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1. Introduction

We have seen that, although the CER model has been widely adopted as an approximation

to the unknown Data Generating Process for financial returns, it shows some undesirable

properties when applied to design strategies of portfolio allocation. As a matter of fact,

the CER model is the simplest possible econometric specification for the variables to our

interest and a natural question arises: can we do better than using the constant as the

only predictor for financial returns? Selecting time-varying predictors requires using the

properties of observed data to predict future observations of the relevant variables. Time-

series analysis is the branch of econometrics that deals with this question. We shall consider

in turn univariate and multivariate time series models. In univariate models the relevant

information set to predict one variable is restricted to the past history of that variable, for

which patterns are discovered and exploited. Restricting the information set to the past

history of one variable is giving up a wide source of information for prediction, however the

analysis of univariate time-series is interesting because it is possible to investigate the relevant

problems for time-series analysis in a simplified environment. After having introduced the

basic concepts of time-series analysis in the univariate context, we shall quickly move to the

more interesting and relevant multivariate time-series analysis.



2. Time Series Analysis

A time series is a sequence

{1 2  } or {}   = 1  

where  is an index denoting the period in time in which  occurs. Returns on a financial

assets observed over a given sample constitute the typical time-series of our interest.  is

a random variable; hence, a time-series is a sequence of random variables ordered in time.

Such a sequence is known as a stochastic process. The probability structure of a sequence of

random variables is determined by the joint distribution of a stochastic process. The CER

is the simplest case of a probability model for such a joint distribution :

 = +   ∼  (0 1) , (1)

i.e.,  is normally independently distributed over time with constant variance and mean

equal to . In other words,  is the sum of a constant and a white noise process. If a

white-noise process were a proper model for financial time-series, than forecasting would not

be very interesting as the best forecast for the moments of the relevant time series would be

their unconditional moments. However, the longer is the horizon at which a return is defined

the more likely that it will include a "persistent" component that cannot be modelled via a

simple white-noise. Figure 1 illustrates the point by reporting the actual German 1-month

stock market returns and the yield to maturity of German 10-year government bonds along

with two artificial series generated by drawing data for process (1) calibrated to have means

and variances that match those of the actual data.
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While the CER gives a plausible representation for the 1-month returns, the behavior

over time of the YTM of the 10-Year bond does not resemble at all that of the simulated

data.

To construct more realistic models, we concentrate on univariate models first, to consider

then multivariate models. In univariate models the basic idea is to use combinations of 

to generate more flexible models capable of replicating the relevant features of the data. In

particular, we concentrate on a class of models created by taking linear combinations of the

white noise process, the autoregressive moving average (ARMA) models:

(1) :  = −1 + 

(1) :  =  + −1

() :  = 1−1 + 2−2 + + − + 

() :  =  + 1−1 + + −

( ) :  = 1−1 + + − +  + 1−1 + + −

Figure 2 illustrates the potential of an AR(1) of replicating different patterns of persistence

in time-series by varying the 1 parameter. Note that a parameter very close to one is needed

to replicate the persistence observed in the YTM of 10-Y German Bunds.
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3. Analyzing Time Series: Fundamental Notions

To illustrate empirically all the basics we consider a specific member of the ARMA family,

the AR(1) model with drift,

 = 0 + 1−1 +   ∼ 
¡
0 2

¢
(2)
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Given that each realization of our stochastic process is a random variable, the first rele-

vant fundamental is the density of each observation. In particular, we distinguish between

conditional and unconditional densities. Having introduced these two concepts, we define

and discuss stationarity, generalize the form of our specific member to the whole family of

ARMA models, and conclude this section with a discussion of deterministic and stochastic

trends and de-trending methods.

3.1. Conditional and Unconditional Densities

We distinguish between conditional and unconditional densities of a time-series. The un-

conditional density is obtained under the hypothesis that no observation on the time-series

is available, while conditional densities are based on the observation of some realization of

random variables. In the case of time series processes, we derive unconditional the density

by ideally placing the observer at time zero, i.e., the moment preceding the observation of

any realization of the time-series. At that moment the information set contains only the

knowledge of the process generating the observations. As observations become available, we

can compute conditional densities by combining the information on the process with that of

the observed data. To illustrate the difference between conditional and unconditional den-

sities consider first our AR(1) model. Because Gaussian distributions are summarized by

their moments, we start by looking at conditional and unconditional moments.

The moments of the density of  conditional upon −1 are immediately obtained from

(2):

 (|−1) =  (0 + 1−1 + |−1) = 0 + 1−1

  (|−1) =   (0 + 1−1 + |−1) = 2 

 [(|−1)  (−|−1)] =  [ −] = 0 for each 

To derive the moments of the density of  conditional upon −2 we need to substitute −2

from (2) for −1:

 (|−2) =  (0 + 1(0 + 1−2 + −1) + |−2)
= 0 + 01 + 21−2,

  (|−2) =   (0 + 1(0 + 1−2 + −1) + |−2)
=   (1−1 + |−2) = 2

¡
1 + 21

¢
,

 [(|−2)  (−|−−2)] =  [0+1(0+1−2+−1)+ 0+1−2+−1]

=  [1−1 −1] +  [ −1] = 1
2
 , for  = 1,

 [(|−2)  (−|−−2)] = 0, for   1.
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Finally, unconditional moments are derived by substituting recursively from (2) to express

 as a function of information available at time 0 the moment before we start observing

realizations of our process.

 () = 0
¡
1 + 1 + 21 + + −11

¢
+ 10,

  () = 2
¡
1 + 21 + 41 + + 2−21

¢
,

 () =  ( −) = 

1  () ,

 () =
 ( −)p

  ()  (−)
=



1  ()p

  ()  (−)
.

Note that  () and  () are functions of , known respectively as the autocovariance function

and the autocorrelation function.

3.2. Stationarity

A stochastic process is strictly stationary if its joint density function does not depend on

time. More formally, a stochastic process is stationary if, for each 1 2   the joint

distribution,

 ( +1 +2  +) ,

does not depend on .

A stochastic process is covariance stationary if its two first unconditional moments do

not depend on time, i.e. if the following relations are satisfied for each   :

 () =  (+) = ,


¡
2
¢
= 

¡
2+

¢
= 2,

 (++) = .

In the case of our AR(1) process, the condition for stationarity is |1|  1 When such a
condition is satisfied, we have:

 () =  (+) =
0

1− 1
,

  () =   (+) =
2

1− 21
,

 ( −) = 

1  () .

On the one hand, these results derive from the basic fact that for a geometric series with

term |1|  1 we know that ∞X
=0

1 =
1

1− 1

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so that

lim
→∞

 () = 0

∞X
=0

1 + lim
→∞

10 =
0

1− 1

lim
→∞

  () = 2

∞X
=0

21 = 2

∞X
=0

(21)
 =

2
1− 21

lim
→∞

 () = lim
→∞

 ( −) = 

1  () .

On the other hand, when |1| = 1, the process is obviously non-stationary:

 () = 0+ 0,

  () = 2 ,

 ( −) = 2 (− ) .

Stationarity is a very important property for forecasting: under stationarity one can legit-

imately learn from the past to predict the future realizations of a time series. If stationarity

is not satisfied the density of the observations estimated from past data is not going to be

helpful to predict future observations.

3.3. ARMA Processes

Before introducing the basics of time series analysis, we have claimed that white noise

processes are too simplistic to describe economic time series and that one may hope to

obtain a closer fit to the data by considering combinations of white noises. We have then

introduced ARMA models and discussed the fundamental notions useful to understand their

properties. However, we have not yet shown that ARMA models represent combinations of

white-noise processes. We show this by considering a time series as a polynomial distributed

lag of a white-noise process:

 =  + 1−1 + 2−2 + + −

=
¡
1 + 1+ 2

2 + + 

¢


= (),

where  is the lag operator. The Wold decomposition theorem, which states that any

stationary stochastic process can be expressed as the sum of a deterministic component and

a stochastic moving-average component, warrants generality of our representation. However,

in order to describe successfully a time-series, a very high order in the polynomial () is

required. This feature can be problematic for estimation, given the usual limitations for

sample sizes. This potential problem is resolved, if the polynomial () can be represented

6



as the ratio of two polynomials of lower order:

 =  ()  =
 ()

 ()
,

 () =  () . (3)

Equation (3) is an ARMA process. The process is stationary when the roots of  ()

lie outside the unit circle. The MA component is invertible when the roots of  () lie

outside the unit circle. Invertibility of the MA component allows it to be represented as an

autoregressive process.

