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Abstract

Robust statistical data modelling under potential model mis-specification often requires leaving
the parametric world for the nonparametric. In the latter, parameters are infinite dimensional ob-
jects such as functions, probability distributions or infinite vectors. In the Bayesian nonparametric
approach, prior distributions are designed for these parameters, which provide a handle to manage
the complexity of nonparametric models in practice. However, most modern Bayesian nonparametric
models seem often out of reach to practitioners, as inference algorithms need careful design to deal
with the infinite number of parameters. The aim of this work is to facilitate the journey by providing
computational tools for Bayesian nonparametric inference. The article describes a set of functions
available in the R package BNPdensity in order to carry out density estimation with an infinite mix-
ture model, including all types of censored data. The package provides access to a large class of
such models based on normalized random measures, which represent a generalization of the popular
Dirichlet process mixture. One striking advantage of this generalization is that it offers much more
robust priors on the number of clusters than the Dirichlet. Another crucial advantage is the complete
flexibility in specifying the prior for the scale and location parameters of the clusters, because con-
jugacy is not required. Inference is performed using a theoretically grounded approximate sampling
methodology known as the Ferguson & Klass algorithm. The package also offers several goodness
of fit diagnostics such as QQ-plots, including a cross-validation criterion, the conditional predictive
ordinate. The proposed methodology is illustrated on a classical ecological risk assessment method
called the Species Sensitivity Distribution (SSD) problem, showcasing the benefits of the Bayesian
nonparametric framework.

1 Introduction

R (RCoreTeam, 2019) is often cited by Bayesian statisticians as their favorite programming language
due to the many packages that provide tools for Bayesian inference. The general program for Bayesian
inference BUGS (Gilks et al., 1993) has been available for a couple of decades, with interfaces in R. Since
then, additional software has been developed to make that language more accessible to the users, for
instance OpenBUGS (Thomas et al., 2006), JAGS (Plummer, 2003), and Stan (Stan Development Team
and Stan Developement Team, 2019). All three can be accessed directly from R by respectively using
R2OpenBUGS/R2WinBUGS (Sturtz et al., 2005), rjags (Plummer, 2019), runjags (Denwood, 2016), and
rstan (Stan Development Team, 2018). Programs for specific fields of Bayesian statistics have appeared in
recent years, for instance bspmma (Burr, 2012) for meta-analysis using Dirichlet Process Mixture (DPM)
models, DPpackage (Jara, 2007; Jara et al., 2011), a bundle of functions for Bayesian nonparametric
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models, BNPmix (Canale et al., 2019), a set of functions for density estimation with Dirichlet process
and Pitman–Yor mixing measures via marginal algorithms, PReMiuM (Liverani et al., 2015) for profile
regression using the Dirichlet process, Biips (Todeschini et al., 2014) for Bayesian inference via particle
filtering, Bayesian Regression (Karabatsos, 2017) for Bayesian nonparametric regression. Packages mcclust
(Scrucca et al., 2016), mcclust.ext (Wade and Ghahramani, 2018) and GreedyEPL (Rastelli and Friel, 2018)
provide point estimation and credible sets for Bayesian cluster analysis. The interested reader may refer
to the CRAN Task View on Bayesian Inference for an extensive list of R packages dedicated to Bayesian
statistics (see Section 4 for a more detailed discussion of R packages for Bayesian density estimation).

Robust statistical data modeling under potential model mis-specification often requires relaxing para-
metric assumptions for nonparametric assumptions. In Bayesian Nonparametrics (BNP), parameters
are infinite dimensional objects such as functions, probability distributions or infinite vectors. Prior
distributions are designed for these parameters, which provide a handle to manage the complexity of
nonparametric models in practice. However, the applicability of BNP models, for data analysis, depends
on the availability of user-friendly software. This is because BNP models typically require complex rep-
resentations, which may not be immediately accessible to non-experts. This work focuses on inference
of densities with mixture models (Frühwirth-Schnatter et al., 2018). The purpose of the present paper
is to introduce and describe an extensive revamping of the BNPdensity package, originally presented
in Barrios et al. (2013). The package is programmed in R, and is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=BNPdensity. To the best of
our knowledge, BNPdensity is the first R package which implements BNP density models including all
types of censored data (left-, right- and interval-censored data), under a general specification of BNP
priors called normalised generalised gamma processes (Lijoi et al., 2007b; Barrios et al., 2013). The
improvements to the package cover various aspects. Notably, careful profiling and re-writing of some
critical parts of the code, along with the use of the R bytecode compiler, yielded a 4-fold decrease of the
running time of the algorithm. Drawing on the flexibility of the algorithm to use non-conjugate prior,
we also implemented a range of popular new priors on the scale parameter of the clusters such as the
half-Cauchy (Gelman, 2006; Chung et al., 2015), the truncated Gaussian and the uniform distributions.
We also revised the truncation method in the algorithm, intended to deal with the infinite dimensional
random measures in the BNP model, to include recent contributions by Arbel and Prünster (2017).
These provide a better and principled control of the truncation approximation. Moreover, we extended
BNPdensity to include all types of censored data (right-, left- or interval-censored data). To leverage
on the clustering properties of BNP mixture models, we interfaced BNPdensity with other packages to
estimate the optimal clustering from posterior samples and provided cluster visualisation tools. We also
implemented functions to compute prior distributions on the number of mixture components, for various
processes, to better inform prior specification. Finally, we added several new functions for graphical
model checking, assessing Markov chain Monte Carlo (MCMC) convergence and parallel computation.

The paper is organised as follows. We start with a concise overview of Bayesian nonparametric
mixture models for density estimation in Section 2, along with our strategy for posterior inference
and a description of the recent improvements to BNPdensity. We then describe the package and its
general syntax in Section 3, including some simple examples, and provide in Section 4 a comprehensive
comparison of the features and functionalities offered in three R packages dedicated to BNP density
estimation, namely: BNPdensity, BNPmix, and DPpackage. We then conclude with a case study in
Section 5.

