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Abstract

We study the interplay of probabilistic sophistication, second order stochastic dominance, and

uncertainty aversion, three fundamental notions in choice under uncertainty. In particular, our

main result, Theorem 2, characterizes uncertainty averse preferences that are probabilistically

sophisticated, as well as uncertainty averse preferences that satisfy second order stochastic dom-

inance. As a byproduct, Proposition 2 highlights a fundamental tension between probabilistic

sophistication / second order stochastic dominance and uncertainty aversion in the presence of

nontrivial unambiguous events.
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1 Introduction

In recent years model uncertainty and its implications have been the object of extensive study in

theoretical and applied economics. At the same time, this concept and related ideas made their way

in policy debates where the inability to pin down the stochastic nature of problems is a cogent source

of concern.1

Despite the fact that, typically, information may not be good enough to pin down a single prob-

abilistic model, in many situations the existence of a reference model is assumed. This reference

model is then the natural benchmark for other possible models that a decision maker (DM) considers

relevant. In this paper we study a particular, but important, notion of what it means to have a model

of reference: probabilistic sophistication. Specifically, in [5] we studied and characterized uncertainty

averse preferences in an Anscombe-Aumann framework, that is, preferences that exhibit a negative

attitude toward Knightian uncertainty. In this paper, we study the effect of adding a reference model

that makes the DM probabilistically sophisticated. Roughly speaking, this means that the DM con-

siders indifferent any two payoff profiles that share the same distribution with respect to the reference

model.2 Under this assumption, uncertainty aversion reduces to fear of misspecification of the refer-

ence model. For example, part of the analysis carried out in the robust approach in macroeconomics

(see Hansen and Sargent [21]) can be set in the framework of the present paper. In particular, our

setting admits a game theoretic interpretation in terms of zero-sum games against nature (see Section

2.2.2) that generalizes the one adopted in the robust approach to capture fear of model misspecifica-

tion. As [21, p. 137] write “... Each game has a malevolent nature choose a model misspecification

to hurt the decision maker ...”.

Beyond the multiplier preferences and the constraint preferences used by Hansen and Sargent to

capture fear of model misspecification, there are three other important classes of preferences that are

at the same time uncertainty averse and probabilistically sophisticated:

• rank dependent preferences (with convex distortion) of Quiggin [32] and Yaari [41];

• divergence preferences of Maccheroni, Marinacci, and Rustichini [28], pioneered by Ben-Tal and

Teboulle [2] and [3];

• second order expected utility preferences (with concave weighting) of Neilson [31], recently stud-

ied by Strzalecki [39] and Grant, Polak, and Strzalecki [20].

The first class of preferences is one of the most successful in economics and psychology. The latter

two classes generalize, in different ways, both expected utility preferences and multiplier preferences.

Their analytical tractability has been successfully exploited in financial applications. Moreover, these

preferences are known to address Ellsberg’s paradoxes in the Anscombe-Aumann setup (see [31] and

[39]).

The main result of this paper, Theorem 2, explicitly derives the general representation of uncer-

tainty averse and probabilistically sophisticated preferences. Theorem 2, also shows that the following

facts are equivalent for an uncertainty averse DM:

1The references of Donald Rumsfeld (February 12, 2002) and Olivier Blanchard (January 29, 2009) to “unknown

unknowns” quickly entered the public debate. On the other hand, both the Stern Report on the Economics of Climate

Change and the Basel Committee on Banking Supervision suggested the adoption of decision criteria able to deal with

model uncertainty.
2Probabilistic sophistication was introduced by Machina and Schmeidler [26]. Papers that study this notion and its

implications include Grant [18], Machina and Schmeidler [27], Sarin and Wakker [35], Grant and Polak [19], Chew and

Sagi [9] and [10], and Kopylov [23].
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• she is probabilistically sophisticated with respect to the reference model q;

• her preferences are consistent with second order stochastic dominance (with respect to q) as far

as payoff profiles are concerned;

• in the game against nature interpretation, she acts as if she thinks that nature’s loss in choosing

a model misspecification increases as the misspecified model gets more and more dispersed with

respect to the reference model itself. In other words, the cost of inducing a small misspecification

is lower than the cost of inducing an extreme one.

These findings substantially extend earlier results obtained by Maccheroni, Marinacci, and Rustichini

[28] for variational preferences, a special class of uncertainty averse preferences. Notice, however,

that the uncertainty averse preferences we consider – like variational preferences – are von Neumann-

Morgenstern expected utility preferences on lotteries. This restriction is thus inherited by the class

of probabilistically sophisticated preferences considered in Theorem 2 and, more in general, in all our

results.

As a byproduct of the main result, in Proposition 2, we show that the presence of a nontrivial un-

ambiguous event causes probabilistically sophisticated preferences to collapse to subjective expected

utility preferences. This basic tension between probabilistic sophistication and uncertainty aversion

(when there exists a nontrivial unambiguous event) was first identified by Marinacci [29] for the special

multiple priors case of Gilboa and Schmeidler [17]. These results have been recently and independently

extended by Strzalecki [39] to variational preferences.3 Our findings extend much more generally to

the uncertainty averse case including, for example, the smooth ambiguity preferences of Klibanoff,

Marinacci, and Mukerji [22] and the confidence preferences of Chateauneuf and Faro [8]. This means

that fear of model misspecification, as captured by uncertainty averse and probabilistically sophisti-

cated preferences, refers to a pervasive form of ambiguity, since all nontrivial events are considered to

be ambiguous despite the presence of a model of reference.

An important difference, relative to the cited [28], [29], [39], and [4], is that most of our results

do not rely on the assumption that the reference model is adequate,4 but they can be formulated for

any reference model. This comes at the cost of imposing some stronger degree of probabilistic risk

aversion in the form of second order stochastic dominance, as discussed in Section 3.

Mathematically, our results build on the theory of rearrangement invariant Banach spaces, first

studied in the seminal paper of Luxemburg [25]. More precisely, Theorem 2 depends on a dual

characterization of quasiconcave and rearrangement invariant functionals defined over the normed

space of simple measurable functions. This characterization shares some of the techniques of Cerreia-

Vioglio, Maccheroni, Marinacci, and Montrucchio [7], where quasiconvex and rearrangement invariant

functionals defined over L∞ are studied and characterized. The present setting makes the derivation

significantly more delicate.5

However, the analogies between the results in this paper and [7] are only at the formal level. The

problems studied are conceptually different and so are the interpretation and the implications of the

3A partial result for preferences that are not uncertainty averse can be found in Cerreia-Vioglio, Ghirardato, Mac-

cheroni, Marinacci, and Siniscalchi [4].
4That is, either nonatomic (on an infinite state space) or uniform (on a finite state space).
5The starting point here is a preference defined over acts on a measurable space rather than a functional over random

variables on a probability space. Moreover, even after passing to the functional representation of preferences by means

of a functional on the space B0 (S,Σ), we still cannot directly use the arguments for L∞ (S,Σ, q). In fact, although

B0 (S,Σ) is dense in L∞ (S,Σ, q), the extension is not necessarily unique and closure operations do not obviously

preserve the properties we are after. For this reason, we cannot rely on the results of [7], but we need to derive them

ex novo.
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results. The present paper studies the behavioral foundations of model misspecification and relates

them to the representation of uncertainty averse preferences. On the other hand, [7] studies capital

requirements (financial risk measures), particularly the ones that are law invariant. In that setting

diversification, rather than fear of model misspecification, is the leading principle. The law invari-

ance assumption is made for computational reasons since it allows to dispense with the description

of a state space for the entire financial system. Finally, here the interpretation of the derived rep-

resentation can be stated in terms either of games against nature or of separation between risk and

uncertainty aversion. Instead, the representation in [7] captures the idea of scenario-dependent capital

requirements.

