner integration theory.
The following is a �Fatou Lemma�for the abstract integral.

Theorem 5.4. Let (
;�) be a complete measurable space, X a separable Banach
space, and F an ideal in Kw(
;�; X). Let I : F � X be a closed and convex-valued
abstract integral that satis�es the dominated convergence property for functions.
Then, for any I-well-dominated sequence (Fm) in F ,
(10) I(lim inf Fm) � lim inf I(Fm)
provided that lim inf Fm 2 F .9

Proof. Let (Fm) be as in the statement of the theorem. Take any f 2
Sel(lim inf Fm). Let us momentarily �x m 2 N. Since Fm is closed-valued and
(!; x) 7! kf(!)� xk is a Carathéodory function on 
 � X; the correspondence
Gm : 
� X de�ned by

Gm(!) := argmin
x2Fm(!)

kf(!)� xk

is �-measurable ([6, Theorem 8.2.11]). In addition, since Fm(!) is weakly compact,
and x 7! kf(!)� xk is weakly lower semicontinuous on X, we have Gm(!) 6= ?; for
all ! 2 
. As one can readily verify thatGm is closed-valued, we may then apply the
Kuratowski-Ryll Nardzewski selection theorem to �nd an fm 2 Sel(Gm) � Sel(Fm)
such that kf(!)� fm(!)k = dist(f(!); Fm(!)) for all ! 2 
: On the other hand,
since lim inf Fm 2 F , we have ffg 2 F (Lemma 3.1), while f(!) 2 lim inf Fm(!)
means dist(f(!); Fm(!))! 0, for every ! 2 
. In particular,
(11) kf(!)� fm(!)k ! 0 for all ! 2 
:
Since (Fm) is I-well-dominated, there exists an I-integrably bounded F 2

Kw(
;�; X) such that
S
m�1 Fm v F: Let g : 
 ! X be a �-measurable func-

tion such that gfg is I-integrable and supx2F (!) kxk � kg(!)k for all ! 2 
. Then,
supx2Fm(!) kxk � kg(!)k for all ! 2 
 and m � 1; whence

sup
m�1

kfm(!)k � kg(!)k for all ! 2 
:

9Here lim inf Fm is de�ned pointwise, that is, (lim inf Fm)(!) := lim inf Fm(!) for every ! 2 
:
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Moreover, (11) says lim fm = f; whence (lim fm)fg 2 F . So, as I satis�es
the dominated convergence property for functions, we have I(fm) ! I(f): Since
I(fm) � I(Fm) for each m; therefore,

dist(I(f); I(Fm)) � kI(f)� I(fm)k ! 0:

By de�nition of the lower limit of (I(Fm)); we thus �nd I(f) � lim inf I(Fm): So,
in view of the arbitrary choice of f and Theorem 4.3, we conclude:

I(lim inf Fm) = co
[

f2Sel(lim inf Fm)

I(f) � co(lim inf I(Fm)):

Since each I(Fm) is convex by hypothesis, lim inf I(Fm) is a closed and convex set,
and the theorem is proved. �

Remark 5.1. In applications, it may be easier to verify the condition lim inf Fm 2 F
from the primitives. To wit, let (
;�); X, and F be as in Theorem 5.4. Under this
hypothesis, lim inf Fm is �-measurable ([6, Theorem 8.2.5]). Now take any sequence
(Fm) in F for which there is an I-integrably bounded F 2 F with

S
m�1 Fm v F:

We next present three scenarios in which lim inf Fm 2 F holds automatically.
(i) Suppose each Fm is convex-valued, and F 2 F . Then, lim inf Fm(!) is a

closed and convex, hence weakly closed, subset of the weakly compact set F (!);
for all ! 2 
: It follows that lim inf Fm 2 Kw(
;�; X); provided that lim inf Fm is
nonempty-valued. But, since Fm v F for all m; we have lim inf Fm v F 2 F : As
F is an ideal in Kw(
;�; X); we get lim inf Fm 2 F .
(ii) Suppose X has the Schur property (such as Rn or `1). Then, closedness

of lim inf Fm entails the weak-closedness of this set, and we apply the previous
argument to get lim inf Fm 2 F , provided that lim inf Fm is nonempty-valued.
(iii) Suppose X has a separable dual and (Fm) converges in the sense of Mosco.10

Fix any ! 2 
: Since F (!) is weakly compact, the weak topology restricted on F (!)
is metrizable. As observed by Hess [21, p. 232], this implies that weak-lim supF (!)
is weakly closed. Since (Fm) convergent in the sense of Mosco, weak-lim supF (!)
equals lim inf F (!); so we again �nd lim inf Fm(!) is weakly closed, which is enough
to conclude lim inf Fm 2 F . �

Theorem 5.4 easily leads to a �monotone convergence theorem�for the abstract
integral.

