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Abstract

Discrete random probability measures are a key ingredient of Bayesian nonparametric
inferential procedures. A sample generates ties with positive probability and a fundamental
object of both theoretical and applied interest is the corresponding random number of
distinct values. The growth rate can be determined from the rate of decay of the small
frequencies implying that, when the decreasingly ordered frequencies admit a tractable
form, the asymptotics of the number of distinct values can be conveniently assessed. We
focus on the geometric stick-breaking process and we investigate the effect of the choice
of the distribution for the success probability on the asymptotic behavior of the number
of distinct values. We show that a whole range of logarithmic behaviors are obtained by
appropriately tuning the prior. We also derive a two-term expansion and illustrate its use
in a comparison with a larger family of discrete random probability measures having an
additional parameter given by the scale of the negative binomial distribution.

Keywords: Bayesian Nonparametrics; random probability measure; geometric stick-breaking
process; asymptotic growth rate; occupancy problem.

1 Introduction

Discrete random probability measures can be represented by random frequencies at random
locations as

p̃(dx) =
∑
j≥1

wjδxj
(dx). (1)

The frequencies (wj)j≥1 are (0, 1)-valued variables such that
∑
j≥1 wj = 1 almost surely (a.s.),

and the locations (xj)j≥1 are draws from some distribution on a Polish space X endowed with
the corresponding Borel σ-field. Discrete measures like p̃ are naturally suited to describe the
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structure a population made of potentially infinite different species or types, labeled by xj , with
certain random proportions modeled through wj . Clearly, a sample drawn from p̃ will exhibit
ties with positive probability and thus the random number of distinct values in a sample of size
n, here denoted by Kn, is of great interest. From a Bayesian nonparametric perspective the
law of p̃ represents the prior distribution. Inference is carried out by predicting the number of
new distinct values in an additional sample, conditional on an observed sample. See Lijoi et al.
(2007b). According to the applied context at issue the distinct values or species are interpreted
as distinct genes (Lijoi et al., 2007a), words (Teh, 2006), economic agents (Lijoi et al., 2016) etc.
Another important statistical use of discrete random probality measures is in mixture modeling,
when a layer is added to model the data distribution as in

Yi ∼ f(Yi|Xi), X1, X2, . . . |p̃
iid∼ p̃

for some probability kernel f(y|x). Here p̃ acts as mixing distribution and Kn represents the
random number of mixture components, thus providing a flexible way to model unobserved
heterogeneity in the population. The mixture is characterized by the component distribution
f(y|xj), usually referred as the jth mixture component, and the mixing weights wj . See De
Blasi et al. (2015) for a recent review on the inferential implications of different choices of p̃.

In probability theory, distributional properties of Kn are of prime interest in combinatorial
stochastic processes; see e.g. Arratia et al. (2003), Pitman (2006), Gnedin (2010), Gnedin et al.
(2007). The techniques employed to study the law of Kn depend on the construction of the
random frequencies (wj). Karlin (1967) studied the case of fixed frequencies and derived a
key result, which forms the basis to establish general strong laws for Kn: it states that the
growth of Kn is ultimately determined by how small the small frequencies are, which can be
conveniently expressed by the tail behavior of (wj) once decreasingly ordered. In particular,
the faster the decay to zero, the slower Kn diverges to infinity as n increases. There exist
essentially two regimes, logarithmic and polynomial growth. Notable examples are, respectively,
the Dirichlet process (Ferguson, 1973) and its two parameter extension known as Pitman-Yor
process (Pitman and Yor, 1997). The associated distributions of the frequencies in decreasing
order, termed Poisson-Dirichlet and the two-parameter Poisson-Dirichlet, respectively, are not
tractable enough for a direct application of Karlin’s theory. Instead, the distribution of Kn is
derived from the Ewens and the Pitman-Ewens sampling formulae, cf. Pitman (2006). In the
former case Kn is asymptotically normal, with both mean and variance of the order log n. In
the latter case the scale of Kn is nα, where α ∈ (0, 1) is the discount parameter of the Pitman-
Yor process. The logarithmic growth of the Dirichlet process was first pointed out in Korwar
and Hollander (1973). Within the logarithmic regime growth behaviors of Kn slower than the
logarithm, e.g. (log n)α with α < 1 or even iterated logarithms, can be achieved with so-called
hierarchical processes Camerlenghi et al. (2019); see also Argiento et al. (2020); Bassetti et al.
(2020). In this paper we are able to identify models leading to growth rates of the type (log n)β

with β > 1, specifically we establish a growth rate (log n)m+2, for m a nonnegative integer,
for a class of tractable class of discrete random probability measures. We stress that from a
modeling perspective it is crucial to have tractable models, which cover the whole range of
possible growth rates. See Lijoi et al. (2007c); De Blasi et al. (2015); Dahl et al. (2017); Caron
and Fox (2017); Ayed et al. (2019); Di Benedetto et al. (2020) for motivation and discussion
of these issues in diverse application contexts also beyond exchangeability. Note that a power
logarithmic growth of E(Kn) can be obtained by means of a Dirichlet prior with a somehow
artificial sample size-dependent specification of the total mass parameter; in particular, one
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needs the total mass parameter to grow with n, which leads to an increasingly informative prior
as more data becomes available, an unnatural scenario.

The asymptotic evaluation Kn, together with its limiting distribution, has been also object
of extensive research in the context of regenerative composition structures; see Gnedin (2010) for
a survey. In this setting the frequencies (wj) are constructed from the range of a multiplicative
subordinator, that is from the exponential transform 1− exp{S(t)} of a subordinator S(t). The
logarithmic and polynomial regimes can be recovered from Karlin’s theory according to the
variation at zero of the right tail of the Lévy measure of S(t). The log n regime corresponds
to finite Lévy measures, that is when S(t) is a compound Poisson process. In this case, the
frequencies (wj) can be conveniently defined in terms of a stick-breaking procedure, or residual
allocation scheme, with

wj = Wj

∏
`<j(1−W`) (2)

for (W`)`≥1 independent and identically distributed (iid) (0, 1)-valued random variables with
distribution determined by the Lévy measure. Exploiting the renewal representation of the
composition structure, aymptotics for the moments of Kn and a central limit theorem can be
derived; cf. Gnedin (2004), Gnedin et al. (2009). Gnedin et al. (2006a) show that when the right
tail of the Lévy measure is regularly varying at zero with index −1 < α < 0, the scale of Kn is
nα and the partition structure induced by the Pitman-Yor process can be recovered (Gnedin and
Pitman, 2005). In contrast, when the right tail diverges at zero like a slowly varying function,
e.g. for S(t) a gamma subordinator, a central limit theorem with mean of the order (log n)2

and variance of the order (log n)3 is obtained, cf. Gnedin et al. (2006b).

