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1 Introduction

This document explains how to implement in Matlab the methodology developed in

“Characterizing Markov-Switching Rational Expectations (MSRE) models”by Cho (2011).

The easiest way to learn how to use this matlab package would be to run examples. Run

“Replicate.m”and “ReplicateQ.m” to replicate the results of the paper, or run “DL1.m”and

“DL2.m” for models without predeterminate variables, or run “LWZ1.m”and “LWZ2.m”for

models with predetermined variables.

To test determinacy/indeterminacy and obtain the general solutions, do the following.

One should have a MSRE model, specify the necessary input arguments, run msres.m

“msres.m” and follow the judgment below.

1. If the forward solution exists (forward convergence condition (FCC) holds),

(a) If the forward solution is mean-square stable (MSS) and determinacy con-

ditions hold, the model is determinate and the determinate solution is the

forward solution. Stop.

(b) If the forward solution is mean-square stable (MSS) and determinacy condi-

tions do not hold, then run “Find Min R Psi LkL.m”.

i. If the indeterminacy conditions hold, the model is indeterminate. If one

is interested in fundamental equilibria only, pick up the forward solution

and stop. If one wants to construct an indeterminate solution, it is the

forward solution plus the non-fundamental component, which is computed

by “Find Min R Psi LkL.m”. But whenever you run this code, you will get

a different non-fundamental component. Stop.

ii. If the indeterminacy conditions do not hold, the forward solution is the

unique relevant MSS solution. The model may or may not be determinate

technically, but all other MSV solutions violate the no-bubble condition

(NBC). Stop.

(c) If the forward solution is not mean-square stable, the model has no MSS

solution satisfying the NBC. Stop.

2. If the FCC fails, there is no relevant equilibria because any MSV solution violates

the NBC. Stop.

1



Section 2 introduces notations, key concepts and summarizes the main results of the

paper. Section 3 illustrates how to implement the procedure described above in matlab

language. Section 4 explains the main codes in detail. Section 5 explains the examples.
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2 Summary of the Paper

We first present the MSRE models and the classes of the REEs. The general model is

given by:

xt = Et[A(st, st+1)xt+1] +B(st)xt−1 + C(st)zt, (1)

zt = Rzt−1 + εt, (2)

where

• xt: n× 1 vector of endogenous variables.

• zt: m× 1 vector of exogenous variables.

• εt: m× 1 vector of white noises.

• st: S-regime Markov chain.

• P : S×S transition matrix where pij ≡ Pr(st = j|st−1 = i) is the (i, j)-th component

of P .

• A(·), B(·): n× n coefficient matrices.

• C(·): n×m coefficient matrix

• R: m×m stationary coefficient matrix.

Proposition 1 Any Rational Expectations solution to model (1) with (2) can be written

as a sum of a MSV (fundamental) solution and a non-fundamental component, wt as:

xt = [Ω(st)xt−1 + Γ(st)zt] + wt. (3)

The first two components of the right-hand side constitute a MSV solution, where

(Ω(st),Γ(st)) must satisfy the following conditions for all st and st+1 = 1, 2, ..., S:

Ω(st) = Ξ(st)
−1B(st), (4a)

Γ(st) = Ξ(st)
−1C(st) + Et[F (st, st+1)Γ(st+1)]R, (4b)
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where Ξ(st) and F (st, st+1) are defined as:

Ξ(st) = (I − Et[A(st, st+1)Ω(st+1)]) , (5)

F (st, st+1) = Ξ(st)
−1A(st, st+1), (6)

under the regularity condition that Ξ(st) is non-singular for all st. The non-fundamental

component wt must satisfy the following:

wt = Et[F (st, st+1)wt+1]. (7)

The ultimate goal of the paper is to derive determinacy and indeterminacy conditions.

To complete our mission, we follow the four steps explained below.

1. We develop the forward method to solve for a particular fundamental equilibrium,

referred to as forward solution, xt = Ω∗(st)xt−1+Γ∗(st)zt together with F ∗(st, st+1),

which does not require any information about stability and determinacy.

2. Next, we introduce the concept of mean-square stability and its properties, and

show that the forward solution is mean-square stable if all the eigenvalues of a

probability weighted matrix Ψ̄Ω∗⊗Ω∗ (to be defined later) lie inside the unit circle.

3. It is proved that if a probability weighted matrix ΨF ∗⊗F ∗ has all its eigenvalues lie

inside or on the unit circle, there is no other mean-square stable process wt. A key

implication is that one does not need to obtain the full set of solutions of wt and

examine stability of them.

4. Finally, the main proposition follows: if rσ(Ψ̄Ω∗⊗Ω∗) < 1 and rσ(ΨF ∗⊗F ∗) ≤ 1

where rσ(·) represent the maximum absolute eigenvalue of the argument matrix,

then there is no other mean-square stable MSV solutions. This big claim crucially

depends on one key property of the forward method, plus some other important

results we derived. This explains why we need to first develop the forward method.

We additionally develop indeterminacy conditions as well.

Below we explain these four steps and we summarize the results at the end of this section.
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2.1 Forward Method for MSRE Models

Proposition 2 Consider model (1) together with (2). For any initial regime st, xt,

xt−1 and zt, there exists a unique sequence of real-valued matrices (Ωk(st), Γk(st)), k =

1, 2, 3, ... such that:

xt = Et[Mk(st, st+1, ..., st+k)xt+k] + Ωk(st)xt−1 + Γk(st)zt, (8)

where Ω1(st) = B(st), Γ1(st) = C(st) and for k = 2, 3, ...,

Ωk(st) = Ξk−1(st)
−1B(st), (9a)

Γk(st) = Ξk−1(st)
−1C(st) + Et[Fk−1(st, st+1)Γk−1(st+1)]R, (9b)

with Ξk−1(st) and Fk−1(st, st+1) given by:

Ξk−1(st) = (In − Et[A(st, st+1)Ωk−1(st+1)]), (10)

Fk−1(st, st+1) = Ξk−1(st)
−1A(st, st+1), (11)

if the following regularity condition is satisfied for all k > 1 and st = 1, 2, ..., S:

|Ξk−1(st)| 6= 0. (12)

We define some key concepts and results of the forward method.