2 Preliminaries

2.1 Mathematical Setup

We consider an Anscombe-Aumann setup [1]. Let S be a state space endowed with a σ-algebra Σ of

events, and X a convex set of consequences (or outcomes). We denote by F the set of all simple acts

f : S → X, that is, the set of all Σ-measurable maps that take finitely many values. Given A ∈ Σ

and f, g ∈ F , we denote by gAf the simple act that yields g (s) if s ∈ A and f(s) if s ̸∈ A.

B0 = B0 (S,Σ) is the set of simple Σ-measurable functions, φ : S → R, endowed with the supnorm.

Denote by ∆ the set of all finitely additive probabilities on Σ, endowed with the weak* topology. The

subset of ∆ consisting of all countably additive probabilities on Σ is denoted by ∆σ. Given q ∈ ∆σ,

denote by ∆σ (q) = {p ∈ ∆σ : p≪ q} the set of all countably additive probabilities on Σ that are

absolutely continuous with respect to (wrt, for short) q. Finally, when q ∈ ∆σ, we say that (S,Σ, q)

is adequate if either q is nonatomic or S is finite and q is uniform.

Endow R×∆ with the product topology and define L (R×∆) as the class of functions G : R×∆ →
(−∞,∞] such that:

(i) G (·, p) is an increasing function for all p ∈ ∆;

(ii) G is quasiconvex and lower semicontinuous;

(iii) minp∈∆G (t, p) = t for all t ∈ R.

A function G ∈ L (R×∆) is linearly continuous if the function I : B0 → R defined by

I (φ) = min
p∈∆

G

(∫
φdp, p

)
(1)

is continuous. For example, [5] shows that G ∈ L (R×∆) is linearly continuous if G (·, p) is upper

semicontinuous on R for each p ∈ ∆.

2.2 Decision Theoretic Setup

2.2.1 Uncertainty Averse Preferences

We consider a binary relation % on F that satisfies the following classic axioms:

A 1 (Weak Order) The binary relation % is nontrivial, complete, and transitive.
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A 2 (Monotonicity) If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

A 3 (Uncertainty Aversion) If f, g ∈ F and α ∈ (0, 1), f ∼ g implies αf + (1− α) g % f .

Following [5], a preference relation % that satisfies axioms A1-A3 is called uncertainty averse. As

argued at length in [5], uncertainty averse preferences form a fundamental class of rational preferences

on F that exhibit a negative attitude toward uncertainty in an Anscombe-Aumann setting. Notice

however that A2 excludes state dependence of utility on outcomes. State dependence is very natural

for “small” state spaces and it obviously does not exclude A3. Nevertheless, state dependence makes

it difficult to identify uniquely the DM’s probabilistic beliefs even in the expected utility case. For

this reason, the assumption of existence of a reference model, which is central in this paper, becomes

evanescent in a state dependent setup.

To derive a representation for uncertainty averse preferences we need some further mild axioms.

The following axiom is peculiar to the Anscombe-Aumann setting and is a standard independence

postulate on constant acts, that is, on acts that only involve risk and no state uncertainty.6 An

important consequence for our results is that this assumption together with the subsequent A5 implies

that our DM, on constant acts, is a von Neumann-Morgenstern expected utility maximizer. This

further restricts the overlap we study between uncertainty averse preferences and probabilistically

sophisticated ones.

A 4 (Risk Independence) If x, y, z ∈ X and α ∈ (0, 1), x ∼ y implies αx + (1− α) z ∼ αy +

(1− α) z.

The next axioms are technical conditions that simplify the derivation and make the representation

more tractable.

A 5 (Continuity) If f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1 − α)g % h} and {α ∈ [0, 1] : h %
αf + (1− α)g} are closed.

A 6 (Unboundedness) There are x, y ∈ X such that, for each α ∈ (0, 1), there exist z, z′ ∈ X such

that αz + (1− α) y ≻ x ≻ y ≻ αz′ + (1− α)x.

A 7 (Monotone Continuity) If f, g ∈ F , x ∈ X, {En} ⊆ Σ with En ↓ ∅, then f ≻ g implies that

there exists n0 ∈ N such that xEn0f ≻ g.

If % satisfies axioms A1, A2, and A5, then each act f ∈ F has a certainty equivalent xf ∈ X;

i.e., f ∼ xf . Certainty equivalents play an important role in the following representation result for

uncertainty averse preferences, proved in [5]. Here U (X) is the class of affine functions u : X → R.

Theorem 1 Let % be a binary relation on F . Then, the following conditions are equivalent:

(i) % satisfies axioms A1-A7;

(ii) there exist u ∈ U (X), with u (X) = R, and G ∈ L (R×∆) linearly continuous with domG ⊆
R×∆σ,7 such that, for each f and g in F ,

f % g ⇐⇒ min
p∈∆

G

(∫
u (f) dp, p

)
≥ min

p∈∆
G

(∫
u (g) dp, p

)
. (2)

6This assumption is very common among nonexpected utility models in an Anscombe-Aumann framework (e.g., [8],

[16], [17], [20], [22], [28], [31], [37], [38], [39]).
7Recall that domG = {(t, p) ∈ R×∆ : G (t, p) <∞}.
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The function u is cardinally unique and, given u, the unique G ∈ L (R×∆) that satisfies (2) is

G (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
. (3)

Observe that the technical axioms A5-A7 translate in the representation as follows: A5 guarantees

the linear continuity of G, A6 corresponds to u (X) = R, and A7 implies that domG ⊆ R×∆σ.8

Theorem 1 motivates the following definition.

Definition 1 A pair (u,G) ∈ U (X)× L (R×∆) that represents a binary relation % in the sense of

point (ii) of Theorem 1 is called an uncertainty averse representation of %.