Discrete random probability measures with wj as in (2), not necessarily with identically
distributed (W`)`≥1, have been proposed in Ishwaran and James (2001) as a Bayesian nonpara-
metric model and termed stick-breaking priors. The Dirichlet and the Pitman-Yor processes
belong to this class, their distinctive property being that the law of (wj)j≥1 is invariant under
size-biased permutation. In this setting, the distribution of W1 is called the structural distribu-
tion of (wj), and the limiting behavior of Kn in the Dirichlet and the Pitman-Yor process cases
can be also derived using Karlin’s theory from the variation at zero of the structural distribution;
see Gnedin et al. (2007).

In this paper we further broaden the realm of application of the fundamental result of Karlin
in order to derive a two-term expansion of the mean of Kn. The expansion relies on de Haan’s
regular variation theory and requires a precise assessment of the tail behavior of (wj) together
with a deconditioning argument, cf. Theorem 1. To illustrate the applicability of this technique,
we consider the geometric stick-breaking process, first proposed in Fuentes-Garćıa et al. (2010),
which gained quite some popularity in Bayesian applications (Mena et al., 2011; Gutiérrez et al.,
2014; Hatjispyros et al., 2018). It is a discrete random probability measure (1) with locations
independent of the frequencies and, importantly, (wj)j≥1 naturally arranged in decreasing order,
which facilitates the evaluation of the tail behavior of the sequence. Specifically the frequencies
are of geometric type,

wj = p(1− p)j−1, j = 1, 2, . . . (3)

with p, the probability of success, random and endowed with a (prior) distribution π(p) on (0, 1).
In Theorem 2 we derive a two-term expansion for a choice of π(p), the key technical tool being the
regular variation of fractional integrals. As anticipated, the leading term shows that the mean of
Kn can covers the whole range of logarithmic behaviors (log n)m+2, for m a nonnegative integer,
upon setting π(p) as an exponential transform of the gamma distribution of shape parameter
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m. From a practical perspective this result widens the range of achievable asymptotic behaviors
by means of tractable models and also allows a principled prior elicitation. To illustrate the
importance of the second order term in the expansion, we also consider an extension of the
geometric stick-breaking process, which has an additional parameter s corresponding to the
scale of the negative binomial distribution. Such a construction reduces to the geometric stick-
breaking process when s = 2 and was exploited by De Blasi et al. (2020) within a mixture model,
to which the present study provides further theoretical support. The frequencies (wj)j≥1 are
still decreasingly ordered and are available in closed form for any integer s ≥ 2. The parameter
s determines the tail behavior of (wj)j≥1, the larger s the slower the decay to zero. In order
to single out the effect of s on Kn, we set s = 3 and compare the asymptotic behavior of the
mean of Kn with that of the geometric stick-breaking case, while keeping π(p) to be uniform. It
turns out that Kn grows faster for s = 3, as predicted by Karlin’s theory, the difference however
emerging only in the second order term of the expansion, cf. Proposition 2. We conjecture that
similar conclusions apply also for s an integer larger than 3 and other prior specifications of
π(p), although we do not pursue it here. It would be of interest to investigate the asymptotics
of higher order moments like the variance and whether a central limit theorem holds. These are
left for future research.

Layout of the paper. In Section 2 we review Karlin’s theory and establish a general two-
term expansion of the mean of Kn. In Section 3 we introduce the geometric stick-breaking
process and investigate the impact of the choice of prior π(p) on the asymptotic behavior of Kn.
In Section 4 we deal with the negative binomial extension and apply the asymptotic expansion
of Section 2 to show that the scale parameter s enters in the second order term. Some proofs
are deferred to the Appendix.

Notation. Let F (x) be a positive nondecreasing function on R with F (x) = 0 for x ≤ 0
and α ≥ 0. The fractional integral of order α of F (x) is given by

αF (x) =
1

Γ(α+ 1)

∫ x

0

(x− t)αf(t)dt.

We use f ∼ g for f/g → 1, the limit being clear from the context. When either f or g is random,
the notation f ∼a.s. g means that the asymptotic relation holds with probability one. For x a
real number, bxc is the integer part of x.

2 Occupancy problem and regular variation

Let p̃ be a discrete random probability measure (1). Assume (wj)j≥1 and (xj)j≥1 are inde-
pendent with (xj)j≥1 independent and identically distributed form a non atomic distribution.
Then p̃ is a species sampling model (Pitman, 1995). The partition induced by a sample from p̃
depends only on the random frequencies (wj)j≥1 and can be studied in terms of a multinomial
occupancy problem. The theory is well established and dates back to the seminal paper Karlin
(1967). The main tools are a Poissonization argument and regular variation theory. We provide
a concise overview taking the set-up from Gnedin et al. (2007).

The multinomial occupancy problem can be described as the experiment of throwing balls
independently at a fixed infinite series of boxes, with probability wj of hitting the jth box. First
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consider the case of fixed, or non random, frequencies. As n balls are thrown, their allocation is
captured by the array Xn = (Xn,j)j≥1 where Xn,j is the number of balls out of the first n that
fall in box j. Kn, the number of occupied boxes, is then given by Kn =

∑
j≥1 1(Xn,j > 0) with

mean
E(Kn) =

∑
j≥1

(1− (1− wj)n).

In general, it is difficult to work with E(Kn) since the indicators in Kn are not independent.
In the Poissonized version of the problem the balls are thrown in continuous time at epochs of
a unit rate Poisson process (P (t), t ≥ 0), which is independent of (Xn, n = 1, 2, . . .). The balls
then fall in the boxes according to independent Poisson processes (Xj(t))t≥0, at rate wj for box
j. Hence K(t) := KP (t) =

∑
j≥1 1(Xj(t) > 0) and

Φ(t) := E(K(t)) =
∑

j≥1
(1− e−twj ).