2 Bayesian nonparametric density estimation

This section aims at providing a concise review of the statistical model used in the BNPdensity package.
As the name suggests, the focus of the package is density estimation based on BNP priors, including all
types of censored data. The density model used is a mixture model (Frühwirth-Schnatter et al., 2018),
where the mixing measure is a BNP prior, thus leading to an infinite mixture model.

The most widely used BNP mixture model for density estimation is the Dirichlet Process Mixture
(DPM) model due to Lo (1984). Generalisations of the DPM correspond to allowing the mixing dis-
tribution to be any discrete nonparametric prior. A large class of such prior distributions is obtained
by normalising increasing additive processes (Sato, 1999). The normalisation step, under suitable con-
ditions, gives rise to so-called Normalised Random Measures with Independent Increments (NRMI) as
introduced in Regazzini et al. (2003). See also Barrios et al. (2013).

We focus on a class of NRMIs that are obtained by normalising the increments of a generalised gamma
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process (Brix, 1999) proposed in Lijoi et al. (2007a), which enjoy analytical tractability and include many
well-known priors as special cases. Generalised gamma processes are discrete random measures ρ̃ of the
form

ρ̃ =

∞∑
i=1

Jiδθi , (1)

where the weights Ji do not sum to one and are such that
∑

i≥1 Ji <∞ almost surely, while the location
parameters θi are sampled iid from a measure P0, a probability distribution on the parameter space
Θ. In what follows, P0 is considered as diffuse. (Ji,θi) are the points of a Poisson process with mean
intensity:

ν(dv,dθ) =
e−κv

Γ(1− γ)v1+γ
dv αP0(dθ), (2)

which depends on parameters κ ≥ 0 and γ ∈ [0, 1) such that (κ, γ) ̸= (0, 0). The measure ν in (2)
characterises ρ̃ and is often referred to as the Lévy intensity. The base measure is αP0, where α > 0.
The corresponding generalised gamma NRMI, obtained by normalising the generalised gamma process
as P̃ ( · ) := ρ̃( · )/ρ̃(Θ) will be denoted as P̃ ∼ NGG(α, κ, γ;P0). This class of priors contains as special
cases the Dirichlet process which is a NGG(α, 1, 0;P0) process, the normalised inverse Gaussian (N-IG)
process (Lijoi et al., 2005), which corresponds to a NGG(1, κ, 1/2;P0) process, and the N-stable process
(Kingman, 1975) which arises as NGG(1, 0, γ;P0).

We now describe the mixture model in more detail. We consider a density kernel k(· | θ) mixed with
respect to P̃ ∼ NGG(α, κ, γ;P0) thus obtaining the random mixture density

f̃(x) =

∫
Θ

k(x | θ)P̃ (dθ). (3)

This can equivalently be written in a hierarchical form as

Xi | θi
ind∼ k(· | θi), i = 1, . . . , n,

θi | P̃
iid∼ P̃ , i = 1, . . . , n,

P̃ ∼ NGG(α, κ, γ;P0).

(4)

Details on possible choices for the kernel k and the base measure P0 are provided in Section 3, while in
Section 4 we argue that conjugacy is not required in this setting.

We denote by f0 the density with respect to the Lebesgue measure of the NGG base measure P0 on
Θ. When P0 depends on a further hyperparameter ϕ, we use the notation f0(· | ϕ). Using the MixNRMI2
function corresponds to the specification of a nonparametric model for the location and scale parameters
of the mixture where the mixture parameter θ takes the form of the vector (µ, σ). In order to distinguish
the hyperparameters for location and scale, we will use the notation f0(µ, σ | ϕ) = f10 (µ | σ, φ)f20 (σ | ς).
In applications a priori independence between µ and σ is commonly assumed, and this is indeed a natural
assumption for the illustration in Section 5.

The most popular uses of mixtures with discrete random probability measures, such as the one dis-
played in (4), relate to density estimation and data clustering. The former can be addressed by evaluating
the posterior expectation of the random density f̃ defined in (3), given a sample X = (X1, . . . , Xn)

⊤,

f̂n(x) = E
(
f̃(x) | X

)
(5)

for any x. As for the latter, if Rn is the number of distinct latent values θ∗
1, . . . ,θ

∗
Rn

out of a sample
of size n, one can deduce a partition of the observations such that any two Xi and Xj belong to the
same cluster if the corresponding latent variables θi and θj coincide. Then, it is interesting to determine

an estimate R̂n of the number of clusters into which the data are grouped, along with the clustering
structure. For details on clustering estimation in our setting, see Section 2.3.

In the next subsection, we show how to solve all estimation problems with a posterior sampling
algorithm.

2.1 Posterior sampling via a conditional Gibbs sampler

According to the terminology of Papaspiliopoulos and Roberts (2008), posterior sampling methods for
BNP mixture models can be divided into two classes: marginal and conditional methods. Marginal meth-
ods, such as Escobar and West (1995); MacEachern and Müller (1998); Neal (2000), integrate out the the

3



infinite-dimensional component (1) of the hierarchical model and sample from the marginal distribution
of the remaining variables. Conditional methods work directly on (4) and must solve the problem of
sampling the trajectories of an infinite-dimensional random element. However, they allow inference on
the latent random measure P̃ , for instance on the jump sizes. An example of conditional method, which
nicely fits our framework, is the Ferguson and Klass algorithm. Unlike marginal samplers, it allows
for estimating non-linear functionals of the underlying posterior distribution, such as credible intervals.
Here we sketch the conditional algorithm implemented in BNPdensity which allows to draw posterior
simulations from mixtures based on a general NRMI (a very thorough description of the algorithm can
be found in Barrios et al., 2013). It works equally well regardless of whether the kernel k and P0 form a
conjugate pair and readily yields credible intervals. The algorithm is an implementation of the posterior
characterisation of NRMIs provided in James et al. (2009).

For n observations X = (X1, . . . , Xn)
⊤ in R, we consider the random distribution function induced

by ρ̃,

M̃ :=
{
M̃(s) = (ρ̃((−∞, s1]), · · · , ρ̃((−∞, sn])

⊤, s = (s1, . . . , sn)
⊤ ∈ Rn

}
.