Definition 1 The MSRE model (1) is said to satisfy the forward convergence condition

(FCC) if there exist (Ω∗(st),Γ
∗(st)) such that Ω∗(st) = lim

k→∞
Ωk(st), Γ∗(st) = lim

k→∞
Γk(st)

and F ∗(st, st+1) = lim
k→∞

Fk(st, st+1) for every st and st+1.

Definition 2 The following forward solution to the model (1) is defined as:

xt = Ω∗(st)xt−1 + Γ∗(st)zt. (13)

The general solution associated with this forward solution is given by xt = Ω∗(st)xt−1 +

Γ∗(st)zt + wt where wt must satisfy

wt = Et[F
∗(st, st+1)wt+1]. (14)

Definition 3 A rational expectations solution to the MSRE model (1) is said to satisfy
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the no-bubble Condition (NBC) if the expectation of the future endogenous variables con-

verges to zero in the forward representation of model (8) when expectations are formed

with that solution:

lim
k→∞

Et[Mk(st, st+1, ..., st+k)xt+k] = 0n×1. (15)

Proposition 3 The forward solution (13) to the MSRE model (1) with (2) exists if and

only if the model satisfies the FCC, and it is the unique MSV solution that satisfies the

no-bubble condition.

2.2 Mean-Square Stability

Consider the following n× 1 process yt+1:

yt+1 = G(st, st+1)yt +H(st+1)ηt+1, (16)

where G(st, st+1) and H(st+1) are n× n, n×m matrices, respectively. ηt is an arbitrary

m× 1 covariance-stationary (wide-sense stationary) process, independent of st.

Definition 4

ΨG = [pijGij] =

 p11G11 ... p1SG1S

... ... ...

pS1GS1 ... pSSGSS

 ,

Ψ̄G = [pjiGji] =

 p11G11 ... pS1GS1

... ... ...

p1SG1S ... pSSGSS

 ,

ΨG⊗G = [pijGij ⊗Gij] =

 p11G11 ⊗G11 ... p1SG1S ⊗G1S

... ... ...

pS1GS1 ⊗GS1 ... pSSGSS ⊗GSS

 ,

Ψ̄G⊗G = [pjiGji ⊗Gji] =

 p11G11 ⊗G11 ... pS1GS1 ⊗GS1

... ... ...

p1SG1S ⊗G1S ... pSSGSS ⊗GSS

 .
Definition 5 rσ : Rn×n → R is a spectral radius operator such that rσ(X) = max1≤i≤n{|λi|}
where λi is an eigenvalue of n× n matrix X.
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Theorem 1 For the process (16), if rσ(Ψ̄G⊗G) < 1, then rσ(Ψ̄G) < 1.

Theorem 2 The process (16) is mean-square stable if and only if rσ(Ψ̄G⊗G) < 1.

By these definitions and concepts, we can say that the forward solution (13) is MSS

if rσ(Ψ̄Ω∗⊗Ω∗) < 1.

2.3 Non-existence of MSS Non-Fundamental Components

Proposition 4 Any non-fundamental component wt in (7) can be written as:

wt+1 = Λ(st, st+1)wt + V (st+1)V (st+1)′ηt+1 (17)

where V (st) is an n×k(st) matrix with orthonormal columns, 0 ≤ k(st) ≤ n and k(st) >

0 for some st. ηt is an arbitrary n × 1 covariance-stationary innovations such that

Et[V (st+1)V (st+1)′ηt+1] = 0n×1, Λ(st, st+1) = V (st+1)Φ(st, st+1)V (st)
′ for some k(st+1)×

k(st) matrix Φ(st, st+1) such that

S∑
j=1

pijFijVjΦij = Vi, for 1 ≤ i ≤ S. (18)

where Vi = V (st = i), Φij = Φ(st = i, st+1 = j), Fij = F (st = i, st+1 = j).

Lemma 3 Consider two processes wt+1 = Λ(st, st+1)wt and ut+1 = F ′(st, st+1)ut. The

following holds.

1. If rσ(Ψ̄F ′⊗F ′) < 1 and rσ(Ψ̄Λ⊗Λ) < 1, then rσ(Ψ̄Λ⊗F ′) < 1 and wt+1 + ut+1 is

mean-square stable.

2. If rσ(Ψ̄F ′⊗F ′) ≤ 1 and rσ(Ψ̄Λ⊗F ′) ≥ 1, then rσ(Ψ̄Λ⊗Λ) ≥ 1.

Lemma 4 For any process (17) subject to (18), the following holds.

1. Ψ̄Λ⊗F ′ contains at least one root of 1, hence, rσ(Ψ̄Λ⊗F ′) ≥ 1.

2. rσ(Ψ̄Λ⊗Λ) ≥ 1/[rσ(ΨF⊗F )] for all Λ(st, st+1).

Assertion 2 of Lemma 4 shows that 1/[rσ(ΨF⊗F )] is the lower bound of rσ(Ψ̄Λ⊗Λ) for all

Λ.

Proposition 5 Consider equation (14). Suppose that the following condition holds:

rσ(ΨF ∗⊗F ∗) ≤ 1 (19)
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Then there is no stochastic MSS process wt satisfying (14).

2.4 Determinacy

Proposition 6 Suppose that the MSRE model (1) satisfies the following properties.