Behaviorally, by Theorem 1, a binary relation admits an uncertainty averse representation if and

only if it satisfies axioms A1-A7. Given an uncertainty averse representation (u,G), u describes

preferences over consequences. In the original Anscombe-Aumann setup, these are objective lotteries,

thus u captures risk aversion as well. On the other hand, the function G can be interpreted as an index

of uncertainty aversion (see also [5]). Consider two preferences %1 and %2 with uncertainty averse

representations (u1, G1) and (u2, G2). Preference %1 is more uncertainty averse than preference %2,

in the sense of Ghirardato and Marinacci [15],9 if and only if u1 is cardinally equivalent to u2 and,

normalizing u1 = u2, we have G1 ≤ G2.

In [5], we provide a complete characterization of the specific form taken by the index G for several

important classes of uncertainty averse preferences. In particular, for variational preferences we show

that

G (t, p) = t+ c (p)

where c is a convex, grounded, and lower semicontinuous cost function. On the other hand, for second

order expected utility preferences, we show that

G (t, p) = t+ It (p||q)

where, for each t, It (p||q) is a statistical distance function.10

2.2.2 Games against Nature

As anticipated in the introduction and discussed in detail in [5], our setting admits a game against

nature interpretation where the DM views herself as playing a zero-sum game against (a malevolent)

nature. In this case, f and p become, respectively, the strategies of the DM and of nature.

The new view on this old interpretation (see, e.g., Gilboa and Schmeidler [17]) is the fact that the

“Waldean” solution to a decision problem under uncertainty perfectly describes the general uncertainty

averse preferences. The interpretation goes as follows: for every uncertainty averse preference there

exists a (suitably unique) game against nature

Γ (f, p) = G

(∫
u (f) dp, p

)
∀ (f, p) ∈ F ×∆

8[5, Theorem 3] provides a more general representation result that does not rely on A6 and A7.
9They say that %1 is more uncertainty averse than %2 if, and only if, for all f ∈ F and x ∈ X, f %1 x implies

f %2 x. The intuition behind this is the following, %1 is more uncertainty averse than %2 if, whenever %1 is willing to

take the chance of choosing an uncertain act f over a constant outcome x, then the same is true for %2.
10See Section 5 of [5] for details and other specifications. Here we privileged variational and second order expected

utility classes of preferences since they contain the motivating examples appearing in the introduction. In fact, multiplier

preferences, constraint preferences, rank dependent preferences, and divergence preferences are all specifications of

variational preferences. Notice, however, that second order expected utility preferences are not, in general, variational.
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such that the DM behaves as if she were playing this game against nature, and conversely for every

such game there is a unique corresponding uncertainty averse preference. In this perspective, the

reason why DMs prefer to randomize among indifferent acts (Axiom A3) is because this makes more

difficult for nature (which has no control on the randomizing device) to best respond.

The structure of the game clearly reflects the existence of two sources of uncertainty in the

Anscombe-Aumann model (see also Strzalecki [38]):

•
∫
u (f) dp captures the objective risk preferences of the DM (once nature has chosen p, the

expected utility of f is what matters to the DM); notice that, for fixed p, G (·, p) is an increasing

transformation of the expected utility. This is the consequence of assumption A2.

• G captures the presence of subjective uncertainty and has the standard properties of convexity

and continuity of a zero-sum game.

• The minimum – that is, the adoption of a maxmin strategy – captures the aversion of the DM

to such uncertainty. This follows from assumption A3.

3 Sophistication, Dominance, and Uncertainty Aversion

In this section we state the paper’s main result, Theorem 2, which characterizes uncertainty averse

preferences that are probabilistically sophisticated.

Given a reference probability q ∈ ∆σ and a preference % on F :

(i) % is probabilistically sophisticated (wrt q) if, given any f, g ∈ F ,

q ({s ∈ S : f (s) = x}) = q ({s ∈ S : g (s) = x}) ∀x ∈ X =⇒ f ∼ g; (4)

(ii) % satisfies first order stochastic dominance (wrt q) if, given any f, g ∈ F ,

q ({s ∈ S : f (s) ≻ x}) ≥ q ({s ∈ S : g (s) ≻ x}) ∀x ∈ X =⇒ f % g, (5)

or, equivalently, ∫
ϕ (u (f)) dq ≥

∫
ϕ (u (g)) dq ∀ϕ ∈ Φmi =⇒ f % g, (6)

where Φmi is the set of all increasing functions ϕ : R → R;

(iii) % satisfies second order stochastic dominance (wrt q) if, given any f, g ∈ F ,∫
ϕ (u (f)) dq ≥

∫
ϕ (u (g)) dq ∀ϕ ∈ Φicv =⇒ f % g, (7)

where Φicv is the set of all concave and increasing functions ϕ : R → R.11

These dominance notions can be interpreted in terms of the classic notions of stochastic dominance

on lotteries. In fact, (6) is equivalent to require that the lottery induced by u ◦ f under q first order

stochastically dominates the one induced by u ◦ g, while (7) is equivalent to require that the first

lottery second order stochastically dominates the second one.

11Here we assume that % restricted to X is represented by the affine utility function u. Moreover, since Φicv ⊆ Φmi,

second implies first order stochatistic dominance. Finally, it can be shown that in (6) and (7) it is actually enough to

consider strictly increasing functions.
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When a reference model q is given, first order stochastic dominance is a very natural monotonicity

condition. It says that, if for every outcome x the probability that act f outperforms x is greater

than the probability that act g outperforms x, then f is preferred to g. While Rothschild and Stiglitz

[33] and [34] have shown that one of the most compelling ways to formalize the statement “the payoff

induced by f is less risky than the payoff induced by g”, consists in requiring the first payoff second

order stochastically dominates the second.

In terms of foundations for these requirements, one could consider Savage DMs in our Anscombe-

Aumann setup and regard (6) and (7) as requirements of consistency with unanimous judgements; see

Proposition 3 in the Appendix for details.

Our results use the convex order, a classic stochastic order. Specifically, the convex order %cx on

L1 (q) = L1 (S,Σ, q) is defined by

φ %cx ψ ⇐⇒
∫
ℓ (φ) dq ≥

∫
ℓ (ψ) dq ∀ℓ ∈ Φcx, (8)

where Φcx is the set of all convex functions ϕ : R → R. Notice that this order can be also defined over

∆σ (q) by

p %cx p′ ⇐⇒ dp

dq
%cx

dp′

dq
,

where dp/dq and dp′/dq in L1 (q) are the Radon-Nikodym derivatives of p and p′, respectively. In

this case, the symmetric part of %cx coincides with the identical distribution of the densities wrt q.

Intuitively, see Rothschild and Stiglitz [33], p %cx p′ means that the “masses” dp (s) are more scattered

than the masses dp′ (s), with respect to dq (s). In particular, p ∼cx p′ means that these masses are

symmetrically sparse.

