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Generalities:	Why	Care	About	Bond	Yields?
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§ Understanding	what	moves	bond	yields	is	important	for	at	least	
four	reasons:
o Forecasting
o Monetary	policy
o Debt	policy
o Derivative	pricing	and	hedging

§ Bond	yield	movements	over	time	can	be	captured	by	simple	vector	
autoregressions	(VARs)	in	yields	but	some	aspects	set	them	apart	
from	other	variables	typically	used	in	VAR	studies:
① Yields	are	not	normally	distributed	-- difficult	to	compute	the	
risk-adjusted	expectation	of	future	short	rates.
② Bonds	are	assets	and	bonds	with	many	different	maturities	are	
traded	at	the	same	time.	

Goal: describe affine term structure models and the general 
technique of pricing bonds in continuous time.
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o However,	bonds	with	long	maturities	are	risky,	and	risk-
averse	investors	demand	a	compensation.

o Arbitrage	opportunities	in	these	markets	exist	unless	long	
yields	are	risk-adjusted	expectations	of	future	short	rates.	

§ Movements	in	the	cross	section	of	yields	are	therefore	closely	
tied	together	and	these	ties	show	up	as	cross-equation	
restrictions in	a	yield-VAR.

§ Term	structure	models	capture	these	aspects:	they	impose	the	
cross-equation	restrictions	implied	by	no-arbitrage	and	allow	
yields	to	be	non-normal.	A	special	class	of	these	models	is	affine	
term	structure	model:	any	arbitrage-free	model	in	which	yields	
are	affine	(constant	plus	linear)	functions	of	a	state	variable	x.	
o The	yield	𝑦(#) of	a	𝜏-period	bond	is:

𝑦(#) = 𝐴 𝜏 + B 𝜏 Tx
for	coefficients	A(𝜏)	and	B(𝜏) that	depend	on	maturity	𝜏.

The	advantage	of	affine	models	is	tractability	which	though	has	
to	be	paid	with	restrictive	assumptions	on	the	dynamics	of	x.

“Affine	Term	Structure	Models”	– M.	Piazzesi
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Bond	Pricing	in	Continuous	Time
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§ Buying	a	zcb at	t and	reselling	it	at	t+n, generates	a	log	holding	
period	return	of:

ℎ𝑝𝑟/→/12
(τ) = 𝑙𝑜𝑔𝑃/12

(τ72) − 𝑙𝑜𝑔𝑃/
(τ),								n≤ τ

o The	per-period	holding	period	return	is	the	yield-to-
maturity:

𝑦/
(τ) = ℎ𝑝𝑟/→/12

(τ) / τ =	- log𝑃/
(τ)/ τ

o The	short	rate is	the	limit	of	yields	as	maturity	approaches:	

§ Risk-neutral	pricing:	bonds	are	priced	under	a	risk-neutral	
probability	measure Q*. Since	the	payoff	of	a	zcb is	1	unit	at	
maturity,		its	price	is:

𝑃/
(τ) = 𝐸/∗[exp(−∫/

/1# 𝑟@𝑑𝑢)] (1)

o Under	Q*,	expected	excess	returns	on	bonds	are	zero,	that	is	
the	expected	return	on	bonds	equals	the	riskless	rate.
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Term	structure	modeling	determines	the	price	of	zcbs.

rt =	𝑙𝑖𝑚#→F𝑦/
(τ)
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§ The	pricing	relation	shows	that	any	yield-curve	model	consists	
of	two	ingredients:
① the	change	of	measure	from	Q	to	Q*;
② the	dynamics	of	the	short	rate	r	under	Q*:	r	is	a	function	
R(x)	of	the	state	vector	of	factor	x,	and	x ∈ RN is a time-
homogeneous Markov process under Q*.

§ Then,	the	conditional	expectation	is	some	function	F	of	the	state	
xt at	time	t	and	time-to-maturity	τ:

𝑃/
(τ) = 𝐹(𝑥𝑡, τ)

§ Ito’s	Lemma	says that smooth functions F of	some	Ito process x	
and	time	t	are	again Ito processes.	
o The	lemma	allows to	turn	the	conditional expectation
problem into one of	solving a	PDE	for	the	bond	price 𝐹(𝑥, τ)
(Feynman-Kac approach).

o First	define the	local expectation hypothesis (LEH)	and	then
derive	the	PDE	for	bond	prices.