1. The forward solution (13) exists.

2. rσ(Ψ̄Ω∗⊗Ω∗) < 1

3. rσ(ΨF ∗⊗F ∗) ≤ 1,

Then, there is no other mean-square stable MSV solution. Therefore, the is determi-

nate in MSS sense and the forward solution is the determinate equilibrium.

This proposition holds because of one key property embedded in the forward method.

To see the intuition behind this result, we ask readers to refer to the paper. In the case

of the model without predetermined variables, Ω∗ = 0n×n, then F ∗(st, st+1) collapses to

A(st, st+1).

Now, what if condition 3 does not hold? Then we need to search for Λ minimizing

rσ(Ψ̄Λ⊗Λ). Recall that min rσ(Ψ̄Λ⊗Λ) ≥ 1/[rσ(ΨF ∗⊗F ∗)]. This result makes the minimiza-

tion problem much easier. In the paper, we showed that it is highly likely to find Λ such

that min rσ(Ψ̄Λ⊗Λ) = 1/[rσ(ΨF ∗⊗F ∗)] for models where no state is absorbing. In any case,

if the assertion 3 is replaced with 1/[rσ(ΨF ∗⊗F ∗)] ≤ min rσ(Ψ̄Λ⊗Λ) < 1, then the model is

indeterminate. But if 1/[rσ(ΨF ∗⊗F ∗)] < 1 ≤ min rσ(Ψ̄Λ⊗Λ), then it is still the case that

the forward solution is the unique MSS solution. In this case the model may or may not

be determinate. But the important thing is that if there exist other MSS fundamental

solutions, they are not economically relevant because they must violate the NBC. This

procedure can be numerically done by using the code “Find Min R Psi LkL.m, which is

explained in Section 4.

For a comparison of our results to those of other papers in the literature, we introduce

the following concept.

Definition 6 The condition rσ(ΨF ∗) ≤ 1 with appropriate positivity assumptions in the

sense of Davig and Leeper (2007) is comparable to the LRTP.

This condition may be referred to as the generalized LRTP. When Ω∗ = 0n×n,

F ∗(st, st+1) = F ∗(st) = A(st) and it is non-singular for all st, the LRTP is given by

rσ(ΨF ∗) < 1.
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2.5 Classification of the MSRE models and Characterization of

the REEs

The following table summarizes the classification of the MSRE models based on FCC

and characterizations of the economically relevant REEs based on NBC.

If Then

Case FCC MSS of MSV non-MSS of wt the most MSS wt

rσ(Ψ̄Ω∗⊗Ω∗) rσ(ΨF ∗⊗F ∗) min rσ(Ψ̄Λ⊗Λ)

1 o < 1 ≤ 1 Determinate

2 o < 1 > 1 < 1 Indetermiante

4 o < 1 > 1 ≥ 1
May be Determinate

or Indeterminate

5 o ≥ 1 No MSS FS

3 x Reject the Model

Based on MSS and NBC, the forward solution is the unique relevant solution to the

models belonging to Case 1 and 4. The forward solution plus the non-fundamental

components associated with the forward solution are the set of relevant indeterminate

equilibria to the models belonging to Case 2.

Remark: The researchers would face Case 1,2 and 3 in practice.
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3 Implementation of the Methodology in Matlab

3.1 Introducing cell arrays in Matlab

Since the input and output arguments must be specified for all regimes, it is convenient

to use “cell array”in Matlab. By using a cell array, one does not need to hassle with the

dimension of the matrices in the model such as n and m. For example, consider the case

where S = 2 and A depends only on the current regime as:

A(st = 1) =

[
1 0

0 1

]
, A(st = 2) =

[
2 0

0 2

]
.

In Matlab, A is specified as:

A1=[1 0;0 1]; A2=[2 0;0 2]; A{1,1}=A1; A{2,1}=A2;

Here A is a S × 1 cell array. If A depends on the current and future regimes such that

A = A(st = i, st+1 = j), define A11,A12,A21,A22 and construct a cell array:

A{1,1}=A11; A{1,2}=A12; A{2,1}=A21; A{2,2}=A22;

To avoid confusion, we use the indexes i and j to denote the regimes for st and st+1

throughout this document.

The output arguments will also be expressed as cell arrays. For instance, suppose

that one defines GammaK to denote the FS for a given model, Γ∗(st). Then, GammaK

will be a 2× 1 cell array such that GammaK{i,1} is Γ∗(st = i).

3.2 The Set of Matlab Codes in the Package

Main Code

• “msres.m”: The main Matlab code. “msres.m”(1) identifies the forward conver-

gence, (2) yields the forward solution if the model is forward-convergent, and (3)

provides determinacy conditions. If these conditions are met (rσ(Ψ̄Ω∗⊗Ω∗) < 1 and

rσ(ΨF ∗⊗F ∗) ≤ 1), the model is determinate in mean-square stability sense and the

forward solution is the determinate equilibrium.
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Auxiliary codes used for the paper

• “Find Min R Psi LkL.m”: This code identifies existence of mean-square stable non-

fundamental components and hence detect indeterminacy. Specifically, if the de-

terminacy conditions are not satisfied from “msres.m”(rσ(ΨF ∗⊗F ∗) > 1), this code

finds a minimizer of rσ(Ψ̄Λ⊗Λ), Λmin. If min rσ(Ψ̄Λ⊗Λ) < 1, the model becomes inde-

terminate and wt with Λmin is one among the mean-square stable non-fundamental

components. Therefore, this code constructs a general indeterminate equilibria. It

is important to note that this code does not solve for ALL MSS wt. Thus every

time you run this code, you will get a different Λ in general (mostly for multivari-

ate models). The code is accompanied by “Find Min R Psi LkL Q.m”, the objective

function and “Find Min R Psi LkL NL.m”, a set of non-linear constraints.

• “amsre.m”: This solves for the unique MSV solution to a model without predeter-

mined variables using the analytical formula given in the paper. We provide this

code not because we recommend users to use this code, but because we want to

show that this way of computing fundamental REEs may fail to detect non-FCC.