Theorem 5.5. Let (
;�) be a complete measurable space, X a separable Banach
space, and F an ideal in Kw(
;�; X). Let I : F � X be a closed and convex-valued
abstract integral that satis�es the dominated convergence property for functions.
Then, for any sequence (Fm) of convex-valued correspondences in F with F1 v
F2 v � � �, we have

I

0@cl [
m�1

Fm

1A = I(limFm) = lim I(Fm) = cl
[
m�1

I(Fm),

provided that there is an I-integrably bounded F 2 F with Fm v F for eachm � 1:

10Let S0; S1; S2; ::: be closed subsets of X: By weak-lim supm = S0; we mean the set of all
x 2 X for which there exists a strictly increasing (mk) 2 N1 such that x is the weak limit of
some (xmk ) 2 Sm1 � Sm2 � � � �. In turn, (Fm) being convergent in the sense of Mosco means
lim inf Fm(!) = weak-lim supFm(!) for all ! 2 
:
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Proof. Let (Fm) and F be as in the statement of the theorem. It is routine
to verify that cl(

S
m�1 Fm) 2 Kw(
;�; X): Since cl(

S
m�1 Fm) v F and F is

an ideal in Kw(
;�; X); we thus have cl(
S
m�1 Fm) 2 F . Besides, limFm(!) =

cl(
S
m�1 Fm(!)) for all ! 2 
; whence I(limFm) = I(cl(

S
m�1 Fm)): In turn, by

monotonicity of I (Property 2 of Section 5.1), I(Fk) � I(limFm) for all k � 1. Since
I(limFm) is a closed set by hypothesis, therefore, cl(

S
m�1 I(Fm)) � I(limFm): On

the other hand, since I(F1) � I(F2) � � � �; we have lim I(Fm) = cl(
S
m�1 I(Fm)):

Therefore,

I

0@cl [
m�1

Fm

1A = I(limFm) � lim I(Fm) = cl
[
m�1

I(Fm).

By Theorem 5.4, the containment in this statement holds as an equality. �

5.5. Aumann Identities for the Abstract Integral. Let (
;�) be a measur-
able space and X a separable Banach space. It is well-known that if F : 
 � X
is a �-measurable, nonempty and closed-valued correspondence, then coF; the
correspondence on 
 that maps any ! 2 
 to the closed convex hull of F (!);
is �-measurable.11 Thus, by the Krein-�mulian weak compactness theorem,
coF 2 Kw(
;�; X) for every F 2 Kw(
;�; X): It thus makes sense to ask un-
der what conditions the abstract integrals of F and coF coincide. The following
result provides an answer to this query.

Proposition 5.6. Let (
;�) be a measurable space and X a separable Banach
space. Let F be an ideal in Kw(
;�; X), and I : F � X an abstract integral.
Then, for every F 2 F with coF 2 F ,
(12) co(I(F )) = co (I (coF )) .

In particular, if I is closed and convex-valued, we have I(F ) = I (coF ) for every
F 2 F with coF 2 F .
Proof. Take any F 2 F such that coF 2 F . By Remark 4.3, coI is an abstract

integral on F ; so it is monotonic (Property 2 of Section 5.1). We thus only need
to prove the � part of (12). To derive a contradiction, suppose there is an x in
co (I (coF )) that does not belong to co(I(F )): Then, by the separating hyperplane
theorem, there is an ` 2 X� such that

(13) sup ` (co (I (coF ))) � `(x) > sup ` (co (I (F ))) = sup ` (I (F )) ;

where the equality follows from the linearity and continuity of `. Now de�ne H`;F

as in the proof of Lemma 3.3, note that ? 6= Sel(H`;F ) � Sel(F ); and pick any
f 2 Sel(H`;F ): Clearly, `(f(!)) � `(z) for every ! 2 
 and z 2 F (!): Since ` is
linear and continuous, then, `(f(!)) � `(z) for every ! 2 
 and z 2 co(F (!)):
In particular, ` � f � ` � g for any g 2 Sel(coF ); whence F I` coF: By scalar
monotonicity of I; then, I (F ) %�` I (coF ) ; and since ` is linear and continuous,

sup ` (I (F )) � sup ` (I (coF )) = sup ` (co (I (coF ))) ;
which contradicts (13). �

11See [9, Proposition 6.6.9].
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This result generalizes the related invariance theorems for the Aumann-Bochner
integral, which are sometimes called Aumann identities. To illustrate, let (
;�; �)
be a complete nonatomic probability space, X a separable Banach space and F
the set of all �-integrably bounded correspondences in Kw(
;�; X): In the case
where (
;�; �) is the unit Lebesgue interval and X = Rn, IA : F � X is a convex
and compact-valued abstract integral (Example 3.3, and [7, Theorems 1 and 4]), so
Proposition 5.6 says that the Aumann integrals of F and coF are the same for any
F 2 F . More generally, when (
;�; �) is a Loeb space, IA-B : F � X is a convex-
and weakly compact-valued abstract integral (Example 3.3 and [40, Theorems 1
and 3]). Proposition 5.6 then entails that the Aumann-Bochner integrals of F and
coF coincide for any �-integrably bounded F 2 Kw(
;�; X): This observation is
precisely Theorem 4 of [40].
Abstract integration theory is useful in pointing to the commonalities across

many di¤erent types of set-valued integrals, but it cannot be expected to yield the
sharpest results for any particular integral. For instance, when all we know is that
(
;�; �) is a nonatomic probability space, and X is an arbitrary separable Banach
space, we cannot be sure that IA-B : F � X is closed-valued, so the second part of
Proposition 5.6 does not apply to IA-B . In this case, all we can do is to apply the
result to the closed Aumann-Bochner integral to get

cl(IA-B(F )) = cl (IA-B (coF ))

for every F 2 F with coF 2 F . This is not a �rst-best result. It is known that we
actually have cl(IA-B(F )) = IA-B (coF ) for any such F (cf. [45, Theorem 6.3]), a
result which is a¤orded by the special structure of IA-B .

5.6. Parametric Continuity of the Abstract Integral. Under suitable bound-
edness conditions, Aumann integration of an integrably bounded correspondence
(from a �nite measure space to Rn) which depends on a parameter continuously
yields a correspondence that depends on that parameter upper hemicontinuously
(see [8] and [39]). This property of the Aumann integral is found useful in applica-
tions to mathematical economics and optimal control, and it extends to the case of
the Aumann-Bochner integral (see [34] and [44]). In this section we establish this
sort of a parametric continuity property for the abstract integral, thereby extend-
ing some of the related results on Aumann-Bochner integration to our nonlinear
context.
For any topological spaces X and Y; a correspondence � : Y � X is said to

be upper hemicontinuous if ��1(C) is closed in Y for every closed C � X;
and lower hemicontinuous if ��1(O) is open in Y for every open O � X: We
say that � is continuous if it is both upper and lower hemicontinuous. In turn,
when (
;�) is a measurable space, and X and Y are separable metric spaces, a
correspondence F : 
�Y � X is said to be a Carathéodory correspondence if
F (�; y) is �-measurable for every y 2 Y; and F (!; �) is continuous for every ! 2 
.

Lemma 5.7. Let (
;�) be a measurable space, and X and Y separable metric
spaces. If F : 
 � Y � X is a nonempty and closed-valued Carathéodory corre-
spondence, then it is �
 B(Y )-measurable.12

12There are many variants of this result. See, for example, [35, Theorem 3.3].
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Proof. Fix an arbitrary z 2 X; and de�ne the real map dz on 
�Y by dz(!; y) :=
dist(z; F (!; y)): Since F (�; y) is �-measurable, so is dz(�; y); for every y 2 Y ([9,
Proposition 6.5.8]). On the other hand, since F (!; �) is continuous, so is dz(!; �); for
every ! 2 
 ([9, Corollary 6.2.10]). It follows that dz is a Carathéodory function;
as such, given that Y is separable, it is � 
 B(Y )-measurable ([1, Lemma 4.51]).
As this conclusion is valid for every z 2 X; applying [9, Proposition 6.5.8] one more
time shows that F is �
 B(Y )-measurable. �

Lemma 5.8. Let (
;�) be a measurable space, X a separable Banach space, and
Y a separable metric space. Let F : 
 � Y � X be a nonempty and weakly
compact-valued Carathéodory correspondence. Then, for every ` 2 X� there exist
'; 2 Sel(F ) such that

` � '(!; y) = max
x2F (!;y)

`(x) and ` �  (!; y) = min
x2F (!;y)

`(x)

for all (!; y) 2 
� Y: Moreover, ` � '(!; �) is upper semicontinuous, and ` �  (!; �)
is lower semicontinuous, for any ! 2 
.
Proof. For any �xed ` 2 X�; de�ne the correspondence H`;F : 
 � Y � X by

H`;F (!; y) := argmaxf`(x) : x 2 F (!; y)g: By Lemma 5.7, F 2 Kw(
 � Y;� 

B(Y ); X); so we may argue exactly as in Lemma 3.3 to �nd some ' 2 Sel(F )
with `('(!; y)) � `(x) for every (!; y) 2 
 � Y and x 2 F (!; y): Moreover, for
any ! 2 
, F (!; �) is (weakly) upper hemicontinuous, and nonempty and weakly
compact-valued, so [1, Lemma 17.30] entails that `�'(!; �) is upper semicontinuous.
Applying the same argument to �` proves the remaining parts of the lemma. �

Let F be a bornology in Kw(
;�; X). In what follows, we refer to F as bounded
if every F 2 F has a relatively weakly compact range. Moreover, we say that an
abstract integral I : F � X satis�es the Fatou condition if for every single-valued
f; f1; f2; ::: 2 F such that f1(
) [ f2(
) [ � � � is relatively weakly compact, and for
every ` 2 X�;

lim inf ` � fm � ` � f implies lim inf `(I(fm)) � `(I(f)):

The following is the main result of this subsection:

Theorem 5.9. Let (
;�) be a measurable space, X a re�exive and separable
Banach space, and Y a separable metric space. Let F be a bounded bornology in
Kw(
;�; X), and I : F � X an abstract integral that satis�es the Fatou condition.
For any nonempty and weakly compact-valued Carathéodory correspondence F :

� Y � X; de�ne the correspondence �F : Y � X by �F (y) := co(I(F (�; y))): If
F (
 � Y ) is relatively weakly compact and F (�; y) is I-integrable for each y 2 Y;
then �F is weakly upper hemicontinuous. In particular, under these conditions,
y 7! I(F (�; y)) is a weakly upper hemicontinuous correspondence on Y; provided
that I is closed and convex-valued.

Proof. Put K := co(F (
 � Y )); which is a weakly compact and convex subset
of X that contains the range of F . Since X is a re�exive and separable Banach
space, the relative topology induced by the weak topology on K is metrizable.
Besides, as coI is an abstract integral on F (Remark 4.3), we have co(I(F )) �
co(F (
)) for every F 2 F (Property 4 of Section 5.1). We can thus regard �F as
a correspondence from Y to K: Take any (xm) 2 X1 and (ym) 2 Y1 such that
xm 2 �F (ym) for each m; and ym ! y for some y 2 Y: So, by the Eberlein-�mulian
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theorem, there exist an x 2 K and a strictly increasing sequence (mk) of positive
integers such that xmk

w! x: To derive a contradiction, let us assume that x does
not belong to �F (y): Then, by the separating hyperplane theorem, there exists an
` 2 X� such that inf `(�F (y)) > `(x):
Now let ' and  be as found in Lemma 5.8. Arguing exactly as in the proof of

Lemma 3.3, we see that both '(�; y) and  (�; y) are in Sel(F (�; y)); and we have
` � '(�; y) � ` � g � ` �  (�; y)

for every g 2 Sel(F (�; y)). By scalar monotonicity of I and Lemma 3.4, therefore,
`(I('(�; y))) � `(I(g)) � `(I( (�; y)))

for every g 2 Sel(F (�; y)). By Theorem 4.1, this implies that `(�F (y)) equals the
interval [`(I( (�; y))); `(I('(�; y)))] : Since inf `(�F (y)) > `(x); then, `(I( (�; y))) >
`(x): On the other hand, replacing y with ymk

here, we �nd that `(�F (ymk
)) equals

the interval [`(I( (�; ymk
))); `(I('(�; ymk

)))], and hence

`(I('(�; ymk
))) � `(xmk

) � `(I( (�; ymk
)))

for each k: But, since ` �  (!; �) is lower semicontinuous for all ! 2 
; we have
lim inf `( (�; ymk

)) � `( (�; y)): Since  (
; ym1
)[ (
; ym2

)[��� � K and I satis�es
the Fatou condition, therefore, lim inf `(I( (�; ymk

))) � `(I( (�; y))): So, given that
xmk

w! x; we �nd

`(x) = lim inf `(xmk
) � lim inf `(I( (�; ymk

))) � `(I( (�; y))) > `(x)

a contradiction. �

Let (
;�; �) be a probability space, X a re�exive and separable Banach space
and F is the set of all �-integrably bounded members of Kw(
;�; X) with relatively
weakly compact range. Then, F is a bounded bornology in Kw(
;�; X), and the
Aumann-Bochner integral IA-B on F is an abstract integral that satis�es the Fatou
condition. This allows deducing parametric continuity theorems for this integral by
means of Theorem 5.9 without recourse to dominated convergence arguments.

