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SUMMARY

We deal with strong consistency for Bayesian density estimation. An awkward con-
sequence of inconsistency is described. It is pointed out that consistency at some density f0
depends on the prior mass assigned to the ‘pathological’ set of those densities that are
close to f0 , in a weak sense, and far apart from f0 , in a Hellinger sense. An analysis of
these sets leads to the identification of the notion of ‘data tracking’. Specific examples in
which this phenomenon cannot occur are discussed. When it can happen, we show how
and where things can go wrong, thus providing more intuition about the sources of
inconsistency.

Some key words: Bayesian consistency; Bayesian density estimation; Hellinger distance; Kullback–Leibler
divergence; Weak neighbourhood.

1. INTRODUCTION

A first formulation of the issue of consistency of Bayesian inferential procedures is
given in Doob (1949). It states that, if there exists a consistent sequence of estimators
of the unknown parameter, then the posterior estimators are consistent in the sense that
the posterior distribution converges to a point mass at the unknown parameter outside
a set of prior mass zero. A drawback of such an approach is that the null sets on which con-
vergence fails could be relevant. In this case, the problem can be circumvented by resorting
to a ‘frequentist’ notion of consistency which gives rise to the ‘what if ’ method adopted
by Diaconis & Freedman (1986). The idea consists of generating independent data from
a ‘true’ fixed distribution f0 and checking whether or not the posterior accumulates in
suitably-defined neighbourhoods of f0 . This corresponds to requiring the data eventually
to swamp the prior.
An early use of the ‘what if ’ method can be found in Freedman (1963), where it is

shown that weak consistency does not necessarily hold for priors supported by discrete
distributions on a countable set of states. However, if the number of states is finite,
consistency is achieved and the result extends to the countable case by the introduction
of an additional entropy condition. A sufficient condition for weak consistency with more
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general priors is suggested in Schwartz (1965). This is solely a support condition. Further
examples of inconsistency, involving mixtures, are illustrated in Diaconis & Freedman
(1986).
When we consider problems of density estimation, it is natural to ask for the strong

consistency of Bayesian procedures. An early contribution in this area is an unpublished
University of Illinois technical report by A. R. Barron, which is based on uniformly
consistent tests. Later developments, combining well-established techniques in the theory
of empirical processes with ideas from Barron’s report, provide sufficient conditions for
strong consistency in terms of metric entropies. For instance, Barron et al. (1999) specify
bracketing entropy conditions for strong consistency to hold true and apply their results
to a number of commonly used priors in Bayesian nonparametric inference. Following
the same lines, Ghosal et al. (1999) provide slightly weaker sufficient conditions for strong
consistency in terms of the L 1-metric entropy and deal with mixtures of a Dirichlet process.
This approach, reviewed in Wasserman (1998), has also been employed for verifying
strong consistency of specific priors in Bayesian nonparametrics; see for example Petrone
& Wasserman (2002). New ideas for solving consistency issues are given in Walker
(2003, 2004), where a simple sufficient condition for strong consistency is represented by
the finiteness of a suitable sum of square roots of prior probabilities.
The present paper aims at providing an understanding of the main issues that arise
when dealing with consistency of Bayesian procedures. An argument which motivates the
interest in consistency can be based on a notion of merging which differs from the classical
one introduced by Blackwell & Dubins (1962). Indeed, we consider the case of two
Bayesians sharing the same prior but collecting two independent datasets from the same
density f0 . It turns out that if the prior is inconsistent at f0 then the two Bayesians disagree
even if more and more data are collected. This is an unpleasant feature. Given this, it is
even more important to determine possible sources of strong inconsistency. In order to
develop such an analysis, we still preserve the support condition introduced by Schwartz
(1965). We illustrate how consistency at some density f0 depends on the prior mass
assigned to the ‘pathological’ set of those densities that are close to f0 , in a weak sense,
and far apart from f0 , in the L 1-metric. If the prior does not put mass on such sets,
then strong consistency is achieved at f0 . Many priors in common use meet such a
requirement, and we provide some related illustration. If the prior mass on such sets is
positive, one has to take care about densities that track the data, a notion to be made
precise later on. In order to get rid of the data-tracking phenomenon, one has to look for
sufficient conditions which avoid it. Regarding this aspect, we reconsider and slightly
generalise a result of Walker (2004), which is given in terms of a summability condition
of prior probabilities. We provide an interpretation and show that this sufficient con-
dition is not necessary. Finally a new sufficient condition is provided. When applied to
the prior of the counterexample in Barron et al. (1999) it nicely shows the reason for its
inconsistency.

