
24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 1/26

R news and tutorials contributed by hundreds of R bloggers

Home
About
RSS
add your blog!
Learn R
R jobs���
Contact us

Welcome!

Here you will find daily
news and tutorials
about R, contributed by
hundreds of bloggers.
There are many ways to
follow us -
By e-mail:

Your e-mail here
Subscribe

Follow @rbloggers 80.2K

https://www.r-bloggers.com/
https://www.r-bloggers.com/
https://www.r-bloggers.com/about/
https://feeds.feedburner.com/RBloggers
https://www.r-bloggers.com/add-your-blog/
https://www.r-bloggers.com/how-to-learn-r-2/
https://www.r-users.com/
https://www.r-bloggers.com/contact-us/
https://feedburner.google.com/fb/a/mailverify?uri=RBloggers
https://feeds.feedburner.com/RBloggers
https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&ref_src=twsrc%5Etfw®ion=follow_link&screen_name=rbloggers&tw_p=followbutton
https://twitter.com/intent/user?original_referer=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&ref_src=twsrc%5Etfw®ion=count_link&screen_name=rbloggers&tw_p=followbutton

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 2/26

On Facebook:

If you are an R blogger
yourself you are invited
to add your own R
content feed to this site
(Non-English R
bloggers should add
themselves- here)

 Jobs for R-
users

Senior Research
Specialist II
Fisheries
Analyst/Senior
Fisheries Analyst
Senior Scientist,
Translational
Informatics @
Vancouver, BC,
Canada
Senior Principal
Data Scientist @
Mountain View,

Piace a 6 amici

R blog…
77.979 "Mi piace"

Mi piace

https://www.facebook.com/rbloggers
https://www.r-bloggers.com/add-your-blog/
https://www.r-bloggers.com/lang/add-your-blog
https://feeds.feedburner.com/Rjobs
https://www.r-users.com/
https://feedproxy.google.com/~r/RJobs/~3/Ks58UZw4AtQ/
https://feedproxy.google.com/~r/RJobs/~3/KC3ktfJmosI/
https://feedproxy.google.com/~r/RJobs/~3/41Y2rIRAmQc/
https://feedproxy.google.com/~r/RJobs/~3/6EOFuG1QNmo/
https://www.facebook.com/benigno.pizzuto
https://www.facebook.com/carlos.c.cortez.02
https://www.facebook.com/f.passerini94
https://www.facebook.com/rbloggers/
https://www.facebook.com/rbloggers/
https://www.facebook.com/rbloggers/

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 3/26

California, United
States
Technical
Research Analyst
– New York, U.S.

Recent Posts

unpack Your
Values in R
anytime 0.3.7
How To Say No
To Useless Data
Science Projects
And Start
Working On What
You Want
December 2019:
“Top 40” New R
Packages
RPushbullet 0.3.3
How to Remove
Outliers in R
What R you in
python? (`R`
vectors)
Feller’s coin-
tossing puzzle:
tidy simulation in
R
Customising your
Rprofile
Introducing nse2r
Le Monde puzzle
[#1127]
RcppRedis 0.1.10:
Switch to tinytest
EARL London
2020 call for

https://feedproxy.google.com/~r/RJobs/~3/6EOFuG1QNmo/
https://feedproxy.google.com/~r/RJobs/~3/K8tlo6Kar7E/
https://www.r-bloggers.com/unpack-your-values-in-r/
https://www.r-bloggers.com/anytime-0-3-7/
https://www.r-bloggers.com/how-to-say-no-to-useless-data-science-projects-and-start-working-on-what-you-want/
https://www.r-bloggers.com/december-2019-top-40-new-r-packages/
https://www.r-bloggers.com/rpushbullet-0-3-3/
https://www.r-bloggers.com/how-to-remove-outliers-in-r/
https://www.r-bloggers.com/what-r-you-in-python-r-vectors/
https://www.r-bloggers.com/fellers-coin-tossing-puzzle-tidy-simulation-in-r/
https://www.r-bloggers.com/customising-your-rprofile/
https://www.r-bloggers.com/introducing-nse2r/
https://www.r-bloggers.com/le-monde-puzzle-1127/
https://www.r-bloggers.com/rcppredis-0-1-10-switch-to-tinytest/
https://www.r-bloggers.com/earl-london-2020-call-for-abstracts/

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 4/26

abstracts
My newyeaRs
resolution:
slimming down
(Seurat)
rOpenSci 2019
Code of Conduct
Transparency
Report

Other sites

SAS blogs
Jobs for R-users

Accessing APIs from R (and a
little R programming)
November 26, 2015
By Christoph Waldhauser

[This article was first published on Turning numbers into stories, and kindly contributed to
R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Working with APIs
Christoph Waldhauser

TweetLike 11 Share Share

 Share  Tweet

https://www.r-bloggers.com/earl-london-2020-call-for-abstracts/
https://www.r-bloggers.com/my-newyears-resolution-slimming-down-seurat/
https://www.r-bloggers.com/ropensci-2019-code-of-conduct-transparency-report/
http://www.proc-x.com/
https://www.r-users.com/
https://www.r-bloggers.com/author/christoph-waldhauser/
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html
https://www.r-bloggers.com/
https://www.r-bloggers.com/contact-us/
https://www.r-bloggers.com/add-your-blog/
https://r-posts.com/
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&ref_src=twsrc%5Etfw&text=Accessing%20APIs%20from%20R%20(and%20a%20little%20R%20programming)&tw_p=tweetbutton&url=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&via=rbloggers
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&display=popup&ref=plugin&src=like&kid_directed_site=0
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F
https://twitter.com/intent/tweet?text=Accessing%20APIs%20from%20R%20%28and%20a%20little%20R%20programming%29&url=https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/&via=Rbloggers

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 5/26

22/11/2015

APIs are the driving force behind data mash-ups. It is APIs that allow
machines to access data programmatically – that is automatically from
within a program – to make use of API provided functionalities and
data. Without APIs much of today’s Web 2.0, Apps and data
applications would be outright impossible.