To illustrate how the autocovariance and the autocorrelation functions of an ARMA

model are derived, we consider the simplest case, the ARMA(1,1) process:

 = 1−1 +  + 1−1, (4)

(1− 1) = (1 + 1) .

Equation (4) is equivalent to:

 =
1 + 1

1− 1


= (1 + 1)
¡
1 + 1+ (1)

2
+ 

¢


=
£
1 + (1 + 1)+ 1 (1 + 1)

2 + 21 (1 + 1)
3 + 

¤
.

Because one can see that ∞X
=0

(1)
 =

1

1− 1


we have that:

  () =
£
1 + (1 + 1)

2
+ 21 (1 + 1)

2
+ 

¤
2

=

"
1 +

(1 + 1)
2

1− 21

#
2 

 (−1) =
£
(1 + 1) + 1 (1 + 1) + 21 (1 + 1) + 

¤
2

=

"
(1 + 1) +

1 (1 + 1)
2

1− 21

#
2 .

Hence the first-order autocorrelation is,

 (1) =
 (−1)
  ()

=
(1 + 11) (1 + 1)

1 + 21 + 211


Successive values for  () are obtained from the recurrent relation  () = 1 ( − 1) for
 ≥ 2

7



In general it is useful to know how an infinite moving average representation of an ARMA

model can be derived. The handiest way to invert finite order polynomials is by matching

their representations. For example, suppose  () =  ()  and you want to find  =

 ()  Parameters in  () are most easily found by writing  ()  () =  () and by

matching terms in 

For instance, consider  () = 1 + 1  () = 1 + 1 Multiplying out  () we have:

(1 + 1)
¡
1 + 1+ 2

2 + 

¢
= 1 + 1

Matching the powers of , we obtain:

1 = 1 − 1

11 + 2 = 0

12 + 3 = 0

1−1 +  = 0

or

 =  + (1 − 1) −1 − 1 (1 − 1) −2 +  (−1)−1 (1 − 1) −

4. Persistence: Monte-Carlo Experiments

We have seen hat the longer the horizon at which returns are defined, the higher their

persistence. Persistence of time-series threatens (complicates) one of the crucial properties

for implementing valid estimation and inference in the linear model. In the following, we

use Monte Carlo experiments to discuss these issues. Consider the framework defined by the

linear model

y = Xβ + ².

As it is well known, the following property is required to implement valid estimation and

inference

 (²|X) = 0. (5)

Hypothesis (5) implies that

 (²|x1 x x) = 0  = 1  .

Think now of an AR(1) model for a generic time series process, :

 = 0 + 1−1 + .

Clearly, if 1 6= 0 then, although it is still the case that  (|−1) = 0  (−1|−1) 6= 0
and (5) breaks down. How serious is the problem? To assess intuitively the consequences of

8



persistence, we construct a small Monte-Carlo simulation on the small-sample properties of

the OLS estimator of the parameters in an AR(1) process.

A set of random numbers is generated from a given distribution (here a normally inde-

pendent white-noise disturbance) for a sample size of interest (200 observations). Starting

from an arbitrary initial value (given by the unconditional mean of the process), we simulate

data from an AR(1) process with a persistence parameter 1 = 09. On the generated sample

of data we estimate the unknown parameter, 1. If we repeat this process only once, then the

set of random numbers drawn is just one possible outcome and the estimates are dependent

on one exact sequence of simulated white noise residuals. To overcome this problem, the

simulation procedure is replicated many times to construct the process of interest (in our

case, an AR(1) process). For each replication we obtain a set of estimates, and compute

averages across replications of the estimated parameters, to assess these averages against the

known, true values. For each simulated sample estimates can be computed on the sample or

on different sub-samples. Figure 3 reports average estimates across 1,000 replications for a

initial sample size of 15 that is increased progressively to the full sample of 200 observations

by adding one observation at the time.

0 20 40 60 80 100 120 140 160 180 200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

sample size

ex
pe

ct
ed

 r
ho

 h
at

Bias of OLS estimator in an AR(1)

From this figure, we note that the estimate of 1 is heavily biased in small samples,

but the bias decreases as the sample gets larger, and disappears eventually. One can show

analytically that the average of the OLS estimate of 1 is 1 (1− 2 ). This is an interesting
result, which can be generalized. For stationary time series, any high serial correlation, which

destroys the orthogonality between residuals and regressors in the linear regression model,

tends to disappear as the distance between observations increases. Therefore, as we shall

show in the next section, the standard finite sample results can be extended to time series
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only by considering large samples. In practice, this is a very useful result: all the standard

econometric tools can be applied to time series, provided that large samples are available.

The more persistent are the time-series of interest the larger is the sample size needed. The

relevant results on the properties of the estimators are obtained by introducing asymptotic

theory, which we now proceed to do.

5. Asymptotic Theory

Strictly stationary time series processes feature time invariant distributions. As a conse-

quence, the effect of any specific innovation disappears as time elapses. We show in this

section that the intuition of the simple Monte Carlo simulation performed above can be

extended and formal asymptotic theory used to perform valid estimation and inference when

modelling stationary time series.1

5.1. Basic elements of asymptotic theory

Consider a sequence {} of random variables with the associated sequence of distribution

functions {} = 1 ...  , we give the following alternative definitions of convergence for

 .

5.1.1. Convergence in distribution

Given a random variable  with distribution function  ,  converges in distribution to 

if the following equality is satisfied:

lim
→∞

 {  0} =  {  0} ,

for all 0 where the function  () is continuous.

5.1.2. Convergence in probability

Given a random variable  with distribution function  ,  converges in probability to 

if, for each   0 the following relation holds:

lim
→∞

 {| −|  } = 1.

Note that convergence in probability implies convergence in distribution. We also write that

 lim = .

1For a formal treatment of these topics, see White (1984) 
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5.1.3. Central limit theorem (Lindberg−Levy)

This is an important result that relies on convergence in distribution. Given a sequence

{} of identically and independently distributed random variables with mean  and finite

variance 2, define

_

 =
1



X
=1

,

 =
√


³ _
 − 

´


.

Then  converges in distribution to a standard normal, (0 1), 
→ (0 1).

5.1.4. Slutsky’s Theorem

For any random variable   such that plim  = , where  is a constant, given a function

(·) continuous at , lim  ( ) =  ().

5.1.5. Cramer’s Theorem

Given two random variables  and   such that  converges in distribution to  and

 converges in probability to a constant , the following relationships hold:

 +  converges in distribution to (+  );

 converges in distribution to ();

 ·  converges in distribution to ( · ).

Note that all theorems introduced so far extend to vectors of random variables, random

vectors.

5.1.6. Mann-Wald Theorem

Consider a  × 1 vector z of random variables which satisfies the following property:

 lim −1
X
=1

zz
0
 = Q,

where Q is a positive definite matrix. Consider also a sequence  of random variables,

identically and independently distributed with zero mean and finite variance, 2, for which

finite moments of each order are defined. If  (z) = 0 then

 lim −1
X
=1

z = 0

r
1



X
=1

z
→ 

¡
0 2Q

¢
.
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5.2. Application to models of stationary time series

Consider the following time series AR(1) model:

 = −1 + ,

where  is a stationary variable and ||  1 As already shown,  (−) 6= 0 and the OLS
estimator of  is biased. By applying the Mann-Wald theorem, we can derive the asymptotic

distribution of the OLS estimator of  b:
b → 

£
 2Q−1

¤
,

where Q is the asymptotic variance of the regressor that (given stationarity) coincides with

the asymptotic variance of the dependent variable. Therefore all the finite sample results

available for independent cross sectional observations can be extended to stationary time

series just by considering large-sample theory.

6. Estimation of ARMA models. The Maximum Likelihood Method

Given the results derived in the previous section the problem of estimation of stationary

AR models is easily solved by applying standard methods to linear specification where the

regressors are lags of the dependent variables. However, the linear model is no longer ap-

plicable when moving average of white noise errors are introduced in the specification to

be estimated. A more general method, capable of dealing with non-linearities, needs to be

introduced to this end : the Maximum Likelihood method.