Examples

• “Replicate.m”and “ReplicateQ.m”: These codes replicate all the results reported in

the paper.

• “DL1.m”and “DL2.m”: based on the works by Davig and Leeper (2007)

• “LWZ1.m”and “LWZ2.m”: based on Liu, Waggoner, and Zha (2009)

3.3 Instruction for Users

What users need to do is as follows.

1. Specify the model in the form of Equation (1) and (2) in Section 2 and write

a code, say “Ex.m”. In “Ex.m”, first, specify the transition matrix P and A(·)
for all regimes. Second, specify the optional input arguments B(·), C(·) and R

if necessary. One may also change other options such as the maximum number

of forward iteration, tolerance level of forward convergence, forecasting horizon of

impulse response analysis, etc.
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2. Call “msres.m”to obtain the results such as the forward solution, determinacy con-

ditions, impulse response functions, etc. To do so, type the following and run

it.
[OmegaK,GammaK,FK,termK,R BarPsi OKkOK,R Psi FKkFK,...

BarPsi OKkOK, Psi FKkFK,IRF]=msres(P,A,B,C,R);

3. Examine the results. Any model can be classified in the following several cases. But

researchers would face only three cases (Case 1, 2 and 3 in the order of importance)

in practice.

(a) (Case 3) If there is a warning sign, and if at least one element of OmegaK

or GammaK in Figure 101 increases exponentially, the forward convergence

condition (FCC) fails. Stop.

(b) If there is no warning sign, the FCC is met and OmegaK,GammaK are the

forward solution.

i. If R BarPsi OKkOK = rσ(Ψ̄Ω∗⊗Ω∗) ≥ 1, the forward solution is not mean-

square stable (MSS) and there is no MSS MSV solution that satisfies the

No-bubble condition (NBC). Stop.

ii. (Case 1) If R BarPsi OKkOK ≤ 1 and R Psi FKkFK = rσ(ΨF ∗⊗F ∗) ≤ 1,

then the model is determinate. Stop.

iii. If R Psi FKkFK > 1, go to step 4 in order to examine indeterminacy.

4. Write the following and run it.

[Lambda min,V,Psi,k,R BarPsi LkL]=Find Min R LkL(P,FK);

(a) (Case 2) If R BarPsi LkL = rσ(ΨΛmin⊗Λmin
) < 1, the model is indeterminate.

And wt with Λmin is one among the mean-square stable non-fundamental com-

ponents.

(b) If R BarPsi LkL ≥ 1 the forward solution is the unique mean-square stable

MSV solution and there is no mean-square stable wt.
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4 The Main Codes

4.1 msres.m

The function has the following form:

[OmegaK,varargout]=msres(P,A,varargin);

1. Input Arguments (Required)

(a) P: S × S transition matrix P where P(i,j)= pij ≡ Pr(st = j|st−1 = i) is the

(i, j)-th component of P .

(b) A: S×S cell array of A(st, st+1) where A{i,j} is an n×n matrix A(st = i, st+1 =

j) for all i, j ∈ {1, 2, ..., S}. If A = A(st), then A is a S × 1 cell array where

A{i,1} is an n× n matrix A(st = i) for all i ∈ {1, 2, ..., S}.

2. Input Arguments (Optional)

(a) B: S×1 cell array, B(st) where B{i,1} is an n×n matrix B(st = i). When there

are no lagged endogenous variables xt−1, set B=[ ]; [Default: B=zeros(n,n);]

(b) C: S × 1 cell array, C(st) where C{i,1} is an n×m matrix C(st = i). If there

is no zt in the model, Set C=[ ]; [Default: C=eye(n,n);]

(c) R: m×m matrix. If zt = εt, set R=[ ]; [Default: R=zeros(m,m);]

(d) Opt: Other optional input arguments.

• Opt.maxK: maximum number of the forward iteration. [Default: 1000]

• Opt.Warning: Plot Ωk and Γk against k if k reaches maxK. [Default:

Opt.Warning=1 : Display Warning] Set Opt.Warning=0 if do not want

to display Warning sign.

• Opt.tolK: Tolerance level of forward convergence: The forward iteration

stops if the maximum of the largest element of Ωk(st)−Ωk−1(st) and the

largest element of Γk(st)−Γk−1(st) in absolute value is less than Opt.tolK.

[Default: 0.000001]

• Opt.IRsigma: m× 1 vector of standard deviations of εt. [Default: Impulse

responses(IR) functions are generated for the initial shocks of size 1.] Set-

ting “Opt.IRsigma=[sigma 1,...,sigma m]’ ”will generate the IR to standard
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deviation shocks where [sigma 1,...,sigma m] is the vector of standard er-

rors of εt.

• Opt.IRT: Forecasting horizon for IR functions. [Default: 20]

• Opt.IRvs: The arrangement of IR functions. Refer to the IRS of the output

argument below for details.

3. Output Arguments

(a) OmegaK: S × 1 cell array, ΩK(st) where OmegaK{i,1} is an n × n matrix

ΩK(st = i) at K = termK. (See below for termK.) If B is not in the model,

OmegaK{i,1} will be an n× n matrix of zeros.

(b) GammaK: S × 1 cell array, ΓK(st) where GammaK{i,1} is an n × m matrix

ΓK(st = i) at K = termK.

(c) FK: S × S cell array, FK(st, st+1) where FK{i,j} is an n × n matrix FK(st =

i, st+1 = j) at K = termK. If B is not in the model, FK{i,j} is A{i,j}.

(d) termK: Number of iteration. If the forward solution exists, then termK

denotes the number of forward iteration at which the iteration stops and

termK < maxK. If the forward solution does not exist, then termK =

maxK.