Example 1 If S = {s1, s2, ..., sN} and q is uniform, then p %cx p′ if and only if

p[1] ≥ p′[1]

p[1] + p[2] ≥ p′[1] + p′[2]

...

p[1] + p[2] + ...+ p[N ]−1 ≥ p′[1] + p′[2] + ...+ p′[N ]−1

where p[i] (resp., p
′
[i]) is the probability of the i-th most likely state for p (resp., p′). This simply

means that p is more dispersed than p′. Clearly, the Dirac probabilities are the maximally dispersed

probabilities with respect to the uniform q, while the minimally dispersed one is q itself. Moreover,

p ∼cx p′ if and only if there is a permutation π : S → S such that p′ = p ◦ π.12 N

A function T : ∆ → (−∞,∞], with domT ⊆ ∆σ (q), is

(i) rearrangement invariant (wrt q) if p ∼cx p′ =⇒ T (p) = T (p′);

(ii) Schur convex (wrt q) if p %cx p′ =⇒ T (p) ≥ T (p′).

A final piece of notation: given φ ∈ L1 (q), its inverse distribution function F−1
φ : [0, 1] → [−∞,∞]

is defined by F−1
φ (ω) = inf {x ∈ R : q ({s ∈ S : φ (s) ≤ x}) ≥ ω} for all ω ∈ [0, 1]. We are ready to

state our main result.

12We refer the interested reader to Marshall and Olkin [30] for a complete treatment of the convex order (also known

as majorization).
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Theorem 2 Let % be a binary relation with uncertainty averse representation (u,G). Then, the

following conditions are equivalent (wrt q):

(i) % satisfies second order stochastic dominance;

(ii) G (t, ·) is Schur convex on ∆ for all t ∈ R.

In this case,

min
p∈∆

G

(∫
u (f) dp, p

)
= min
p∈∆σ(q)

G

(∫ 1

0

F−1
u◦f (ω)F

−1
dp
dq

(1− ω) dω, p

)
∀f ∈ F (9)

and

G (t, p) =

 sup

{
u (xf ) :

∫ 1

0
F−1
u◦f (ω)F

−1
dp
dq

(1− ω) dω < t

}
if (t, p) ∈ R×∆σ (q)

∞ else.
(10)

Moreover, if (S,Σ, q) is adequate, then (i) and (ii) are equivalent to:

(iii) % satisfies first order stochastic dominance;

(iv) % is probabilistically sophisticated;

(v) G (t, ·) is rearrangement invariant on ∆ for all t ∈ R.

To fix ideas, consider the important case where (S,Σ, q) is adequate. This case is arguably the

most relevant in terms of foundations of subjective (and classical probability). In fact, starting with

the seminal works of de Finetti [13] and Savage [36] on the numerical representation of subjective

qualitative probabilities, the nonatomic case arises naturally from the assumption of equidivisibility

of the space (Savage’s P6). This assumption was kept in the more robust definition of subjective

probability of Machina and Schmeidler [26], where probabilistic sophistication was introduced. On

the other hand, the finite uniform case corresponds to the definition of classical probability stated by

Laplace in 1814. Still nowadays, the adequate case lies at the heart of the behavioral foundations of

probability (see, e.g., Chew and Sagi [9] on probabilistic sophistication).13

Theorem 2 has a few important features in the adequate case. First, it substantiates the inter-

pretation of probabilistically sophisticated uncertainty averse preferences as describing fear of model

misspecification. Arguably, the Subjective Expected Utility (SEU) preference %u,q, represented by∫
u (f) dq, describes a DM whose reference model is q and whose behavior reveals full trust in it. By

Theorem 2, it follows that any uncertainty averse % whose reference model is q is more uncertainty

averse than %u,q, “because” she does not fully trust q. In fact, formally, Theorem 2 implies the

following:

Corollary 1 Let % be a binary relation with uncertainty averse representation (u,G) and let q be

adequate. If % is probabilistically sophisticated (wrt q), then % is more uncertainty averse than %u,q.

This consistency check is not a tautology and indeed it relates the absolute definition of uncertainty

aversion of Schmeidler (Axiom A3) with the comparative foundation of Ghirardato and Marinacci

[15].14

13They also show that if there exists an adequate q such that the decision maker is probabilistically sophisticated

with respect to it, such q is unique (see also Kopylov [23]).
14In the general case, when q is not necessarily adequate, it sufficies to replace probabilistic sophistication with second

order stochastic dominance to obtain the same implication.
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Second, Theorem 2 characterizes the class of preferences that belong to the intersection of the

classes of uncertainty averse preferences and probabilistically sophisticated preferences, and it explic-

itly provides computational formulas for this case.15 The intersection between the two classes coincides

with the family of preferences which admit an uncertainty averse representation (u,G) whereG is Schur

convex. In a game theoretic perspective, this amounts to say that the probabilistically sophisticated

DM depicts her fictitious opponent as having q as a default action. Deviations (misspecified models

p) from this action have a cost which increases as the dispersion (of the misspecified model p) with

respect to q increases.

Third, Theorem 2 establishes the equivalence of probabilistic sophistication, first order stochastic

dominance, and second order stochastic dominance under uncertainty aversion (in the adequate case).

The relations among these properties and their relevance in portfolio selection were first investigated

by Dekel [14] in a setup of choice under risk. He also shows a “converse implication”, that is, under

what conditions second order stochastic dominance implies uncertainty aversion. Loosely speaking, in

our Anscombe-Aumann setup, this amounts to say that preference for ex-post randomization (Axiom

A3) is implied by second order stochastic dominance and preference for ex-ante randomization. One

way to express preference for ex-ante randomization in our setting is

f ∼ g implies fAg % f

provided f, g ∈ F and A ∈ Σ are independent with respect to q. Recall that Axiom A3 requires

f ∼ g implies αf + (1− α) g % f

provided f, g ∈ F and α ∈ (0, 1), and notice that independence ex-post is embedded in the convex

structure of the consequence space.

Taken together, all these features of Theorem 2 establish for the adequate case a complete char-

acterization of uncertainty averse preferences that are probabilistically sophisticated. Moreover, the

equivalence of (i) and (ii) and the computational formulas (9) and (10) constitute the first treatment

in the literature of the non-adequate case. In fact, the results of [29] and [28] for multiple priors and

variational preferences only apply to the adequate case.

4 Unambiguous Events

Marinacci [29] pointed out a possible tension between probabilistic sophistication, which is based on

a single reference probability, and the multiple priors representation, which instead relies on several

possible probabilities, in the presence of a nontrivial unambiguous event. Thanks to Theorem 2,

in this section we show that this possible tension holds, much more generally, among probabilistic

sophistication and uncertainty averse representations.

In order to do so, we first extend to our setting the notion of nontrivial unambiguous event of [29].