Within this framework estimates of the parameters of interests are obtained by maximiz-

ing the likelihood function. The likelihood function is the joint probability distribution of

the data, that depends on the observations on the time series of interest and an the unknown

parameters. The likelihood function can be expressed as L (X1
 |X0θ)  It is defined on the

parameter space Θ, given the observation of the observed sample X1
 and of a set of initial

conditionsX0 One can interpret such initial conditions as the pre-sample observations on the

relevant variables (which are usually unavailable). Once a sample of observations is available

for the time series of interest the likelihood can be treated as a function of the unknown

coefficients. The maximum likelihood estimator (MLE) is then obtained by choosing the of

value of the unknown parameters that maximize the likelihood function. In practice, the

MLE selects the value of parameters to maximize the probability of drawing the data that

have been effectively observed.
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6.1. MLE of an MA process

To illustrate the practice of MLE estimator consider the case of a financial returns that +1

follows an MA(1) process:

+1 = 0 + +1 + 1  ∼ 
¡
0 2

¢


In this case the unknown parameters to be estimated are 0 1 and 2. To derive MLE

estimates first define the time series of residuals:

+1 = +1 − 0 − 1

0 = 0

Given the distributional assumption on +1 we have:

 (+1) =
1

(22)
12
exp

µ
−

2
+1

22

¶


This expression is the distribution of a single observation, while the likelihood function is

the joint distribution of the entire sample. If the +1 are independent over time, then the

likelihood function can be written as follows:

 (1 2 +1) =

Y
=1

 () =

Y
=1

1

(22)
12
exp

µ
− 2
22

¶


At this point, the MLE chooses 0 1 
2
 to maximize the probability that the estimated

model has generated the observed data. The optimum is not always found analytically,

iterative search is the standard method.

6.2. MLE of an AR process

The derivation of the likelihood of an autoregressive process offer the opportunity of thinking

further on persistence. Consider a vector x containing observations on time-series variables

at time . A sample of  time series observations on all the variables is represented as:

X1
 =

⎡⎢⎢⎢⎢⎢⎢⎣
x1







x

⎤⎥⎥⎥⎥⎥⎥⎦ .

In case of independent observations the likelihood function can be written as the product of

the density functions for each observation. However, this is not the relevant case for time
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series, as time series observations are in general sequentially correlated. In the case of time

series, the sample density is constructed using the concept of sequential conditioning. The

likelihood function, conditioned with respect to initial conditions, can always be written as

the product of a marginal density and a conditional density:


¡
X1

 |X0θ
¢
=  (x1|X0θ)

¡
X2

 |X1θ
¢
,

where  (x|X0θ) is the density of x. Obviously,


¡
X2

 |X0θ
¢
=  (x2|X1θ)

¡
X3

 |X2θ
¢
,

and, by recursive substitution:

L ¡X1
 |X0θ

¢
=

Y
=1

 (x|X−1θ) .

Having obtained L (X1
 |X0θ), we can in theory derive L (X1

 θ) by integrating with re-

spect to 0 the density conditional on pre-sample observations. In practice this could be

intractable analytically, as  (0) is not known. The hypothesis of stationarity becomes

crucial at this stage, as stationarity restricts the memory of time-series and limits the effects

of pre-sample observations to the first observations in the sample. This is why, in the case of

stationary processes, one can simply ignore initial conditions. Clearly, the larger the sample,

the better, as the weight of lost information becomes smaller. Moreover, note that even by

omitting initial conditions, we have:

L ¡X1
 |X0θ

¢
=  (x1|X0θ)

Y
=2

 (x|X−1θ) .

Therefore, the likelihood function is separated in the product on  − 1 conditional distribu-
tions and one unconditional distribution. In the case of non-stationarity, the unconditional

distribution is undefined. On the other hand, in the case of stationarity, the data generating

process (DGP) is completely described by the conditional density function  (x|X−1θ).

For a sufficiently large-sample, the density of the first observation can be dropped and the

approximated likelihood can be maximized rather than the exact likelihood, in the so called

quasi-ML method:

L ¡X1
 | X0θ

¢ ' Y
=2

 (x | X−1θ) .

Consider now the case of the univariate first-order autoregressive process,

|X−1 ∼ 
¡
−1 

2
¢
 (6)
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Hence

L ¡X1
 | 2

¢
= 

¡
1| 2

¢ Y
=2


¡
|X−1  

2
¢
. (7)

From (7), the likelihood function clearly involves  − 1 conditional densities and one uncon-
ditional density. The conditional densities are given by (6). The unconditional density can

be derived only in the case of stationarity:

 = −1 +   ∼ 
¡
0 2

¢
.

We can obtain by recursive substitution:

 =  + −1 + + −11 + 0.

Only if ||  1 the effect of the initial condition disappears and we can write the uncondi-
tional density of  as:


¡
 |  2

¢
= 

µ
0

2

1− 2

¶


Under stationarity we can derive the exact likelihood function:

L ¡X1
 |  2

¢
= (2)

−
2 −

¡
1− 2

¢ 1
2 (8)

exp

"
− 1

22

Ã¡
1− 2

¢
21 +

X
=2

( − −1)
2

!#
,

and estimates of the parameters of interest are derived by maximizing this function. Note

that ̂ cannot be derived analytically, using the exact likelihood function. Optimization

is achieved in practice by conditioning the likelihood and operating a grid search. Note

also that, when the first observation is dropped and the approximate likelihood function is

considered, one can show that the MLE of  coincides with its OLS estimate.

7. Putting ARMA models at work

Putting ARMA models at work is a multi-step process that can be summarized in the

following stages (the so-called Box-Jenkins approach):

• PRE-WHITENING: make sure that the time series is stationary, in other words make
sure that the model at hand is ARMA and not ARIMA, where the I in the acronym

would otherwise given an indication in favor of non-stationarity. In practice, this is

commonly achieved for simple univariate time series via differencing, i.e., by considering

∆ = (1 − ) =  − −1 instead of  As we shall see later on, there are

alternative, and more interesting, ways of achieving stationarity in multivariate time

series analysis.
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• MODEL SELECTION: the aim of a model selection process is to look for the best

ARMA specification. This is often not a easy task because different specification may

perform very closely. Information criteria are a useful tool to this end. They are model

selection criteria based on penalized versions of the maximized log-likelihood function.

They may be used to select  and  in an ARMA( ) model. The Akaike’s information

criteria (AIC) and the Schwarz Bayesian Criterion (SBIC, sometimes simply referred

to as BIC) are the most commonly used criteria and are defined as follows:

 ≡ −2 ln(L) + 2(+ )

 ≡ −2 ln(L) + ln()(+ )

where  and  are the length of the AR and MA polynomials and  is the total number

of observations. The models are ranked from the best to the worst in such a way that

best model is the one that minimizes any chosen criterion. Note that the criterion is

minimized when the likelihood function penalized for the lack of parsimony (i.e., when

over-parameterization occurs) is maximized, thanks to the presence of a minus sign in

front of ln(L)

• MODEL CHECKING: residual tests. Make sure that residuals are not autocorrelated
and check whether their distribution is normal, also ex-post evaluation technique based

on the root mean squared forecast error (RMSE) and mean absolute forecast error

(MAE) are often employed.

• FORECASTING, the selected model is typically simulated forward after estimation of
the estimation of parameters to produce forecasts for the variable of interests at the

relevant horizon.

7.1. An Illustration

To illustrate how ARMA models may be put at work, consider the case of forecasting the

yield to maturity (henceforth, YTM) of 10-year German bonds (10 ) from January 1994

(i.e., 1994:01) onward, given the availability of data for the period 1978-1993. Estimation

is performed in MATLAB by using the appropriate specification in the GARCH procedure

(see sample codes below). ML estimation delivers the following result:

10 = 00001423
(00004137)

+ 09764
(00610)

10−1 +
√
000000007
(32616−08)

̂
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Figure 4 illustrates the results of using an AR(1) model to forecast at a horizon up to nine

years form 1994:01 onward and compares them with forecasts based on the CER model.
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Note that a very different picture is obtained in Figure 5 to illustrate the one-step ahead

forecasts recursively derived over the same forecasting horizon:
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8. Trends

Time series of long-horizon returns–i.e., returns computed as sums of higher frequency

returns–besides being persistent, often feature trends. The presence of trends is potentially

problematic as it induces non-stationarity. We have seen in the previous section that the
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estimated autoregressive parameter for the AR(1) process fitted on German 10-year yields

to maturity is close to one (0.9764). Knowing that persistence introduces a small sample

downward bias in these estimates, it is worth considering the case in which the autoregressive

parameter tends to one and we face instead a random walk process with drift:

 = 0 + −1 +   ∼ 
¡
0 2

¢
.