2. NOTATION AND SOME BASIC FACTS

We consider a sequence of observations (X
n
)
n!1 , each taking values in some complete

and separable metric space X endowed with a s-algebra X. If F indicates the space of
probability density functions with respect to some measure l on X, then we define

d
H
( f , g)=CP

X
{ f D (x)−gD (x)}2l(dx)DD,
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for any f and g in F, and set F to be the Borel s-algebra of F. Suppose that P stands for
a prior distribution on (F,F). In this case, we assume that, given a density f drawn
from P, the observations are independent and identically distributed with common
density f ; that is

pr{(X
1
, . . . , X

n
)µA}=P

A
P
F
qan
i=1
f (x
i
)rP(d f )l(dx1 ) . . . l(dxn ),

for each n"1 and A in Xn. The posterior distribution on (F,F), given the observations
(X1 , . . . , Xn ), coincides with

P
n
(B)=

∆
B
Xn
i=1 f (Xi )P(d f )

∆
F
Xn
i=1 f (Xi )P(d f )

,

for all B in F. The frequentist approach to Bayesian consistency is based on the idea of
fixing a density f0 as the ‘true’ density from which the data are independently sampled
and checking whether or not the posterior accumulates in any Hellinger neighbourhood
of f0 . We denote by P0 the probability distribution whose density coincides with f0 and
by P2
0
the infinite product measure onX2. HenceP is ‘strongly consistent’ or equivalently

‘Hellinger-consistent’ at f0 if, for any e>0,

P
n
(A
e
)$ 1,

almost surely with respect to P2
0
,whereA

e
={ fµF : d

H
( f , f0 )<e}. In what follows, almost

sure convergence will be considered with respect to P2
0
even if not explicitly mentioned.

An alternative less stringent notion of consistency can be given by referring to the
space P of probability distributions on (X, X ), equipped with the weak topology. A weak
neighbourhood of any probability distribution P* in P is the set

W
e
=qPµP : KP widP−P widP*K<e, i=1, . . . , kr ,

for a k-tuple of continuous and bounded real-valued functions w
i
defined on X. In this

case, we say that a prior P is ‘weakly consistent’ at f0 if, for any e>0,

P
n
(W
e
)$ 1,

almost surely, where W
e
stands for a weak neighbourhood of P0 . Recall that the weak

topology is coarser than the one induced by d
H
, the latter being equivalent to the total

variation topology on P.
Another notion we need to consider is that of support of a prior. We say that P0 is in

the support of P if any neighbourhood of P0 has positive P-probability. According to the
topology defined on P, we distinguish weak and Hellinger support of P, which will be
denoted by S

W
(P ) and S

H
(P ), respectively. One can reasonably think that P0 being in

S
W
(P ) would imply weak consistency of P at P0 . Such a guess is wrong, as shown for

example by the counterexample in Diaconis & Freedman (1986) for mixtures of Dirichlet
processes. Hence, one needs to impose a stronger support condition in order to achieve
weak consistency at P0 . To this end, consider two probability distributions P and Q
such that P is absolutely continuous with respect to Q, and define the ‘Kullback–Leibler
divergence’ between P and Q as

D
K
(P, Q)=P log (dP/dQ)dP. (1)
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If P* is a subset of P formed by all probability distributions dominated by a common
s-finite measure l, (1) reduces to

d
K
( f
P
, f
Q
)=P fP log ( fP/ fQ ),

where f
P
=dP/dl and f

Q
=dQ/dl are the densities of P and Q, respectively, with respect

to l for any P, QµP*. Hence, d
K
can be seen as a measure of divergence on the correspond-

ing space of densities F. If K
e
={PµP* : d

K
( f
P0
, f
P
)<e} is a neighbourhood of P0 with

respect to d
K
, the probability distribution P0 is in the Kullback–Leibler support SK (P )

of P if P (K
e
)>0 for any e>0. Note that S

W
(P )6S

H
(P )6S

K
(P ). A fundamental

sufficient condition for obtaining weak consistency is due to Schwartz (1965): if P0 is
in S
K
(P ), then P is weakly consistent at P0 .

When one is dealing with density estimation, it is more natural to ask for strong
consistency and one might hope that a Kullback–Leibler support condition still suffices.
However, as has been shown in Barron et al. (1999), this does not happen without any
further condition. All the contributions in this area aim at giving simple sufficient con-
ditions for strong consistency and preserve the Kullback–Leibler support condition. In
the following sections we attempt to understand the deep reasons for possible strong
inconsistencies in cases in which weak consistency holds true.