(e) R BarPsi OKkOK: rσ(Ψ̄Ω∗⊗Ω∗)

(f) R Psi FKkFK: rσ(ΨF ∗⊗F ∗)

(g) BarPsi OKkOK: Ψ̄Ω∗⊗Ω∗

(h) Psi FKkFK: ΨF ∗⊗F ∗

(i) IRS: S × 1 cell array of impulse-response functions of xt where IRS{i,1} is a

T × nm matrix when the initial state is st = i. By default, it is arranged

such that the first m columns are the responses of the first variable to the m

innovations. The next m columns are those of the second variable to the m

innovations, and so on. Set Opt.IRvs=1 in the input argument if one wants to

arrange IRS{i,1} such that the first n columns are the responses of n variables

to the first shock, ..., the responses of n variables to the last shock.
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Remark: When one wants to compute the forward solution for the Fixed-Regime (FR)

counterpart, simply assign an identity matrix of size S to the transition matrix P . That

is, set “P=eye(S); ”.

Remark: The output arguments depend on the forward convergence. There are two

cases.

• Case 1. When the FCC holds and thus the FS exists, no message will pop up.

(ΩK(·),ΓK(·)) is the forward solution for K = termK < maxK where maxK is

the maximum number of iteration.

• Case 2. When the FCC does not hold, then the code will still produce (ΩK(·),ΓK(·))
where K = maxK. But in this case, a warning sign will be displayed and a

graph will be shown. The (1, i)-th panel plots all the elements of vec(Ωk(st)) at

st = i against k = 1, ..,maxK. The (2, i)-th panel displays all the elements of

vec(Γk(st)). By looking at the figure, one can visibly see whether the (Ωk(·),Γk(·))
would converge if a larger maxK is allowed or the FS does not exist because at

least one element explodes.1

4.2 Find Min R LkL.m

The function has the following form:

[LambdaMin,varargout]=Find Min R LkL(P,F,Opt);

1. Input Arguments (Required)

(a) P: S × S transition matrix P where P(i,j)= pij ≡ Pr(st = j|st−1 = i) is the

(i, j)-th component of P .

(b) F: S×S cell array of A(st, st+1) where F{i,j} is an n×n matrix A(st = i, st+1 =

j) for all i, j ∈ {1, 2, ..., S}. If A = A(st), then A is a S × 1 cell array where

F{i,1} is an n× n matrix A(st = i) for all i ∈ {1, 2, ..., S}.

2. Input Arguments (Optional)

1For most of numerical examples in this note and all the experiments we have conducted, the iteration
stops at K < 100 whenever the FS exists. Thus, it is very unlikely that the convergence is extremely
slow and one needs to set a larger maxK.
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(a) Opt.ks: S × 1 vector of [k1, .., kS]′. [Default: ki = rank of F (i, i)].

(b) Opt.V : S × 1 cell array of V (st) where V (st = i) is an n × ki matrix with

orthornormal columns. [Default: Columns of Vi are ki random orthonormal

vectors.]

(c) Opt.Psi : S × S cell array of Φ(st, st+1). [Default: Φij is kj × ki matrix of

random normal elements.]

3. Output Arguments

(a) LambdaMin: S × S cell array, Λ(st, st+1) that minimizes rσ(Ψ̄Λ⊗Λ).

(b) V: S × 1 cell array, V (st) such that Λ(st, st+1) = V (st+1)Φ(st, st+1)V (st)
′

(c) Psi:S×S cell array, Φ(st, st+1) such that Λ(st, st+1) = V (st+1)Φ(st, st+1)V (st)
′.

(d) k: S × 1 vector of [k1, .., kS]′.

(e) R BarPsi LkL: rσ(Ψ̄Λ⊗Λ)

(f) R BarPsi L: rσ(Ψ̄Λ)

(g) R Psi FkF: rσ(ΨF⊗F )

(h) R Psi F: rσ(ΨF )

(i) Psi LtkF: rσ(ΨΛ′⊗F )

Remark: It is important to note that this procedure starts from randomized initial val-

ues of V (st) and Φ(st, st+1), hence, it yields different Λmin = arg min rσ(Ψ̄Λ⊗Λ) whenever

implemented in general. Also one may have to run many times to find min rσ(Ψ̄Λ⊗Λ).

4.3 amsre.m

The Matlab function “amsre.m”computes the fundamental solution to a MSRE model

when B = 0n×n, using the analytical formula described below. The function can be

written as:

AGamma=amsre(P,A,C,R);

The input arguments P , A, C and R are the same as those in “msres.m”. The output

argument is Γ(st).

The formula
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Consider the following MSRE model without predetermined variables:

xt = Et[A(st, st+1)xt+1] + C(st)zt, (20)

zt = Rzt−1 + εt. (21)

Guess the fundamental solution of the form as:

xt = Γ(st)zt. (22)

Then, using (22) and (21), the expectational term in (20) can be computed as:

Et[A(st, st+1)xt+1] = Et[A(st, st+1)Γ(st+1)zt+1]

= Et[A(st, st+1)Γ(st+1)]Rzt,

where we have used the independence of st+1 and εt+1. Therefore, for every st = i,

i = 1, 2, ..., S, the following must hold:

Γ(i) = Et[A(i, st+1)Γ(st+1)]R + C(i)

=
S∑
j=1

pijA(i, j)Γ(j)R + C(i).

In order to solve for Γ(i), we vectorize this equation:

vec(Γ(i)) =
S∑
j=1

pij (R′ ⊗ A(i, j)) vec(Γ(j)) + vec(C(i)).

By stacking vec(Γ(i)) and vec(C(i)) for all i, we have the following:

Γv = ΨR′⊗AΓv + Cv,

where, ΨR′⊗A = [pijR
′ ⊗ A(i, j)]. Therefore, the solution for Γv is given by:

Γv = (InmS −ΨR′⊗A)−1Cv.