For the implementation of the Gibbs sampling scheme, we use the distributions of [M̃ | X,θ] and
[θ | X, M̃ ]. Due to conditional independence properties, the conditional distribution of M̃ , given X and
θ, does not depend on X, that is, [M̃ | X,θ] = [M̃ | θ]. Thanks to Theorem 1 in Barrios et al. (2013)
(originating in James et al., 2009), the posterior distribution function [M̃ | θ] can be characterised as a
mixture in terms of a latent variable U , that is through the distributions [M̃ | U,θ] and [U | θ]. Thus,
the Gibbs sampler uses the following conditional distributions:

1. [U | θ]: sampling the latent variable U conditionally on the latent parameters θ, where U follows
the distribution:

fU |X(u) ∝ un−1(u+ κ)rγ−n exp

{
−a
γ
(u+ κ)γ

}
. (6)

Sampling U is performed via a Metropolis–Hastings (M-H) step with a gamma proposal distribu-
tion ga

(
δ, δ/u[t]

)
centered at the previous U value u[t] with a tuning parameter δ controlling the

coefficient of variation. An adaptive version of the M-H algorithm (Roberts and Rosenthal, 2009)
without the tuning parameter is also implemented in the package, and proposed with the option
adaptive=TRUE. It uses a log-transformation of the random variable U . Note that the target den-
sity (6) not being log-concave, ergodicity cannot be proven as in Roberts and Rosenthal (2009).
Nevertheless, the adaptive version appears to offer superior performance in practice.

2. [M̃ | U,θ]: simulating the infinite dimensional process conditionally on the parameters and the
latent variable U . This is performed using the Ferguson and Klass (1972) algorithm. According
to to Theorem 1 in Barrios et al. (2013), the conditional distribution of M̃ is composed of two
parts, a part without fixed points of discontinuity M̃∗ which can be expressed as an infinite sum
of random jumps occurring at random locations and a part with fixed points of discontinuity, or
in other words: M̃(s) = M̃∗(s) +

∑Rn

j=1 J
∗
j I(−∞,s](θ

∗
j ) where the θ∗

j , j = 1, . . . , Rn denote the Rn

distinct parameters among θ1, . . . ,θn and where (−∞, s] = {x ∈ Rn : xi ≤ si, i = 1, . . . , n}. In
the infinite sum:

M̃∗(s) =

∞∑
j=1

JjI(−∞,s](ϑj), (7)

the Jjs are obtained by inverting the relation ξj = N(Jj), where ξ1, ξ2, . . . are jump times of a

standard Poisson process of unit rate, that is ξ1, ξ2 − ξ1, . . .
iid∼ ga(1, 1), with

N(v) =
a

Γ(1− γ)

∫ ∞

v

e−(κ+u)xx−(1+γ)dx, (8)

while the jumps ϑj = (ϑ
(1)
j , . . . ,ϑ

(n)
j )⊤ are sampled from the base measure P0. The jumps J∗

j at
the fixed locations θ∗

j are gamma distributed:

f∗j (v) =
(κ+ u)nj−γ

Γ (nj − γ)
vnj−γ−1e−(κ+u)v, (9)

where nj are the multiplicities, i.e. the number of θj equal to θ∗
j . A fundamental merit of Ferguson

and Klass’ representation, compared to similar algorithms, is the fact that the random heights Ji
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are obtained in a descending order. Therefore, one can truncate the series in (7) at a certain finite
index Q to be decided via a moment-matching criterion (see Section 2.2). This also guarantees
that the highest jumps are not left out.

3. [θ | X, M̃ ]: resampling the latent cluster parameters given the data and the random measure. The
support of the conditional distribution of θi are the set of locations {ϑ̄j}∞j=1 = {θ∗

1, . . . ,θ
∗
Rn
,ϑ1, . . .}

with associated jump {J̄j}∞j=1 = {J∗
1 , . . . , J

∗
Rn
, J1, . . .} of M̃ ,

fθi|Xi,M̃
(s) ∝

∑
j

k (Xi | s) J̄jδϑ̄j
(ds). (10)

Simulating from this conditional distribution when an approximation with a finite number of jumps
has been determined is straightforward: one just needs to evaluate the right-hand side of the
expression above and normalise.

4. Updating the hyperparameters of P0. We only put a prior on the hyperparameters for the location
parameters, and found this to have a higher impact. Assuming a priori independence between
location and scale parameters of the clusters, the conditional posterior distribution on the hyper-
parameters given the data and the rest of the parameters only depends on the distinct location
parameters. A simple way to proceed is thus to consider a prior conjugate to the base measure.

We also include a resampling of the unique values of the cluster parameters via a M-H step to avoid
the ‘sticky clusters effect’, as suggested in Bush and MacEachern (1996).

We devote the next section to explaining the moment-matching criterion used for truncation in the
second conditional, which is a recent addition to the package BNPdensity.

2.2 Moment-matching criterion

Normalised Generalised Gamma (NGG) priors are infinite dimensional objects that are obtained by nor-
malising a generalised gamma process. Concrete implementation of NGG priors requires to truncate the
random series (1) at some level denoted Q, which results in some truncation error. Previous implementa-
tion of the package used to appeal to a relative error index, that we will denote eQ =

∑
i>Q Jiδθi , based

on the jumps themselves. We improve on this approach, by implementing the methodology proposed
by Arbel and Prünster (2017) which relies on a moment-based evaluation of the error, denoted by ℓM .
One of the main contributions of Arbel and Prünster (2017) is to warn that relying on the relative error
index eM can lead to overly optimistic conclusions in terms of approximation, especially for large values
of the discount parameter γ.

To be more specific, consider K moments of the total mass of the CRM ρ̃(X) =
∑∞

i=1 Ji, denoted
by mK = (m1, . . . ,mK)⊤. Such moments have a simple expression in terms of the cumulants, which
are themselves available in closed form, see for instance Table 1 in Arbel and Prünster (2017). Thus,
these exact moments can be computed and compared with their empirical counterparts obtained with
the Ferguson & Klass algorithm (Ferguson and Klass, 1972).