Consider a multiple priors representation à la Gilboa and Schmeidler [17]

V (f) = min
p∈C

∫
u (f) dp ∀f ∈ F , (11)

15Notably, formulas (9) and (10) dispense with the specification of a state space since their inputs are distribution

functions alone.
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where C is a weak* closed set of ∆. An event is nontrivial and unambiguous if and only if 0 < p (A) =

p′ (A) < 1 for all p, p′ ∈ C. To generalize this notion to the present setting, consider the revealed

unambiguous preference of Ghirardato, Maccheroni, and Marinacci [16], defined as

f %∗ g ⇐⇒ λf + (1− λ)h % λg + (1− λ)h ∀h ∈ F , ∀λ ∈ (0, 1] . (12)

In [5, Theorem 10] we show that for preferences with an uncertainty averse representation it holds

f %∗ g ⇐⇒
∫
u (f) dp ≥

∫
u (g) dp ∀p ∈ dom∆G, (13)

where dom∆G = {p ∈ ∆ : G (t, p) <∞ for some t ∈ R}. This motivates the following definition.

Definition 2 Let % be an uncertainty averse preference. An event A in Σ is nontrivial and unam-

biguous if there exist x, y, z ∈ X such that x ≻ z ≻ y and xAy ∼∗ z.

In other words, an event A is unambiguous if the act xAy is unambiguously indifferent to a

constant act z. Clearly, constant acts are unambiguous since their outcomes are independent of the

underlying state space realizations. Moreover, the condition x ≻ z ≻ y rules out the possibility that

A is “unambiguous” because either A or its complement are deemed null with respect to %.

Proposition 1 Let % be a binary relation with uncertainty averse representation (u,G). Then, the

following properties are equivalent:

(i) A is nontrivial and unambiguous;

(ii) for each x, y ∈ X such that x ≻ y there exists z ∈ X such that x ≻ z ≻ y and xAy ∼∗ z;

(iii) 0 < p (A) = p′ (A) < 1 for all p, p′ ∈ dom∆G.

Remark Strzalecki [39] implicitly provides different notions of unambiguous events for unbounded

variational preferences. By (13) and Proposition 1-(iii), it follows that our notion gives a behavioral

foundation and a generalization of the notion contained in his Assumption 2.

We now state the main result of this section, which, as discussed in the Introduction, can be viewed

as a stark implication of Theorem 2.

Proposition 2 Let % be a binary relation with uncertainty averse representation (u,G). If there

exists a nontrivial unambiguous event, then:

(i) % satisfies second order stochastic dominance (wrt q) if and only if % is the SEU preference

%u,q.

(ii) % is probabilistically sophisticated (wrt q) if and only if % is the SEU preference %u,q, provided
(S,Σ, q) is adequate.

Point (ii) generalizes the main results of [29], for multiple priors preferences, and [39], for variational

preferences, to the present general setting. Point (i) shows that, even when (S,Σ, q) is not adequate,

second order stochastic dominance and uncertainty aversion can be both satisfied only by a SEU

preference as soon as there exists at least one nontrivial unambiguous event.

By Theorem 2, probabilistic sophistication and second order stochastic dominance are equivalent

properties in the adequate case. Thus, point (i) shows that the tension originally identified by [29]

among probabilistic sophistication and multiple priors, in the presence of a nontrivial unambiguous

11



event, holds much more generally among second order stochastic dominance and uncertainty aversion.

Since second order stochastic dominance is a widely used property in applications, this is an important

novel insight of Proposition 2. Along with its substantially greater generality, this insight is what

makes Proposition 2 a significant advance relative to the analysis of [29] and [39]. 16

We reiterate that Proposition 2 should not lead to think that the class of uncertainty averse prefer-

ences that satisfy second order stochastic dominance is either small or irrelevant. On the contrary, this

is the class where two of the most economically relevant notions of aversion to uncertainty, convexity

(Debreu [12] and Schmeidler [37]) and risk aversion (Rothschild and Stiglitz [33]) coexist. This class

contains some important preferences used in economic and financial applications such as the rank

dependent preferences of Quiggin [32] and Yaari [41], the constraint, and the multiplier preferences

of Hansen and Sargent [21]. Therefore, the message of Proposition 2 is that these preferences cap-

ture pervasive uncertainty about probabilistic scenarios, since no event is considered nontrivial and

unambiguous at the same time.

A Proofs and Related Analysis

A.1 Savage Expected Utility in an Anscombe-Aumann Setting

Here we discuss a representation result that shows what the classic axioms of Savage [36] imply in

the present Anscombe-Aumann setting, thus providing a behavioral foundation for the definitions of

(first and) second order stochastic dominance used in the main text. It is an essentially known result,

studied for example by Neilson [31] and, more recently, by Strzalecki [38]. For completeness, we report

a proof since we could not find it in the literature.

Proposition 3 Let % be a binary relation on F . Then, the following conditions are equivalent:

(i) % satisfies Savage’s axioms P1-P6 and axioms A4-A5;

(ii) there exist a nonatomic probability measure q, a nonconstant affine u : X → R, and a strictly

increasing and continuous function ϕ : u (X) → R such that, for each f and g in F ,

f % g ⇐⇒
∫
ϕ (u (f)) dq ≥

∫
ϕ (u (g)) dq. (14)

The probability q is unique, u is cardinally unique, and ϕ is cardinally unique given u.17 Moreover, ϕ

is concave if and only if % satisfies A3, and q ∈ ∆σ if and only if % satisfies A7.

Proof. (i) implies (ii). By Savage’s Expected Utility Theorem,18 there are a nonconstant v : X → R
and a nonatomic probability q on Σ such that V : F → R given by V (f) =

∫
v (f) dq represents %.

In particular, % satisfies A1 and A2, which together with A4 and A5, guarantee that:

• There exists a nonconstant affine function u : X → R and a function I : B0 (u (X)) → R
normalized, monotone, and continuous such that f % g ⇐⇒ I (u (f)) ≥ I (u (g)). Moreover, u is

cardinally unique, and, given u, there is a unique normalized I : B0 (u (X)) → R that represents

% in the above sense (see [5, Lemma 57]).

• For each f ∈ F there exists xf ∈ X such that f ∼ xf .

16It is still an open question whether the identified tension between second order stochastic dominance (resp., prob-

abilistic sophistication) and uncertainty aversion persists when preferences are nonexpected utility over lotteries.
17See (17) below.
18Notice that we are assuming that Σ is a σ-algebra (see, e.g., Wakker [40, Observation 2]).
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Since u is affine, u (X) = K is an interval. Since both u and v represent % on X, there exists a

strictly increasing ϕ : u (X) → R such that v = ϕ ◦ u. It only remains to show that ϕ is continuous.

For all ψ ∈ B0 (K), let f ∈ F and xf in X be such that ψ = u (f) and xf ∼ f . Then∫
ϕ (ψ) dq =

∫
ϕ (u (f)) dq = V (f) = v (xf ) = ϕ (u (xf )) ,

and so
∫
ϕ (ψ) dq ∈ Imϕ.19 Now, for each t1 = ϕ (k1) , t2 = ϕ (k2) ∈ Imϕ and α ∈ (0, 1), take A ∈ Σ

such that q (A) = α (this is possible since q is nonatomic). Then

αt1 + (1− α) t2 = αϕ (k1) + (1− α)ϕ (k2) =

∫
ϕ (k11A + k21Ac) dq ∈ Imϕ.