Recursive substitution yields

 = 0 + 0+

−1X
=0

−, (9)

which shows immediately that the series is non-stationary in that the unconditional mean

( () = 0 + 0) is a function of time and that a non-stationary series contains both a

deterministic (0) and a stochastic trend, here

−1X
=0

−.

An immediate way to make a non-stationary series stationary is by differencing it:

∆ ≡  − −1 = (1− ) = 0 + 

In general, if a time-series needs to be differenced  times to become stationary, then it is

said to be integrated of order  or (). Our random walk is I(1). When the th difference

of a time-series {}, ∆,

∆ ≡ (1− )



can be represented by an ARMA( ) model, we say that  is an integrated moving-average

process of order    and denote this as an ARIMA(  ).

It is useful to compare the behavior of an integrated process with that of a trend station-

ary process. Trend stationary processes simply feature a deterministic trend:

 = + + . (10)

The process for  is non-stationary, but non-stationarity is removed simply by regressing

 on the deterministic trend. Unlike the case of (9), for integrated processes like (9) the

removal of the deterministic trend does not deliver a stationary time-series. Deterministic

trends have no memory while integrated variables have an infinite memory. Both integrated

variables and deterministically trending ones exhibit systematic variations, but in the latter

case the variation is predictable, whereas in the former case, it is not. This point is easily

illustrated in the Figure that follows (6), where we report three different series for a sample

of 200 observations each: one deterministic trend with a slope of 0.1; two random walks,
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with a drift of 0.1 The only difference between the two stochastic trend series STREND1

and STREND2 is in the realizations of the error terms, which are different drawings from

the same serially independent standard normal distribution. Equivalently, STREND1 and

STREND2 are two different, alternative simulated paths. Visibly, while STREND2 shows a

behavior that is not remarkably different from a deterministically trending series, STREND1

shows a radically different dynamics.
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8.1. Univariate time series decompositions

The general solution proposed to the problem introduced in the previous section is the

search for a stationary representation of non-stationary time series. This can be done both in

univariate and multivariate frameworks. Here, we discuss briefly the available methodologies

in a univariate framework, to move swiftly to decompositions in a multivariate framework,

which are more interesting to our purposes, in the next chapter.

Beveridge and Nelson (1981) provide an elegant way of decomposing a non-stationary

time series into a permanent and a temporary (cyclical) component by applying ARIMA

methods. For any non-stationary time-series,  integrated of the first order, the Wold

decomposition theorem can be applied to its first difference (to make it stationary), to

deliver the following representation:

∆ = +  ()   ∼ 
¡
0 2

¢
,

where  () is a polynomial of order  in the lag operator. Consider now the polynomial

 (), defined as:

 () =  ()−  (1) . (11)
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Given that  (1) is just a constant, also  () will be of order . Clearly,

 (1) = 0,

therefore, 1 is a root of  (), and

 () = ∗ () (1− ) , (12)

where ∗ () is a polynomial of order −1. At this point, by equating (11) to (12), we have:

 () = ∗ () (1− ) +  (1) ,

so that

∆ = + [∗ () (1− ) +  (1)] (13)

= + ∗ ()∆ +  (1) .

By integrating (13), we finally have:

 = ∗ ()  + +  (1) 

=  + ,

where  is a process for which∆ = .  is the cyclical component and  ≡ + (1) 

is a trend component made of a deterministic and of a stochastic trend. Note that the trend

component can be represented as:

 = −1 + +  (1) 

8.1.1. Beveridge-Nelson decomposition of an IMA(1,1) process

Consider instead the process:

∆ =  + −1 0    1

In this case:

 () = 1 + 

 (1) = 1 + 

∗ () =
 ()−  (1)

1− 
= −

The Beveridge and Nelson decomposition gives the following result:

 =  + 

= − + (1 + ) 
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8.1.2. Beveridge-Nelson decomposition of an ARIMA(1,1) process

Consider the process:

∆ = ∆−1 +  + −1

Here:

 () =
1 + 

1− 
,

 (1) =
1 + 

1− 
,

∗ () =
 ()−  (1)

1− 
= −  + 

(1− ) (1− )
,

and the Beveridge and Nelson decomposition yields:

 =  +  = −  + 

(1− ) (1− )
 +

1 + 

1− 
.

8.1.3. Deriving the Beveridge-Nelson decomposition in practice

The practical derivation of a Beveridge and Nelson decomposition for any ARIMA process

is easily implemented through a methodology suggested by Cuddington and Winters (1987).

For any I(1) process, the stochastic trend can be represented as:

 = −1 + +  (1) . (14)

The decomposition can then be applied in the following steps:

1. identify the appropriate ARIMA model and estimate  and all the parameters in 

and  (1);

2. given an initial value for 0 use (14) to generate the permanent component of the

time-series;

3. generate the cyclical component as the difference between the observed value in each

period and the permanent component.

The above procedure gives the permanent component up to a constant. If the precision of

this procedure is unsatisfactory, one can use further conditions to identify the decomposition

more precisely. For example, one can impose the condition that the sample mean of the

cyclical component is zero, to pin down the constant in the permanent component.

To illustrate how the procedure works in practice, we have simulated the following

ARIMA(1,1,1) model for a sample of 200 observations:

∆ = 06∆−1 +  + 05−1
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From the previous subsection, we know the exact Beveridge-Nelson decomposition of the

series for :

 =  +  = − 11

(1− 06) (1− 06) +
15

04
,

 = −1 +
15

04
.

Given the estimate of , we can therefore generate the permanent and transitory components

of  The following Figure (7) reports the series IMA, TR and CYCLE.
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This procedure can be followed in practice, after the identification of the relevant ARIMA

model and the estimation of the relevant parameters that cannot be imputed from a known

Data Generating Process (DGP).

8.1.4. Assessing the Beveridge-Nelson decomposition

The properties of the permanent and temporary components of an integrated time series

delivered by the Beveridge-Nelson decomposition are worth some comments. Note first that

the innovations in the permanent and the transitory components are perfectly negatively

correlated; moreover, the trend component is more volatile than the actual time series as the

negative correlation between the permanent and the transitory components acts to smooth

the original time-series. These results are easily seen for the simplest case we have already

discussed. For example, in the case of the IMA(1,1) process, the correlation between the

innovations in the permanent and transitory components is minus one and the variance

of the innovation in the trend component is (1504)
2
2  2 . In general, the variance

of the innovations may have an economic interpretation and theory may suggest different
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patterns of correlations between innovations in the permanent and transitory components

that do differ from a perfectly negative correlation. In fact, alternative restrictions imposed

on the correlation between the trend and the cycle components, lead to the identification

of different stochastic trends for integrated time series. As a consequence, the Beveridge-

Nelson decomposition is not unique. In fact there many different stochastic trends that can

be extracted by applying univariate decompositions. To see this point more explicitly we can

compare the Beveridge-Nelson trend with the trend extracted using an alternative technique

which has been recently very successful in time series analysis, the Hodrick-Prescott filter.

Hodrick and Prescott (1997) proposed their method to analyze post-WWII U.S. business

cycles in a working paper circulated in the early 1980s but published only in 1997. The

Hodrick-Prescott (HP) filter computes the permanent component  of a series  by

minimizing the variance of  around , subject to a penalty that constrains the second

difference of  to enforce sufficient “smoothness”. That is, the HP filter is derived by

minimizing the following expression:

X
=1

( − )
2
+ 

−1X
=2

£
(+1 − )

2 − ( − −1)
2
¤
.

The penalty parameter  controls the smoothness of the series, by controlling the ratio of

the variance of the cyclical component and the variance of the series. The larger the ,

the smoother the  component is, as in fact it approaches a linear trend. In practical

applications,  is set to 100 for annual data, 1600 for quarterly data, and to 14400 for

monthly data.