From this equation, one can recover the solution for vec(Γ(i)) and therefore Γ(i).
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5 Examples

We present several numerical examples. Simply running each code in Matlab will identify

the relevant set of equilibria and determinacy. Whenever a given model satisfies the FCC,

the code will produce the forward solution for the MSRE. Additionally, the code will plot

the impulse response functions. There are currently 4 examples and one example that

replicates all the results of Cho (2011).

Code name
Predetermined

Variable
# of Variables References

DL1.m No Univariate Davig and Leeper (2007)

DL2.m No Multivariate Farmer, Waggoner, and Zha (2009)

LWZ1.m Yes Multivariate Liu, Waggoner, and Zha (2009)

LWZ2.m Yes Multivariate Liu, Waggoner, and Zha (2009)

Replicate.m Cho (2011)

DL1.m: Fisherian Model of Inflation Determination
This example is based on Davig and Leeper (2007). It is a univariate MSRE model

without predetermined variables. We consider 4 sets depending on the parameter values.

Vary “Set=i;”for i = 1, .., 4, at the beginning of the code and run it. “Set=1;”corresponds

to determinacy (Case 1), “Set=2”and “Set=3”to indeterminacy (Case 2). But the LRTP

holds for the former and does not for the latter. “Set=4”belongs to the case that the

FCC fails to hold(Case 3).

The model is given by:

α(st)πt = Etπt+1 + rt

rt = ρrt−1 + εt

where πt and rt are inflation and the real interest rate, respectively. α(st) captures a

monetary policy stance: When α(st) < (>)1, monetary policy is passive (active). The

model can be cast into the general model (1) as:

xt = A(st)Etxt+1 + C(st)zt

where xt = πt, zt = rt, A(st) = C(st) = 1/α(st), B(st) = 0 and R = ρ. The forward
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solution will have the following form if it exists:

xt = Γ∗(st)zt

Set=1: α(1) = 1/1.05 < 1, α(2) = 1/0.9 > 1, ρ = 0.6, p11 = 0.75 and p22 = 0.75. One

may write the code as:

S=2; p11=0.75; p22=0.75; p12=1-p11; p21=1-p22; P=[p11 p12;p21 p22];

rho=0.6; alpha{1}=1/1.05; alpha{2}=1/0.9;

for j=1:S, A{j,1}=1/alpha{j}; C{j,1}=1/alpha{j}; end, B=[ ]; R=rho;

[OmegaK,GammaK,FK,termK,R BarPsi OKkOK,R Psi FKkFK,...

BarPsi OKkOK, Psi FKkFK,IRF]=msres(P,A,B,C,R);

AGamma=amsre(P,A,C,R);

The first three lines specify the number of regimes, transition matrix and A, B, C and

R. In the 4th line, the function “msres.m”takes these input arguments and produces the

forward solution, “GammaK”as a cell array. Typing “GammaK{1}”and “GammaK{2}”will

display numerical solution Γ∗(st) for st = 1 and st = 2. Since there is no predetermined

variable, if there exists a fundamental solution, it is at most one and it can be solved

analytically. “AGamma”in the 6th line denotes the solution obtained by “amsre.m”where

the analytical formula is explained in the appendix.

The example DL1.m produces the following output. First, the forward solution exists:

Γ∗(1)=2.6196 and Γ∗(2)=2.1070. Since there is no predetermined variable, “OmegaK”will

be 0 for all regimes. Second, R Psi FKkFK=rσ(ΨF ∗⊗F ∗)=0.9777 < 1. Hence, the model

is determinate. Here F ∗ = A. Therefore, one can compute the LRTP condition rσ(ΨF ∗).

From Theorem 1, rσ(ΨF ∗) should be less than 1. Indeed rσ(ΨF ∗) = 0.9807. Third, the

code computes the MSV solution using the formula in Davig and Leeper (2007) or the one

in Section 4. In this case, the MSV solution coincides with the forward solution. Fourth,

the impulse response function of inflation to a real rate shock of size 1 conditional on the

initial state.

Set=2: Same as Set=1 except α(1) = 1/1.08.

Here, the monetary policy is more passive in the regime 1. The forward solution

exists and it is MSS because rσ(Ψ̄Ω∗⊗Ω∗) = 0. However, rσ(ΨF ∗⊗F ∗) =1.0185. Since

this is greater than 1, we need to search for Λ = arg min rσ(Ψ̄Λ⊗Λ) subject to (18) and

V ′i Vi = Iki for all i = 1, 2, ..., S. Find Min R Psi LkK.m together with the constraints and
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objective functions (Find Min R Psi LkK NL.m, Find Min R Psi LkK Q.m) does this job.

To implement this procedure, type [Lambda,V,Phi]=Find Min R Psi LkL(P,FK); We found

that min rσ(Ψ̄Λ⊗Λ) =0.9818=1/1.0185, which confirms Lemma 4. Therefore, the model

is indeterminate. We also find that rσ(ΨF ∗) = 0.9981. This case illustrates that the

LRTP is not sufficient for determinacy of the model.

Set=3: Same as Set=2 except α(1) = 1/1.5.

Here, the monetary policy is much more passive in the regime 1. Nevertheless the

forward solution still exists and MSS. rσ(ΨF ∗) =1.2674 and rσ(ΨF ∗⊗F ∗) =1.7843. We

find that rσ(Ψ̄Λ⊗Λ) < 1, Hence, the model is indeterminate and the LRTP does not hold.

Set=4: Same as Set=1 except α(1) = 1/1.5 and ρ = 0.9.