Therefore, Imϕ is convex and ϕ is continuous (ϕ is increasing).

(ii) implies (i). Clearly, (14) is equivalent to f % g ⇐⇒
∫
ϕ (u (f)) dq ≥

∫
ϕ (u (g)) dq. Thus,

P1-P6 hold. Moreover, A4 follows from the fact that V : X → R given by V (x) = ϕ (u (x)) represents

% on X, with ϕ is strictly increasing and u affine.

It remains to show that ψ 7→
∫
ϕ (ψ) dq is continuous on B0 (K), which in turn implies A5. Let

ψn be a sequence in B0 (K) that supnorm converges to ψ ∈ B0 (K). For each δ > 0, eventually

|ψn (s)− ψ (s)| ≤ δ ∀s ∈ S. (15)

Moreover, ψn is supnorm bounded and so it is easy to check that there are a, b ∈ R such that [a, b] ⊆ K

and, eventually, ψn, ψ ∈ B0 ([a, b]) for all n ≥ 1. But, being continuous, ϕ is also uniformly continuous

on [a, b]. Thus, for all ε > 0 there is δε > 0 such that

t, r ∈ [a, b] and |t− r| ≤ δε =⇒ |ϕ (t)− ϕ (r)| ≤ ε

Then, eventually |ψn (s)− ψ (s)| ≤ δε for all s ∈ S, and |ϕ (ψn (s))− ϕ (ψ (s))| ≤ ε for all s ∈ S.

That is, B0 (ϕ (K)) ∋ ϕ (ψn) → ϕ (ψ) and
∫
ϕ (ψn) dq →

∫
ϕ (ψ) dq, as wanted. Let f, g, h ∈ F , and

{αn} ∈ [0, 1] be such that αnf + (1− αn) g % h for all n ≥ 1, and assume αn → α. Then∫
ϕ (u (αnf + (1− αn) g)) dq = V (αnf + (1− αn) g) ≥ V (h) ∀n ≥ 1. (16)

But, u (αnf + (1− αn) g) = αnu (f)+ (1− αn)u (g) = u (g)+αn (u (f)− u (g)) → u (αf + (1− α) g)

in the supnorm. Thus, passing to the limits in (16),

V (αf + (1− α) g) =

∫
ϕ (u (αf + (1− α) g)) dq ≥ V (h) ,

which immediately delivers A5.

As to uniqueness, we show that
(
q̄, ū, ϕ̄

)
represents % in the sense of (14) if and only if q̄ = q and

there exist α, β, η, κ ∈ R with α, η > 0 such that for all x ∈ X and t ∈ ū (X):

ū (x) =
u (x)− κ

η
and ϕ̄ (t) = α (ϕ (ηt+ κ)) + β. (17)

By Savage’s Expected Utility Theorem, q̄ = q and there are α > 0 and β ∈ R such that ϕ̄ ◦ ū =

α (ϕ ◦ u) + β. By the von Neumann-Morgenstern’s Expected Utility Theorem, there are η > 0 and

κ ∈ R such that ū = η−1 (u− κ). Therefore, ϕ̄ (ū (x)) = α (ϕ (u (x))) + β = α (ϕ (ηū (x) + κ)) + β for

all x ∈ X, and ϕ̄ (t) = α (ϕ (ηt+ κ)) + β for all t ∈ ū (X). The converse is easily checked.

19In particular, ϕ−1
(∫
ϕ (ψ) dq

)
= u

(
xf

)
= I

(
u
(
xf

))
= I (u (f)) = I (ψ).
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Next we show that A3 implies concavity of ϕ and A7 implies q ∈ ∆σ, the converse implications

being trivial. Assume per contra that A3 holds and that ϕ is not concave. Since ϕ is continuous, there

are r, t ∈ K such that ϕ
(
2−1t+ 2−1r

)
< 2−1ϕ (t) + 2−1ϕ (r). Let H ∈ Σ be such that q (H) = 2−1,

and x, y ∈ X be such that u (x) = r and u (y) = t. Then

V (xHy) =

∫
ϕ (u (xHy)) dq =

∫
ϕ (u (x)) 1H + ϕ (u (y)) 1Hcdq =

1

2
ϕ (r) +

1

2
ϕ (t)

=
1

2
ϕ (t) +

1

2
ϕ (r) = V (yHx)

and we get the following violation of A3:

V

(
1

2
xHy +

1

2
yHx

)
= V

(
1

2
x+

1

2
y

)
= ϕ

(
u

(
1

2
x+

1

2
y

))
= ϕ

(
r

2
+
t

2

)
< V (xHy) .

Suppose A7 holds and let Σ ∋ En ↘ ∅. Choose z ≻ y and consider the sequence zm =(
1−m−1

)
z + m−1y for all m ≥ 1. We have u (zm) = u (z) − 1

m (u (z)− u (y)) < u (z). For all

m ≥ 1, z ≻ zm and there is nm ≥ 1 such that yEnmz ≻ zm, i.e.,

q (Enm
)ϕ (u (y)) + (1− q (Enm

))ϕ (u (z)) > ϕ (u (zm)) . (18)

Wlog set ϕ (u (y)) = 0 = 1 − ϕ (u (z)). Thus, wn = ϕ (u (zm)) → 1. By (18), for all m ≥ 1 there is

nm ≥ 1 such that 1 − q (Enm) > wm, i.e., q (Enm) < 1 − wm. But, q (Ek) is a decreasing sequence,

therefore 0 ≤ limk q (Ek) ≤ q (Enm) < 1− wm for all m ≥ 1. Thus, limk q (Ek) = 0 and q ∈ ∆σ. �

A.2 Proof of Theorem 2

In this appendix we prove the main result of Section 3. Let (u,G) ∈ U (X) × L (R×∆) be an

uncertainty averse representation of a preference % in the sense of Definition 1 and set

I (φ) = min
p∈∆

G

(∫
φdp, p

)
∀φ ∈ B0. (19)

By [5, Theorem 50] there exists at least one q ∈ ∆σ such that domG ⊆ R×∆σ (q), and hence

I (φ) = min
p∈∆σ(q)

G

(∫
φdp, p

)
∀φ ∈ B0.

Notice that, by Theorem 1,

G (t, p) = sup

{
I (φ) :

∫
φdp ≤ t

}
∀ (t, p) ∈ R×∆.

In the study of rearrangement invariance it is useful to consider some important stochastic orders.