This post is about using APIs with R. As an example. we’ll use the
EU’s EurLex1 data base API as provided by Buhl Rassmussen. This
API is a good example of the APIs you might find in the wild. Of
course, there are the APIs of large vendors, like Google or Facebook,
that are thought out and well documented. But then there is the vast
majority of smaller APIs for special applications that often lack in
structure or documentation. Nevertheless, these APIs often provide
access to valuable ressources.

Background on APIs
API is short for Application Programming Interface. Basically, it
means a way of accessing the functionality of a program from inside
another program. So instead of performing an action using an interface
that was made for humans, a point and click GUI for instance, an API
allows a program to perform that action automatically. The power of
this concept becomes only visible, when you imagine that you can
mesh the calling of an API in the program with anything else that
program might want to do. Some examples from data science:

Retrieve data and produce a visualization from it that gets
updated every time someone looks at it
Have tweets automatically translated and entities reported
Have additional nodes in a computer cluster launched as soon as
tasks become cumbersome, to ensure fast data processing

While an API can be any defined interface between two programs,
today APIs usually refer to a special kind of APIs that are based on the
WWW’s HyperText Transfer Protocol (HTTP) that is also used by web
servers and browsers to exchange data. Indeed, one might consider

https://eur-lex.europa.eu/en/
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fn1
http://api.epdb.eu/
http://www.buhlrasmussen.eu/index.en.html

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 6/26

browsing the web as using APIs: a program (the browser) uses a
defined set of commands and conventions to retrieve data (the
webpage) from a remote server (the website) and renders it locally in
the browser (the thing you see).

All web-based 2 APIs have always the same structure: they consist of a
URL to a domain and a path to an endpoint. For instance:
http://example.com/api where http://example.com is the URL and
/api is the path to the endpoint.

Web-based APIs that are used for data science come usually in two
flavors that are named after the HTTP verbs defined 3:

GET – sends a set of parameters, a query to an endpoint and then
recieves an answer.
POST – sends a data payload to an endpoint to be processed at the
remote system, usually receiving only a success message as an
answer.

There are other verbs defined in HTTP, like DELETE, but they are less
common in APIs. The by far largest group of APIs makes only use of
the GET verb. Let’s look at that flavor in greater detail.

A canonical example would be an API that allows to retrieve data from
some data base and the API’s query can be used to narrow down the
selection. Let’s say an API provides access to newspaper articles. By
specifying the parameter year the API returns not all articles, but only
those that were written in a specific year. Let’s say we are only
interested in articles written in 2014. The corresponding API call
would, thus, look like: http://example.com/api?year=2014. We
already know which part is the URL and which part is the path to the
endpoint. What’s new is the query year=2014. Note that it’s separated
from the path by a question mark. In this example, year is the name of
the parameter, and 2014 is its value.

Upon receiving the API call, the remote system crafts an answer. The
answer can be in any format. It could be a image file, or a movie, or
text, or … In recent years, JSON has become the most common
answer format by far. JSON is a simple text file that uses special
characters and conventions to bring structure into its contents. You can

https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fn2
http://example.com/api
http://example.com/
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fn3
http://example.com/api?year=2014

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 7/26

find more info at the Wikipedia page on JSON. For now it suffices to
know that is a popular format to store data, that can potentially be
nested and delivered together with metadata. And that R can process it
quite easily.

The big problem with APIs is that they are always designed by
humans. So APIs vary wildly in logical structure and the quality of
documentation. This unfortunately means, that there is no simple
catch-all solution for working with APIs and all programs will need to
be custom tailored to the API used. This also means that using an API
almost always requires programming to some degree.

Accessing APIs from R
In this example, we’ll use R to retrieve data from an API and process
it. The API we’ll query provides data on EU legislative documents.
More specifically, we are interested in which week day is most popular
for EU energy legislative documents to go into force. Ok, perhaps
that’s not a mind blowing research question, but one that will allow us
to demonstrate the using of APIs and the required data processing
quite nicely.

Required packages

There are many facilities in R that can be used to access APIs. The one
package that I find most useful is Hadley4’s httr. It allows for easy
crafting of API calls and also handling the more intricate aspects of
APIs like authentication.

Working with JSON data is facilitated a lot by the jsonlite package. It
does a good job translating JSON’s nested data structures into sensible
R objects. Well, most of the time, anyway.

Since in this example we are going to work with dates, let’s use
another of Hadley’s packages: lubridate. If you work with dates
frequently, it’s a package that might be a valuable addition to your
toolbox.

https://en.wikipedia.org/wiki/JSON
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fn4
https://cran.r-project.org/web/packages/httr/
https://cran.r-project.org/web/packages/jsonlite/
https://cran.r-project.org/web/packages/lubridate/

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 8/26

If you don’t yet have these packages installed, you can use this R code
to obtain them:

install.packages(c("httr", "jsonlite", "lubridate"))

Outline of the example

In this subsection I’ll outline the steps required to perform to find an
answer to our question (which is the most popular day for having
energy related documents turn into force?).

EurLex documents all bear a document classifier (directory code in
EurLex parlance) that can be used to single out documents that relate
to a specific topic. The EurLex classifiers are always four dot
separated pairs of digits. For instance, the classifier 07.40.30.00
identifies documents that relate to air traffic safety. We will use the
appropriate classifiers to retrieve the data on energy related
documents.