This case is indeterminate, precisely because of the same reason as that in Set=3:

rσ(ΨF ∗⊗F ∗) =1.7843 is exactly the same as that in Case 3 because it does not depend on

ρ. However, ρ does affect forward convergence of the model. In this case, the FCC fails to

hold because Γk(st) explodes as k goes to infinity. The code will produce a warning sign

and plots Γk(st) over k = 1, ...,maxK. From the figure, one can see that the elements

Γk explode as k increases. The analytical solution Γ(st) still exists, but the coefficients

are all negative, which makes no sense. The forward method detects this case by the

fact that the model fails to satisfy the FCC and the analytical solution must violates

the NBC. This example shows the importance of checking forward convergence. The

following table summarizes the results for the model.

Set Case LRTP FS Analytical MSV Solution (NBC)

Set=1 1. Determinate Yes Exists Exists, same as the FS (Yes)

Set=2 2. Indeterminate Yes Exists Exists, same as the FS (Yes)

Set=3 2. Indeterminate No Exists Exists, same as the FS (Yes)

Set=4 3. FCC fails No Not Exist Exists (No)

DL2.m: Regime-Switching Monetary Policy in a canonical New
Keynesian Model
This is a canonical New Keynesian model consisting of Phillips curve, intertemporal

IS equation and monetary policy equation considered by Davig and Leeper (2007), and

Lubik and Schorfheide (2004). This is a multivariate MSRE model without predetermined

variables. Here the analytical solution can be obtained. We consider four sets of the
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model analogous to the example DL1.m. The model is given by:

πt = βEtπt+1 + κyt + zS,t,

yt = Etyt+1 −
1

σ
(it − Etπt+1) + zD,t,

it = φπ(st)πt + φy(st)yt,

where πt and yt are inflation and the output gap, respectively. φπ(st) captures a monetary

policy stance against inflation, which is active (passive) if φπ(st) > 1 (φπ(st) ≤ 1). The

exogenous disturbances zi,t for i = S,D follows an AR(1) process as:

zi,t = ρizi,t−1 + εi,t,

where εi,t is an i.i.d. process, independent of the regime st. The model can be written in

a matrix form as:

B1(st)xt = A1Etxt+1 + C1zt,

zt = Rzt−1 + εt,

B1(st) =

 1 −κ 0

0 1 1
σ

−φπ(st) −φy(st) 1

 , A1 =

 β 0 0
1
σ

1 0

0 0 0

 ,

C1(st) =

 1 0

0 1

0 0

 , R =

[
ρS 0

0 ρD

]
,

where xt = [πt yt it]
′, zt = [zS,t zD,t]

′ and εt = [εS,t εD,t]
′. Therefore, we have the following:

xt = A(st)Etxt+1 + C(st)zt,

where A(st) = B−1
1 (st)A1 and C(st) = B−1

1 (st)C1. The forward solution will have the

following form if it exists:

xt = Γ∗(st)zt.
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The parameter values are summarized in the following table.

Common Parameters β = 0.99, κ = 0.27, σ = 2.84, ρS = 0.75, p11 = 0.95

Set=1 p22 = 0.89, α(1) = 2.19, α(2) = 0.89, γ(1) = 0.3, γ(2) = 0.15, ρD = 0.75

Set=2 same as Case 1 except p22 = 0.9,

Set=3 p22 = 0.9, α(1) = 1.5, α(2) = 0.5, γ(1) = γ(2) = 0.25, ρD = 0.75

Set=4 same as Case 1 except ρD = 95

The results are qualitatively similar to those of example, DL1.m.
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LWZ1.m: Regime-Switching Monetary Policy in an extended
New Keynesian Model
This is a more general New Keynesian model featuring endogenous persistence of infla-

tion, the output gap and the interest rate considered by Liu, Waggoner, and Zha (2009).

This is a multivariate MSRE model with predetermined variables. Here analytical so-

lutions cannot be obtained but a numerical solution can be obtained using the method

proposed by Farmer, Waggoner, and Zha (forthcoming). We examine determinacy of

their model. Again, there are four sets. The model is given by:

∆tπt = βψ1(st, st−1)Etπt+1 + γ(st−1)πt−1 + ψ2(st−1)

(
ξ + 1

α
+

b

λ− b

)
yt

−ψ2(st−1)
b

λ− b
yt−1 + ψ2(st−1)µw,t + ψ2(st−1)

b

λ− b
vt,

yt =
λ

λ+ b
Etyt+1 +

b

λ+ b
yt−1 −

λ− b
λ+ b

(it − Etπt+1) +
(λ− b)(1− ρa)

λ+ b
at −

b− ρvλ
λ+ b

νt,

it = ρr(st)it−1 + (1− ρr(st)) (φπ(st)πt + φy(st)yt) + urt,

where

ψ1(st, st−1) =
η̄

η(st−1)

1− η(st−1)

1− η(st)
,

ψ2(st−1) =
(1− βη̄)(1− η(st−1))

η(st−1)

1

1 + θp(1− α)/α
,

∆t(st, st−1) = 1 + βψ1(st, st−1)γ(st).

The exogenous variables are given by:

urt = εrt,

at = ρaat−1 + εa,t,

µw,t = ρwµw,t−1 + εw,t,

νt = ρvvt−1 + εv,t.

Here we have redefined εrt as urt for convenience. Let xt = [π yt it]
′, zt = [urt at µw,t νt]

′.

Then, the model can be written in matrix form as:

B1(st, st−1)xt = A1(st, st−1)Etxt+1 +B2(st, st−1)xt−1 + C1(st, st−1)zt,
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B1(st, st−1) =

 ∆t −ψ2(st−1)
(
ξ+1
α

+ b
λ−b

)
0

0 1 λ−b
λ+b

− (1− ρr(st))φπ(st) − (1− ρr(st))φy(st) 1

 ,

A1(st, st−1) =

 βψ1(st, st−1) 0 0
λ−b
λ+b

λ
λ+b

0

0 0 0

 , B2(st, st−1) =

 γ(st−1) −ψ2(st−1) b
λ−b 0

0 b
λ+b

0

0 0 ρr(st)

 ,

C1(st, st−1) =

 0 0 ψ2(st−1) ψ2(st−1) b
λ−b

0 (λ−b)(1−ρa)
λ+b

0 − b−ρvλ
λ+b

1 0 0 0

 , R =


0 0 0 0

0 ρa 0 0

0 0 ρw 0

0 0 0 ρv

 .