Encoding the frequencies into the counting measure ν(dx) =
∑
j≥1 δwj

(dx) and integrating by
parts,

Φ(t) =

∫ 1

0

(1− e−tx)ν(dx) = t

∫ 1

0

e−tx−→ν (x)dx,

where −→ν (x) = ν([x, 1)), the right tail of ν, represents the number of frequencies wj not smaller
than x. Φ(t) provides an approximation of E(Kn) for n large according to

|E(Kn)− Φ(n)| ≤ 2
nΦ(n)→ 0 (4)

cf. (Gnedin et al., 2007, Lemma 1). The convenience of working with Φ(t) is that, being Φ(t)
the Laplace-Stieltjes transform of −→ν (x), its behavior as t → ∞ is determined by the behavior
of −→ν (x) as x→ 0 by an application of the Tauberian theorem; see Bingham et al. (1987) for a
full account on Abel-Tauberian theorems for Laplace transforms. Hence, ultimately, by regular
variation theory the growth of E(Kn), as n → ∞, is determined by the behavior of −→ν (x) at
zero. In the case of random frequencies, the same result holds with the counting measure ν(dx)
being replaced by its mean measure, and correspondingly adapting the meaning of −→ν (x). See
(Gnedin et al., 2007, Section 7, Page 162) and Section 3 for an illustration.

Here we work under the hypothesis that−→ν (x) is slowly varying at zero, that is limx→0
−→ν (λx)/−→ν (x) =

1 for all λ > 0. According to (Bingham et al., 1987, Theorems 1.7.1’ and 1.7.6) (see also (Gnedin
et al., 2007, Proposition 19)), Φ(1/x) ∼ −→ν (x) as x→ 0, so that via (4)

E(Kn) ∼ −→ν
(
1
n ) as n→∞,

cf. (Karlin, 1967, Theorem 1’). In Theorem 1 we derive a two term expansion of E(Kn) under
the hypothesis that −→ν (x) is a de Haan slowly varying function at zero, that is for a constant c
and a slowly varying function `(x) at zero, called the auxiliary function of −→ν (x),

−→ν (λx)−−→ν (x)

`(x)
→ c log λ, as x→ 0. (5)

Theorem 1. If `(x) is slowly varying at zero and c ≥ 0 satisfy (5) for all λ > 0, then

E(Kn) = −→ν (1/n)− cγ`(1/n) + o(`(1/n)), as n→∞

where γ is the Euler-Mascheroni constant.
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The proof consists in an adaptation to the present setting of (Bingham et al., 1987, Theorem
3.9.1) for the study of the remainder of Tauberian theorem, Φ(1/x)−−→ν (x), as x→ 0, combined
with an application of (4). The proof is reported in the Appendix. In order to apply this result,
one needs to establish the variation of −→ν (x) at 0, so some explicit or at least tractable form of
−→ν (x) is in order. In the next two sections we apply the asymptotic expansion of Theorem 1
to species sampling priors that features stochastically decreasing frequencies for which −→ν (x) is
tractable enough.

3 Geometric stick-breaking process

The geometric stick breaking process is a species sampling model with random frequencies
(wj)j≥1 of geometric type,

wj = p(1− p)j−1, j = 1, 2, . . .

with random success probability p. The number of frequencies wj not smaller than x, max{j :
p(1− p)j−1 ≥ x}, can be explicitly found as the solution in j to the equation p(1− p)j−1 = x.
By direct calculation

−→ν (x, p) =

⌊
log(x/p)

log(1− p)
+ 1

⌋
1(p≥x),

where the notation −→ν (x, p) makes the dependence on p explicit. The case of fixed p provides an
illustration of Theorem 1.

Example 1. Let Kn be the number of distinct values among n iid draws from the geometric
distribution with success probability p. Accurate formulae for the mean and the variance of Kn

are given in Archibald et al. (2006). Since −→ν (x, p) ∼ log x/ log(1 − p) as x → 0, −→ν (x, p) is a
de Haan slowly varying function with auxiliary function `(x) = 1 and c = 1/ log(1− p), cf. (5).
Hence Theorem 1 yields

E(Kn) =

⌊
log(np)

| log(1− p)|
+ 1

⌋
+

γ

| log(1− p)|
+ o(1) as n→∞,

in accordance with the expansion of (Archibald et al., 2006, Theorem 1).

Now return to the random case with π(p) on (0, 1) denoting the (prior) distribution of the
success probability p in (3). The results about the expected value of Kn now hold with ν(dx)
being the mean measure of the counting measure

∑
j≥1 δwj and −→ν (x) obtained by averaging

the number of frequencies wj not smaller than x with respect to π(p):

−→ν (x) =

∫ 1

0

−→ν (x, p)π(p)dp.

In the sequel it is convenient to work with

m(x) =

∫ 1

x

log x− log p

log(1− p)
π(p)dp,

since m(x) ≤ −→ν (x) ≤ m(x) + 1. The variation of −→ν (x) in zero can then be studied in terms of
m(x). By the change of variable t = log 1/p,

m(x) =

∫ log 1/x

0

(
log

1

x
− t
)
π(e−t)f(t)dt, f(t) =

e−t

− log(1− e−t)
(6)
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Properties of f(t) in (6) are collected in Lemma 1, whose proof is deferred to the Appendix.

Lemma 1. The function f(t) defined in (6) is nondecreasing on R+ with limt→0 f(t) = 0,
limt→∞ f(t) = 1 and 1 − f(t) ∼ e−t/2 as t → ∞. Moreover

∫∞
0

(1 − f(t))dt = γ, with γ =

−Γ′(1)−
∫∞
0

(log x)e−xdx the Euler-Mascheroni constant.

The variation at zero of m(x) is determined by f(t) and the success probability distribution
π(p). First consider p uniformly distributed on the unit interval.

Proposition 1. Let p in (3) be uniformly distributed on (0, 1). Then

−→ν (x) =
1

2

(
log 1/x

)2 − γ log 1/x+O(1), x→ 0

E(Kn) =
1

2
(log n)2 + o(log n), n→∞.