The following Figure (8) shows the Beveridge-Nelson and the Hodrick-Prescott trends

(with  = 14400) for the data generated in the previous Section.
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Note that the Beveridge-Nelson trend is more volatile than the Hodrick-Prescott trend. It

is possible to increase the volatility of the Hodrick-Prescott trend by reducing the parameter

; however, the Hodrick-Prescott filter reaches at most the volatility of the actual, raw time

series, which, as we already know, is smaller than the volatility of the Beveridge-Nelson

trend.2

The comparison between the Hodrick-Prescott and the Beveridge-Nelson trends reinforces

the argument of non-uniqueness of univariate decompositions we have made before. More-

over, we are left with the problem of how to use the filtered series in the empirical analysis

and how to relate them to theoretical models. The empirical counterparts of theoretical asset

pricing models are multivariate time series. Theoretical models often predict that different

time series share the same stochastic trend. The natural question at this point is whether

the problem of non-stationarity in time series analysis may be resolved by considering mul-

tivariate models. In this context, stationarity is obtained by considering combinations of

non-stationary time series sharing the same stochastic trend. If possible, it would justify the

identification of trends by relating them to theory. We shall return to these issues in a later

chapter.

9. Asset Allocation with a simple TVER model: the SOP method

Univariate time series analysis allows us to introduce simple models of time-varying expected

returns (TVER). To assess the impact of such models on asset allocation let us consider the

sum-of-the-part (SOP) approach to returns predictability discussed in Ferreira and Santa

Clara (2012). The idea is to decompose returns in several parts and to implement simple

time series analysis to predict each individual component and then generate a time-varying

expected (predicted) return by aggregating predictions.

Let’s start by noting that total stock market returns in local currency can be re-expressed

as follows:

1 +
+1 ≡

+1 ++1



(15)

2Unlike the Beveridge and Nelson decomposition, in multivariate applications the HP filter fits and

removes a homogeneous trend from all the available time series. This may be desirable only in case the

theoretical models indicate that the variables of interest share the same stochastic trend. However, Harvey

and Jaeger (1993) showed that the use of such a filter can lead to the identification of spurious cyclical

behaviour. Harvey and Jaeger predicate instead a different approach to modelling time series, known as

structural time series modelling, which we do not consider in our analysis, as it is less closely related to the

analysis of financial returns, but that certainly deserves attention (Harvey and Koopman 1996; Maravall

1995).
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=
+1



+
+1



=
+1



+
+1

+1

+1



=

µ
1 +

+1

+1

¶
+1





Taking logs, we have:

+1 ' (+1 − ) +
+1

+1



where in general, ln(1 + +1) ' +1 and ln

+1 = +1. Therefore total log returns

can be decomposed in two parts: the capital gain and the dividend price ratio. In case of

investments in a foreign currency we have a third term capturing exchange rate fluctuations:



+1 ' (+1 − ) +

+1

+1

+ (+1 − ) 

Asset allocation with the simplest TVER model can be applied by specifying univariate time

series model to predict each part of the total return, as specified above.

To provide an empirical illustration we re-consider the asset allocation exercise imple-

mented in the previous chapter using the CER model. The investor uses monthly data

available over the period 1978-2003 to find the tangency portfolio for an investment over the

period 2004-2007. The risky assets available for portfolio allocation are German, US and

UK shares (as captured by a national index) and the German 10-Year government bond.

The risk-free asset is the German short-term rate. The plots in the Figure below (9) report

the decomposition of returns in their components showing that the dividend-yield has very

little volatility for all three countries, and that the most relevant components in explaining

the time variation in total returns is clearly the capital gain, although the exchange rate

fluctuations are also a relevant source of time variation.

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011
-1.5

-1

-0.5

0

0.5

1
Germany

 

 

3Y Risk Free
3Y Total Returns
3Y Capital Gain
3Y Dividend Yield

25



1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
US

 

 

3Y Risk Free
3Y Total Returns
3Y Capital Gain
3Y Dividend Yield
3Y Exchange Rate

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
UK

 

 

3Y Risk Free
3Y Total Returns
3Y Capital Gain
3Y Dividend Yield
3Y Exchange Rate

In Chapter 4 we have derived the tangency portfolio using the CER (and therefore using

data over the period 1978-2003 to compute unconditional moments as inputs of the optimiza-

tion). We consider now a TVER alternative that exploits univariate time series methods.

The asset allocation exercise requires the specification of models to predict returns on the

four risky assets included in the asset menu of our interest. We adopt the following specifi-

cation for German stock market returns:

+36 =
¡
+36 − 

¢
+

36X
=


+


+¡

+36 − 

¢
= 

¡
+36 − 

¢
+ 1+36



¡
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 − 1
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36X
=1


+


+

= 

Ã
36X
=1
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

Ã
36X
=1


+


+

!
=

35X
=0


−


−



In words, log-prices are mean reverting towards a trend that is estimated via the 3 year

moving average of past prices, while a random walk model is adopted for the three-year

cumulative dividend-price ratio. A similar specification is adopted for US and UK stock

market returns where the model adopted for Germany is augmented with a random-walk

model for the exchange rate ( = , ):
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A simple CER model is maintained instead for the German bond returns:



+36 = 4 + 


4+36

The SUR (Seemingly Unrelated Regression) estimation of the system involving the four

stochastic equations of interest delivers the following results:

Table 1: SUR Estimation Outputs

0 1 2 4 2¡
+36 − 

¢
229
(1279)

−094
(−1860)

061
(988)

0.402¡
+36 − 

¢
137
(1116)

−120
(−1918)

107
(1502)

0.687¡
+36 − 

¢
331
(2639)

−110
(−2157)

071
(1432)

0.510



+36 02362

(3072)
0.000

The estimation of the relevant forecasting model leads to the following specification of
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the conditional mean and variance-covariance matrix function of returns:

̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4

0 + 1

Ã
 − 1

36

2

1

36X
=1

−

!
+

35X
=0


−


−

0 + 1

Ã
 − 1

36

2
1

36X
=1

−

!
+

35X
=0


−


−

0 + 1

Ã
 − 1

36

2
1

36X
=1

−

!
+

35X
=0


−


−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ω̂ =  
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⎤⎥⎥⎥⎦
It is then interesting to compare mean and variance-covariance matrices obtained under the

CER and the TVER hypotheses. The following Figure (10) reports the means.
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Ω̂ =

⎡⎢⎢⎢⎣
00143 00168 00189 00196

00168 01524 01163 01303

00189 01163 01114 01205

00196 01303 01205 01620

⎤⎥⎥⎥⎦  Ω̂  =

⎡⎢⎢⎢⎣
00136 00028 00028 00062

00028 00845 00747 00966

00028 00747 00830 01014

00062 00966 01014 01502

⎤⎥⎥⎥⎦ 
On the basis of these estimates for  and Ω the tangency portfolio is then computed.

The resulting weights and the efficient frontier are reported in the following Figure (11):
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10. Univariate time-series analysis and portfolio allocation with TVER in

MATLAB

In this section we illustrate a MATLAB programme that allows the practical implementation

of all the tools discussed in the chapter. The programme works on the same data used in

Chapter 3 and it is called mainCH5.m.