So, these are the required steps we’ll need to take to get our answer:

1. Retrieve a list of all the valid classifiers
2. Extract from that answer only those classifiers that relate to

energy, i.e. start with 12..5
3. Retrieve the documents’ meta data that are classified with one of

the classifiers we’ve found to be relevant.
4. Work with the data we’ve retrieved to find out which weekday is

most frequent.

Steps (1) and (3) will involve calling the API and (2) and (4) are just
local data processing chores.

Before doing anything else, we need to load the required packages:

library(httr)
library(jsonlite)

Attaching package: 'jsonlite'

The following object is masked from 'package:utils':

https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fn5

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 9/26

View

library(lubridate)

One more thing before we get started: R has the “feature” of turning
character strings automatically into factor variables. This is great,
when doing actual statistical work. It is this magic that allows R to turn
multinomial variables into dummy variables in regression models and
produce nice cross tables. When working with APIs, however, this
“feature” becomes a hinderance. Let’s just turn it off. Note: this call
only affects the current session; when you restart R, all settings will be
back to normal.

options(stringsAsFactors = FALSE)

Retrieving valid classifiers

Calling the /eurlex/directory_code endpoint directly, retrieves a list
of all valid classifiers. Let’s obtain that list. First, we need set up the
URL and path part of the API call. A query is not required at this point,
as the API provides the answer directly.

url <- "http://api.epdb.eu"
path <- "eurlex/directory_code"

Executing an API call with the GET flavor is done using the GET()
function.

raw.result <- GET(url = url, path = path)

Let’s explore what we’ve got back:

names(raw.result)

[1] "url" "status_code" "headers" "all_headers" "cookies"
[6] "content" "date" "times" "request" "handle"

The result we got back from the API is a list of length 10. Of these,
two parts are important:

http://api.epdb.eu/

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 10/26

status_code that tells us, if the call worked network-wise. For a
list of possible status codes, see
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes.
content the API’s answer in raw binary code, not text. Alas, the
answer could also be an image or a sound file.

If we examine the status code,

raw.result$status_code

[1] 200

we see that we’ve got 200, which means, all worked out fine. Note that
this status code only tells us, that the server recieved our request, not if
it was valid for the API or found any data.

Let’s look at the actual answer or data payload we’ve got back. Let’s
just look at the first few elements:

head(raw.result$content)

[1] 7b 22 30 31 2e 30

That’s useless, unless you speak Unicode. Let’s translate that into text.

this.raw.content <- rawToChar(raw.result$content)

Let’s see how large that is in terms of characters:

nchar(this.raw.content)

[1] 121493

That’s rather large. Let’s look at the first 100 characters:

substr(this.raw.content, 1, 100)

[1] "{"01.07.00.00":{"directory_code":"01.07.00.00","url":"http:\/\/api.epdb.eu\/eurlex\/directory_code\/"

So the result is a single character string that contains a JSON file. Let’s
tell R to parse it into something R can work with.

this.content <- fromJSON(this.raw.content)

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 11/26

What did R make out of it?

class(this.content) #it's a list

[1] "list"

length(this.content) #it's a large list

[1] 462

this.content[[1]] #the first element

$directory_code
[1] "01.07.00.00"

$url
[1] "http://api.epdb.eu/eurlex/directory_code/?dc=01.07.00.00&key="

$number_of_documents
[1] "126"

$list_of_acts_inforce_eurlex
[1] "http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=0107*&repihm="

this.content[[2]] #the second element

$directory_code
[1] "01.10.00.00"

$url
[1] "http://api.epdb.eu/eurlex/directory_code/?dc=01.10.00.00&key="

$number_of_documents
[1] "191"

$list_of_acts_inforce_eurlex
[1] "http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=011*&repihm="

So, apparently R makes a list out of it, with one element per classifier.
Each element has:

the directory code document classifier
a URL where one can retrieve more details
the number of documents with that classifier
another URL with yet more details

http://api.epdb.eu/eurlex/directory_code/?dc=01.07.00.00&key=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=0107*&repihm=
http://api.epdb.eu/eurlex/directory_code/?dc=01.10.00.00&key=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=011*&repihm=

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 12/26

So, essentially, the result is a list of lists. Lists are not (always) very
nice to work with, and lists of lists are usally despicable. Let’s turn it
into a data frame:

this.content.df <- do.call(what = "rbind",
 args = lapply(this.content, as.data.frame))

This call does a number of things. lapply(this.content,
as.data.frame) turns each of the 462 list elements into mini single-
row data frames. This is required, so that we then can combine (rbind)
them all together into a single data frame.

In case you are interested in the gory details:

1. The function rbind takes any number of data frames as
arguments, and turns them into a single data frame, by just
stacking one on top of the next. So C <- rbind(A, B) will yield
a data frame that has first the contents of A and then those of B
stacked on top of each other.

2. The function lapply takes a list (the first argument) and applies
the function that is the second argument (here: as.data.frame) to
each of its elements. So, the call to lapply turns our list of lists
into a list of single row data frames.

3. The function do.call is a true wonder girl. She uses its args
argument as arguments to the function named at the what
argument. So here, it executes rbind with all the elements
(single row data frames, that we created in (2)) of our list of data
frames. It is the same as typing:
rbind(OurDfList[[1]], OurDfList[[2]], OurDfList[[3]], ...)
where ... would need to be replaced with all the other list items.