In order to make this methodology applicable, one needs to propose the truncation level Q(ℓ) required
to achieve a given approximation ℓ. Such map Q(ℓ) only depends on the NGG parameters and can be
computed once-for-all and distributed with the package. For reference, see the moment matching error
ℓ(Q) and the map Q(ℓ) respectively displayed in Figures 1 and 2 of Arbel and Prünster (2017). Ferguson
and Klass posterior sampling based on such a prescribed number of jumps Q(ℓ) is computationally more
efficient than having to iteratively compute the relative error eQ as done in the previous package version.

2.3 Clustering estimation

We focus here on the problem of estimating a data clustering from the Bayesian posterior inference
conducted so far. This is a long standing problem in Bayesian statistics (see for instance Dahl, 2006;
Lau and Green, 2007). Enumerating all partitions is practically not feasible, which typically requires
resorting to approximations.

Many ad-hoc procedures have been devised in the literature. However, as noted by Dahl (2006), it
seems counter-intuitive to apply an ad-hoc clustering method on top of a model which itself produces
clusterings. We adopt instead a fully Bayesian route by undertaking clustering on decision-theoretic
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grounds. We consider a loss function L and propose a Bayesian point estimator ĉ for a clustering
obtained as an argument which minimises the posterior expected loss given data X

ĉ = argmin
c′

∑
c

L(c′, c)π(c | X), (11)

where π(c | X) is the posterior distribution of clustering c. Often considered in the literature, the
posterior mode is an example of such a Bayesian estimator, based on the very crude 0-1 loss function.
When n is large, an MCMC sample from the posterior generally hardly visits twice the same clustering,
thus rendering the empirical mode of the MCMC output very sensitive to the initialisation of the chain
and of very limited validity in practice. Manifestly, many other loss functions can be considered and
expected to perform better than the 0-1 loss. One particular choice of a loss function stands out from
these in best estimating the number of groups in a clustering. It is called the variation of information,
denoted by VI, which is a loss function firmly established in information theory (Meila, 2007; Wade
and Ghahramani, 2018). The variation of information between two clusterings is defined as the sum of
their information (their Shannon entropies) minus twice the information they share. Simulations indicate
that the variation of information is a sensible choice: when other losses such as the Binder loss (Binder,
1978) typically tend to overestimate the number of clusters, the variation of information instead seems
to consistently recover it (see for instance the simulated examples, and more specifically Figures 6 to 8,
of Wade and Ghahramani, 2018).

An asset of the approach presented in Wade and Ghahramani (2018) is that it rests on a greedy
search algorithm to determine the minimum loss clustering of (11). Starting from the MCMC output,
this greedy approach explores the space of partitions and is not restricted to those visited by the MCMC
chain to find the optimum. We include the possibility to estimate the optimal clustering using both
the VI loss and Binder’s loss, along with other loss functions, within BNPdensity by adding an optional
dependence to GreedyEPL. Note that clustering estimation is also available for censored data, although
graphical representation is more tricky (see also the legend to Figure 8).

data(acidity)
out <- MixNRMI2(acidity)
clustering = compute_optimal_clustering(out)
plot_clustering_and_CDF(out, clustering)
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Figure 1: Visualisation of the clustering induced by the BNP mixture model, for the acidity dataset.
The solid line represents the empirical Cumulative Distribution Function (CDF), dots represent data
points. The abscissa of each point is its value, the ordinate is the value of the estimated CDF at that
point. Each colour denotes the cluster estimated by minimising the VI loss function.
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3 Package description

The implementation of BNPdensity package is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=BNPdensity. Fitting a model with BNPdensity
starts with calling one of the two functions, MixNRMI1 or MixNRMI2, or their versions for censored data.
The function MixNRMI1 fits a semiparametric mixture model where all components have a common
scale parameter σ with an independent parametric prior, σ ∼ Pσ, while MixNRMI2 is devoted to fully
nonparametric mixtures of location and scale parameters:

Xi | θi, σi
ind∼ k(· | θi, σi), i = 1, . . . , n,

(θi, σi) | P̃
iid∼ P̃ , i = 1, . . . , n,

P̃ ∼ NGG(α, κ, γ;P0).

Data and prior parameters are passed to the model function as arguments. The MixNRMIx functions
also take a number of arguments to choose the BNP model, the mixture kernels, a variety of priors and
tuning parameters for the Markov chain Monte Carlo sampling algorithm. The main arguments of the
model functions are presented below.

� distr.k: Integer number identifying the mixture kernel k. Five kernels parameterised by their
location and scale are implemented: a Gaussian or double exponential kernel for real data, a gamma
or lognormal kernel for positive data and a beta kernel for data on the unit interval. The flexibility
of this choice is afforded by the specific algorithm used in BNPdensity.

� distr.py0: Integer number identifying the base measure P0 on the location parameters. Three
choices are available, which are constrained by the conjugate prior we place on the hyperparameters
of P0: Gaussian, gamma and beta. Additional arguments can be used to tune the shape of the
base measure.

� distr.py0, distr.pz0: Integer number identifying the base measure P0 on scale parameters. For
the semiparametric model (MixNRMI1), this argument is not provided and the base measure is a
gamma distribution on the common scale parameter. Traditionally, there is sufficient information
in the data to estimate the common scale parameter and inference is not very sensitive to the shape
of the base measure. For the fully nonparametric model, the base measure on the scale parameters
can be a gamma, lognormal, half Cauchy, half normal, half Student-t, uniform or truncated normal
distribution. Additional arguments can be used to tune the shape of the base measure.

� (Alpha, Kappa, Gama): Mixing measure parameters identifying a Normalised generalised
gamma process, see the Lévy intensity (2) with parameters (α, κ, γ) for more details.

� The rest of the parameters provide handles to tune the MCMC algorithm.

Functions to fit a model return an object with print, summary and plot methods, as follows (the latter
plot is represented in Figure 2):

data(acidity)
out <- MixNRMI1(acidity)
## MCMC iteration 500 of 1500
## MCMC iteration 1000 of 1500
## MCMC iteration 1500 of 1500
## >>> Total processing time (sec.):
## user system elapsed
## 45.840 0.035 45.886

summary(out)
## Density estimation using a Normalized stable process,
## with stability parameter Gamma = 0.4
##
## A semiparametric normal mixture model was used.
##
## There were 155 data points.
##
## The MCMC algorithm was run for 1500 iterations with 10% discarded for burn-in.
##
## To obtain information on the estimated number of clusters,
## please use summary(object, number_of_clusters = TRUE).