“Affine	Term	Structure	Models”	– M.	Piazzesi

The	advantage	of	pricing	bond	in	continuous	time	is	Ito’s	Lemma
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The	advantage	of	pricing	bonds	in	continuous	time	is	Ito’s	Lemma
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§ The	LEH	states that the	pricing relation	(1)	holds under	the	
data-generating measure Q.	Bond	yields are	thus given by:

𝑦/
(τ) = - log 𝐸/[exp(−∫/

/1# 𝑟@𝑑𝑢)] / τ

§ In	continuos time,	a	Markov process x	lives in	some	state	space
D⊂ 𝑅N and	solves the	SDE:

𝑑𝑥/ = 𝜇P 𝑥/ 𝑑𝑡 + 𝜎P 𝑥/ 𝑑𝑧/
o z is an	N-dimensional SBM	under	Q,	𝜇P:	D	→	RN is the	drift of	
x,	and	𝜎P:	D	→	RN×N is its volatility.		

o The	Markov process solving this SDE	is time-homogenous as
the	functions 𝜇P and	𝜎P do	not depend on	time.	

§ Bond	prices	can	be	solved	using	the	Feynman-Kac approach,	
under	some	regularity	conditions	such	as	the	smoothness	of	
𝐹(𝑥, τ) in	order	to	apply	Ito’s	Lemma.

“Affine	Term	Structure	Models”	– M.	Piazzesi

The	LEH	amounts	to	risk-neutral	pricing:	the	data-generating	
measure	Q	and	the	risk-neutral	Q*	coincide.
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1. The	bond’s	price	at	maturity	equals	its	payoff	→ F(x,0)=1	∀x ∈ D.
2. The	bond’s price is the	expected value of	an	exponential function,	

so	𝐹(𝑥, τ) is strictly positive.
3. Ito’s	lemma	implies that 𝐹(𝑥, τ) is itself an	Ito process with	

instantaneous expected bond’s return:

4. LEH	implies	that	the	expected	return	is	equal	to	the	short	rate:
𝜇V 𝑥, 𝜏 = 𝑅(𝑥)

§ Bond	prices can	now be	computed in	different ways	(e.g.	using
Monte-Carlo	methods or	solving the	PDE	numerically).	
o The	alternative	is to	make strong	functional form assumptions
on	𝜇P, 𝜎P and	R(x)	so	that the	PDE	has a	closed-form solution.	

“Affine	Term	Structure	Models”	– M.	Piazzesi

The	PDE	can	be	obtained	in	four	steps.
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o The	broad class of	exponential-affine	solutions for	𝐹(𝑥, τ) is
called affine	term structure models.	

§ The	functional form is affine	in	both cases:
§ Assumption 1 -- The	short	rate	R(x)	is affine	and	given by															
𝑟 = 𝑅 𝑥 = 𝛿F + 𝛿XY𝑥, for	𝛿F ∈ 𝑅 and	𝛿X ∈ 𝑅N.	It usually serves as
one of	the	factors in	multidimensional models.

§ Assumption 2 -- x	is an	affine	diffusion since both the	drift 𝜇P∗ 𝑥
and	the	variance matrix 𝜎P∗ 𝑥 𝜎P∗ 𝑥 T are	affine.	x	solves 𝑑𝑥/ =
𝜇P 𝑥/ 𝑑𝑡 + 𝜎P 𝑥/ 𝑑𝑧/ with	coefficients:

𝜇P 𝑥 = 𝜅 𝑥 − 𝑥
𝜎P 𝑥 = ∑𝑠 𝑥

o 𝜇P 𝑥/ ensures that if 𝑥/ > 𝑥,	the	change 𝑑𝑥/ is likely to	be	
negative	as long	as 𝜅 > 0,	and	viceversa.	