Proof. For π(p) = 1(0,1)(p), m(x) in (6) is given by

m(x) =

∫ log 1/x

0

(log 1/x− t)f(t)dt = 1F (log 1/x),

where F (t) =
∫ t
0
f(s)ds and 1F (x) =

∫ x
0

(x− t)f(t)dt is the fractional integral of order one of F .
To prove the first statement, it is sufficient to prove it for m(x) in place of −→ν (x). Integrating
by parts, 1F (x) =

∫ x
0
F (t)dt. Hence, since log 1/x → ∞ as x → 0, we derive an asymptotic

expansion of F (x) as x → ∞. According to Lemma 1, f(x) is a distribution function on R+.
Moreover, given 1− f(t) ∼ e−t/2 as t→∞, the distribution function f(x) has moments of any
order and, in particular, the first moment is equal to the Euler-Mascheroni constant γ. Then,
F (x) is regularly varying at infinity with exponent β = 1 and, as x→∞,

F (x) = x−
∫ x

0

(1− f(t))dt = x− γ +

∫ ∞
x

(1− f(t))dt = x− γ +O(e−x). (7)

Computing
∫ x
0
F (t)dt with the asymptotic expansion F (x) ∼ x− γ +O(e−x) leads to

1F (x) =

∫ x

0

F (t)dt =
(x− γ)2

2
+O(1), x→∞.

Substituting x for log 1/x yields the first statement. In view of the application of Theorem 1,
note that, as x→ 0,

m(λx)−m(x) =
1

2

(
(log(λx))2 − (log x)2

)
+ γ
(

log(λx)− log x) +O(1)

=
1

2

(
(log x)2 + 2 log λ log x− (log x)2

)
+O(1) = log λ log x+O(1)

so that, as x → 0, (m(λx) − m(x))/ log x → log λ. Hence −→ν (x) is a de Haan slowly varying
function at zero with auxiliary function `(x) = log x and c = 1, cf. (5). An application of
Theorem 1 yields the second statement.
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Remark 1. Using only the leading term of the expansion of m(x) in the application of Theorem
1, we would get the second order term in the asymptotic expansion of E(Kn) wrong, i.e. differing
by γ log n. Hence, in this case, an application of Karamata’s Theorem to the evaluation of∫ x
0

(x−t)f(t)dt would be not precise enough, as the latter would yield
∫ x
0

(x−t)f(t)dt ∼ 1
2xF (x)

and, in turn, m(x) ∼ 1
2 (log 1

x )2.

Next we tackle the case of the success probability distribution π(p) chosen such that the
integrand in (6) behaves like tmf(t) for m a positive integer. This is obtained by setting
p = e−X for X ∼ ga(m+ 1, 1), a gamma distributed random variable with shape m+ 1 and unit
rate. Note m = 0 yields the uniform distribution considered in Proposition 1. As detailed in
Theorem 2 below, this choice makes E(Kn) grow as a power of log n with exponent determined
by m. Before that, we first provide an illustration of how the arguments used in Proposition 1
can be adapted to the case m = 1, paving the way for the techniques used in the general case.

Example 2. By direct calculation, the density function of p
d
= e−X , for X ∼ ga(2, 1), is

π(p) = − log p. Then m(x) in (6) is given by

m(x) =

∫ log 1/x

0

(log 1/x− t)tf(t)dt =

∫ log 1/x

0

∫ t

0

sf(s)dsdt.

where the second equality follows by integration by parts. We first derive an asymptotic expan-
sion for

∫ x
0
tf(t)dt as x→∞. Since∫ x

0

tf(t)dt = xF (x)−
∫ x

0

F (t)dt = xF (x)− 1F (x)

using the asymptotic expansion F (x) = x− γ +O(e−x) in (7) we find∫ x

0

tf(t)dt = x(x− γ) +O(xe−x)− (x− γ)2

2
+O(1) =

x2

2
+O(1)

so that ∫ x

0

∫ t

0

sf(s)dsdt =

∫ x

0

(
t2

2
+O(1)

)
dx =

x3

6
+O(x)

and, in turn,

m(x) =
1

6

(
log

1

x

)3
+O(log x).

We look now for the auxiliary function `(x) of the slowly varying function m(x). We have

6
(
m(λx)−m(x)

)
= −(log x+ log λ)3 + (log x)3 +O(log x)

= −3 log λ(log x)2 +O(log x)

so that, as x→ 0
m(λx)−m(x)

(log x)2
→ −1

2
log λ.

Hence, the auxiliary function of −→ν (x) is found to be `(x) = (log x)2 with c = − 1
2 , cf. (5). Note

that, because of the cancellation of the (log 1/x)2 term in the expansion of m(x) for x → ∞,
the derivation of `(x) only requires the leading term of m(x). The latter can be alternatively
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obtained by using regular variation theory. Since
∫ x
0
tf(t)dt is regularly varying at infinity with

index 2, Karamata’s theorem yields
∫ x
0

(x − t)tf(t)dt
/
x
∫ x
0
tf(t)dt → 1

3 as x → ∞. A second

application of Karamata’s Theorem yields
∫ x
0
tf(t)dt

/
x2f(x)→ 1

2 to conclude that, as x→∞,∫ x
0

(x− t)tf(t)dt

x3f(x)
→ 1

2

1

3
=

1

6

Since f(x) → 1 as x → ∞, we get m(x) ∼ 1
6 (log 1/x)3. Finally, by applying Theorem 1 we

conclude that

E(Kn) =
1

6
(log n)3 +

1

2
γ(log n)2 + o(log2 n)

It is worth stressing that π(p) = − log p yields E(p) = 1/4, i.e. a mass shift to lower values of
p compared to π(p) = 1. This, according to −→ν (x, p) ∼ log x/ log(1 − p), favors larger values of
E(Kn|p), which explain a faster growth of E(Kn).

The asymptotic expansion of E(Kn), for m any positive integer, is derived in the following
theorem. The key ingredient consists in expressing

∫ x
0
tmf(t)dt in terms of fractional integrals

of F (x).