What have we got now?

class(this.content.df) #a single data frame

[1] "data.frame"

dim(this.content.df) #with 462 rows and 4 variables

[1] 462 4

head(this.content.df)

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 13/26

directory_code
01.07.00.00 01.07.00.00
01.10.00.00 01.10.00.00
01.20.00.00 01.20.00.00
01.30.00.00 01.30.00.00
01.40.00.00 01.40.00.00
01.40.10.00 01.40.10.00
url
01.07.00.00 http://api.epdb.eu/eurlex/directory_code/?dc=01.07.00.00&key=
01.10.00.00 http://api.epdb.eu/eurlex/directory_code/?dc=01.10.00.00&key=
01.20.00.00 http://api.epdb.eu/eurlex/directory_code/?dc=01.20.00.00&key=
01.30.00.00 http://api.epdb.eu/eurlex/directory_code/?dc=01.30.00.00&key=
01.40.00.00 http://api.epdb.eu/eurlex/directory_code/?dc=01.40.00.00&key=
01.40.10.00 http://api.epdb.eu/eurlex/directory_code/?dc=01.40.10.00&key=
number_of_documents
01.07.00.00 126
01.10.00.00 191
01.20.00.00 69
01.30.00.00 24
01.40.00.00 382
01.40.10.00 514
list_of_acts_inforce_eurlex
01.07.00.00 http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=0107*&repihm=
01.10.00.00 http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=011*&repihm=
01.20.00.00 http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=012*&repihm=
01.30.00.00 http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=013*&repihm=
01.40.00.00 http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=014*&repihm=
01.40.10.00 http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=01401*&repihm=

That’s nice and we can work with it to extract all the classifiers of
energy topics.

Extracting energy classifiers

We’ve almost found the classifiers for energy topics. We just need to
filter them out of all the other classifiers that are available. Remember,
Energy classifiers start with 12.. We can use that fact:

headClass <- substr(x = this.content.df[, "directory_code"],
 start = 1,
 stop = 2)

headClass is now just a character vector containing the first two
characters of the directory_code for each of the 462 different

http://api.epdb.eu/eurlex/directory_code/?dc=01.07.00.00&key=
http://api.epdb.eu/eurlex/directory_code/?dc=01.10.00.00&key=
http://api.epdb.eu/eurlex/directory_code/?dc=01.20.00.00&key=
http://api.epdb.eu/eurlex/directory_code/?dc=01.30.00.00&key=
http://api.epdb.eu/eurlex/directory_code/?dc=01.40.00.00&key=
http://api.epdb.eu/eurlex/directory_code/?dc=01.40.10.00&key=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=0107*&repihm=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=011*&repihm=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=012*&repihm=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=013*&repihm=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=014*&repihm=
http://eur-lex.europa.eu/Result.do?RechType=RECH_repertoire&rep=01401*&repihm=

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 14/26

classifiers.

length(headClass)

[1] 462

head(headClass)

[1] "01" "01" "01" "01" "01" "01"

If these first two characters equal 12, it’s an energy topic:

isEnergy <- headClass == "12"
table(isEnergy) # 19 of the topic classifiers start with 12

isEnergy
FALSE TRUE
443 19

Let’s use this logical vector to index our data frame:

relevant.df <- this.content.df[isEnergy,]

And let’s narrow that down to solely the document identifiers:

relevant.dc <- relevant.df[, "directory_code"]

relevant.dc is now a character vector with all the directory codes that
are relating to energy topics.

length(relevant.dc)

[1] 19

relevant.dc

[1] "12.07.00.00" "12.10.00.00" "12.10.10.00" "12.10.20.00" "12.20.10.00"
[6] "12.20.20.00" "12.20.30.00" "12.20.40.00" "12.30.00.00" "12.40.00.00"
[11] "12.40.10.00" "12.40.20.00" "12.40.30.00" "12.40.40.00" "12.40.50.00"
[16] "12.50.10.00" "12.50.20.00" "12.50.30.00" "12.60.00.00"

We’ve come a long way. We’ve retrieved all possible classifiers from
the API, parsed the answer so that we can work with it, and, finally,
extracted all those classifiers that are relating to energy topics.

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 15/26

Retrieving energy documents’ meta data

In this step, we use the identified classifiers to retrieve all the
documents’ meta data that relate to energy topics. We’ll use the API
again. The base parts of the API call have not changed.

Now to the query: we cannot pass all the relevant classifiers in a single
call. Rather, we need to create 19 queries, one for each identified
classifier. There are many ways to do that. Let’s do it the pretty way
with our own function:

makeQuery <- function(classifier) {
 this.query <- list(classifier)
 names(this.query) <- "dc"
 return(this.query)
}

Remember, that a the query part of an API call is a named list. The
name is the name of the API parameter, and it’s value is, well, it’s
value. Our function, makeQuery() takes a single argument, classifier
and turns it into a single element list and sets the name of that list’s
single element to be dc. Let’s try it out with nonsense

makeQuery("foo")

$dc
[1] "foo"

We discover, that the function indeed returns a list with a single
element, that element is named dc and it’s value is the string we’ve
specified.

Let’s apply our new function to all of our relevant classifiers from
above to turn them into queries. Remember the lapply function we can
use to apply a function to each element of a list:

queries <- lapply(as.list(relevant.dc), makeQuery)

Now we have a list (queries) that is composed of all the individual
queries that result from our function. Now we are good to go to
acutally execute the API calls.

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 16/26

It’s time now to execute the API calls we’ve created. Let’s start out
with the first element of our query list.

this.raw.result <- GET(url = url, path = path, query = queries[[1]])

What did we get back?

this.result <- fromJSON(rawToChar(this.raw.result$content))

We’ve got back the meta data for all 11 documents that are classified
with our first relevant classifier (12.07.00.00). For each document, we
get:

names(this.result[[1]])

[1] "form" "title" "api_url"
[4] "eurlex_perma_url" "doc_id" "date_document"
[7] "of_effect" "end_validity" "oj_date"
[10] "directory_codes" "legal_basis" "addressee"
[13] "internal_ref" "additional_info" "text_url"
[16] "prelex_relation" "relationships" "eurovoc_descriptors"
[19] "subject_matter"

Apparently, our call does work just fine. Executing the first query
stored in queries results in 11 documents and their respective meta
data.