3. INCONSISTENCY AND POSSIBLE SOLUTIONS

3·1. Variation of the problem of merging of opinions

It is commonly agreed that consistency is an important property of statistical pro-
cedures, and this is true in a Bayesian setting as well. Indeed, lack of consistency might
yield unpleasant consequences of the type we are going to describe. Before proceeding
with the illustration, it is worth recalling that a lot of attention in the literature has focused
on the so-called merging of opinions, when two Bayesians assess different priors and one
is interested in checking whether or not their posterior inferences tend to coincide as long
as more data are collected. Original work on this issue can be found in Blackwell &
Dubins (1962), where it is proved that, under a condition of absolute continuity of one
prior with respect to the other, merging of opinion occurs in the sense that the L 1-distance
between predictive distributions becomes negligible as the sample size increases. Later
discussions are provided in Diaconis & Freedman (1986), in Ghosal et al. (1999) and
elsewhere. The merging of opinion, or agreement, for large samples, boils down to con-
sistency; that is, posterior distributions accumulate around the same, and correct, density
function; see for example Barron et al. (1999).
Here we consider a different set-up which, to our knowledge, has not been investi-

gated before. Suppose that two Bayesians are conducting the same experiment, thereby
generating two independent samples X(1)

1
, X(1)
2
, . . . and X(2)

1
, X(2)
2
, . . . , respectively, from

the same probability distribution, P0 , which has density with respect to the Lebesgue
measure given by f0 . Both Bayesians agree to use the same prior distribution P on the
space of density functions. One would reasonably expect that for large samples the two
Bayesians will agree with each other. However, we show that it is possible to construct
priors for which agreement is not achieved, even ones which have f0 in the Kullback–
Leibler support of P, that is ensuring P to be weakly consistent. Define g :Xn×Xn$R
as a measurable function of the n-dimensional independent samples X(j)

1
, . . . , X(j)

n
, for
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j=1, 2. Also, denote by E(j)
0
(g) the expectation of g with respect to the jth sample

X(j)
1
, . . . , X(j)

n
keeping X(l)

1
, . . . , X(l)

n
fixed, where lN j and where the X(j)

i
’s are independent

and identically distributed from f0 . Thus, for j=1,

E(1)
0
{g(X(1)

1
, . . . , X(1)

n
, X(2)
1
, . . . , X(2)

n
)}

=P
Xn
g(x(1)
1
, . . . , x(1)

n
, x(2)
1
, . . . , x(2)

n
) an

i=1
f
0
(x(1)
i
)l(dx(1)

i
).

An analogous representation is given for E(2)
0
(g).

THEOREM 1. Assume that f0 is in SK (P ). T hen, if P is not Hellinger-consistent at f0 ,

E(1)
0
{D
K
(P(2)
n
, P(1)
n
)}>nd

infinitely often, almost surely, for some d>0, where P(j)
n
denotes the posterior distribution

based on the dataset X(j)
1
, . . . , X(j)

n
, for j=1, 2.

Proofs of the theorems are given in the Appendix.
Such an outcome is certainly startling for two Bayesians using the same prior and

sampling from the same density. In particular, there is no merging of information; see
for example Barron’s technical report. Hence, identification of consistent priors and
investigation of possible sources of inconsistency are important issues.
We first consider the latter issue and try to understand why the Kullback–Leibler

support condition is sufficient for weak, but not for strong, consistency. It is clear, indeed,
that inconsistency at f0 may be caused by sequences of densities that converge weakly,
but not in L 1 , to f0 . An example of such behaviour is associated with the sequence of
densities f

n
(x)=1+sin(2pnx), for x in [0, 1]. The corresponding sequence of distributions

converges weakly to the Un[0, 1] distribution, whereas f
n
oscillates ever more wildly and

does not converge to anything. The oscillating behaviour, together with high peaks at the
maxima of the f

n
’s, causes the undesirable phenomenon of ‘tracking the data’. In other

terms, data corresponding to these peaks remarkably increase the likelihood and thus
may lead to the posterior not swamping mass from the rough densities. In order to
understand this phenomenon, first described in Barron et al. (1999), in a more formal
setting, one has to focus attention on the set

V
d,e
=W
d
mAc
e
,

where W
d
and A

e
denote weak and Hellinger neighbourhoods, respectively, of f0 .