“Affine	Term	Structure	Models”	– M.	Piazzesi

Affine	models	make	functional-form	assumptions	on	the	short-
rate	R(x)	and	the	process	x	for	the	state	vector	under	Q*.
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o 𝑥/ is pulled back	to	its mean and	the	speed of	such adjustment	
is given by	k.	If k=0,	the	process is nonstationary.

o Shocks	𝑑𝑧/ disturb 𝑥/ from	moving back	to	its mean.	These
shocks	are	normally distributed as N(O, 𝑑𝑡).	The	effect of	these
shocks	on	𝑥/ is determined by	𝜎P 𝑥/ .

o The	volatility 𝑠 𝑥 is a	diagonal 𝑁𝑥𝑁matrix.
§ The	coefficients 𝜇P 𝑥 and	𝜎P 𝑥 must	satisfy regularity
requirements in	order to	guarantee:
o that the	solution does not explode (growth condition).
o the	existence of	a	unique solution to	the	SDE	(Lipschitz
condition).	These solutions x	are	strong	solutions,	which means
that any other Ito process that solves the	SDE	equals x	almost
everywhere.

o However,	these conditions restrict the	admissible cross-
correlations among state	variables.

“Affine	Term	Structure	Models”	– M.	Piazzesi
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§ For	the	univariate case,	the	SDE	(2)	for	affine	diffusions becomes:

o The	same formula	applies to	the	multivariate	case,	where
exp{−κ(t−s)}	is a	matrix exponential.	

§ To	compute	bond	prices,	we add the	assumption of	risk-neutral
pricing under	Q.

§ Assumption 3	-- The	LEH	holds.
§ Under	these 3	assumptions,	Duffie and	Kan (1996)	guess a	solution
𝐹(𝑥, τ) for	the	PDE:

𝐹(𝑥, τ)=exp{a(𝜏) + 𝑏 𝜏 𝑇𝑥}
o where the	coefficients a(𝜏) and	𝑏 𝜏 solve	the	following ODEs,					
starting	at	a(0)=0	and	b(0)=0:

“Affine	Term	Structure	Models”	– M.	Piazzesi

𝑥/ = 𝑥 + exp −𝜅 𝑡 − 𝑠 𝑥c − 𝑥 + d
c

/
𝑒𝑥𝑝 −𝜅 𝑡 − 𝑢 Σ𝑠 𝑥@ 𝑑𝑧@
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𝑎h 𝜏 = −𝛿F + 𝑏 𝜏 Y𝜅𝑥 +
1
2
k
lmX

N

[𝑏 𝜏 YΣ]ln𝑠Fl

𝑏h 𝜏 = −𝛿X + 𝑏 𝜏 Y𝜅𝑥 +
1
2
k
lmX

N

[𝑏 𝜏 YΣ]ln𝑠Xl

§ Given	the	exponential-affine	form	𝐹(𝑥, τ),	the	instantaneous	bond	
return	is:

𝜇V 𝑥, 𝜏 = −𝑎h 𝜏 − 𝑏′ 𝜏 𝑇𝑥 + 𝑏 𝜏 Y𝜇P 𝑥 +
1
2
𝑏 𝜏 Y𝜎P(𝑥)𝜎P 𝑥 Y𝑏(𝜏)

§ The	bond-price	equation	shows	that	the	LEH	together	with	a	short	
rate	which	is	affine	implies	that	yields	are	given	by:

𝑦/
(#) = −logF 𝑥/, 𝜏 /𝜏 = 𝐴 𝜏 + 𝐵(𝜏)Y𝑥/

for	𝐴 𝜏 = −𝑎(𝜏)/𝜏 and	𝐵 𝜏 = −𝑏 𝜏 /𝜏.
“Affine	Term	Structure	Models”	– M.	Piazzesi
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Whenever	the	LEH	does	not	hold,	we	link	the	risk-neutral	
dynamics	of	the	state	vector	to	its	data-generating	process	by	
using	Girsanov’s theorem.

“Affine	Term	Structure	Models”	– M.	Piazzesi

§ The	volatility	of	the	state	vector	is	the	same	under	both	measures	
𝜎P 𝑥 = 𝜎P∗ 𝑥 (diffusion	invariance	principle).

§ Only	the	drift	changes:
𝜇P 𝑥 = 𝜇P∗ 𝑥 − 𝜎P 𝑥 𝜎𝜉(𝑥)Y

o where	ξ	stands	for	the	density	and	is	a	strictly	positive	
martingale.	