Let’s execute the query for each element in queries. How to go about
this? Why not use lapply to execute each of the queries in the list? We
could do that, but let’s try another approach: a loop. A loop – loops –
over a set of numbers, and at each iteration executes some code. Let’s
try that:

First, we need something where we can store the results. For that, we
create an empty list with just enough room to store each of the queries’
results:

all.results <- vector(mode = "list",
 length = length(relevant.dc))

This made a new, empty list called all.results. It has as many empty
slots as we have energy related classifiers.

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 17/26

for (i in 1:length(all.results)) {
 this.query <- queries[[i]]
 this.raw.answer <- GET(url = url, path = path, query = this.query)
 this.answer <- fromJSON(rawToChar(this.raw.answer$content))
 all.results[[i]] <- this.answer
 message(".", appendLF = FALSE)
 Sys.sleep(time = 1)
}

This loop iterates over the numbers 1 to 19 (the number of relevant
classifiers). At each iteration, it:

loads the appropriate query (whos time has come)
executes the API call with that query
extracts the content of the response and converts it from JSON
writes the results to the empty list we had created beforehand
prints a dot, so we don’t get bored waiting
waits for a second (because we are polite and don’t want to bog
down EU)

all.results is now no empty list no more. It is filled with the answers
the API has produced as result to our 19 queries.

Now we have results. The next step is to beat these results into a shape
we can actually use to find our corvetted answer. Of all the parts of the
answer, we are interested in form, date_document and of_effect. Let’s
create another function that returns just these parts as a data frame.

parseAnswer <- function(answer) {
 this.form <- answer$form
 this.date <- answer$date
 this.effect <- answer$of_effect
 result <- data.frame(form = this.form,
 date = this.date,
 effect = this.effect)
 return(result)
}

Let’s try our function on one of the results. Remember, that the results
we’ve retrieved is a list (19 elements, one for each classifier) of lists
(one for each document; the numbers of documents varies from
classifier to classifier).

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 18/26

parseAnswer(all.results[[1]][[2]])

This took from the first classifier (the [[1]]) the second document (the
[[2]]). We see, it’s a data frame with one row and three columns.

Now to apply our function to all of our list of lists results, we need to
go a little deeper and combine all the skills we’ve learned so far. We
could use a loop to iterate over all the 19 classifiers first and then a
second loop to iterate over all the documents in each classifier. But
that’s rather verbose and cumbersome. Let’s use lapply instead:

parsedAnswers <- lapply(all.results,
 function(x) do.call("rbind", lapply(x, parseAnswer)))

What’s happening here? Let’s start from the inside out:

1. We apply our function, parseAnswer on each document in a
classifier

2. Inside each classifier, we rbind the single line data frames
together to form a single data.frame with one row per document.

3. We do this for each of the 19 classifiers in all.results.

We get a back a list of data frames, each data frame having as many
rows as there are documents in that classifier.

class(parsedAnswers) #list

[1] "list"

length(parsedAnswers) #19

[1] 19

sapply(parsedAnswers, nrow) #11, 15, 107, ...

[1] 11 15 107 110 172 41 16 22 55 42 16 60 62 143 84 18 11
[18] 65 28

Let’s combine these 19 data frames in a single one. How can we do
that? Of course just like before using do.call and rbind.

finalResult <- do.call("rbind", parsedAnswers)
class(finalResult) #data.frame

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 19/26

[1] "data.frame"

dim(finalResult) # 1078 rows, 3 columns

[1] 1078 3

All the final results are now contained neatly in a single data frame.
Note that the data frame’s row names are actually the document IDs.
We can use them to retrieve the actual document’s meta data.

Working with dates

The data we’ve retrieved from the API is still all only characters. If we
tell R that the date columns (date and effect) are actually dates, R can
calculate with these dates.

First, we need to convert characters to dates. Let’s try this out with
some arbitrary date.

date.character <- "1981-05-02"
date.POSIXct <- ymd(date.character)

class(date.character) #character

[1] "character"

class(date.POSIXct) #POSIXct

[1] "POSIXct" "POSIXt"

That worked just fine. Let’s do this for the date columns in our final
results data frame:

finalResult$date <- ymd(finalResult$date)
finalResult$effect <- ymd(finalResult$effect)

At last, we’ve retrieved all the data we need to answer our question
and brought it into a format we can work with. Let’s answer our
question, which day of the week is most popular for letting laws
become effective:

finalResult$effectDay <- wday(finalResult$effect, label = TRUE)
table(finalResult$effectDay) #Most documents went into effect on a Wednesday

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 20/26

Sun Mon Tues Wed Thurs Fri Sat
31 160 132 172 145 384 54

We see, that Wednesdays are the most popular ones.

This concludes this little tour de force of introducing working with
APIs with R. We covered not only how to craft API calls, but also how
to use R’s (list) programming features to deal with API answers and
beat data into shape.

1. EurLex documents have been used in the past as text-book
examples for statistical programming and machine learning. See
for instance TU Darmstadt’s project.

2. well, most anyway
3. Actually, it’s a little bit more complicated. GET and POST are

methods an API might implement. Often, the same API will
provide GET and POST methods side by side for different
purposes. If taking the HTTP standard as the proverbial letter of
the law, GET methods should not change anything on the remote
system, i.e. only return data, while POST methods should change
a state or a file on the remote system. In practice, POST methods
are also used to provide data to the remote system that it can use
to work with, e.g. a text that should be automatically translated.

4. Hadley Wickham is perhaps one of the most prolific R
developers. He’s responsible for a great wealth of packages,
among them the visualization package ggplot2 and the data
munging facilities of dplyr. Check out Hadley’s personal
website to get a glimpse on all the projects he’s involved with.