After setting up directories and importing variables the programme calls external m files

that perform the analysis commented in the different section of this chapter:

%%-------------------------------------------------------------------------

% % -------------- Room saving ---------------------------------------------

close all; clear all; clc; pause(0.01),

randn(’seed’,sum(clock)), rand(’seed’,sum(clock)), warning off

TSTART = tic;

% -------------- Load folders ---------------------------------------------

addpath([pwd ’\Input\’]);
addpath([pwd ’\Utilities\’]);
addpath([pwd ’\Output\’]);
% -------------- Import data and transform -------------------------------

[data,textdata,raw] = xlsread(’STOCKINT2013.xls’,’Monthly’);

%[filename,pathname]=uigetfile(’*.xls’);

%[data,textdata,raw] = xlsread(filename,’Monthly’);

%Convert dates into a serial number

date=datenum(textdata(4:end,1),’dd/mm/yyyy’);

%--------------------------------------------------------------------------

% Data Transformation

%--------------------------------------------------------------------------

run ch5_datatran

%--------------------------------------------------------------------------

% SECTION 1: Simulated and Actual Time-Series

%--------------------------------------------------------------------------

run ch5_section1

%--------------------------------------------------------------------------

% SECTION 2: Persistence: A Monte Carlo Experiment

%--------------------------------------------------------------------------

run ch5_section2

%--------------------------------------------------------------------------

% SECTION 3: Putting ARMA models at Work
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%--------------------------------------------------------------------------

run ch5_section3

%--------------------------------------------------------------------------

% SECTION 4: Stochastic and Deterministic Trends,Beveridge-Nelson Decomposition

%--------------------------------------------------------------------------

run ch5_section4

%--------------------------------------------------------------------------

% SECTION 5: Portfolio Allocation with univariate TS models

%--------------------------------------------------------------------------

run ch5_section5

tElapsed = toc(TSTART);

display([’The time needed to run the code is: ’,num2str(tElapsed/60),’ minutes’]);

10.1. Simulated and Actual Time-Series

Section 1 illustrates the capability of simulated different ARMA time-series to replicate

observed financial time-series

%--------------------------------------------------------------------------

% SECTION 1: Simulated and Actual Time-Series

%--------------------------------------------------------------------------

% Defining the parameters

alpha_1m=mean(GER.Stock.Ret(2:end));

alpha_3y=mean(GER.Stock.Ret3Ya(38:end));

beta_1m=var(GER.Stock.Ret(2:end));

beta_3y=var(GER.Stock.Ret3Ya(38:end));

alpha_LTB=mean(GER.LTBond.Yield(2:end));

beta_LTB=var(GER.LTBond.Yield(2:end));

% Simulate artificial series

Num=size(GER.Stock.Ret,1);

Wn_1m=alpha_1m+sqrt(beta_1m)*normrnd(0,1,Num,1);

Wn_3y=alpha_3y+sqrt(beta_3y)*normrnd(0,1,Num,1);

Wn_LTB=alpha_LTB+sqrt(beta_LTB)*normrnd(0,1,Num,1);

% Plot the result

s_start = ’31/01/1978’;

s_end = ’31/12/2010’;
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date_find = datenum([s_start; s_end],’dd/mm/yyyy’);

ss = datefind(date_find(1,1),date);

se = datefind(date_find(2,1),date);

T=ss-se+1;

%plot actual and simulated series

run Figure001

%-------------------------------------------------------------------------

10.2. A Monte Carlo experiment on the impact of persistence on the OLS estimates

Section 2 illustrates how a Monte-Carlo experiment to assess how the small sample bias of

OLS estimators in presence of persitence can be evaluated:

%--------------------------------------------------------------------------

% SECTION 2: Persistence: A Monte Carlo Experiment

%--------------------------------------------------------------------------

% Initializing the series:

reps=100;

obs=200;

init=15;

x=NaN(obs,reps);

beta1=NaN(obs-init,reps);

%Defining Parameters

rho=0.9;

alpha=0;

vol=1;

% Initializing the series:

x(1,:)=alpha/(1-rho);

% Artificial series:

u1=vol.*normrnd(0,1,obs,reps);

for j=1:reps

for i=2:obs

x(i,j)=rho*x(i-1,j)+alpha*(1-rho)+u1(i,j)*sqrt((1-rho^2)*vol);

end

for k=init+1:obs

X=NaN(k-1,2);

X(:,1)=ones;
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X(:,2)=x(1:k-1,j);

reg1=ols(x(2:k,j), X(1:k-1,:));

beta1(k-init,j)=reg1.beta(2);

end

end

dim=16:200;

av_beta1_hat(:,1)=mean(beta1,2);

%plot results of the experiment

figure

plot(dim,av_beta1_hat’,dim,(ones(size(dim)).*rho))

grid on

%xlim([dim(1) dim(end)])

xlabel(’sample size’)

ylabel(’expected rho hat’)

title(’Bias of OLS estimator in an AR(1)’)

10.3. Putting ARMA models at work

Section 3 illustrates how to put ARMA models at work through identification, estimation

and forecasting

%--------------------------------------------------------------------------

% SECTION 3: Putting ARMA models at Work

%--------------------------------------------------------------------------

% Select the estimation sample

s_start = ’31/01/1979’;

s_end = ’29/10/1993’;

date_find = datenum([s_start; s_end],’dd/mm/yyyy’);

first = datefind(date_find(1,1),date);

last = datefind(date_find(2,1),date);

T=first-last+1;

% Estimate ARMA model

% ARMA(1,1) estimation

spec=garchset(’VarianceModel’,’Constant’,’R’,1,’M’,1);

[coeff,errors,llf,innovation,sigma,summary]=garchfit(spec,

GER.LTBond.Yield(first:last));

garchdisp(coeff,errors);
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%ARMA forecast

horz=108;

[SigmaForecast,MeanForecast] = garchpred(coeff,GER.LTBond.Yield(first:last),horz);

Forecast_arma=MeanForecast;

GER.LTBond.Yield_for_arma=NaN(size(GER.Stock.Ret));

GER.LTBond.Yield_for_arma(1:last,1)=GER.LTBond.Yield(1:last,1);

GER.LTBond.Yield_for_arma(last+1:(last+horz),1)=Forecast_arma(1:horz,1);

% AR(1) estimation

spec=garchset(’VarianceModel’,’Constant’,’R’,1);

[coeff,errors,llf,innovation,sigma,summary]=garchfit(spec,GER.LTBond.Yield(first:las

garchdisp(coeff,errors);

% AR forecast

%spec_pred=garchset(’VarianceModel’,’Constant’,’C’,coeff.C,’R’,1,’AR’,coeff.AR,’K’,c

[SigmaForecast,MeanForecast] = garchpred(coeff,GER.LTBond.Yield(first:last),horz);

Forecast_ar=MeanForecast;

GER.LTBond.Yield_for_ar=NaN(size(GER.Stock.Ret));

GER.LTBond.Yield_for_ar(1:last,1)=GER.LTBond.Yield(1:last,1);

GER.LTBond.Yield_for_ar(last+1:(last+horz),1)=Forecast_arma(1:horz,1);

% Forecast unconditional mean

Forecast_unc=ones(horz,1)*mean(GER.LTBond.Yield(first:last));

GER.LTBond.Yield_for_unc=NaN(size(GER.Stock.Ret));

GER.LTBond.Yield_for_unc(1:last,1)=GER.LTBond.Yield(1:last,1);

GER.LTBond.Yield_for_unc(last+1:(last+horz),1)=Forecast_unc(1:horz,1);

%plot actual and forecast

run Figure003

disp(’***************************************************************’)

% % Recursive One-Step Ahead Forecasts

disp(’================================================================’)

disp(’Recursive One-Step Ahead Forecasts’)

s_start = ’31/01/1979’;

s_end = ’29/10/1993’;

date_find = datenum([s_start; s_end],’dd/mm/yyyy’);

first = datefind(date_find(1,1),date);

last = datefind(date_find(2,1),date);

T=first-last+1;
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horz=1;

forsmpl=40;

LTBond_mean=NaN(size(GER.Stock.Ret));

LTBond_upp=NaN(size(GER.Stock.Ret));

LTBond_low=NaN(size(GER.Stock.Ret));

for j=1:forsmpl

%AR(1) estimation

spec=garchset(’VarianceModel’,’Constant’,’R’,1);

[coeff,errors,llf,innovation,sigma,summary]=garchfit(spec,

GER.LTBond.Yield(first:last));

garchdisp(coeff,errors);

%AR(1) forecast

spec_pred=garchset(’VarianceModel’,’Constant’,’C’,coeff.C,’R’,1,’AR’,

coeff.AR,’K’,coeff.K);

[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = garchpred(spec_pred,

GER.LTBond.Yield(first:last+j-1),horz);

forecast_ar=MeanForecast;

forecast_upp=MeanForecast+2*MeanRMSE;

forecast_low=MeanForecast-2*MeanRMSE;

LTBond_mean(last+j:last+j,1)=forecast_ar;

LTBond_upp(last+j:last+j,1)=forecast_upp;