Example 5.1. Consider the unit Lebesgue interval ([0; 1];B[0; 1]; �); and let Y be
a separable metric space. Let F : [0; 1] � Y � Rn be a nonempty and compact-
valued Carathéodory correspondence such that supfkF (!; y)k : ! 2 [0; 1] and y 2
Y g < 1: As the Aumann integral is closed and convex-valued on the set of �-
integrably bounded correspondences, therefore, Theorem 5.9 readily yields that
y 7! IA(F (�; y)) is an upper hemicontinuous correspondence from Y to Rn. �

5.7. The Order-Monotonicity of the Abstract Integral. Let (
;�) be a mea-
surable space and X a normed Riesz space whose partial order is denoted by �X .
There is a natural way of ordering the functions from 
 into X by using �X point-
wise. By an abuse of notation, we denote this ordering by �X as well, that is, write
f �X g for any f; g 2 X
 whenever f(!) �X g(!) for each ! 2 
: In turn, we say
that a map � from a subset of X
 into X is order-preserving with respect to �X
if f �X g implies �(f) �X �(g).
This notion can be extended to the case of correspondences from a subset of

Kw(
;�; X) to X: To this end, we �rst extend �X to a preorder on Kw(
;�; X)
through using the measurable selections of correspondences. Put precisely, we de�ne
the preorder %X on Kw(
;�; X) by setting F %X G i¤ for every g 2 Sel(G) there
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is an f 2 Sel(F ) with f �X g: In turn, we refer to a correspondence I from a subset
F of Kw(
;�; X) to X as order-preserving if

F %X G implies I(F ) ��X I(G);

that is, when F %X G implies that for every y 2 I(G) there is an x 2 I(F ) with
x �X y:
In the development of the abstract integral, we have sidestepped the lack of order

structure on the image space X by using a scalarization approach, and adopting
scalar monotonicity as our main building block. However, when X happens to be
an ordered space, such as a Banach lattice, an equally appealing approach would
be to require the abstract integral be order-preserving. The �nal result of this
section shows that these two approaches are duly compatible for any closed and
convex-valued abstract integral whose values are closed under joins.

Proposition 5.10. Let (
;�) be a measurable space, X a separable Banach lattice,
and F a bornology in Kw(
;�; X). Let I : F � X be a closed, convex and
sub-_-semilattice-valued abstract integral. Then, I is order-preserving.

Proof. Take any F;G 2 F with F %X G, and assume I(F ) 6= ?. We shall �rst
show that

W
I(F ) exists in X and

W
I(F ) 2 I(F ). Note �rst that I(F ) is separable,

because so is X: Let fx1; x2; :::g be a countable dense subset of I(F ); and de�ne
zm := x1 _ � � � _ xm for each positive integer m: Clearly, (zm) is a sequence in
I(F ); and � � � �X z2 �X z1. We know that I(F ) is weakly compact (Property
1 in Section 5.1). By the Eberlein-�mulian theorem, then, there is a subsequence
(zmk

) of (zm) that weakly converges to some z 2 I(F ): Then, for any positive linear
functional ` on X; we have `(zmk

)! `(z) while (`(zm)) is an increasing sequence of
real numbers. Thus: `(zm)! `(z) for every ` 2 X�

+: As X
� = X�

+ �X�
+, it follows

that (zm) converges to z weakly. Moreover, z is the least upper bound for the set
fz1; z2; :::g. But for any x 2 I(F ); there is a self-map � on N such that x�(m) ! x:
Besides, z �X z�(m) �X x�(m), so letting m ! 1 yields z �X x: This shows that
z =

W
I(F ) which proves our claim.

We next prove that I(F ) ��X I(G): If I(G) = ?, this is trivial, so assume
otherwise. Let us then �x an arbitrary g 2 Sel(G): By Lemma 3.4, I(g) 6= ?.
Besides, since F %X G; there is an f 2 Sel(F ) with f �X g: Then, for any positive
linear functional ` on X, ` � f majorizes ` � g; so, by scalar monotonicity of I and
Lemma 3.4, we have I(f) 6= ?, `(I(f)) � `(I(g)), and, in particular, I(F ) 6= ?. By
the previous part of the proof and Theorem 4.3, we can then conclude that

`(
W
I(F )) � `(I(g)) for all ` 2 X�

+ and g 2 Sel(G):

This implies W
I(F ) �X I(g) for all g 2 Sel(G):

But, as �X is a vector order, we have
W
I(F ) �X y for any convex linear combina-

tion of �nitely many elements of fI(g) : g 2 Sel(G)g; that is,
W
I(F ) �X y for every

y 2 cofI(g) : g 2 Sel(G)g. As X+ is closed, it follows from this that
W
I(F ) �X y

for every y 2 cofI(g) : g 2 Sel(G)g. By Theorem 4.3, then,
W
I(F ) �X y for every

y 2 I(G): As
W
I(F ) 2 I(F ); this shows that I(F ) ��X I(G), as sought. �
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6. APPLICATIONS

Throughout this section (
;�; �) stands for a complete probability space and X a
Banach space. We also adopt the following notation:

F(�;X) := fF 2 Kw(
;�; X) : F is �-integrably boundedg ,

and
Fs-v(�;X) := fF 2 F(�;X) : F is single-valuedg .

Either of these collections is a bornology in Kw(
;�; X); and hence, they are closed
under measurable selections and restrictions (Lemma 3.1).