By inverting B1(st, st−1), we have the following:

xt = A(st, st−1)Etxt+1 +B(st, st−1)xt−1 + C(st, st−1)zt, (23)

where A(st, st−1) = B1(st, st−1)−1A1(st, st−1), B(st, st−1) = B1(st, st−1)−1B2(st, st−1) and

C(st, st−1) = B1(st, st−1)−1C1(st, st−1).

To examine this model with Markov-switching monetary policy only, fix the param-

eters η and γ. Then, the model does not depend on st−1 and can be written as:

xt = A(st)Etxt+1 +B(st)xt−1 + C(st)zt,

zt = Rzt−1 + εt.

The parameter values of the four cases are given in the following table.

Common Parameters

β = 0.9952, ξ = 2, b = 0.75, α = 0.7, λ = 1.005, θp = 10

σr = 0.1, σa = 0.1, σw = 0.1, σv = 0.1, φy(1) = 0.5, φy(2) = 0.5

ρa = 0.9, ρr = 0.55, ρw = 0.9, ρv = 0.2, p11 = p22 = 0.95

η = 0.66, γ = 1

Set=1 φπ(1) = 0.9, φπ(2) = 2.5

Set=2 φπ(1) = 0.9, φπ(2) = 1.5

Set=3 φπ(1) = 0.9, φπ(2) = 1.15

Set=4 φπ(1) = 0.75, φπ(2) = 1.5

The results are qualitatively similar to those of example DL1.m or DL2.m.
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LWZ2.m: Regime-Switching Phillips Curve and Monetary Policy
in an extended New Keynesian Model
This is the model we present in “LWZ1.m”. Here both the private sector and monetary

policy depend on a common regime. In the appendix, we show how to represent the model

(23) into the form of (1). The only difference from “LWZ1.m”is that the parameters η and

γ are regime-dependent and their values are specified as η(1) = 0.66, η(2) = 0.75, γ(1) =

1, γ(2) = 0. We take the same parameter values in Set=1 through Set=4 from “LWZ1.m”.

We compute rσ(ΨΩ∗⊗Ω∗) and rσ(ΨF ∗⊗F ∗) for the 4 cases in “LWZ1.m”and “LWZ2.m”as

follows.

“LWZ1.m” “LWZ2.m”

Model FCC rσ(ΨΩ∗⊗Ω∗) rσ(ΨF ∗⊗F ∗) rσ(ΨΩ∗⊗Ω∗) rσ(ΨF ∗⊗F ∗)

Set=1 Yes 0.4556 0.9698 0.4654 1.0046

Set=2 Yes 0.4678 1.0107 0.4731 1.0358

Set=3 Yes 0.4778 1.0399 0.4765 1.0502

Set=4 No 0.6719 1.4200 0.6419 1.3765

What’s striking is that whereas the parameter values of Set=1 in “LWZ1.m”belong to

determinacy region, they become indeterminate in “LWZ2.m”because rσ(ΨF ∗⊗F ∗) > 1.
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Appendix

A Impulse Response Functions of MSRE Models

The forward solution and the exogenous process zt are given by:

xt = Ω∗(st)xt−1 + Γ∗(st)zt,

zt = Rzt−1 + εt.

The one-step ahead prediction of xt+1 conditional on time t information including st is

given by:

Etxt+1 = H(st, 1)xt +G(st, 1)zt, (24)

where

H(st, 1) = E[Ω∗(st+1)|st],

G(st, 1) = E[Γ∗(st+1)|st]R.

The k-step ahead prediction of xt is then, given by:

Etxt+k = H(st, k)xt +G(st, k)zt, (25)

where,

H(st, k) = E[H(st+1, k − 1)Ω∗(st+1)|st],

G(st, k) = E[(G(st+1, k − 1) +H(st+1, k − 1)Γ∗(st+1))|st]R,

for k ≥ 2. We may define H(st, 0) = In and G(st, 0) = 0n×m. Then, the impulse responses

of xt+k to the l−th innovation at time t conditional on st is given by:

IR(st, k) = (H(st, k)Γ∗(st) +G(st, k))el, (26)

for k = 0, 1, 2, .. where el is an indicator vector of which l-th element is 1 and 0 elsewhere.
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B More General MSRE Models

Suppose that the model contains the regime variable st−1. For instance, consider the

following model:

xt = Et[A(st−1, st, st+1)xt+1] +B(st−1, st)xt−1 + C(st−1, st)zt. (27)

This kind of extended model can be written in the form of (1) and analyzed. Define the

extended regime variable ŝt = (st−1, st) such that:

ŝt 1 2 ... S S + 1 S + 2 ... 2S ... (S − 1)S + 1 (S − 1)S + 2 ... S2

st−1 1 1 ... 1 2 2 ... 2 ... S S ... S

st 1 2 ... S 1 2 ... S ... 1 2 ... S

The corresponding transition matrix is defined as P̂ = (iS ⊗ IS ⊗ i′S)diag(vec(P ′)) where

iS is an S × 1 column vector of ones. For instance, when S = 2, P̂ is given by:

P̂ =


p11 p12 0 0

0 0 p21 p22

p11 p12 0 0

0 0 p21 p22

 .

Therefore, the model (27) can be written in the form of (1) such that

xt = Et[A(ŝt, ŝt+1)xt+1] +B(ŝt)xt−1 + C(ŝt)zt.
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