4 Package comparison

In this section, we discuss in detail the features and functionalities offered in three R packages addressing
BNP density estimation, namely: BNPdensity, BNPmix (Canale et al., 2019), and DPpackage (Jara

7

https://CRAN.R-project.org/package=BNPdensity


0.00

0.25

0.50

0.75

3 4 5 6 7
Data

D
en

si
ty

Figure 2: Density estimate (solid black line), 95% credible interval (blue dotted line) and histogram of
the acidity data fitted with a semiparametric model. Figure obtained using the command plot(out).

et al., 2011) (DPpackage was removed from the CRAN repository, but former versions are available
at https://cran.r-project.org/src/contrib/Archive/DPpackage/). Since the focus of the present
paper is mixture modeling and density estimation, note that other packages relying on BNP approaches
but tackling other questions such as regression (PReMiuM, Liverani et al., 2015, Bayesian Regression,
Karabatsos, 2017), or meta-analysis (bspmma, Burr, 2012) are not discussed here. Likewise, non Bayesian
approaches are deliberately set aside. Table 1 summarises the comparative study of this section.

4.1 Inference algorithm

Efficient posterior computation for BNP mixture models relies on two types of approaches: marginal
or conditional. Marginal methods incorporate analytic integration of infinite dimensional parts of the
parameter, which is the case of DPpackage and BNPmix. Instead, BNPdensity relies on a conditional
sampler that directly samples trajectories of the processes. More specifically, the Ferguson & Klass
algorithm is employed (see Section 2.1), with the crucial merit of ensuring that largest weights in the
series representation are not left out. This is to be compared to the stick-breaking representation where
the weights sequence is decreasing only stochastically (that is, in expectation).

4.2 Mixing measure

As described in Section 2, BNP mixture modeling and density estimation require to specify some mixing
measure. We start here by comparing the mixing measures available in the three packages.

BNPmix provides a set of functions for density estimation with Dirichlet process and Pitman–Yor
mixing measures via marginal algorithms. DPpackage is a more general purpose package than both
BNPdensity and BNPmix, including functions for regression models, generalised linear mixed models, and
generalised additive models, on top of the density model. However, the implementation is primarily
tailored to the Dirichlet process mixing measure. A natural extension to the Dirichlet and Pitman–Yor
processes are Gibbs-type priors (De Blasi et al., 2015). NRMIs are large classes of priors than Gibbs-type
priors, and their intersection is identified by the NGG process considered in BNPdensity, as established
in Lijoi et al. (2008). Being an extremely general class of priors, Gibbs-type processes are beyond reach
for a general treatment in a software, however both BNPdensity and BNPmix packages cover its most
commonly used sub-classes. Pitman–Yor process is not implemented in BNPdensity as it is not an NRMI;
yet, a dependence to BNPmix is made in BNPdensity, in such a way that users interested in comparing
their results with Pitman–Yor can also use the dedicated functions MixPY1 (semiparametric) and MixPY2

(fully nonparametric) that call BNPmix PYdensity function. The mixing measures covered by the three
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packages and their mutual relationships are illustrated in Figure 3.

Gibbs NRMI

PY NGG

DP NS NIG

Figure 3: BNP priors mentioned in this section. An arrow indicates that the target is a special case
or a limit case of its origin. Gibbs: Gibbs-type process. NRMI: normalised random measures with
independent increments. NGG: normalised generalised gamma process. PY: Pitman–Yor process. NIG:
normalised inverse Gaussian process. NS: normalised stable process. DP: Dirichlet process. In green:
covered by BNPdensity package.

4.3 Prior characteristics

4.3.1 Non-conjugacy

Mixture models present the difficulty that the likelihood goes to infinity for infinitely small clusters
located exactly on one observed data point. This may induce numerical problems and instabilities, and
such tiny clusters are almost invariably undesirable in practical applications. A reasonable solution in
the Bayesian framework is to use a prior distribution on scale parameters with little mass on very small
values, i.e. a gamma distribution with shape parameter larger than 1 or a truncated distribution. We
might also want to provide a different kind of information on cluster scales: for instance, for a dataset
whose variance has been scaled to 1, there is no reason to find clusters with a variance much larger than
one. This would suggest using a prior with an upper bound, or with light tails for large values. Finally,
flexibility in the choice of the kernel k is a clear asset when modelling real data, to choose a reasonable
error model. These three examples suggest that we might need a certain flexibility in the specification
of the prior distribution on scale parameters or in the choice of the kernel.

The inference algorithm used in BNPdensity and presented in Section 2.1 does not rely on conjugacy
between the base measure and the kernel of the mixture, as do standard algorithms for sampling from
a Dirichlet mixture process such as that presented in Escobar and West (1995). In contrast, DPpackage
and BNPmix are limited to using conjugate couples of base measure and the mixture kernel.

Not being bounded to conjugacy allows us first to use any relevant kernel for the mixture. Moreover,
even in the case of the normal kernel, this removes the dependence imposed in the conjugate case between
the location of the clusters and their variances. More precisely, this allows a full flexibility on specifying
priors based on external knowledge, and proves particularly useful concerning the scale parameters of the
kernels. Indeed, half-Cauchy or half-Gaussian priors for hierarchical variance parameters have recently
become popular Gelman (2006); Chung et al. (2015). The illustration on Species Sensitivity Distribution
(SSD) (Section 5), where the data is scaled, offers such an example where both an upper bound and
lower bound on the cluster variances are useful.