Since by weak consistency the posterior P
n
will accumulate in W

d
, for any d>0, and V

d,e
shrinks as d goes to 0, the first issue to be faced is whether or not for all small enough d
the prior is prevented from putting mass on V

d,e
. Intuitively, one can envisage this con-

straint as being allowed to track the data up to a finite number of observations. In the
following subsections we first deal with the case in which P (V

d,e
)=0, for any d less than

some fixed d*>0, and we then consider cases in which such a condition is not met.

3·2. Consistency with P(V
d,e
)=0

With V
d,e
identified as the set that might give rise to inconsistency, one must first look

for priors that satisfy P (V
d,e
)=0. Consistency is automatically achieved in this case.

Indeed, it turns out that some of the commonly used priors satisfy this condition. Here
we provide an illustration by considering some noteworthy examples.
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Example 1: Monotone decreasing densities. Here we assume that the prior is concentrated
on monotone decreasing densities on R+. Bayesian nonparametric inference with such
priors is considered in Brunner & Lo (1989) and further developed in Hansen & Lauritzen
(2002). As well as dealing with theoretical and computational issues associated with
Bayesian estimation in this setting, they identify consistency as an interesting aspect to be
investigated. If F is a probability distribution function corresponding to some monotone
decreasing density f , then we have

F(x)=P
R+
F(x; h)dG(h),

where G is a distribution function, F(x; h)=h−1 min{x, h} if h>0 and F(x; 0) is degenerate
at 0; see for example Feller (1971, p. 158). Moreover G is uniquely determined by

G(h)=F(h)−h f (h).

In a Bayesian setting G is seen as a random distribution function whose law induces a
prior for F. We now verify that Hellinger consistency holds true for any f0 (x)=∆+2
x
h−1dG

0
(h). Let W

d
be a d-weak neighbourhood of G0 . We show that GµWd if and

only if f is in an e-Hellinger neighbourhood, A
e
, of f0 . Assume that the G converges

weakly to G0 , so that, for any x>0,

P+2
x

1

h
dG(h)$P+2

x

1

h
dG
0
(h).

Consequently, by Scheffé’s theorem, one has that ∆ | f (x)− f
0
(x)|dx$ 0, or equivalently

that f$ f0 in Hellinger distance. To show the converse, we prove that GµW cd implies
fµAc

e
. Define a weak neighbourhood of G0 as

W
d
=qG : KP+2

0

(h−y)I
(y,+2) (h)
h

dG(h)−P+2
0

(h−y)I
(y,+2) (h)
h

dG
0
(h)K<dr ,

for a fixed y>0, where I
A
is the indicator function of set A. If G1W

d
, then

|F(y)−F0 (y)|>d, which yields fµAce for e<d. Thus, one has that P (Vd,e )=0 and
Hellinger consistency holds without any further assumption.

Example 2: Mixture models. Consider the mixture model

f (x)=P wh (x−h)dQ(h),
where w

h
is the normal density function with mean zero and variance h2. Moreover, Q has

a nonparametric prior and m is the prior distribution for h. This model is considered by
Ghosal et al. (1999). It is assumed that

f
0
(x)=P wh0 (x−h)dQ0 (h)

is the true density function. Note that h can cause trouble by getting arbitrarily close to 0.
First, let h0>t>0 and define a neighbourhood of (h0 , Q0 ) as the set

W
d,t
={(h, Q) : |h−h

0
|<t, QµW

d
}.
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If (h, Q)$ (h0 , Q0 ), then, from

KP wh (x−h)dQ(h)−P wh0 (x−h)dQ0 (h)K∏P |wh (x−h)−wh0 (x−h)|dQ0 (h)
+ KP wh (x−h)d{Q(h)−Q0 (h)}K ,

one has that f (x)$ f0 (x) pointwise for all x, and Scheffé’s theorem implies that f$ f0 in
the Hellinger distance. This means that (h, Q)µW

d,t
implies that fµA

e
.

Now consider

|P(B)−P
0
(B)|= KP {Wh (B; h)−Wh0 (B; h)}dQ0 (h)+P Wh (B; h)d{Q(h)−Q0 (h)}K ,

where W
h
(B; h)= ∆

B
w
h
(x−h)dx. Again, for h bounded away from 0, and excluding the

case in which (h, Q)= (h0 , Q0 ), we can always find a set B to make this positive.
Now, consider the case in which h gets arbitrarily close to 0. It is easy to see that
|P(B)−P0 (B)|$ |Q(B)−P0 (B)|. Hence, consistency can fail when the prior puts positive
mass on h in a neighbourhood of 0 and positive mass on Q in Hellinger neighbourhoods
of P0 . This renders the quantity |Q(B)−P0 (B)| small with positive probability, for any
choice of set B, thus leading to possible problems in the identification of the correct
(h0 , Q0 ). This can be circumvented by requiring Q and P to have suitable different supports.
For example, take P and Q with supports coinciding with the real line and with [−a, a]
for some finite and positive a, respectively. This ensures that the prior for Q puts zero
mass in Hellinger neighbourhoods of P0 and |Q(B)−P0 (B)| is away from 0 for some set B.