6.1. The Aumann Integral, Revisited. We have seen in Example 4.3 that the
Aumann integral is an abstract integral. The following result improves this obser-
vation by providing an axiomatic characterization of the Aumann integral.

Proposition 6.1. Assume (
;�; �) is nonatomic, and X is �nite-dimensional. Let
I : K(
;�; X) � X be a correspondence. Then, I is closed and convex-valued on
F(�;X), acts as an abstract integral on F(�;X), and agrees with the Lebesgue
integral on Fs-v(�;X) if, and only if, I(F ) = IA(F ) for every F 2 F(�;X).

It is well-known that IA(F ) is a compact and convex set for any F 2 F(�;X):
Proposition 6.1 obtains easily by combining this fact with Theorem 4.3.

6.2. The Aumann-Bochner Integral, Revisited. When X is in�nite-
dimensional, extending the characterization above to the case of the Aumann-
Bochner integral requires an amendment in the hypotheses. For, due to the failure
of Lyapunov�s Theorem for vector measures with values in an in�nite-dimensional
space, the Aumann-Bochner integral is, in general, neither closed- nor convex-
valued. (See Rustichini [38].) One needs to strengthen the nonatomicity hypothesis
on � to resurrect these properties, and quite a bit is known as to how to do this.
In particular, it was proved by Sun [40] that if (
;�; �) is a nonatomic �nite Loeb
measure space, then IA-B is weakly compact and convex-valued on F(�;X): It was
shown later in [36] and [41] that this is the case i¤ (
;�; �) is nonatomic and the
Maharam spectrum of � consists only of uncountable cardinals. Following Hoover
and Keisler [24], we refer to any such probability space (
;�; �) as saturated.13

We have then the following characterization of the Aumann-Bochner integral.

Proposition 6.2. Assume (
;�; �) is saturated, X is separable, and let I :
F(�;X) � X be a correspondence. Then, I is a closed and convex-valued ab-
stract integral that agrees with the Bochner integral on Fs-v(�;X) if, and only if,
I = IA-B .

In view of the remarks above, Proposition 6.2 is proved by using Theorem 4.3 in
exactly the same way as Proposition 6.1.

13It is known that a nonatomic probability measure space (
;�; �) is saturated i¤ for every
Polish metric spaces Z and W; every Borel probability measure � on Z �W; and every Z-valued
random variable f on 
 whose distribution equals the marginal of � on Z, there exists a W -valued
random variable g on 
 such that the distribution of (f; g) is �:
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6.3. The Pettis Integral. For any F 2 Kw(
;�; �) and weakly continuous ' :
X ! R; we de�ne the map sF;' : 
! R by

sF;'(!) := max
z2F (!)

'(z):

This notation will be used in the remainder of the paper.
We say that a correspondence F 2 Kw(
;�; �) is said to be Pettis integrable

if sco(F );` is (Lebesgue) integrable, and there exists a nonempty, weakly compact
and convex subset CF of X such that

max
x2CF

`(x) =

Z



sco(F );`d�

for every ` 2 X�. If it exists, CF is unique; it is called the Pettis integral of F
which we denote by IP(F ):
Now, the map sco(F );` is �-measurable for any F 2 Kw(
;�; �) and ` 2

X� (cf. [6, Theorem 8.2]), and it is integrable for any �-integrably bounded
F 2 Kw(
;�; �): Thus, the �rst requirement of Pettis integrability holds for any
F 2 F(�;X): Furthermore, [16, Theorem 3.7] says that if at least one element
of Sel(coF ) is Bochner integrable, then F is Pettis integrable. Since Sel(F ) �
Sel(coF ); and every element of Sel(F ) is Bochner integrable, therefore, we conclude
that any F 2 F(�;X) is Pettis integrable.
We claim that IP is scalarly monotonic on F(�;X): To see this, take an arbitrary

` 2 X� and F;G 2 F(�;X), and assume F I` G, which implies coF I` coG. We
de�ne H`;coG as in the proof of Lemma 3.3, and note that ? 6= Sel(H`;coG) �
Sel(coG): Let us pick any g 2 Sel(H`;coG): Then, g 2 Sel(coG) and ` � g = scoG;`:
But, by hypothesis, there is an f 2 Sel(coF ) with ` � f � ` � g; whence

scoF;` � ` � f � ` � g = scoG;`:

It follows that max `(IP(F )) � max `(IP(G)), and our claim is proved.
It is an easy exercise to show that IP(ffg) =

�
B
R


f d�

	
for any Bochner �-

integrable f : 
 ! X. Therefore, IP acts as an abstract integral on F(�;X). We
may thus use Theorem 4.3 to obtain:

Proposition 6.3. IP(F ) = co(IA-B(F )) for every F 2 F(�;X).