We already introduced in (8) the convex order %cx on L1 (q). The increasing convex order %icx, the
first order stochastic dominance (fsd), and the second order stochastic dominance (ssd) are defined

analogously by replacing the set of convex functions Φcx with that of increasing convex functions

Φicx, increasing functions Φmi, and increasing concave functions Φicv. Notice that φ %icx ψ if and

only if −φ -ssd −ψ, and that the preorders %cx, %icx, %fsd, and %ssd all share the same symmetric

part ∼d, which is the identical distribution relation wrt q.20

A function J defined on a subset of L1 (q) with values in (−∞,∞] is:

1. rearrangement invariant if φ ∼d ψ =⇒ J (φ) = J (ψ);

20See Chong (1974) for this fact and for alternative characterizations of some of these stochastic orders.
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2. Schur convex if φ %cx ψ =⇒ J (φ) ≥ J (ψ)

Moreover, J preserves first (resp., second) order stochastic dominance if φ %fsd ψ (resp., φ %ssd ψ)
implies J (φ) ≥ J (ψ).

Theorem 3 Let I be the function defined by (19) and q ∈ ∆σ be such that domG ⊆ R×∆σ (q). The

following conditions are equivalent (wrt q):

(i) I preserves second order stochastic dominance on B0;

(ii) G (t, ·) is Schur convex on ∆ for all t ∈ R.

In this case,

I (φ) = min
p∈∆σ(q)

G

(∫ 1

0

F−1
φ (ω)F−1

dp
dq

(1− ω) dω, p

)
∀φ ∈ B0 (20)

and

G (t, p) =

 sup

{
I (ψ) :

∫ 1

0
F−1
ψ (ω)F−1

dp
dq

(1− ω) dω < t

}
if (t, p) ∈ R×∆σ (q)

∞ else.
(21)

Moreover, if (S,Σ, q) is adequate, then (i) and (ii) are equivalent to:

(iii) I preserves first order stochastic dominance on B0;

(iv) I is rearrangement invariant on B0;

(v) G (t, ·) is rearrangement invariant on ∆ for all t ∈ R.

For all φ ∈ L1 (q) and all ω ∈ [0, 1], set

δφ (ω) = inf {x ∈ R : q ({s ∈ S : φ (s) > x}) ≤ ω}
(
= inf {x ∈ R : Fφ (x) ≥ 1− ω} = F−1

φ (1− ω)
)
.

Proof. The proof relies on the theory of rearrangement invariant Banach spaces developed by Lux-

emburg [25] and Chong and Rice [11].

Step 1. If ψ ∈ B0 and p ∈ ∆σ (q), then{∫
ψdp′ : ∆σ (q) ∋ p′ -cx p

}
=

[∫ 1

0

δψ (ω) δ dp
dq

(1− ω) dω,

∫ 1

0

δψ (ω) δ dp
dq

(ω) dω

]
. (22)

Moreover, if (S,Σ, q) is adequate, then

∫ 1

0

δψ (ω) δ dp
dq

(1− ω) dω = min

{∫
ψdp′ : ∆σ (q) ∋ p′ ∼d p

}
and (23)∫ 1

0

δψ (ω) δ dp
dq

(ω) dω = max

{∫
ψdp′ : ∆σ (q) ∋ p′ ∼d p

}
. (24)

Proof. [11, 10.2, 13.4, and 13.8] guarantee that, if φ,ψ ∈ L1 (q) and δ|ψ|δ|φ| ∈ L1 ([0, 1] ,B, λ) = L1 (λ),

then {∫
ψφ′dq : L1 (q) ∋ φ′ -cx φ

}
=

[∫ 1

0

δψ (ω) δφ (1− ω) dω,

∫ 1

0

δψ (ω) δφ (ω) dω

]
. (25)

15



Moreover, if (S,Σ, q) is adequate, then∫ 1

0

δψ (ω) δφ (1− ω) dω = min

{∫
ψφ′dq : L1 (q) ∋ φ′ ∼d φ

}
and (26)∫ 1

0

δψ (ω) δφ (ω) dω = max

{∫
ψφ′dq : L1 (q) ∋ φ′ ∼d φ

}
. (27)

Notice that, the condition δ|ψ|δ|φ| ∈ L1 (λ) is implied by δ|ψ| ∈ L∞ (λ) and δ|φ| ∈ L1 (λ), which is

implied by ψ ∈ B0 and φ ∈ L1 (q) [11, 4.3].

If, in addition, φ is a probability density (p.d.) and φ′ -cx φ, then essinf φ′ ≥ 0 [11, 10.2] and∫
φ′dq =

∫
φdq = 1, i.e., φ′ is a probability density.

Finally, if ψ ∈ B0 and p ∈ ∆σ (q), then{∫
ψdp′ : ∆σ (q) ∋ p′ -cx p

}
=

{∫
ψφ′dq : φ′ is a p.d. and φ′ -cx

dp

dq

}
=

{∫
ψφ′dq : L1 (q) ∋ φ′ -cx

dp

dq

}
=

[∫ 1

0

δψ (ω) δ dp
dq

(1− ω) dω,

∫ 1

0

δψ (ω) δ dp
dq

(ω) dω

]
.

Moreover, if (S,Σ, q) is adequate, then∫ 1

0

δψ (ω) δ dp
dq

(1− ω) dω = min

{∫
ψφ′dq : L1 (q) ∋ φ′ ∼d

dp

dq

}
= min

{∫
ψφ′dq : φ′ is a p.d. and φ′ ∼d

dp

dq

}
= min

{∫
ψdp′ : ∆σ (q) ∋ p′ ∼d p

}
and ∫ 1

0

δψ (ω) δ dp
dq

(ω) dω = max

{∫
ψφ′dq : L1 (q) ∋ φ′ ∼d

dp

dq

}
= max

{∫
ψφ′dq : φ′ is a p.d. and φ′ ∼d

dp

dq

}
= max

{∫
ψdp′ : ∆σ (q) ∋ p′ ∼d p

}
as wanted. �

The next step is essentially due to Hardy.

Step 2. Let r = ∞ and r̄ = 1 or viceversa, φ,φ′ ∈ Lr (q) and ψ ∈ Lr̄ (q).

(a) φ -cx φ′ implies
∫ 1

0
δφ (ω) δψ (ω) dω ≤

∫ 1

0
δφ′ (ω) δψ (ω) dω.

(b) φ -cx φ′ implies
∫ 1

0
δφ (ω) δψ (1− ω) dω ≥

∫ 1

0
δφ′ (ω) δψ (1− ω) dω.

(c) φ -icx φ′ and ψ ≥ 0 (q-a.e.) implies
∫ 1

0
δφ (ω) δψ (ω) dω ≤

∫ 1

0
δφ′ (ω) δψ (ω) dω.

Proof. See [11, 9.1] �

Step 3. If either G (t, ·) is Schur convex on ∆ for all t ∈ R, or (S,Σ, q) is adequate and G (t, ·) is

rearrangement invariant on ∆ for all t ∈ R, then

I (φ) = min
p∈∆σ(q)

G

(∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω, p

)
∀φ ∈ B0. (28)
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Proof. Let φ ∈ B0. Then, by (22),
∫
φdp ≥

∫ 1

0
δφ (ω) δ dp

dq
(1− ω) dω for all p ∈ ∆σ (q). Thus,

monotonicity of G in the first component implies

I (φ) = min
p∈∆σ(q)

G

(∫
φdp, p

)
≥ inf
p∈∆σ(q)

G

(∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω, p

)
.