Example 3: Finite-dimensional parametric family. Here we consider sampling models
{ f (x; h) : hµH}, where H is a finite-dimensional parameter space. Provided the support
condition is met by the prior, such families lead to consistency. The point is that
P (V
d,e
)=0 for some d>0 and for all e>0. For fµV

d,e
for all d>0 it is required that the

density f be oscillating, the number of oscillations increasing to 2 as d 30. This just
cannot happen if f is based on a finite-dimensional parameter.
To formalise this, we have the following simple conditions which should be easily

verifiable for any particular f ( . ; h). If f ( . ; h
k
)$ f ( . ; h0 ) weakly, that is

P g(x) f (x; hk )dx$P g(x) f (x; h0 )dx,
for all bounded and continuous g, then this implies that |h

k
−h0 |$ 0. If h. f (x; h) is

continuous almost everywhere with respect to the Lebesgue measure, this in turn implies
that

f (x; h
k
)$ f (x; h

0
),

pointwise almost everywhere. Then weak neighbourhoods of f0 ( . )¬ f ( . ; h0 ) are equivalent
to Hellinger neighbourhoods and so for every e>0 there exists a d>0 such that
P (V
d,e
)=0.

Example 4: Discrete model. Here we assume that observations take values in a countable
set, such as X={1, 2, 3, . . .}. Denote by f (k) the random mass assigned to the integer k
by f . Suppose that P is concentrated on all discrete probability distributions on X.
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Let f0 be any distribution in the support of P and indicate by f (k)0 the true mass assigned
to k. Then P

fn
converges weakly to P

f0
if and only if f (k)

n
$ f (k)
0
for all k, which also implies

that f
n
converges in L 1 to f0 .

3·3. Consistency with P(V
d,e
)>0

This general case has been the focus of many papers in the literature, wherein conditions
on the prior are specified in terms of metric entropy and do not admit an easy inter-
pretation. Our first result allows for a natural identification of the data-tracking behaviour.
Indeed, it shows that the posterior mass concentrated on densities that are away from f0
in a Hellinger sense and do not track the data vanishes as the sample size increases with
P2
0
-probability 1.
Define the data-tracking set as a random set of the type Bc

n,c
){ f : R

n
( f )"enc},

for any c>0 and where R
n
( f )=Xn

i=1 f (Xi )/ f0 (Xi ). This is a clear interpretation
of the sets Bc

n,c
, and Theorem 2 will demonstrate that problems of inconsistency arise

because the posterior puts sufficient mass into sets of the type Bc
n,c
. First, recall that

Ac
e
={ f : d

H
( f
0
, f )>e}.

THEOREM 2. L et f0 be in the Kullback–L eibler support of P. T hen we have

P
n
(Ac
e
mB
n,c
)$ 0,

almost surely, for any c<−2 log (1−e).

By Theorem 2, problems might arise because of the sets Ac
e
mBc
n,c
, and we are then

interested in finding sufficient conditions for which

P
n
(Ac
e
mBc
n,c
)$ 0, (2)

almost surely. We first focus on a prior P concentrating masses P1 , P2 , . . . on at most a
countable number of densities, with W P

k
=1. Note that (2) is equivalent to

J
n
= ∑
{k:fkµAcemBcn,c}

R
nk
P
k
<exp(−nd),

almost surely for all large n for some d>0, where we have denoted R
n
( f
k
) by R

nk
. Since

I
n
"J
n
>P(Ac

e
mBc
n,c
) exp (nc),

where I
n
)W
k
R
nk
P
k
<exp (nb) almost surely for all large n for any b>0, we have that

P(Ac
e
mBc
n,c
)<exp (−ng),

almost surely for all large n for any g<c−b, where we can fix b<c. Consequently, the
Cauchy–Schwarz inequality yields

J
n
= ∑
{k:fkµAce}

I
Bcn,c
( f
k
)R
nk
P
k
∏ ∑
{k:fkµAce}

(R2
nk
P
k
)D{P (Ac

e
mBc
n,c
)}D.