5. Finding out that 12. is the document classifier that identifies
energy related documents actually took quite some research. For
easy access, Project Mulan provides a list of all EurLex
directory codes.

 

http://www.ke.tu-darmstadt.de/resources/eurlex
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fnref1
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fnref2
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fnref3
http://ggplot2.org/
https://cran.r-project.org/web/packages/dplyr/index.html
http://had.co.nz/
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fnref4
https://sourceforge.net/projects/mulan/files/datasets/
https://sourceforge.net/projects/mulan/files/datasets/eurlex-directory-codes.rar/download
https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html#fnref5
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F
https://twitter.com/intent/tweet?text=Accessing%20APIs%20from%20R%20%28and%20a%20little%20R%20programming%29&url=https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/&via=Rbloggers

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 21/26

To leave a comment for the author, please follow the link and comment on their blog:
Turning numbers into stories.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning
R and many other topics. Click here if you're looking to post or find an R/data-science
job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you
don't.

If you got this far, why not subscribe for updates from the site?
Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Search.. Go

Most visited articles of the
week

1. 5 Ways to Subset a Data Frame in R
2. How to write the first for loop in R
3. Customising your Rprofile
4. R – Sorting a data frame by the contents

of a column
5. Mapping World Languages' Difficulty

Relative to English
6. Installing R packages
7. How to install packages on R +

screenshots

Tweet

 Share  Tweet

Like 11 Share Share

https://tophcito.blogspot.com/2015/11/accessing-apis-from-r-and-little-r.html
https://www.r-bloggers.com/
https://feedburner.google.com/fb/a/mailverify?uri=RBloggers
https://www.r-project.org/
https://www.r-bloggers.com/how-to-learn-r-2/
https://www.r-users.com/
https://www.r-bloggers.com/add-your-blog/
https://r-posts.com/
https://feedburner.google.com/fb/a/mailverify?uri=RBloggers
https://twitter.com/#!/rbloggers
https://feeds.feedburner.com/RBloggers
https://www.facebook.com/pages/R-bloggers/191414254890
https://www.r-bloggers.com/5-ways-to-subset-a-data-frame-in-r/
https://www.r-bloggers.com/how-to-write-the-first-for-loop-in-r/
https://www.r-bloggers.com/customising-your-rprofile/
https://www.r-bloggers.com/r-sorting-a-data-frame-by-the-contents-of-a-column/
https://www.r-bloggers.com/mapping-world-languages-difficulty-relative-to-english/
https://www.r-bloggers.com/installing-r-packages/
https://www.r-bloggers.com/how-to-install-packages-on-r-screenshots/
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&ref_src=twsrc%5Etfw&text=Accessing%20APIs%20from%20R%20(and%20a%20little%20R%20programming)&tw_p=tweetbutton&url=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&via=rbloggers
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F
https://twitter.com/intent/tweet?text=Accessing%20APIs%20from%20R%20%28and%20a%20little%20R%20programming%29&url=https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/&via=Rbloggers
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.r-bloggers.com%2Faccessing-apis-from-r-and-a-little-r-programming%2F&display=popup&ref=plugin&src=like&kid_directed_site=0

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 22/26

8. Date Formats in R
9. In-depth introduction to machine

learning in 15 hours of expert videos

Sponsors

https://www.r-bloggers.com/date-formats-in-r/
https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/
https://form.jotform.com/200162463523041
https://www.datacamp.com/?tap_a=5644-dce66f&tap_s=10907-287229

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 23/26

https://go.plot.ly/dash-r
https://www.predictiveanalyticsworld.com/machinelearningweek/?utm_source=rposts&utm_medium=banner&utm_campaign=paidmediapartner
https://www.rstudio.com/products/quickstart/?utm_source=rblogger&utm_medium=team&utm_campaign=teampromo
https://www.highstat.com/