LTBond_low(last+j:last+j,1)=forecast_low;

end

%plotting recursive forecast performance

run Figure004

%computing RMSE

RMSE=sqrt(sum((LTBond_mean(last+1:last+forsmpl)-

GER.LTBond.Yield(last+1:last+forsmpl)).^2));

var1=strcat(’For_’);

assignin(’base’,var1,LTBond_mean);

var2=strcat(’UpperBound_’);

assignin(’base’,var2,LTBond_upp);
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var3=strcat(’LowBound_’);

assignin(’base’,var3,LTBond_low);

var4=strcat(’RMSE_’);

assignin(’base’,var4,RMSE);

clear var1 var2 var3 var4

10.4. Stochastic and deterministic trends

Section 4 analyzes trends. and trend-cycle decompositions

%-------------------------------------------------------------------------

% SECTION 4: Stochastic and Deterministic Trends, Decompositions

%-------------------------------------------------------------------------

% Select the estimation sample

s_start = ’31/01/1979’;

s_end = ’29/10/1993’;

date_find = datenum([s_start; s_end],’dd/mm/yyyy’);

first = datefind(date_find(1,1),date);

last = datefind(date_find(2,1),date);

T=first-last+1;

% Generate artificial trend series

Trend_det=NaN(size(GER.Stock.Ret));

Trend=NaN(size(GER.Stock.Ret));

Trend_st1=NaN(size(GER.Stock.Ret));

Trend_st2=NaN(size(GER.Stock.Ret));

Trend(1,1)=0;

Trend_det(1,1)=0;

Trend_st1(1,1)=0;

Trend_st2(1,1)=0;

ind=rows(Trend_st1);

for i=2:ind

Trend(i,:)=Trend(i-1,:)+1;

Trend_det(i,:)=0.1*Trend(i,:)+normrnd(0,1,1);

Trend_st1(i,:)=0.15+Trend_st1(i-1,:)+normrnd(0,1,1);

Trend_st2(i,:)=0.1+Trend_st2(i-1,:)+normrnd(0,1,1);

end

% Plot trend series

t=1:rows(GER.Stock.Ret);
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figure

h3=plot(t’,Trend_det,’.-’,t’,Trend_st1,’--’,t’,Trend_st2,’-’,’LineWidth’,2);

title(’Trends’,’fontname’,’garamond’,’fontsize’,16);

set(gca,’fontname’,’garamond’,’fontsize’,10);

set(gca,’xtick’,[1:24:rows(t’)]);

set(gca,’xlim’,[1 rows(t’)]);

set(gca,’xticklabel’,’1977|1979|1981|1983|1985|1987|1989|1991|1993|
1995|1997|1999|2001|2003|2005|2007|2009|2011’);

grid;

set(gcf,’color’,’w’);

h3=legend(’Det Trend’,’ST TREND 1’, ’ST TREND 2’,2);

%--------------------------------------------------------------------------

%Beveridge-Nelson Decomposition

%--------------------------------------------------------------------------

% Generate artificial IMA series

% Defining the parameters

rho=0.6;

theta=0.5;

% Simulate IMA series

IMA=NaN(size(GER.Stock.Ret));

IMA(1,1)=0;

IMA(2,1)=0;

Num=rows(GER.Stock.Ret);

eps=normrnd(0,1,Num,1);

ind=rows(GER.Stock.Ret);

for i=3:ind

IMA(i,:)=IMA(i-1,:)+rho*(IMA(i-1,:)-IMA(i-2,:))+eps(i,:)+theta*eps(i-1,:);

end

% define BN decomposition

BN_TR=NaN(size(GER.Stock.Ret));

BN_CY=NaN(size(GER.Stock.Ret));

BN_TR(1,1)=0;

for i=2:ind
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BN_TR(i,:)=BN_TR(i-1,:)+((1+theta)/(1-rho))*eps(i,:);

end

BN_CY=IMA-BN_TR;

% Plot trend series

t=1:rows(GER.Stock.Ret);

figure

h3=plot(t’,BN_TR,’.-’,t’,BN_CY,’--’,t’,IMA,’-’,’LineWidth’,2);

title(’Trends’,’fontname’,’garamond’,’fontsize’,16);

set(gca,’fontname’,’garamond’,’fontsize’,10);

set(gca,’xtick’,[1:24:rows(t’)]);

set(gca,’xlim’,[1 rows(t’)]);

set(gca,’xticklabel’,’1977|1979|1981|1983|1985|1987|1989|1991|1993|
1995|1997|1999|2001|2003|2005|2007|2009|2011’);

grid;

set(gcf,’color’,’w’);

h3=legend(’BN trend’,’BN cycle’, ’IMA’,2);

10.5. Asset Allocation with TVER and univariate time-series analysis

Section 5 reconsiders the problem of finding the tangency portfolio when univariate models

for TVER are considered.

%--------------------------------------------------------------------------

% SECTION 5: Portfolio Allocation with univariate TS models

%--------------------------------------------------------------------------

s_start = ’31/12/1984’;

s_end = ’31/12/2003’;

date_find = datenum([s_start; s_end],’dd/mm/yyyy’);

ss = datefind(date_find(1,1),date);

se = datefind(date_find(2,1),date);

T=se-ss+1;

p_start = ’30/01/2004’;

p_end = ’31/12/2007’;

date_find=datenum([p_start; p_end],’dd/mm/yyyy’);

ps=datefind(date_find(1,1),date);

pe=datefind(date_find(2,1),date);

n = pe-ps+1;
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%----------- Historical Excess Returns Matrix ----------------------------

% % Step 1. Construct the relevant time series of returns

Ret3Y = [GER.RF.Ret3Y(ss:se) GER.LTB.Ret3Y(ss:se) GER.Stock.Ret3Y(ss:se)

UK.Stock.Reteu3Y(ss:se) US.Stock.Reteu3Y(ss:se)];

Ret = [GER.RiskFree(ss:se) GER.LTBond.Ret(ss:se) GER.Stock.Ret(ss:se)

UK.Stock.Reteu(ss:se) US.Stock.Reteu(ss:se)];

ExRet= [GER.LTBond.ExRet(ss:se) GER.Stock.ExRet(ss:se) UK.Stock.ExRet(ss:se)

US.Stock.ExRet(ss:se)];

ExRet3Y=[GER.LTB.ExRet3Y(ss:se) GER.Stock.ExRet3Y(ss:se) UK.Stock.ExRet3Y(ss:se)

US.Stock.ExRet3Y(ss:se)];

% Descriptive data analysis

Perf = cumsum(Ret);

run Figure005

% % ------------------------------------------------------------------------

% Compute the weights and Efficient Frontier using CER upto 2003

% -------------------------------------------------------------------------

% FOrecasting model specification and construction of the relevant measures

muExR = mean(ExRet3Y);

SigmaR = (T/(T-1))*cov(ExRet3Y); %compute robust variance covariance matrix

CorR=corr(ExRet3Y);

% Optimal weights on the tangency portfolio

WeightsTP = ((SigmaR^(-1))*muExR’)./(ones(size(SigmaR,2),1)’*(SigmaR^(-1)*muExR’));

%Compute the efficient frontier and plot it

NumPortf = 20; % number of efficient portfolios to be computed

% we do not compute all efficient portfolios in the

% efficient frontier (there is a continuum of them)

% we compute only a subset of them, equally spaced between

% the minimum variance portfolio and the portfolio with the

% highest return.

mu=muExR+mean(GER.RF.Ret3Y(ss:se)); %generate mean returns

% generate mean variance efficient frontier

[WeightsMV, MuMeanVariance, StdMeanVariance] = effront(mu, SigmaR, NumPortf);

%mean variance for risk fre and tangency portfolio

Mu_bm = zeros(2, 1);

SD_bm = zeros(2, 1);
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Mu_bm(1,1) = mean(GER.RF.Ret3Y(ss:se));

SD_bm(1,1)=0;

Mu_bm(2,1)=mu*WeightsTP;

SD_bm(2,1)=sqrt(WeightsTP’*SigmaR*WeightsTP);

% Plot weights in the tangency portfolio and the efficient frontier

run Figure006

% % ------------------------------------------------------------------------

% Compute the cumulative performances out-of-sample

% -------------------------------------------------------------------------

Ret2 = [GER.LTBond.Ret(ps:pe) GER.Stock.Ret(ps:pe) UK.Stock.Reteu(ps:pe)

US.Stock.Reteu(ps:pe)];

PerfR2 = cumsum(Ret2);

Rport = Ret2*WeightsTP;

PerfPort1 = cumsum(Rport);