Since

∑
{k:fkµAce}

R2
nk
P
k
<A∑

k
R
nk
PD
kB2
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a sufficient condition for (2) to hold true is

∑
{k:fkµAce}

R
nk
PD
k
<exp (ng∞)

almost surely for all large n. Recall that R
nk
<exp(ng∞) almost surely, for all large n and

for all g∞>0. Thus we can conclude that W
k
PD
k
<2 is sufficient for consistency; see Walker

(2004) for different derivations of this result. As a matter of fact, it has been shown in
Walker (2004) that a similar condition is sufficient in a more general setting as well.
We now consider a general prior P, not necessarily discrete. Let f0 be fixed and
take Ac

e
to be the complement of an e-Hellinger neighbourhood of f0 . By separability

of F, such a set can be covered by a countable union of disjoint sets B
j
, where

B
j
kB*
j
){ f : d

H
( f , f
j
)<g}, f

j
are densities in Ac

e
and g is any number in (0, e). If f0 is in

the Kullback–Leibler support of the prior P and

∑
j!1
PD (B

j
)<+2

thenP is Hellinger-consistent at f0 . By virtue of the arguments illustrated at the beginning
of the present section, this result can be refined by confining oneself to the determination
of a covering of V

d,e
kAc
e
. Moreover, by mimicking the proof in Walker (2004), one can

state that Hellinger-consistency holds true at f0µSK (P ) if, for some aµ(0, 1),

∑
j!1
Pa (V

j
)<+2, (3)

where the sets V
j
have diameter g<e and form a countable partition of V

d,e
.

At this stage, one might wonder whether or not (3) is also necessary for consistency to
hold true. The answer to such a question is, in general, negative and can be motivated by
an argument which shows that violation of (3) does not imply inconsistency. Assume
that P is not consistent at f0µSK (P ) and that, for some e>0, Ae5SH (P ). Hence, there
exists a in (0, 1) such that

∑
j!1
Pa (V

j
)=+2

for any covering of V
d,e
. Now take fA in A

e/2
and denote by VB

j
the disjoint sets of dia-

meter g<e/2 by means of which VB
d,e/2
can be covered, where VB

d,e/2
=WB
d
mAB
e/2
, WB
d

and AB
e/2
being, respectively, a weak and a Hellinger neighbourhood of fA . Note that

VB
d,e/2
lV
d,e
and that any covering of V

d,e
can be extended to a covering of VB

d,e/2
. Thus,

∑
j!1
Pa (VB

j
)=+2

must hold. Since fA is arbitrary, consistency would fail at each density in A
e/2
, thus con-

tradicting Doob’s theorem; see Lijoi et al. (2004). Hence, P cannot be inconsistent at all
densities in A

e/2
, even if for each such density the series of the Pa-probabilities diverges,

for some a in (0, 1).
Alternatively one can face the issue of establishing the validity of (2), and thus of
consistency relying upon the construction of a suitable covering of the random set Bc

n,c
.

In the following, (c
k
)
k!1 is an increasing sequence of positive numbers such that

0<sup
k
(c
k+1−ck )=c*<+2 and, given g>0, we set d"c*+g. Moreover, let

C
n,k
){ f : enc

k
∏R
n
( f )<enc

k+1
}.
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THEOREM 3. L et f0 be in the Kullback–L eibler support of P. Assume that for all k"1
there exists a positive integer n

0
=n
0
(k) and j

k
>0, with W j

k
<+2, such that, for all

n"n0 ,

P2
0
[P (C

n,k
)<j
k
exp{−n(d+c

k
)}]=1,

for some sequence (c
k
)
k!1 of the type defined above and d"c*+g. T hen P is Hellinger-

consistent at f0 .

Special attention is required for P, based on knowledge of f0 , in order to contradict
the assumption of the theorem, bearing in mind that

∑
k
exp (nc

k
)P(C

n,k
)$ 0

for all choices of {c
k
}.

It is therefore interesting to investigate why the prior suggested in the counterexample
of Barron et al. (1999) does not meet the condition given in the above Theorem 3. Their
prior assigns positive masses to single densities for which R

n
( f )=2n, with f0 being the

uniform density on [0, 1], thus explaining the phenomenon of tracking the data. To
be more precise, for any sample X1 , . . . , Xn and c< log 2, one has that P(Bcn,c )"
exp(−2)2−n/(2c0n), where c0 is some positive constant. For any sequence (ck )k!1 defined
as above, let k*=k*(n) be such that 2nµC

n,k*
. This means that P(C

n,k*
)=P(Bc

n,c
) and

exp (−nc
k*+1 )>2−n. Hence, for any d"c*+g,

exp (−nd−nc
k*
)<exp (−ng)2−n

and, since g>0, inequality (4) must hold true for all n large enough:

P(C
n,k*
)"
exp (−2)2−n
2c
0
n

>exp (−ng)2−n>j
k*
exp{−n(d+c

k*
)}, (4)

for any sample X1 , . . . , Xn .