Theorem 2. Let p in (3) have distribution π(p) defined by p
d
= e−X with X ∼ ga(m+ 1, 1) and

m a positive integer. Then

−→ν (x) =
(log 1/x)m+2

(m+ 2)!
+O

(
(log x)m), x→ 0

E(Kn) =
(log n)m+2

(m+ 2)!
+ γ

(log n)m+1

(m+ 1)!
+ o((log n)m+1), n→∞.

Proof. Since π(p) = (− log p)m/m!, m(x) in (6) becomes

m(x) =

∫ log 1/x

0

(log 1/x− t) t
m

m!
f(t)dt =

∫ log 1/x

0

∫ t

0

sm

m!
f(s)dsdt. (8)

where the second equality follows again by integration by parts. Recall that, for an integer-valued
index, fractional integrals correspond to “ higher order ” primitives of f(x): F (x) = 0F (x),

1F (x) =
∫ x
0
F (t)dt and

(k+1)F (x) =

∫ x

0

(x− t)d kF (t) =

∫ x

0
kF (t)dt, k = 1, 2, . . .

By repeated integration by parts the inner integral in (8) is found to be∫ x

0

tm

m!
f(t)dt =

m∑
k=0

(−1)k

(m− k)!
xm−kkF (x).

Next, we exploit the asymptotic evaluation (7), F (x) = x− γ +O(e−x) as x→∞, to find

1F (x) =
(x− γ)2

2
+O(1) =

x2 − 2γx

2
+O(1)
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2F (x) =
(x− γ)3

3!
+O(x) =

x3 − 3γx2

3!
+O(x)

kF (x) =
(x− γ)k+1

(k + 1)!
+O(xk−1) =

xk+1 − (k + 1)γxk

(k + 1)!
+O(xk−1).

We get ∫ x

0

tm

m!
f(t)dt =

m∑
k=0

(−1)k

(m− k)!
xm−k

(
xk+1 − (k + 1)γxk

(k + 1)!
+O(xk−1)

)

= xm+1
m∑
k=0

(−1)k

(m− k)!(k + 1)!
+ γxm

m∑
k=0

(−1)k+1

(m− k)!k!
+O(xm−1).

As for the xm+1-term we obtain

m∑
k=0

(−1)k

(m− k)!(k + 1)!
=

m+1∑
k=1

(−1)k−1

(m+ 1− k)!(k)!
=

1

(m+ 1)!

m+1∑
k=1

(
m+ 1

k

)
(−1)k−1

= − 1

(m+ 1)!

(m+1∑
k=0

(
m+ 1

k

)
(−1)k − 1

)
=

1

(m+ 1)!
,

where in the last step we used

m+1∑
k=0

(
m+ 1

k

)
(−1)k =

m+1∑
k=0

(
m+ 1

k

)
(−1)k(+1)m+1−k = (−1 + 1)m+1 = 0.

A similar application of the binomial formula shows that the xm-term is zero, namely

m∑
k=0

(−1)k+1

(m− k)!k!
= −

m∑
k=0

(−1)k

(m− k)!k!
= − 1

m!
(−1 + 1)m = 0

Hence, we have ∫ x

0

tm

m!
f(t)dt =

xm+1

(m+ 1)!
+O(xm−1),

which yields∫ x

0

∫ t

0

sm

m!
f(s)dsdt =

∫ x

0

(
tm+1

(m+ 1)!
+O(tm−1)

)
dt =

xm+2

(m+ 2)!
+O(xm)

to conclude that, as x→ 0,

m(x) =
(log 1/x)m+2

(m+ 2)!
+O

(
(log x)m

)
.

In view of m(x) ≤ −→ν (x) ≤ m(x) + 1, the first statement is proved. We now proceed to derive
the auxiliary function `(x) of m(x) and, in turn, of −→ν (x). We have

(m+ 2)!
(
m(λx)−m(x)

)
= (− log(λx))m+2 − (− log x)m+2 +O

(
(log x)m

)
10



= (−1)m+2
(
(log x+ log λ)m+2 − (log x)m+2

)
+O

(
(log x)m

)
= (−1)m+2(m+ 2) log λ(log x)m+1 +O

(
(log x)m

)
so that, as x→ 0,

m(λx)−m(x)

(log x)m+1
→ (−1)m+2

(m+ 1)!
log λ.

So we find `(x) = (log(x))m+1 and c = (−1)m+2/(m+ 1)! in (5). Note that

c`(1/n) =
(−1)m+2

(m+ 1)!
(− log n)m+1 =

(−1)m+2+m+1

(m+ 1)!
(log n)m+1 = − (log n)m+1

(m+ 1)!
.

Finally, an application of Theorem 1 yields the second statement.

Remark 2. The phenomenon observed in Example 2 for m = 1, namely the cancellation
of the term (log 1/x)2 in the expansion of m(x), applies to any m ≥ 1 meaning that the
term (log 1/x)m+1 cancels out. Since the auxiliary function `(x) is found to be of the order
(log 1/x)m+1, we conclude that for any m ≥ 1 the leading term in the expansion of m(x) is
sufficient for the derivation of the second order term in the expansion of E(Kn) according to
Theorem 1. As observed in Example 2, a double application of Karamata’s Theorem yields the
leading term of m(x) as it yields, for x→∞,∫ x

0
(x− t)tmf(t)dt

xm+2f(x)
→ 1

m+ 1

1

m+ 2
.

These calculations can be easily extended to the case of p
d
= e−X for X ∼ ga(1 + ρ, 1) with

ρ > −1. Since π(e−t)f(t) is regularly varying at infinity with index ρ+ 1 > 0,∫ x
0

(x− t)π(e−t)f(t)dt

xρ+2f(x)
→ 1

Γ(ρ+ 1)

1

ρ+ 1

1

ρ+ 2
=

1

Γ(ρ+ 3)

so we obtain

E(Kn) ∼ 1

Γ(ρ+ 3)
(log n)ρ+2.

However, a more accurate approximation of
∫ x
0

(x− t)π(e−t)f(t)dt is necessary in order to apply
Theorem 1 and obtain the second order term in the expansion of E(Kn).