This result is, essentially, the combination of Corollary 3.10 and Proposition 3.12
of El Amri and Hess [16]. It is obtained here by means of an easy application of
abstract integration theory.

6.4. The Convex Integral. Let us denote the set of all convex real-valued func-
tions on Rn by Conv(Rn): As is well-known, Conv(Rn) � C(Rn); where the latter
set stands for the set of all continuous real-valued maps on Rn. We de�ne the
convex integral as the correspondence Iconv : F(�;Rn)� Rn with

Iconv(F ) :=

�
x 2 Rn :

Z



sF;' d� � '(x) for all ' 2 Conv(Rn)
�
.

This integral relates closely to the theory of stochastic orders. For instance, when
n = 1; we have

Iconv(f
fg) =

n
x 2 R : f %conv �fxg

o
for all f 2 L1(
;�; �);
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where %conv is the classical convex order which is widely used in applied probability
and related �elds to make variability comparisons across random variables.
A bit less obvious is the fact that the convex integral is none other than the

standard expectation operator for single-valued correspondences. Indeed, for any
�-integrable f : 
 ! Rn; we have sffg;' = ' � f; so Jensen�s inequality saysR


f d� 2 Iconv(ffg). Conversely, if y 2 Iconv(ffg); then `

�R


f d�

�
=
R


` � f d� �

`(y) for every linear functional on Rn, which is possible only if y =
R


f d�: Thus:

Iconv(f
fg) =

�Z



f d�
�
:

As a special case of this observation, we see also that Iconv(�fxg) = fxg for every
x 2 Rn.
We next show that Iconv is scalarly monotonic. To this end, take any F;G 2 F

and ` 2 X�; and suppose F I` G: Pick an arbitrary y 2 Iconv(G): We need to
�nd an x 2 Iconv(F ) with `(x) � `(y): Since H`;G (de�ned as in Lemma 3.3) is
�-measurable and closed-valued, there is a g 2 Sel(H`;G) � Sel(G): We choose any
f 2 Sel(F ) with ` � f � ` � g; and put x :=

R


f d�: Then,

`(x) =

Z



` � f d� �
Z



` � g d� =
Z



sG;` d� � `(y).

Besides sF;' � ' � f for every ' 2 Conv(Rn); so fxg = Iconv(ffg) � Iconv(F ); as
desired.
We have established that Iconv is an abstract integral. Now �x an arbitrary

F 2 F(�;Rn): Then Iconv(F ) is a convex set, because for any x; y 2 Iconv(F ) and
0 < � < 1;Z




sF;' d� � maxf'(x); '(y)g � �'(x) + (1� �)'(y) � '(�x+ (1� �)y)

whenever ' 2 Conv(Rn). Finally, Iconv(F ) is closed, because for any sequence (xm)
in Iconv(F ) with xm ! x for some x 2 Rn; we have

R


sF;' d� � '(xm)! '(x) for

every convex (hence continuous) ' : Rn ! R. We proved:

Proposition 6.4. Iconv : F(�;Rn) � Rn is a closed and convex-valued abstract
integral.

Given this observation, we can apply Theorem 4.3 to obtain the following char-
acterization: For every F 2 F(�;Rn),

Iconv(F ) = co
�Z




f d� : f 2 Sel(F )
�
.

Thus, perhaps unexpectedly, we �nd that the convex integral is a regularized se-
lection integral. This illustrates how abstract integration theory may yield novel
insights in the context of particular set-valued integrals.



32 SIMONE CERREIA-VIOGLIO AND EFE A. OK

6.5. Aggregator Correspondences. So far the particular notions of integrals we
have used for functions were additive. In this section we demonstrate that abstract
set-valued integration works also with non-additive integrals.
Throughout this application, we work with the class of all positive �-measurable

bounded correspondences on (
;�) that map to the set of all nonempty compact
subsets of the reals. We denote this class by K+b (
;�); that is,

K+b (
;�) :=
�
F 2 K(
;�;R) : F (
) � [0;1) and sup

!2

maxF (!) <1

�
,

which is an ideal in K(
;�;R). The set of all positive bounded �-measurable real
maps is, as usual, denoted by B+(
;�): (We metrize this space by the sup-metric.)
Obviously, Sel(F ) � B+(
;�) for every F 2 K+b (
;�).
By an aggregation function on B+(
;�), we mean any continuous and in-

creasing map a : B+(
;�)! R such that a(k1
) = k for every real number k � 0.
Numerous examples of aggregation functions arise in a variety of applied �elds such
as probability theory, decision theory, operations research, pattern recognition and
mathematical psychology. We refer the reader to the excellent account provided in
[18] for the theory and applications of such functions (with �nite 
).