4. CONNECTING IDEAS

The purpose of this section is to bring together the various results for the case in which
P (V
d,e
)>0 and to understand (3) further, assuming without loss of generality that a=12 .

It provides some insight about the sets V
d,e
.

For (3) to be satisfied with a=12 we can, when the prior P does not put mass on single
densities, achieve Hellinger neighbourhoods of size no greater than e>0 from a dense
set { f

k
}, B
k
=N
ek
( f
k
) say, such that e

k
∏e for all k and P{N

ek
( f
k
)}∏M/k2+r for some

finiteM and r>0. We can pick the {e
k
} to make this hold: if P{N

e
( f
k
)}<M/k2+r then we

take e
k
=e, and otherwise we take e

k
<e such that P{N

ek
( f
k
)}=M/k2+r. Hence, with this

we have

∑
k
PD (B

k
)<+2,

ensuring that

P
nqp
k
B
k
cN
e
( f
0
)r$ 0,
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almost surely. However
k̂
B
k
may not cover the space of densities F. To investigate

what may be left out, consider F*=
k̂
B
k
and let S=FcF*. We can state immediately

that, if it turns out to be that e
k
>g>0 for some constant g and for all large k, then we

have that S=B and consistency holds. If this is not the case, then S must be closed
since F* is open. Consequently, S is nowhere dense, since FcS is dense in F. Therefore S
is where the posterior could put mass, a nowhere dense, closed, and thus with empty
interior, subset of F. For inconsistency to occur it must be that SmV

d,e
NB for all d>0

and e>0; that is S must contain a sequence of densities which converge weakly to f0 but
not in a strong sense.
We use the subscriptM to denote the dependence onM, which can be arbitrarily large,
and we establish that P(S

M
)$ 0 as M$2. For any d>0 and any e>0 there exists an

L<+2 such that

PqpL
k=1
N
e
( f
k
)r>1−d.

If we choose M sufficiently big so that e
k
>e, for all kµ{1, . . . , L }, then clearly

Pqp
k
N
ek
( f
k
)r>1−d

as well. We can do this by taking M such that

M/L 2+r> max
kµ1,...,L

P{N
e
( f
k
)}

and noting that

P{N
ek
( f
k
)}"M/L 2+r,

for all k=1, . . . , L . Therefore, P (F*
M
)$ 1 as M$2. In fact, S

M
3S∞ for some set S∞ with

P (S∞)=0 and

S∞=o
M
S
M
.

Therefore, for inconsistency, P
n
must put mass into D

M
=S
M
cS∞, for each M, and D

M
3B.

To summarise, we know that for inconsistency the posterior must put mass into a subset
of V
d,e
. Now we know what this subset is like; it is closed, nowhere dense and, based on

the arbitrariness of M, can be made arbitrarily close to the empty set.

ACKNOWLEDGEMENT

The authors are grateful to an associate editor and to an anonymous referee for their
valuable comments. The research of Stephen G. Walker was funded by an Advanced
Research Fellowship from the U.K. Engineering and Physical Sciences Research Council.
The research of Antonio Lijoi and Igor Prünster was partially supported by a grant from
the Italian Ministry of University and Research. Antonio Lijoi is also affiliated to the
Istituto di Matematica Applicata e Tecnologie Informatiche, Milano, Italy. Igor Prünster
is also affiliated to the International Center of Economic Research, Torino, Italy.



776 S. G. WALKER, A. LIJOI AND I. PRÜNSTER

APPENDIX

Proofs

Proof of T heorem 1. In order to prove Theorem 1 we need to introduce

d
K,n
( f
0
, f )=

1

n
∑
n

i=1
log{ f

0
(X
i
)/ f (X

i
)},

the sample Kullback–Leibler divergence between f0 and f . Since f0 is in the Kullback–Leibler
support of the prior, from Schwartz (1965) one has that

1

n
log I
n
$ 0,

almost surely, and, from A. R. Barron’s technical report, that E0 (n−1 log In )$ 0. Moreover, the
identity

−
1

n
log I
n
=
1

n
D
K
(m, P )−

1

n
D
K
(m, P

n
)+P dK,n ( f0 , f )m(d f ) (A1)

holds true for any measure m which is absolutely continuous with respect to P. Indeed,

−log I
n
=P logqRn ( f )P(d f )I

n
P(d f ) rm(d f )−P log Rn ( f )m(d f )

=P log (dPn/dP )dm+n P dK,n ( f0 , f )m(d f ).
Now we let I(j)

n
= ∆ R(j)

n
( f )P(d f ), where

R(j)
n
( f )=an

i=1
f (X(j)
i
)

f
0
(X(j)
i
)
( j=1, 2).