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 24/26

API Developer Portal
Builder

MuleSoft® O�cial Site

Get Developers Started In Minutes With
an Easy-To-Navigate Portal.
mulesoft.com

OPEN

http://www.quantide.com/
http://bit.ly/38RDTDR
https://www.eoda.de/r-training#auswahl
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C8wbDmZpTXvfpE4KWgAeFzZygDLP76K5bxO6Pvb0JwI23ARABIOn9gwZg_YKRhOgRoAG0vOL7A8gBAagDAcgDwwSqBPMBT9DV6YzV74m1Xqc0nxXeJS7zEi6ERT6U-auXwcQDyJDhO7irasQM9PZsxyAmBVdNYt-BGNwBVUsmtFl5AZfJZs40ussQ0FJEC7S8I3VPukXkUlDDVoJbYuHmoSL3Rx1i48oNtiZAO3rGre837yPu9-bn8B5Qg3jeiL5WD_1rEiQCiiiEApZ8qpMTV48UBm1b_i9ZBnLxitOwrdNZ1a46zdkeENHbF7_2MRkyr6GWjjNabsmG3joAsQ9FCOudtE-l427JEobFQ1QIh5M3ulXm8vecmhMcPofHmk8Xbnv9Ba-zywBNp5YyY-vkTdjIoo2H8SPlwASIwr67_wGgBmaAB7TDnQSoB47OG6gH1ckbqAeT2BuoB7oGqAfy2RuoB6a-G6gH7NUbqAfz0RuoB-zVG6gHwtob2AcB0ggJCIDhgHAQARgesQkAkJZ25zx7loAKAZgLAcgLAdgTDQ&ae=1&num=1&cid=CAASPeRoGtFUIFRoyebpoC_Rlw_UajAFQ0sQ4Dr0Zc2XVUe4TpSYcfSJZVcgqIK9osYoA55hLy3PO16NhwrdySw&sig=AOD64_1usKzdQ_pLZPg0WWkjn1KwG9Lt7Q&client=ca-pub-6149057907449803&nb=0&adurl=https://www.mulesoft.com/platform/api/developer-portal%3Futm_source%3Dgoogle%26utm_medium%3Dcpc%26utm_campaign%3Dg-api-management-se-search-api-portal%26utm_term%3D%252Bapi%2520%252Bdeveloper%2520%252Bportal%26utm_content%3Dd--c%26gclid%3DEAIaIQobChMIt5r4jfPp5wIVAgvgCh2FJgfEEAEYASAAEgJTEvD_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C8wbDmZpTXvfpE4KWgAeFzZygDLP76K5bxO6Pvb0JwI23ARABIOn9gwZg_YKRhOgRoAG0vOL7A8gBAagDAcgDwwSqBPMBT9DV6YzV74m1Xqc0nxXeJS7zEi6ERT6U-auXwcQDyJDhO7irasQM9PZsxyAmBVdNYt-BGNwBVUsmtFl5AZfJZs40ussQ0FJEC7S8I3VPukXkUlDDVoJbYuHmoSL3Rx1i48oNtiZAO3rGre837yPu9-bn8B5Qg3jeiL5WD_1rEiQCiiiEApZ8qpMTV48UBm1b_i9ZBnLxitOwrdNZ1a46zdkeENHbF7_2MRkyr6GWjjNabsmG3joAsQ9FCOudtE-l427JEobFQ1QIh5M3ulXm8vecmhMcPofHmk8Xbnv9Ba-zywBNp5YyY-vkTdjIoo2H8SPlwASIwr67_wGgBmaAB7TDnQSoB47OG6gH1ckbqAeT2BuoB7oGqAfy2RuoB6a-G6gH7NUbqAfz0RuoB-zVG6gHwtob2AcB0ggJCIDhgHAQARgesQkAkJZ25zx7loAKAZgLAcgLAdgTDQ&ae=1&num=1&cid=CAASPeRoGtFUIFRoyebpoC_Rlw_UajAFQ0sQ4Dr0Zc2XVUe4TpSYcfSJZVcgqIK9osYoA55hLy3PO16NhwrdySw&sig=AOD64_1usKzdQ_pLZPg0WWkjn1KwG9Lt7Q&client=ca-pub-6149057907449803&nb=0&adurl=https://www.mulesoft.com/platform/api/developer-portal%3Futm_source%3Dgoogle%26utm_medium%3Dcpc%26utm_campaign%3Dg-api-management-se-search-api-portal%26utm_term%3D%252Bapi%2520%252Bdeveloper%2520%252Bportal%26utm_content%3Dd--c%26gclid%3DEAIaIQobChMIt5r4jfPp5wIVAgvgCh2FJgfEEAEYASAAEgJTEvD_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C8wbDmZpTXvfpE4KWgAeFzZygDLP76K5bxO6Pvb0JwI23ARABIOn9gwZg_YKRhOgRoAG0vOL7A8gBAagDAcgDwwSqBPMBT9DV6YzV74m1Xqc0nxXeJS7zEi6ERT6U-auXwcQDyJDhO7irasQM9PZsxyAmBVdNYt-BGNwBVUsmtFl5AZfJZs40ussQ0FJEC7S8I3VPukXkUlDDVoJbYuHmoSL3Rx1i48oNtiZAO3rGre837yPu9-bn8B5Qg3jeiL5WD_1rEiQCiiiEApZ8qpMTV48UBm1b_i9ZBnLxitOwrdNZ1a46zdkeENHbF7_2MRkyr6GWjjNabsmG3joAsQ9FCOudtE-l427JEobFQ1QIh5M3ulXm8vecmhMcPofHmk8Xbnv9Ba-zywBNp5YyY-vkTdjIoo2H8SPlwASIwr67_wGgBmaAB7TDnQSoB47OG6gH1ckbqAeT2BuoB7oGqAfy2RuoB6a-G6gH7NUbqAfz0RuoB-zVG6gHwtob2AcB0ggJCIDhgHAQARgesQkAkJZ25zx7loAKAZgLAcgLAdgTDQ&ae=1&num=1&cid=CAASPeRoGtFUIFRoyebpoC_Rlw_UajAFQ0sQ4Dr0Zc2XVUe4TpSYcfSJZVcgqIK9osYoA55hLy3PO16NhwrdySw&sig=AOD64_1usKzdQ_pLZPg0WWkjn1KwG9Lt7Q&client=ca-pub-6149057907449803&nb=7&adurl=https://www.mulesoft.com/platform/api/developer-portal%3Futm_source%3Dgoogle%26utm_medium%3Dcpc%26utm_campaign%3Dg-api-management-se-search-api-portal%26utm_term%3D%252Bapi%2520%252Bdeveloper%2520%252Bportal%26utm_content%3Dd--c%26gclid%3DEAIaIQobChMIt5r4jfPp5wIVAgvgCh2FJgfEEAEYASAAEgJTEvD_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C8wbDmZpTXvfpE4KWgAeFzZygDLP76K5bxO6Pvb0JwI23ARABIOn9gwZg_YKRhOgRoAG0vOL7A8gBAagDAcgDwwSqBPMBT9DV6YzV74m1Xqc0nxXeJS7zEi6ERT6U-auXwcQDyJDhO7irasQM9PZsxyAmBVdNYt-BGNwBVUsmtFl5AZfJZs40ussQ0FJEC7S8I3VPukXkUlDDVoJbYuHmoSL3Rx1i48oNtiZAO3rGre837yPu9-bn8B5Qg3jeiL5WD_1rEiQCiiiEApZ8qpMTV48UBm1b_i9ZBnLxitOwrdNZ1a46zdkeENHbF7_2MRkyr6GWjjNabsmG3joAsQ9FCOudtE-l427JEobFQ1QIh5M3ulXm8vecmhMcPofHmk8Xbnv9Ba-zywBNp5YyY-vkTdjIoo2H8SPlwASIwr67_wGgBmaAB7TDnQSoB47OG6gH1ckbqAeT2BuoB7oGqAfy2RuoB6a-G6gH7NUbqAfz0RuoB-zVG6gHwtob2AcB0ggJCIDhgHAQARgesQkAkJZ25zx7loAKAZgLAcgLAdgTDQ&ae=1&num=1&cid=CAASPeRoGtFUIFRoyebpoC_Rlw_UajAFQ0sQ4Dr0Zc2XVUe4TpSYcfSJZVcgqIK9osYoA55hLy3PO16NhwrdySw&sig=AOD64_1usKzdQ_pLZPg0WWkjn1KwG9Lt7Q&client=ca-pub-6149057907449803&nb=1&adurl=https://www.mulesoft.com/platform/api/developer-portal%3Futm_source%3Dgoogle%26utm_medium%3Dcpc%26utm_campaign%3Dg-api-management-se-search-api-portal%26utm_term%3D%252Bapi%2520%252Bdeveloper%2520%252Bportal%26utm_content%3Dd--c%26gclid%3DEAIaIQobChMIt5r4jfPp5wIVAgvgCh2FJgfEEAEYASAAEgJTEvD_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C8wbDmZpTXvfpE4KWgAeFzZygDLP76K5bxO6Pvb0JwI23ARABIOn9gwZg_YKRhOgRoAG0vOL7A8gBAagDAcgDwwSqBPMBT9DV6YzV74m1Xqc0nxXeJS7zEi6ERT6U-auXwcQDyJDhO7irasQM9PZsxyAmBVdNYt-BGNwBVUsmtFl5AZfJZs40ussQ0FJEC7S8I3VPukXkUlDDVoJbYuHmoSL3Rx1i48oNtiZAO3rGre837yPu9-bn8B5Qg3jeiL5WD_1rEiQCiiiEApZ8qpMTV48UBm1b_i9ZBnLxitOwrdNZ1a46zdkeENHbF7_2MRkyr6GWjjNabsmG3joAsQ9FCOudtE-l427JEobFQ1QIh5M3ulXm8vecmhMcPofHmk8Xbnv9Ba-zywBNp5YyY-vkTdjIoo2H8SPlwASIwr67_wGgBmaAB7TDnQSoB47OG6gH1ckbqAeT2BuoB7oGqAfy2RuoB6a-G6gH7NUbqAfz0RuoB-zVG6gHwtob2AcB0ggJCIDhgHAQARgesQkAkJZ25zx7loAKAZgLAcgLAdgTDQ&ae=1&num=1&cid=CAASPeRoGtFUIFRoyebpoC_Rlw_UajAFQ0sQ4Dr0Zc2XVUe4TpSYcfSJZVcgqIK9osYoA55hLy3PO16NhwrdySw&sig=AOD64_1usKzdQ_pLZPg0WWkjn1KwG9Lt7Q&client=ca-pub-6149057907449803&nb=8&adurl=https://www.mulesoft.com/platform/api/developer-portal%3Futm_source%3Dgoogle%26utm_medium%3Dcpc%26utm_campaign%3Dg-api-management-se-search-api-portal%26utm_term%3D%252Bapi%2520%252Bdeveloper%2520%252Bportal%26utm_content%3Dd--c%26gclid%3DEAIaIQobChMIt5r4jfPp5wIVAgvgCh2FJgfEEAEYASAAEgJTEvD_BwE