§ Under	Q*,	the	process	x	solves	𝑑𝑥/ = 𝜇P∗𝑑𝑡 + 𝜎P∗ 𝑥/ 𝑑𝑧/∗ with	
coefficients:

𝜇P∗ 𝑥 = 𝜅∗ 𝑥 ∗ −𝑥
𝜎P∗ 𝑥 = Σ∗𝑠∗ 𝑥

§ To	obtain	exponential-affine	bond-price	solutions,	the	risk-neutral
drift	and	variance-covariance	matrix	need	to	be	affine.
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§ The	jumps occur at arrival times t1,.	.	.,tn	and	the	counting process
starts at 0	and	records the	number of	jumps.	
o The	jump in	x at t is:

∆𝑥/ = 𝑥/ − 𝑥/-
§ Jump-diffusions x	solve	
§ 𝑑𝑥/ = 𝜇P 𝑥/ 𝑑𝑡 + 𝜎P 𝑥/ 𝑑𝑧/ + 𝑑𝐽/
where J is a	pure	jump process.	

§ Functional-form assumptions are
needed for	the	jump intensities
and	the	distribution of	jump sizes
conditional on	information	"right	before"	the	jump.

“Affine	Term	Structure	Models”	– M.	Piazzesi

Large	movements	in	yields	are	modeled	as	discontinuous	moves,	
or	jumps,	in	the	state	vector	x.
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§ Assumption	4
① The	stochastic	intensity	𝜆 of	the	Poisson	process	is	affine:

𝜆 𝑥 = 𝜆F + 𝜆XY𝑥,			with	𝜆F ∈ 𝑅 and	𝜆X ∈ 𝑅𝑁

②Given	a	Poisson	jump	at	a	stopping	time	t,	the	distribution	of	
the	jump	size	∆𝑥/ is independent of	𝑥/-.

1. Calendar	Time	Does Not Matter
o Let’s assume	that LEH	holds.	Ito’s	Lemma	for	the	case	with	
Poisson jumps implies that the	bond	price is itself an	Ito process
and	it is again of	the	exponential-affine	form.	

o Bond	returns now also compensate	for	jumps in	the	state	vector
and	the	jump in	returns is:

𝐽V� ∆𝑥, 𝜏 = 𝑒𝑥𝑝 𝑏 𝜏 𝑇∆𝑥 − 1
“Affine	Term	Structure	Models”	– M.	Piazzesi

J	can	be	either	caused	by	a	Poisson	process	NP	with	stochastic	
intensity	𝜆,	or	jumps	may	happen	at	deterministic	points	in	time,	
recorded	by	a	deterministic	counting	process	ND.
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𝜇V 𝑥, 𝜏 = 𝜇V 𝑥, 𝜏 + 𝜆 𝑥 𝐸[𝐽V� Δ𝑥, 𝜏 ]
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J	can	be	either	caused	by	a	Poisson	process	NP	with	stochastic	
intensity	𝜆,	or	jumps	may	happen	at	deterministic	points	in	time,	
recorded	by	a	deterministic	counting	process	ND.
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o The	bond-price coefficients solve	the	ODEs starting at a(𝜏)=0	
and	b(𝜏)=0:

o When 𝜆F = 0 and	𝜆X = 0,	these equations collapse to	the	ODEs
for	the	case	without jumps.

2. Calendar Time	Matters
o 𝑃/

(Y) = 𝐹 𝑥, 𝑡, 𝜏 = exp(a t, T + b t, T Tx) now denotes the	
price at time	t for	a	bond	that matures at T.

“Affine	Term	Structure	Models”	– M.	Piazzesi

Bond	returns now also compensate	for	jumps in	the	state	vector
and	the	jump in	returns is:	

𝐽V� ∆𝑥, 𝜏 = 𝑒𝑥𝑝 𝑏 𝜏 𝑇∆𝑥 − 1
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o The	computation of	a t, T and b t, T proceeds recursively,	
starting at time	to	maturity with	boundary condition a T, T = 0
and	b T, T = 0.

o For	every t,	the	price 𝑃(#) is exponential affine.
§ We rely again on	Girsanov’s theorem.
§ Changes of	measure with	jumps have effects on	the	jump intensity
and	jump size distribution.	

§ The	risk	adjustments	involves a	density ξ which is a	strictly positive	
martingale.
o The	jump intensity 𝜆∗ under	the	risk-neutral measure is:

𝜆/∗ = 𝜆/𝐸/7 1 + 𝐽�
� Δ𝑥/ ,

which is well defined as 𝐽�
�>-1.