4.3.2 Prior distribution on number of components

Prior elicitation is a delicate task in Bayesian modeling. BNPdensity provides some guidelines on how
to choose parameters (Alpha, Kappa, Gama) with two functions, one for computing the prior expected
number of components, and one for plotting this prior distribution. Comparable functionalities are
offered in BNPmix and DPpackage.
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The (Alpha, Kappa, Gama) parametrisation allows to easily compare several well known priors.
We already mentioned that the Dirichlet process can be obtained by setting Gama = 0, the normalised
inverse Gaussian process by setting Alpha = 1, Gama = 1/2 and the normalised stable process by setting
Alpha = 1, Kappa = 0. The stable process is a convenient model because its parameter γ has a simple
interpretation: it can be used to tune how informative the prior on the number of components is.
Small values of Gama bring the process closer to a Dirichlet process, where the prior on the number of
components is a relatively peaked distribution around α log n. In contrast, the larger the value of Gama
is, the flatter the distribution is. More guidelines on how to choose the parameters may be found in
Lijoi et al. (2007b), notably by considering the expected prior number of components. The expected
prior number of components for normalised generalised gamma processes is not trivial to compute due to
numerical instabilities, but we provide functions to compute prior distribution on the number of clusters
for the normalised stable process and for the Dirichlet process. These functions require installing the
packages gmp and Rmpfr for Multiple Precision Arithmetic, both available on CRAN.
Rmpfr::asNumeric(expected_number_of_components_stable(n = 100, Gama = 0.4))
## [1] 7.102731

expected_number_of_components_Dirichlet(n = 100, Alpha = 1.)
## [1] 5.187378

We also provide a way to visualise the prior distribution on the number of components:
plot_prior_number_of_components(100, 0.4)
## Computing the prior probability on the number of clusters for the Dirichlet process
## Computing the prior probability on the number of clusters for the Stable process
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0.05

0.10

0.15

0.20

0 25 50 75 100
K

P
K

Process

Dirichlet

Stable

Figure 4: Prior distribution on the number of clusters with 100 data points, for the stable process with
γ = 0.4 and for the Dirichlet process with α = 1.

4.4 Censored data

BNPdensity can deal with left, right and interval-censored data by using the functions MixNRMI1cens

and MixNRMI2cens. The same holds true for DPpackage, while BNPmix does not handle censored data
at all.
Censored data usually emerge from imperfections of the measurement process, such as detection limits
(high or low) or saturation, low measurement precision, or binning of the data. Improper treatment
of censored data is clearly a source of bias (Helsel, 2005): in the case of right-censored data due to a
detection limit for high values, for instance, data are not censored at random and discarding them or
substituting them deteriorates the dataset.
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We deal with censored data by using a version of the likelihood (Helsel, 2005) adapted to censored data.
More specifically, denote by Fk the cumulative distribution function of the kernel k. The heart of the
method is then to replace k(x | θ) by Fk(x | θ) for a left-censored observation, by 1 − Fk(x | θ) for a
right-censored observation, and by Fk(xr | θ)− Fk(xl | θ) for an interval-censored observation [xl, xr].

4.5 Visualisation and programming

4.5.1 Convergence checking and model evaluation

BNPdensity offers several tools for assessing MCMC convergence and performing model checking and
comparison. Notably, we provide a conversion function as.mcmc to interface the package with the coda
package for analysing output and carrying out diagnostics on MCMC. We are not aware of such tools
for BNPmix or DPpackage.
This is done by running multiple chains starting from different initial conditions, potentially in parallel,
and converting them into an mcmc object that can be processed by coda. A simple solution for running
multiple chains does not seem available for BNPmix and DPpackage.
One conceptual detail for assessing convergence is that, due to the nonparametric nature of the model,
the number of parameters which could potentially be monitored to measure auto-correlation of the
chains or effective sample size varies. The location parameters of the clusters, for instance, vary at each
iteration, and even the labels of the clusters vary, which makes it tricky to follow. However, it is possible
to monitor the log-likelihood of the data along the iterations, the value of the latent variable u, the
number of components and for the semi-parametric model, the value of the common scale parameter.
The following code shows how to compute the potential scale reduction factor (Gelman and Rubin, 1992):

library(coda)
data(acidity)
fit = multMixNRMI1(acidity, extras = TRUE, Nit = 20000)
mcmc_list = as.mcmc(fit)
gelman.diag(mcmc_list)

## Potential scale reduction factors:
##
## Point est. Upper C.I.
## ncomp 1.02 1.06
## Sigma 1.02 1.07
## Latent_variable 1.02 1.05
## log_likelihood 1.01 1.04
##
## Multivariate psrf
##
## 1.03

A trace plot for the chains may also be obtained by calling traceplot(fit); see Figure 5.

ncomp Sigma

Latent_variable log_likelihood
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Figure 5: Trace plot of four chains in the MCMC for a semi-parametric model.
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Table 1: Comparison of R packages performing BNP density estimation: BNPdensity, BNPmix, and
DPpackage. (a) See discussion in Section 4.2. (b) The DPpackage LDPDdoublyint function, for Linear
Dependent Poisson Dirichlet Process Mixture Models for the Analysis of Doubly-Interval-Censored Data
could in principle be used for Pitman–Yor process mixture density estimation, although the interface
(and the name) suggests it is not intended for this.

BNPdensity BNPmix DPpackage

4.1 Inference algorithm
Conditional yes no no

Marginal no yes yes

4.2 Mixing measure

Dirichlet process (DP) yes yes yes

Norm. inverse Gaussian (NIG) yes no no

Norm. stable (NS) yes no no

Norm. gener. gamma (NGG) yes no no

Pitman–Yor (PY) no(a) yes no(b)

4.3 Prior characteristics
Non Gaussian kernels allowed yes no no

Functions for prior elicitation yes yes yes

4.4 Data All types of censored data yes no yes

4.5 Vis. & Programming

MCMC conv. assessm. yes no no

Graphical model checking yes no no

Clustering vis. tools yes no no

Parallel computing yes no no

We also provide tools for assessing goodness of fit. Graphical assessment can be performed comparing
various representations of the estimated distributions against representations of the empirical distribution
(Figure 6). Such plots may be obtained from a fitted object using the command GOFplots(fit, qq plot

= TRUE). The density plot provides a familiar representation of the Nonparametric distribution, while
the CDF plot is probably the most classical visualisation of goodness of fit. The percentile-percentile plot
focuses on the goodness of fit in the center of the distribution, while the quantile-quantile plot focuses
on the goodness of fit in the tails of the distribution. The density, CDF, percentile and quantiles used
in the plots are the expected posterior quantities, computed from the MCMC sample. Computation
of the theoretical quantiles is a fairly expensive operation because it requires numerically inverting the
CDF. We choose not to compute the quantile-quantile plot by default, and when we do, the compu-
tation is done on a thinned MCMC chain with an argument provided to control the level of thinning.