PerfRF=cumsum(GER.RiskFree(ps:pe));

% Plot the cumulative performances out-of-sample

run Figure007

% % ------------------------------------------------------------------------

% Compute the weights and efficient frontier using a simple

% TVER

% -------------------------------------------------------------------------

% Graphical Inspection of SOP for Germany and US

run Figure008

% Econometric specification and estimation of SOP

%OLS

XGER=NaN(size(GER.Stock.lp,1),3);

XGER(:,1)=ones;

XGER(:,2)=GER.Stock.lp;

XGER(:,3)=GER.Stock.lpTr;

resGER=ols(GER.Stock.CG3Y(ss:se,:), XGER(ss-36:se-36,:));

prt(resGER)

XUS=NaN(size(GER.Stock.lp,1),3);

XUS(:,1)=ones;

XUS(:,2)=US.Stock.lp;

XUS(:,3)=US.Stock.lpTr;

resUS=ols(US.Stock.CG3Y(ss:se,:), XUS(ss-36:se-36,:));
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prt(resUS)

XUK=NaN(size(GER.Stock.lp,1),3);

XUK(:,1)=ones;

XUK(:,2)=UK.Stock.lp;

XUK(:,3)=UK.Stock.lpTr;

resUK=ols(UK.Stock.CG3Y(ss:se,:), XUK(ss-36:se-36,:));

prt(resUK)

%SUR

y1 = GER.Stock.CG3Y(ss:se,:); x11 = GER.Stock.lp(ss-36:se-36,:);

x12 = GER.Stock.lpTr(ss-36:se-36,:); % GER

y2 = US.Stock.CG3Y(ss:se,:); x21 = US.Stock.lp(ss-36:se-36,:);

x22 = US.Stock.lpTr(ss-36:se-36,:); % US

y3 = UK.Stock.CG3Y(ss:se,:); x31 = UK.Stock.lp(ss-36:se-36,:);

x32 = UK.Stock.lpTr(ss-36:se-36,:); % 4UK

nobs = length(GER.Stock.CG3Y(ss:se,:));

iota = ones(nobs,1);

vname1 = strvcat(’GER’,’const’,’lag P’,’lag TREND’);

vname2 = strvcat(’US’,’const’,’lag P’,’lag TREND’);

vname3 = strvcat(’UK’,’const’,’lag P’,’lag TREND’);

% set up a structure for y in each eqn

y(1).eq = y1;

y(2).eq = y2;

y(3).eq = y3;

clear X

% set up a structure for X in each eqn

X(1).eq = [iota x11 x12];

X(2).eq = [iota x21 x22];

X(3).eq = [iota x31 x32];

SUR=sur(3,y,X);

prt(SUR);

%BUILD FORECAST

GER.Stock.Ret3YF=NaN(size(GER.Stock.Index));

UK.Stock.Reteu3YF=NaN(size(GER.Stock.Index));

US.Stock.Reteu3YF=NaN(size(GER.Stock.Index));

GER.Stock.Ret3YCER=NaN(size(GER.Stock.Index));

UK.Stock.Reteu3YCER=NaN(size(GER.Stock.Index));
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US.Stock.Reteu3YCER=NaN(size(GER.Stock.Index));

GER.LTB.Ret3YCER=NaN(size(GER.Stock.Index));

for i=ss:pe

%GER.Stock.Ret3YF(i,:)= resGER.beta(1)+ resGER.beta(2)*GER.Stock.lp(i-36,:)+

resGER.beta(3)*GER.Stock.lpTr(i-36,:)+GER.Stock.DY3Y(i-36,:);

%UK.Stock.Reteu3YF(i,:)= resUK.beta(1)+ resUK.beta(2)*UK.Stock.lp(i-36,:)+

resUK.beta(3)*UK.Stock.lpTr(i-36,:)+UK.Stock.DY3Y(i-36,:);

%US.Stock.Reteu3YF(i,:)= resUS.beta(1)+ resUS.beta(2)*US.Stock.lp(i-36,:)+

resUS.beta(3)*US.Stock.lpTr(i-36,:)+US.Stock.DY3Y(i-36,:);

GER.Stock.Ret3YF(i,:)= SUR(1).beta(1)+ SUR(1).beta(2)*GER.Stock.lp(i-36,:)+

SUR(1).beta(3)*GER.Stock.lpTr(i-36,:)+GER.Stock.DY3Y(i-36,:);

UK.Stock.Reteu3YF(i,:)= SUR(3).beta(1)+ SUR(3).beta(2)*UK.Stock.lp(i-36,:)+

SUR(3).beta(3)*UK.Stock.lpTr(i-36,:)+UK.Stock.DY3Y(i-36,:);

US.Stock.Reteu3YF(i,:)= SUR(2).beta(1)+ SUR(2).beta(2)*US.Stock.lp(i-36,:)+

SUR(2).beta(3)*US.Stock.lpTr(i-36,:)+US.Stock.DY3Y(i-36,:);

end

%Forecast based on CER

GER.Stock.Ret3YCER(ss:pe,:)= mean(GER.Stock.Ret3Y(ss:se));

UK.Stock.Reteu3YCER(ss:pe,:)=mean(UK.Stock.Reteu3Y(ss:se));

US.Stock.Reteu3YCER(ss:pe,:)=mean(US.Stock.Reteu3Y(ss:se));

GER.LTB.Ret3YCER(ss:pe,:)= mean(GER.LTB.Ret3Y(ss:se));

%graphic comparison between TVER and CER

run Figure009

%asset allocation with TVER

%Build forecasting errors

GER.LTB.Ret3YFE=GER.LTB.Ret3Y-GER.LTB.Ret3YCER;

GER.Stock.Ret3YFE=GER.Stock.Ret3Y-GER.Stock.Ret3YF;

UK.Stock.Reteu3YFE=UK.Stock.Reteu3Y-UK.Stock.Reteu3YF;

US.Stock.Reteu3YFE=US.Stock.Reteu3Y-US.Stock.Reteu3YF;

Ret3YFE = [GER.LTB.Ret3YFE(ss:se) GER.Stock.Ret3YFE(ss:se) UK.Stock.Reteu3YFE(ss:se)

US.Stock.Reteu3YFE(ss:se)];

muR_TVER = [GER.LTB.Ret3YCER(pe) GER.Stock.Ret3YF(pe) UK.Stock.Reteu3YF(pe)

US.Stock.Reteu3YF(pe)];

muExR_TVER = [(GER.LTB.Ret3YCER(pe)-(GER.RF.Ret3Y(pe)))

(GER.Stock.Ret3YF(pe)-(GER.RF.Ret3Y(pe))) (UK.Stock.Reteu3YF(pe)-(GER.RF.Ret3Y(pe)))

(US.Stock.Reteu3YF(pe)-(GER.RF.Ret3Y(pe)))];
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SigmaR_TVER = cov(Ret3YFE);

% WEIGHTS

WeightsTP_TVER = ((SigmaR_TVER^(-1))*muExR_TVER’)./(ones(size(SigmaR_TVER,2),1)’*

(SigmaR_TVER^(-1)*muExR_TVER’));

%Compute the efficient frontier and plot it

NumPortf = 20; % number of efficient portfolios to be computed

% we do not compute all efficient portfolios in the

% efficient frontier (there is a continuum of them)

% we compute only a subset of them, equally spaced between

% the minimum variance portfolio and the portfolio with the

% highest return.

% generate mean variance efficient frontier

[WeightsMV, MuMeanVariance, StdMeanVariance] = effront(muR_TVER, SigmaR_TVER,

NumPortf);

%mean variance for risk fre and tangency portfolio

Mu_bm_TVER = zeros(2, 1);

SD_bm_TVER = zeros(2, 1);

Mu_bm_TVER(1,1) = GER.RF.Ret3Y(pe);

SD_bm_TVER(1,1)=0;

Mu_bm_TVER(2,1)=muR_TVER*WeightsTP_TVER;

SD_bm_TVER(2,1)=sqrt(WeightsTP_TVER’*SigmaR_TVER*WeightsTP_TVER);

% Plot weights in the tangency portfolio and the efficient frontier

run Figure010

% Performance

Rport_TVER = Ret2*WeightsTP_TVER;

PerfPort_TVER = cumsum(Rport_TVER);

run Figure011
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