4 Negative binomial extension

In the following we use the notation wj(p) for the jth frequency as a function of the parameter
p. Recall that the asymptotic behavior of E(Kn) depends on the behavior at zero of the tail

mean measure −→ν (x) =
∫ 1

0
−→ν (x, p)π(p)dp, where π(p) is the success probability distribution, and

−→ν (x, p) = #{j : wj(p) ≥ x} is the number of frequencies larger than a threshold x ∈ [0, 1]. When
the frequencies wj(p) are decreasing, −→ν (x, p) = sup{j : wj(p) ≥ x}, that is −→ν (x, p) is obtained
in terms of the inverse of wj(p) with respect to j. In the case of geometric frequencies the inverse
is explicitly found to be log(x/p)/ log(1−p)+1, thus we have −→ν (x, p) = blog(x/p)/ log(1−p)+1c
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for p ≥ x or, equivalently, for w1(p) ≥ x. In Section 3, the behavior in zero of −→ν (x) was studied
in terms of

m(x) =

∫ 1

0

log(x/p)

log(1− p)
1(w1(p)≥x)π(p)dp,

based on the fact that m(x) ≤ −→ν (x) ≤ m(x) + 1.

In this section we consider a different model for wj(p) that can be seen as an extension of
the geometric case. To this aim, we resort to a derivation of the geometric weights wj(p) =
p(1 − p)j−1 as a special case of a general construction of distributions on the positive integers
with decreasing frequencies. Let φ(r; p) be a probability function for r = 1, 2, . . . with parameter
p ∈ (0, 1). Then

wj(p) =
∑
r≥j

φ(r; p)

r
, j = 1, 2, . . . ,

form a decreasing sequence, wj(p) > wj+1(p), of positive numbers summing up to one. As such,
(wj(p))j≥1 defines a new distribution on the positive integers parametrized by p. An interesting
instance of φ(r; p) is given by

φ(r; p) = φ(r; s, p) =

(
r + s− 2

r − 1

)
ps(1− p)r−1, r = 1, 2, . . .

that is the negative binomial distribution shifted by one. The geometric frequencies are obtained
by taking the scale parameter s = 2. In fact

wj(p) =
∑
r≥j

p2(1− p)r−1 = p2(1− p)j−1
∑
i≥1

(1− p)i−1

= p2(1− p)j−1
∑
i≥0

(1− p)i = p(1− p)j−1.

An explicit expression for wj(p) can be found for any integer s ≥ 2. When s = 3, differentiating
with respect to the geometric series one finds

2(1− p)
p3

wj(p) =
∑
r≥j

(r + 1)(1− p)r = − d

dp

∑
r≥j

(1− p)r+1 = − d

dp

(1− p)j+1

p

=
(1− p)j

p2
(
(j + 1)p+ (1− p)

)
=

(1− p)j

p2
(
1 + jp

)
to conclude that

wj(p) = p(1− p)j−1 1 + jp

2
, j = 1, 2, . . . (9)

Similar formulae are derived for s > 3: one finds that wj(p) is proportional to the geometric
probability p(1 − p)j−1 multiplied by a polynomial in (j, p) of order determined by s. Details
are omitted. For instance, s = 4 yields

wj(p) = p(1− p)j−1 2 + 2jp+ jp2 + j2p2

6
, j = 1, 2, . . .

With a closed form expression of wj(p), an asymptotic evaluation of −→ν (x, p) can be derived
for x→ 0, and in turn, for −→ν (x), so that the asymptotics of E(Kn) is obtained through Theorem

12



1. Let us restrict attention to s = 3 with wj(p) as in (9) and π(p) the uniform distribution.
Our goal is to investigate the asymptotics of E(Kn) in comparison with the geometric case of
Proposition 1. It is reasonable to expect that E(Kn) grows at a faster rate: in fact, the larger
s, the larger the mean of the negative binomial distribution φ(r; s, p), so wj(p) decrease slower
in j for s = 3 compared to s = 2, which corresponds to the geometric case. This implies that
−→ν (x, p) grows slower as x → 0 for s = 3 and, in turn, via a Tauberian theorem E(Kn) grows
faster as n → ∞. In Proposition 2 we establish that the asymptotic behavior of E(Kn) differs
from the one found in Proposition 1 only in the second order term of the expansion.

Proposition 2. Let wj(p) be defined as in (9) and p be uniformly distributed on (0, 1). Then

−→ν (x) =
1

2

(
log

1

x

)2
+ log

1

x
log log

1

x
− γ log

1

x
− (1 + log 2) log

1

x
+O

(
log log

1

x

)
, x→ 0

E(Kn) =
1

2

(
log n

)2
+ log n log(log n)− (1 + log 2) log n+ o(log n), n→∞.

Proof. Let m(x, p) ≥ 0 be defined by

p(1− p)m(x,p) 1

2

(
1 + p+ pm(x, p)

)
= x, (10)

which corresponds to the solution in m to the equation wm+1(p) = x. Note that m(x, p) ≥ 0
when w1(p) ≥ x, −→ν (x, p) = bm(x, p) + 1c1(w1(p)≥x) and, as in the geometric case, m(x) ≤
−→ν (x) ≤ m(x) + 1 for

m(x) =

∫ 1

0

m(x, p)1(w1(p)≥x)dp.

Equation (11) provides an asymptotic expansion of m(x, p) as x→ 0. The proof is reported in
the Appendix and involves the Lambert W function (Corless et al., 1996).

m(x, p) =
log x/p

log(1− p)

− 1

log(1− p)
log

(
1

2

(
1 + p+ p

log x/p

log(1− p)
+

p

log(1− p)
log
−2 log(1− p)

p

))
+

1

log(1− p)
O

(
log(log 1/x)

log 1/x

)
. (11)

An heuristic derivation inspired by (Barndorff-Nielsen and Cox, 1989, Example 3.13) is as fol-
lows. In equation (10), we have that for small x, m(x, p) will be large and the term p(1−p)m(x,p)

is thus dominant. Rewrite the equation after taking the log and keeping m(x, p) on the left hand
side,

m(x, p) =
log x/p

log(1− p)
− 1

log(1− p)
log

(
1

2

(
1 + p+ pm(x, p)

))
.

It defines a convergent iterative scheme via

m(k)(x, p) =
log x/p

log(1− p)
− 1

log(1− p)
log

(
1

2

(
1 + p+ pm(k−1)(x, p)

))
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with m(1)(x, p) solution to p(1− p)m(x,p) = x, that is

m(1)(x, p) =
log x/p

log(1− p)
.