12



0.0

0.2

0.4

0.6

3 4 5 6 7
Data

P
D

F

0.00

0.25

0.50

0.75

1.00

3 4 5 6 7
Data

C
D

F

●
●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Theoretical percentiles

E
m

pi
ric

al
 p

er
ce

nt
ile

s

●

●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●

●●●●
●●
●●●●●

●●
●●
●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●
●●●●●●

●●●●●
●●●●●●

●●●●
●●●●

●

3

4

5

6

7

4 5 6 7
Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0.00

0.01

0.02

0.03

0.04

0.05

0 20 40
Data

P
D

F

0.00

0.25

0.50

0.75

1.00

0 20 40
Data

C
D

F

●●●●●
●

●
●●

●
●●●

●
●

●
●

●
●

●

●

●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Theoretical percentilesE

m
pi

ric
al

 p
er

ce
nt

ile
s 

(T
ur

nb
ul

l)

●
●●●

● ●
●

●●

●●

●● ●

● ●
●

●●●
●●●

20

30

40

50

20 30 40 50
Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s 

(T
ur

nb
ul

l)

Figure 6: Graphical goodness of fit plots for censored (right) and non censored data (left). The top
row is the mean density estimate with a histogram for the non censored data. The middle row is the
estimated CDF with the empirical CDF for non censored data, and with the Turnbull estimate of the
CDF for censored data. The bottom row are percentile-percentile plots where the empirical percentiles
are computed from the empirical CDF for the non censored data, and from the Turnbull estimate for
the censored data.

We also provide tools for model comparison based on expected predictive density. The conditional pre-
dictive ordinate (CPO) is the expected predictive density of a data point given the prior and all other
data points, so it is the leave-one-out expected predictive density of the model (Gelman et al., 2014),
a typical cross-validation criterion. As such, it is a measure of predictive power with a penalisation for
over-fitting. A Monte Carlo approximation of the CPO is easily available and can be used to compare a
semi-parametric model to the fully nonparametric model for instance:
set.seed(0)
normal_mixture <- MixNRMI2(acidity, distr.k = 1, Nit = 15000)
dbl_exponential_mixture <- MixNRMI1(acidity, distr.k = 4, Nit = 15000)
c(median(normal_mixture$cpo), median(dbl_exponential_mixture$cpo))

## [1] 0.279 0.271

Model Mean CPO Median CPO

Nonparametric normal mixture 0.362 0.279

Semi parametric double exponential mixture 0.357 0.271

4.5.2 Clustering visualisation tools

As described in Section 2.3, BNPdensity provides functions for clustering estimation,
compute optimal clustering, and visual representation, plot clustering and CDF. See also Figure 1
and Figure 8 for illustrations. We are not aware of such clustering tools for BNPmix or DPpackage.