If in (A1) we set P
n
=P(1)
n
and m=P(2)

n
, we have

−
1

n
log I(1)

n
=
1

n
D
K
(P(2)
n
, P )−

1

n
D
K
(P(2)
n
, P(1)
n
)+P d(1)K,n ( f0 , f )P(2)n (d f ),

where d(1)
K,n
( f
0
, f ))(1/n) Wn

i=1 log{ f0(X(1)i )/ f (X(1)i )}. Take expectations with respect to X(1)1 , . . . , X(1)n
and keep X(2)

1
, . . . , X(2)

n
fixed. Then, using the fact that E(1)

0
(n−1 log I(1)

n
)$ 0, we have that

E(1)
0 q1nDK (P(2)n , P(1)n )r− 1nDK (P(2)n , P )−P dK ( f0 , f )P(2)n (d f )$ 0,

as n$+2. Finally, the inconsistency of P, applied to P(2)
n
, yields

lim sup
n P dK ( f0 , f )P(2)n (d f )>0,

almost surely, so that

lim sup
n
E(1)
0 q1nDK (P(2)n , P(1)n )r>0,

almost surely, and the result follows. %

Proof of T heorem 2. Note that, for any f in B
n,c
, one has R

n
( f )e−nc<1, which yields

e−nc P
Ac
e
mBn,c

R
n
( f )P(d f )<e−nc/2 P

Ac
e
mBn,c

R1/2
n
( f )P(d f ). (A2)
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If we observe that

E
0qP
Ac
e
mBn,c

R1/2
n
( f )P(d f )r< (1−e)nP(Ace ),

where E0 denotes the expected value with respect to P20 , and apply the Markov inequality, then

P2
0 qP

Ac
e
mBn,c

R1/2
n
( f )P(d f )>e−ndr∏P(Ace )e−n{−log(1−e)−d},

where d>0 is chosen in such a way that c/2<d<−log(1−e). Hence, the Borel–Cantelli lemma
leads to

P2
0 C p
N!1

o
n!N qPAc

e
mBn,c

R1/2
n
( f )P(d f )∏e−ndrD=1,

which, combined with (A2), implies that, for all but a finite number of n’s,

P
Ac
e
mBn,c

R
n
( f )P(d f )<exp{−n(d−c/2)},

almost surely. Since f0µSK (P ), one has that, for any b>0 and for all but a finite number of n’s,

I
n
=P
F
R
n
( f )P(d f )>e−nb,

almost surely. If we fix b<d−c/2, then P
n
(Ac
e
mB
n,c
)$ 0. %

Proof of T heorem 3. Let

∆
Ac
e

R
n
( f )P(d f )

∆
F
R
n
( f )P(d f )

=P
n
(Ac
e
)=P

n
(Ac
e
mB
n,c
)+P

n
(Ac
e
mBc
n,c
).

By Theorem 2, the first summand on the right-hand side tends to 0, almost surely with respect
to P2
0
. Thus, we focus attention on P

n
(Ac
e
mBc
n,c
). If (c

k
)
k!1 is the sequence described above, with

c1=c, then

P
n
(Ac
e
mBc
n,c
)=
J
n
I
n
=
W
k
∆
Cn,kmAce

R
n
( f )P(d f )

∆
F
R
n
( f )P(d f )

,

I
n
>J
n
>∑
k
enc
k
P(C
n,k
).

According to Lemma 1 in Barron et al. (1999), the fact that f0 is in SK (P ) implies that, for each n,
I
n
1{0,2} almost surely. By virtue of the hypothesis on P, one has

J
n
<∑
k
enc
k+1
P(C
n,k
)<∑
k
j
k
e−n(d−c

k+1
+c
k
)<e−ng ∑

k
j
k
,

almost surely. Hence, since I
n
<exp(nb) for any b>0, choosing b<g leads to P

n
(Ac
e
mBc
n,c
)$ 0,

almost surely with respect to P2
0
. %
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