“Affine	Term	Structure	Models”	– M.	Piazzesi

LEH	does	not	hold	anymore.	
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starting at time	to	maturity with	boundary condition a T, T = 0
and	b T, T = 0.

o For	every t,	the	price 𝑃(#) is exponential affine.
§ We rely again on	Girsanov’s theorem.
§ Changes of	measure with	jumps have effects on	the	jump intensity
and	jump size distribution.	

§ The	risk	adjustments	involves a	density ξ which is a	strictly positive	
martingale.
o The	jump intensity 𝜆∗ under	the	risk-neutral measure is:

𝜆/∗ = 𝜆/𝐸/7 1 + 𝐽�
� Δ𝑥/ ,

which is well defined as 𝐽�
�>-1.

“Affine	Term	Structure	Models”	– M.	Piazzesi

LEH	does	not	hold	anymore.	
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§ Key	features:	
o R(x)=x
o 𝜎P 𝑥 =Σ
o 𝜎𝜉(𝑥) =	q

§ Inserting these coefficients into 𝜇P 𝑥 = 𝜇P∗ 𝑥 − 𝜎P 𝑥 𝜎𝜉(𝑥)Y,	we	
see	that the	speed of	mean reversion k=k*	in	x	(and	thus the	short	
rate)	is the	same under	both probability measures.
o Only the	long-run mean differs.

§ The	market	price of	risk	q is usually estimated to	be	negative.
o Intuitively,	this means that yields are	expected values of	average
future	short	rates,	which are	on	average higher 𝑟∗ > 𝑟 than	their
historical average.

o This is therefore an	implicit form of	risk	adjustment.
“Affine	Term	Structure	Models”	– M.	Piazzesi

1. Vasicek-type models: x	is Gaussian.
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§ Key	features:	
o R(x)=x
o 𝜎P 𝑥 =Σ 𝑥
o 𝜎𝜉(𝑥) =	q 𝑥

§ Here,	the	change of	measure affects not only the	long-run mean but
also the	speed of	mean reversion.
o A	negative	q implies that under	Q*,	x	mean reverts more	slowly
to	a	higher mean.

§ Vasicek and	CIR	models are	first-generation	affine	models,	for	which
the	state	is an	affine	diffusion under	both Q*	and	Q measures.

§ These early models were one-factor models:	the	factor was the	
"short	rate".

“Affine	Term	Structure	Models”	– M.	Piazzesi

2.	Cox–Ingersoll–Ross (CIR)-type models:	x	consists of	
independent square-root processes.
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3.	Mixture models:	x	consists of	possibly correlated affine	processes,	
and	are	built from	the	two basic building	blocks.	
§ Factor models need to	specify what their factors stand	for.

o Duffie and	Kan (1996)	proposed to	explain yields with	latent
factors,	that is the	econometrician does not observe x	directly
but may be	able to	infer x	from	yields.

o The	state	x	can	in	this case	be	thought of	as consisting of	yields.
§ Most papers with	latent factors try to	give their variables intuitive	
labels,	for	instance:
① Labels	based	on	fundamentals:	yield	curves	depend	on	state	

variables	easily	interpretable	in	terms	of	fundamentals.	Then,	
the	model	could	be	estimated	using	observations	on	both										
macro	variables	and	yields.

“Affine	Term	Structure	Models”	– M.	Piazzesi

Duffie and	Kan (1996)	paved the	way	for	a	second-
generation	of	mixture models.
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② Labels	based	on	moments	of	the	short	rate:	the	short	rate	is	
not	Markov	under	Q*	so	that	other	variables	(in	addition	to	rt)			
help	in	forecasting	the	short	rate	and	thus	to	compute	bond	
yields.	Examples	:

o Stochastic	mean	models,	where	x	=	(r,	θ)	and	the	short	
rate	r reverts quickly to	a	time-varying mean θ,	which
reverts slowly to	its long-run (unconditional)	mean.

o Stochastic volatility models,	which take	x	=	(r,	v)T,	where v
is the	volatility of	the	short	rate.	To	keep it positive,	it is
specified to	be	a	square-root process.	

“Affine	Term	Structure	Models”	– M.	Piazzesi

Duffie and	Kan (1996)	paved the	way	for	a	second-
generation	of	mixture models.