Example 6.1. A capacity on � is an �-increasing map � : �! [0; 1] with �(?) = 0
and �(
) = 1: The Choquet integral of any f 2 B+(
;�) with respect to a capacity
� on � is de�ned as

C
Z



f d� :=
Z 1

0

�ff � xg dx:

The map f 7! C
R


f d�; which we naturally call the Choquet integral, is an

example of a non-additive aggregation function on B+(
;�). (See [26] for a nice
survey on the Choquet and related integrals.) In addition, this map is 1-Lipschitz
on B+(
;�): �

The notion of an aggregation function can be extended to the context of cor-
respondences in the same way Aumann extended the Lebesgue integral to that
context. We thus say that a correspondence A : K+b (
;�)� R is an aggregator
correspondence if there is an aggregation function a on B+(
;�) such that

A(F ) = fa(f) : f 2 Sel(F )g for every F 2 K+b (
;�):
It is plain that jA(F )j = 1 if F is single-valued and A(F ) 6= ? for every F 2
K+b (
;�):

Proposition 6.5. Every aggregator correspondence A is an abstract integral on
K+b (
;�) such that A(coF ) = co(A(F )) for any F 2 K+b (
;�). In fact, A(F ) is a
compact interval whenever F 2 K+b (
;�) is convex-valued.
Proof. Take any linear ` : R ! R and arbitrary F;G 2 K+b (
;�) with F I` G:

Since a is increasing, it is readily checked that `�f � `�g implies `(a(f)) � `(a(g))
for any f; g 2 B+(
;�), so F I` G surely implies A(F ) %�` A(G). That A satis�es
the other two requirements of being an abstract integral is obvious.
Next, notice that coF 2 K+b (
;�). Where we take ` as the identity function on

R; let ' and � be de�ned as in the proof of Lemma 3.3. Then, �; ' 2 Sel(F ) and
' (!) � x � � (!) for all ! 2 
 and x 2 F (!), which implies ' � f � � for all f 2
Sel(coF ). Since Sel(F ) � Sel(coF ) and a is increasing, this gives [a (�) ; a (')] �
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A(coF ) � A(F ) � fa (�) ; a (')g ; and in particular, [a (�) ; a (')] = co(A(F )) =
co(A(coF )). By the intermediate value theorem, and since a is monotonic and con-
tinuous, fa (��+ (1� �)')g�2[0;1] = [a (�) ; a (')] : As �� + (1� �)' 2 Sel(coF )
for all � 2 [0; 1], we obtain co(A(coF )) � A(coF ) � fa (��+ (1� �)')g�2[0;1] =
[a (�) ; a (')] = co(A(coF )). Thus:

A(coF ) = [a (�) ; a (')] = co(A(F ));

as we sought. �

In particular, we see that an aggregator correspondence A is compact interval-
valued on the set of all positive �-measurable compact interval-valued correspon-
dences. For instance, apparently, the correspondence

F 7!
�
C
Z



f d� : f 2 Sel(F )
�

on K+b (
;�) maps any convex-valued F to a compact interval.
As another application, we consider the parametric continuity of aggregator cor-

respondences:

Proposition 6.6. Let A be an aggregator correspondence such that

limA(fm) = A(f);

for every f; f1; ::: 2 B+(
;�) with either fm " f or fm # f: Let Y be a separable
metric space and F : 
�Y � R+ a nonempty closed interval-valued Carathéodory
correspondence such that F (
� Y ) is bounded. Then, y 7! A(F (�; y)) is an upper
hemicontinuous correspondence on Y .

Proof. This is a straigthforward application of Theorem 5.9 with one caveat:
K+b (
;�) is not a bornology in K(
;�;R) since it does not contain every constant
single-valued correspondence from 
 to R, but only those with positive values.
However, if we set K := [0;M ] with M > 0 such that F (
 � Y ) � K, then the
argument we gave for Property 4 in Section 5.1 yields I(F (�; y)) = co(I(F (�; y))) �
K for all y 2 Y . This ensures that the conclusion of Theorem 5.9 still holds in the
current setting. �

It is well-known that the monotone convergence theorem (as stated in the hy-
potheses of Proposition 6.6) is valid for the Choquet integral against a capacity
which is continuous (from both below and above); see, for instance, Murofushi
and Sugeno [33, Proposition 3.2]. Consequently, Proposition 6.6 applies in the
context of such a Choquet integral. Put more formally, for any separable metric
space Y; bounded interval J; and a nonempty closed interval-valued Carathéodory
correspondence F : 
� Y � J ,

y 7!
�
C
Z



f(�; y)d� : f 2 Sel(F (�; y))
�

is an upper hemicontinuous correspondence on Y; under this continuity hypothesis.
Even though there is some literature on the Choquet integral for 2[0;1)-valued maps
�see, for instance, [19] and [46] �this seems to be a new �nding.
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