5 Case study: Species Sensitivity Distribution

We present an application of nonparametric density estimation for environmental data.
Assessing the response of a community of species to an environmental stress is of critical importance
for ecological risk assessment. Methods for this purpose vary in levels of complexity and realism. SSD
represents an intermediate tier, more refined than rudimentary assessment factors (Posthuma et al.,
2002) but practical enough for routine use by environmental managers and regulators in most developed
countries (Australia, Canada, China, EU, South Africa, USA,. . . ). The SSD approach is intended to
provide, for a given contaminant, a description of the tolerance of all species possibly exposed using
information collected on a sample of those species. This information consists of a single species-specific
value, which marks a limit over which the species suffers adverse effects. This value is very often censored
(Kon Kam King et al., 2014), because measuring it is both costly and difficult (bioassay experiments).
The tolerance of all species possibly exposed is described by a distribution, fitted on the sample of
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species (Aldenberg and Jaworska, 2000). The quantity of interest for ecological risk assessment is the
Hazardous Concentration for 5% of the Species (HC5) , which corresponds to the 5th percentile of the
SSD distribution. The lack of justification for the choice of any given parametric distribution has sparked
several research directions. Some authors (Xu et al., 2015; He et al., 2014; Jagoe and Newman, 1997;
Van Straalen, 2002; Xing et al., 2014; Zhao and Chen, 2016) have sought to find the best parametric
distribution by model comparison using goodness-of-fit measures. The general understanding is that no
single distribution seems to provide a superior fit and that the answer is dataset dependent (Forbes and
Calow, 2002). Therefore, the log-normal distribution has become the customary choice, notably because
it readily provides confidence intervals on the HC5, and because model comparison and goodness of fit
tests have relatively low power on small datasets, precluding the emergence of a definite answer to the
question.
The availability of a package such as BNPdensity allows to move beyond this customary assumption very
easily. NRMIs offer a flexible nonparametric mixture model, which can accommodate distributions very
different from a normal distribution. Barrios et al. (2013) and Kon Kam King et al. (2017) show that
NRMIs have better performance than Dirichlet process mixtures, kernel density estimates (the recent
approach proposed by Wang et al. (2015)) or simple one-component normal models. Moreover, there are
good reasons to believe that the distribution of species sensibility should at least allow for multimodality.
Indeed, many stressors target specifically certain species groups, such as insecticides for insects, while
they are developed with the aim of leaving other species group unaffected. Therefore, it is expected that
there should at the very least be a group of sensitive species and a group of less sensitive species. This is
why Zajdlik et al. (2009) propose to model the species sensitivity distribution as a finite mixture, with
raises customary issues of model choice. Using a BNP approach via BNPdensity allows generalising this
approach while circumventing the theoretical and technical difficulties of estimating the right number of
components in a mixture.
It is also important to use a method which may be applied to small datasets. This is another motivation
for using a BNP approach, where model complexity adapts to the number of data points, and will
tend to suggest simple or even univariate mixtures when few data points are present. On the contrary,
many classical nonparametric approaches to modelling species sensitivity distribution (Wang et al., 2015;
Verdonck et al., 2001) only work well on large datasets.
To model species sensitivity distribution, we carefully select the parameters in the package BNPdensity.
Given that concentrations vary on a wide range, it is common practice to work on log-transformed
concentrations. We choose a fully nonparametric model using the normalised stable process (Kingman,
1975) as mixing random measure (hence setting Alpha = 1 and Beta = 0). We favor this process over
the more classical Dirichlet process because it allows specifying less informative prior on the number
of components, which makes it more robust to model misspecification (Barrios et al., 2013). With this
process, the amount of information from the prior is controlled by the stability parameter γ, which
we set to 0.4 (Gama = 0.4). This choice reflects a compromise between model flexibility (γ → 1) and
computational effort (γ small, see also section 3). As we wish the location parameter of the clusters µ
to be estimated freely, we use the default weakly informative prior of a normal base measure f10 (µ|φ) =
N (µ|φ1, φ2) with hyperpriors on φ given by f(φ) = N (φ1|ψ1, ψ2)ga(φ2|ψ3, ψ4) (see also Barrios et al.
(2013) for more details).
For the prior on the scale of the clusters, we want to use two pieces of information: first, since the data
has been scaled, scale parameters are likely to be smaller than 1, the extreme case being a mixture with
a single component. Second, we want to avoid the possibility of extremely small clusters centred on a
data point, because they are not very interesting from an interpretation point of view, and because they
cause numerical problems (the likelihood diverges when a cluster scale goes to 0). Therefore, we choose
a uniform distribution between 0.1 and 1.5 for the prior on the cluster scales.
In keeping with the traditional assumption of normality of the species sensitivity distribution, we choose
to use a normal kernel for the mixture (distr.k = 1).
We now compare three approaches to modelling Species Sensitivity Distribution (SSD): the most standard
and recommended approach of Wagner and Lokke (1991); Aldenberg and Jaworska (2000), which is a
simple normal model, the most recent proposal by (Wang et al., 2015) which is a normal kernel density
estimate and the BNP normal mixture made available with BNPdensity that we presented above. As
already stated, a quantity of interest is the 5th percentile of the distribution. We choose as an estimator
the median of the posterior distribution of the 5th percentile, while the 95% credible bands are formed
by the 2.5% and 97.5% quantiles of the posterior distribution of the 5th percentile. The 5th percentile
of the Kernel Density Estimate (KDE) is obtained by numerical inversion of the cumulative distribution
function, and the confidence intervals using the nonparametric bootstrap. The 5th percentile of the
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normal SSD and its confidence intervals are obtained following the classical method of Aldenberg and
Jaworska (2000).
We use data from an ecotoxicity research database as pre-processed in Hickey et al. (2012). We extract
data for the insecticide Carbaryl. The dataset contains 57 species, of which approximately 40% have
censored data. We obtain a non censored version of this dataset by excluding right or left censored data,
and replacing interval censored data by the midpoint of the interval. Helsel (2006); Dowse et al. (2013);
Kon Kam King et al. (2014) have shown that transforming censored data risks inducing bias, hence the
ability of BNPdensity to accommodate censoring is particularly valuable for SSD. There does not appear
to be any easily available approach to use KDE methods on all types of censored data. Figure 7 shows a
comparison of three approaches to SSD. The left hand side of Figure 7 shows that the BNP model is more
flexible than both the KDE and normal model, while the right hand side shows that it is no less robust,
according to a leave-one-out cross validation criterion. The middle panel shows that although the BNP
model is more flexible and takes into account uncertainty on the number of clusters, the estimation of the
5th percentile is not much more uncertain than with the other methods. Significantly larger uncertainty
would have jeopardised the real world applicability of the BNP-SSD.
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Figure 7: Top panel: non censored data. Bottom panel: censored data. The normal model is represented
in blue, the KDE in green and the BNP in red. Left: density plot and histogram for the Carbaryl data
using several SSD methods. The histogram is not available for censored data. Center: 5th percentile
estimate (not available for KDE with censored data). Right: boxplot of the CPO (for BNP) and Leave-
One-Out (LOO) (for normal and KDE, not available for KDE with censored data), one value for each
data point.

An added value of the BNP-SSD is that on top of being more flexible than the classic normal SSD and
more robust than the nonparametric approach of Wang et al. (2015), as a mixture model it naturally
induces a clustering of the data which may contain some biologically interesting information. We imple-
mented functions to estimate the optimal clustering from the MCMC sample and visualise it, potentially
including a label on each point to reflect available meta data for interpretation. In the context of SSD, it
is interesting to know what drives species sensitivity: it might be taxonomy, in the sense that taxonomi-
cally close species will tend to respond in the same way and belong to the same cluster, but other drivers
have been suggested such as habitat, feeding behaviour or respiration, which may not coincide with
taxonomy. Figure 8 shows the clustering induced in the case of the insecticide Carbaryl. In this case,
there is a large cluster mostly composed of fish and molluscs, and a cluster mostly composed of insects
and crustaceans, showing that the clustering structure is consistent with a finer taxonomic structure.
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This suggests that for Carbaryl, taxonomy may very well be the main driver for sensitivity.
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Figure 8: Graphical representation of the clustering induced by the mixture model for the Carbaryl
data. The solid line represents the Turnbull estimate of the CDF, the points loosely represent the data.
Interval censored data are represented at the middle of the interval, left and right censored data are
not represented. A label describing the taxonomic group of each species is written above each point,
AM: Amphibians, AN: Annelids (worms), CR: Crustaceans, IN: Insects, ML: Molluscs, OS: Osteichthyes
(fish). On the left panel, the points and the labels are coloured according to the estimated cluster index.
On the right panel, the labels are coloured according to the taxonomic group and the points are not
coloured.

Computational details

The results in this paper were obtained using R 4.1.1 with the BNPdensity package version 2020.3.4.
R itself and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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