For k = 2 we get

m(2)(x, p) =
log x/p

log(1− p)
− 1

log(1− p)
log

(
1

2

(
1 + p+ p

log x/p

log(1− p)

))
,

which nearly matches the expansion in (11). Now we use it to evaluate the behavior of m(x)
and, in turn, −→ν (x) as x→ 0. Note that

m(x) =

∫ 1

0

m(x, p)1(w1(p)≥x)dp =

∫ 1

x̃

m(x, p)dp,

where x̃ is defined by w1(x̃) = x, that is x̃(1 + x̃)/2 = x. It is easy to check that x ≤ x̃ ≤ 2x for
any x and x̃ ∼ 2x as x → 0. In order to exploit the derivation of the asymptotic expansion of
m(x) as x→ 0+ in the geometric case, cf. proof of Proposition 1, we use (11) as follows:

m(x) =

∫ 1

x

log x/p

log(1− p)
dp−

∫ x̃

x

log x/p

log(1− p)
dp+

∫ 1

x̃

(
m(x, p)− log x/p

log(1− p)

)
dp.

From Proposition 1, as x→ 0∫ 1

x

log x/p

log(1− p)
dp =

1

2

(
log

1

x

)2
− γ log

1

x
+O(1).

The first statement of the thesis about the behavior of −→ν (x) as x → 0 is then implied by
m(x) ≤ −→ν (x) ≤ m(x) + 1 and by showing that, as x→ 0,∫ x̃

x

log x/p

log(1− p)
dp = O(1) (12)∫ 1

x̃

(
m(x, p)− log x/p

log(1− p)

)
dp = log

1

x
log log

1

x
− (1 + log 2) log

1

x
+O

(
log log

1

x

)
. (13)

As for (12), the maximum of (log x/p)/ log(1 − p) is attained at p = p(x), where p(x), the
solution to the first order equation in p −(1−p) log(1−p)+p log x/p = 0, goes to zero as x→ 0.
It can be shown that that p(x) ≥ 2x for x ≤ 1/4, that is (log x/p)/ log(1 − p) is increasing for
x ≤ p ≤ 2x and x sufficiently small. Since 2x ≥ x̃,∫ x̃

x

log x/p

log(1− p)
dp ≤

∫ 2x

x

log x/p

log(1− p)
dp ≤ x log x/(2x)

log(1− 2x)
= −x log 2/ log(1− 2x) ≤ log 2/2

so (12) follows. As for (13), note that by the change of variable t = log 1/p,∫ 1

x̃

− 1

log(1− p)
dp =

∫ log 1/x̃

0

f(t)dt = F (log 1/x̃),

for f(t) in (6) and F (t) the primitive of f(t). By equation (11), (7) and x̃ ∼ 2x as x → 0, we
have that, as x→ 0,
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∫ 1

x̃

(
m(x, p)− log x/p

log(1− p)

)
dp = − log 2 log 1/x+O(log(log 1/x))

+

∫ 1

x̃

− 1

log(1− p)
log

(
1 + p+ p

log x/p

log(1− p)
+

p

log(1− p)
log
−2 log(1− p)

p

)
dp.

In studying the asymptotic behavior of the integral in the last display, it is sufficient to focus
on ∫ 1

x̃

− 1

log(1− p)
log

(
1 + p

log x/p

log(1− p)

)
dp,

since the extra terms inside the logarithm satisfy

−2e−1 ≤ p+
p

log(1− p)
log
−2 log(1− p)

p
≤ 1

for 0 ≤ p ≤ 1. By the change of variable t = log 1/p∫ 1

x̃

− 1

log(1− p)
log

(
1 + p

log x/p

log(1− p)

)
dp =

∫ log 1/x̃

0

log
(

1 +
(

log 1/x̃− t
)
f(t)

)
f(t)dt,

for f(t) defined in (6). Hence, (13) is implied by

r(x) =

∫ x

0

log
(
1 +

(
x− t

)
f(t)

)
f(t)dt = x log(x)− x+O(log x), (14)

as x→∞. We have

r(x) =

∫ x

0

(
log x+ log f(t) + log

1 +
(
x− t

)
f(t)

xf(t)

)
f(t)dt

= log(x)F (x) +

∫ x

0

f(t) log f(t)dt+

∫ x

0

log

(
1 +

1− tf(t)

xf(t)

)
f(t)dt.

The first term on the right hand side is log x(x−γ+O(e−x)), as x→∞, due to the asymptotic
expansion of F (x) in (7). The second term is easily shown to be bounded in absolute value
uniformly in x. As for the third term, we are left to show that∫ x

0

log

(
1 +

1− tf(t)

xf(t)

)
f(t)dt = −x+ log x+O(1),

as x→∞. To this aim, it is convenient to split the integral as∫ 1

0

log

(
1 +

1− tf(t)

xf(t)

)
f(t)dt+

∫ x

1

log

(
1 +

1− tf(t)

xf(t)

)
f(t)dt. (15)

The first integral in (15) is bounded in x since∫ 1

0

log

(
1 +

1− tf(t)

xf(t)

)
f(t)dt ≤ 1

x

∫ 1

0

(
1− tf(t)

)
dt,

whereas the last integral is a positive and finite constant. As for the second integral in (15),
since 1− f(t) ∼ e−t/2 for t→∞, cf. Lemma 1,∫ x

1

log

(
1 +

1− tf(t)

xf(t)

)
f(t)dt ∼

∫ x

1

log

(
1 +

1− t
x

)
dt

15



as x→∞ and ∫ x

1

log

(
1 +

1− t
x

)
dt = −x+ log x+ 1

by direct calculation. Hence (14), and in turn (13), follow. The proof of the first statement
of the proposition is then complete. The second statement about the expansion of E(Kn), as
n→∞, follows from an application of Theorem 1.

Appendix

Proof of Theorem 1

The proof follows arguments similar to those of (Bingham et al., 1987, Theorem 3.9.1). It
consists in evaluating

(
Φ(n)−−→ν (1/n)

)
/`(1/n) in the decomposition

E(Kn) = −→ν (1/n) +
Φ(n)−−→ν (1/n)

`(1/n)
`(1/n) + E(Kn)− Φ(n).