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 25/26

https://www.jumpingrivers.com/?utm_source=rbloggers&utm_campaign=1&utm_medium=banner
https://www.statworx.com/de/data-science/
https://yottamine.com/try-yottamine-now
https://www.6sigma.us/six-sigma-online-training.php

24/2/2020 Accessing APIs from R (and a little R programming) | R-bloggers

https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/ 26/26

Our ads respect your privacy. Read our
Privacy Policy page to learn more.

Contact us if you wish to help support R-
bloggers, and place your banner here.

 Jobs for R users

Senior Research Specialist II
Fisheries Analyst/Senior Fisheries
Analyst
Senior Scientist, Translational
Informatics @ Vancouver, BC, Canada
Senior Principal Data Scientist @
Mountain View, California, United
States
Technical Research Analyst – New
York, U.S.
Movement Building Analyst
Business Intelligence Analyst

Full list of contributing R-bloggers
R-bloggers was founded by Tal Galili, with gratitude to the R community.
Is powered by WordPress using a bavotasan.com design.
Copyright © 2020 R-bloggers. All Rights Reserved. Terms and Conditions for this website

https://www.alphien.com/
https://www.r-bloggers.com/privacy-policy/
https://www.r-bloggers.com/contact-us/
https://feeds.feedburner.com/Rjobs
https://www.r-users.com/
https://feedproxy.google.com/~r/RJobs/~3/Ks58UZw4AtQ/
https://feedproxy.google.com/~r/RJobs/~3/KC3ktfJmosI/
https://feedproxy.google.com/~r/RJobs/~3/41Y2rIRAmQc/
https://feedproxy.google.com/~r/RJobs/~3/6EOFuG1QNmo/
https://feedproxy.google.com/~r/RJobs/~3/K8tlo6Kar7E/
https://feedproxy.google.com/~r/RJobs/~3/i4uk70yuhKY/
https://feedproxy.google.com/~r/RJobs/~3/RTB4njQFmOs/
https://www.r-bloggers.com/blogs-list/
https://www.r-bloggers.com/
http://www.r-statistics.com/about/
https://www.r-project.org/
https://www.wordpress.org/
http://themes.bavotasan.com/
https://www.r-bloggers.com/terms/