Indeed, as Φ(n) ∼ −→ν (1/n) and `(1/n) are slowly varying, |E(Kn)−Φ(n)| ≤ 2
nΦ(n) = o(`(1/n)),

cf. (4), so the conclusion follows by showing that
(
Φ(n)−−→ν (1/n)

)
/`(1/n)→ −cγ. To this aim,

Φ(1/x)−−→ν (x)

`(x)
=

1

`(x)

[ ∫ ∞
0

1

x
e−y/x−→ν (y)dy −

∫ ∞
0

−→ν (x)e−λdλ

]
=

1

`(x)

[ ∫ ∞
0

e−λ−→ν (λx)dλ−
∫ ∞
0

−→ν (x)e−λdλ

]
=

∫ ∞
0

−→ν (λx)−−→ν (x)

`(x)
e−λdλ

→
∫ ∞
0

c(log λ)e−λdλ = cΓ′(1) = −cγ, as x→ 0,

where in taking the limit we used the dominated convergence theorem, cf. global bounds in
(Bingham et al., 1987, Theorem 3.8.6).

Proof of Lemma 1

We will use the following integral representation of the Euler-Mascheroni constant:

γ =

∫ ∞
0

(
1

1− e−x
− 1

x

)
e−xdx.

By the change of variable t = − log(1 − e−x) so that dt = − e−x

1−e−x dx and x = − log(1 − e−t),
we obtain

γ =

∫ ∞
0

(
1

1− e−x
− 1

x

)
e−xdx =

∫ ∞
0

(
1− 1− e−x

x

)
e−x

1− e−x
dx

=

∫ ∞
0

(
1− e−t

− log(1− e−t)

)
dt =

∫ ∞
0

(
1− f(t)

)
dt.
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It is easy to check that limt→0 f(t) = 0 and limt→∞ f(t) = 1. As for the tail behavior, by the
Taylor expansion of log(1 + x) = x− x2/2 +O(x3) as x→ 0, we find that, as t→∞,

1− f(t) = 1− e−t

− log(1− e−t)
∼ 1− e−t

e−t + e−2t/2
=

e−2t/2

e−t + e−2t/2
∼ e−t

2
.

Proof of Equation (11)

Let W (z) be the Lambert function defined by W (z)eW (z) = z, where W (z) is a multival-
ued function that has, for z a real number, two branches, the principal branch W0(z) for
W (z) ≥ −1, and the branch W−1(z) for W (z) < −1. We have that limz→0+ W0(z) = 0
while limz→0− W−1(z) = −∞. In particular, according to (Corless et al., 1996, Section 4), as
z → 0−

W−1(z) = log(−z)− log(− log(−z)) +O

(
log(− log(−z))

log(−z)

)
. (16)

By algebraic manipulation of (10)

p(1− p)m(x,p) 1

2
(1 + p+ pm(x, p)) = x; elog(1−p)m(x,p)(1 + p+ pm(x, p)) = 2x/p;

(1 + p+ pm(x, p)) log(1− p)elog(1−p)m(x,p) =
2x log(1− p)

p
;

(1 + p+ pm(x, p)) log(1− p)elog(1−p)(1/p+1+m(x,p) =
2x log(1− p)

p
e(1/p+1) log(1−p);

log(1− p)
p

(1 + p+ pm(x, p))e
log(1−p)

p (1+p+pm(x,p)) =
2x log(1− p)

p2
e

1+p
p log(1−p);

log(1− p)
p

(1 + p+ pm(x, p)) = W (z),

where, in the last display,

z =
2x log(1− p)

p2
exp

(1 + p

p
log(1− p)

)
. (17)

Solving for m(x, p),

m(x, p) =
1

p log(1− p)

(
pW−1(z)− log(1− p)

)
− 1, (18)

where we used the branch W−1 of W (z) since z in (17) is ≤ 0 and W (z) ≤ −1. The fact that
W (z) ≤ −1 is easily checked by using m(x, p) ≥ 0. In fact

1

p log(1− p)

(
pW (z)− log(1− p)

)
− 1 ≥ 0; pW (z)− log(1− p) ≤ p log(1− p);

pW (z) ≤ log(1− p)(1 + p); W (z) ≤ log(1− p)1 + p

p

17



and 1+p
p log(1− p) decreases from −1 to −∞ for p ∈ (0, 1). From (17) one finds that z → 0− as

x→ 0+. In particular, from w1(p) > x, that is p(1 + p)/2 > x, it follows that

1 + p

p
log(1− p) exp

(1 + p

p
log(1− p)

)
≤ z ≤ 0

and the lower bound is larger than −e−1 for any p ∈ (0, 1). Hence log(−z) < −1 and
log(− log(−z)) > 0. By direct calculation

log(−z) = log(1− p)
(

log x/p

log(1− p)
+

1

log(1− p)
log
−2 log(1− p)

p
+

1 + p

p

)
and

1

p log(1− p)

(
p log(−z)− log(1− p)

)
− 1 =

log x/p

log(1− p)
+

1

log(1− p)
log
−2 log(1− p)

p
.

Substitute in (18) W−1(z) for log(−z) − log(− log(−z)) according to the two terms expansion
in (16), to find

1

p log(1− p)

(
p
(

log(−z)− log(− log(−z))
)
− log(1− p)

)
− 1

=
1

p log(1− p)

(
p log(−z)− log(1− p)

)
− 1− 1

log(1− p)
log(− log(−z))

=
log x/p

log(1− p)
+

1

log(1− p)
log
−2 log(1− p)

p
− 1

log(1− p)
log(− log(−z))

=
log x/p

log(1− p)
− 1

log(1− p)
log

(
p

2 log(1− p)
log(−z)

)
=

log x/p

log(1− p)
− 1

log(1− p)
log

(
p

2

(
log x/p

log(1− p)
+

1

log(1− p)
log
−2 log(1− p)

p
+

1 + p

p

))
=

log x/p

log(1− p)
− 1

log(1− p)
log

(
1

2

(
1 + p+ p

log x/p

log(1− p)
+

p

log(1− p)
log
−2 log(1− p)

p

))
.

The remainder of the expansion is easily found.
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