Conversely, by (22), for any p ∈ ∆σ (q) there exists p′ -cx p (resp., by (23) there exists p′ ∼d p) such
that ∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω =

∫
φdp′.

Thus,

G

(∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω, p

)
= G

(∫
φdp′, p

)
≥ G

(∫
φdp′, p′

)
≥ I (φ)

by Schur convexity (resp., rearrangement invariance).

Therefore,

inf
p∈∆σ(q)

G

(∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω, p

)
≥ I (φ)

and the infimum is attained. �

Step 4. (ii) implies (i) and (20), also (v) implies (i) and (20) provided (S,Σ, q) is adequate.

Proof. By Step 3, (ii) guarantees that (28) holds and the same is true for (v) if (S,Σ, q) is adequate.

But, for all φ ∈ B0 and p ∈ ∆σ (q),∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω =

∫ 1

0

δφ (1− ω) δ dp
dq

(ω) dω =

∫ 1

0

F−1
φ (ω)F−1

dp
dq

(1− ω) dω

which plugged in (28) delivers (20).

Moreover, φ %ssd ψ if and only if −φ -icx −ψ. Thus, Step 2.c implies
∫ 1

0
δ−φ (ω) δdp/dq (ω) dω ≤∫ 1

0
δ−ψ (ω) δdp/dq (ω) dω for all p ∈ ∆σ (q), but δ−φ (ω) = −δφ (1− ω) (λ-a.e.) [11, 4.4] and the same

is true for ψ. This implies that
∫ 1

0
−δφ (1− ω) δdp/dq (ω) dω ≤

∫ 1

0
−δψ (1− ω) δdp/dq (ω) dω and hence∫ 1

0
δφ (ω) δdp/dq (1− ω) dω ≥

∫ 1

0
δψ (ω) δdp/dq (1− ω) dω for all p ∈ ∆σ (q). By (28), monotonicity of

G allows to conclude that

I (φ) = min
p∈∆σ(q)

G

(∫ 1

0

δφ (ω) δ dp
dq

(1− ω) dω, p

)
≥ min
p∈∆σ(q)

G

(∫ 1

0

δψ (ω) δ dp
dq

(1− ω) dω, p

)
= I (ψ) .

Therefore, I preserves second order stochastic dominance and, in particular, it is rearrangement

invariant. �

Step 5. If φ ∈ L∞ (q) then there exists {φn} ⊆ B0 such that φn is the conditional expectation of φ

on a finite σ-algebra for all n ∈ N and φn
∥·∥∞→ φ. In particular, φ %cx φn for all n ∈ N.

Proof. Let φ ∈ L∞ (q) and wlog take a bounded version of φ. There exists {ψn} ⊆ B0 that uniformly

converges to φ. Set, for each n ∈ N, dn = ∥φ− ψn∥, ψon = ψn − dn, ψ
′
n = ψn + dn, Σn = σ (ψn) =

σ (ψon) = σ (ψ′
n). It is immediate to see that ψon ≤ φ ≤ ψ′

n for all n ∈ N. Moreover, both {ψon} and

{ψ′
n} converge uniformly to φ, and, for each n ∈ N, there exist suitable versions of E (ψon|Σn), E (φ|Σn),

and E (ψ′
n|Σn) such that ψn = E (ψon|Σn) ≤ E (φ|Σn) ≤ E (ψ′

n|Σn) = ψ′
n. Define φn = E (φ|Σn) for

all n ∈ N. Clearly, φn ∈ B0 and it uniformly converges to φ.

Finally, observe that for all convex functions ℓ : R → R, by Jensen’s inequality, we have that q-a.e.

ℓ (φn) = ℓ (E (φ|Σn)) ≤ E (ℓ (φ) |Σn) ∀n ∈ N.
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Then, by integrating both sides, for all convex ℓ : R → R

E (ℓ (φn)) ≤ E (E (ℓ (φ) |Σn)) = E (ℓ (φ)) ∀n ∈ N.

�

Step 6. Let ψ ∈ B0 and p ∈ ∆σ (q). Then,

clL∞(q) ({φ ∈ B0 : φ -cx ψ}) = {φ ∈ L∞ (q) : φ -cx ψ} . (29)

In particular,

inf

{∫
φdp : B0 ∋ φ -cx ψ

}
= min

{∫
φdp : L∞ (q) ∋ φ -cx ψ

}
=

∫ 1

0

δ dp
dq

(ω) δψ (1− ω) dω. (30)

Moreover, if (S,Σ, q) is adequate then

min

{∫
φdp : B0 ∋ φ ∼d ψ

}
= min

{∫
φdp : L∞ (q) ∋ φ ∼d ψ

}
=

∫ 1

0

δ dp
dq

(ω) δψ (1− ω) dω. (31)

Proof. It is easy to verify that {φ ∈ L∞ (q) : φ -cx ψ} is closed wrt ∥·∥∞. Therefore,

clL∞(q) ({φ ∈ B0 : φ -cx ψ}) ⊆ {φ ∈ L∞ (q) : φ -cx ψ} .

Conversely, by Step 5, for all φ ∈ L∞ (q) such that φ -cx ψ there exists {φn} ⊆ B0 such that

φn
∥·∥∞→ φ and φn -cx φ -cx ψ for all n ∈ N. Hence, (29) follows.

Moreover, [11, 4.3, 10.2, and 13.8] guarantee that, if ψ ∈ B0 and p ∈ ∆σ (q) then δ|ψ|δ| dpdq | ∈ L1 (λ)

and {∫
φ
dp

dq
dq : L∞ (q) ∋ φ -cx ψ

}
=

[∫ 1

0

δ dp
dq

(ω) δψ (1− ω) dω,

∫ 1

0

δ dp
dq

(ω) δψ (ω) dω

]
. (32)

By (29) and (32), (30) follows since
∫
·dp is a continuous linear functional on L∞ (q).

If (S,Σ, q) is adequate, [11, 4.3, 10.2, and 13.4] guarantee that, if ψ ∈ B0 and p ∈ ∆σ (q) then

δ|ψ|δ| dpdq | ∈ L1 (λ) and

min

{∫
φ
dp

dq
dq : L∞ (q) ∋ φ ∼d ψ

}
=

∫ 1

0

δ dp
dq
δψ (1− ω) (ω) dω.

But, notice that if ψ is simple and L∞ (q) ∋ φ ∼d ψ, then there exists a version of φ which is simple

too, thus proving (31). �

Step 7. If either I preserves second order stochastic dominance or if (S,Σ, q) is adequate and I is

rearrangement invariant, then, for all (t, p) ∈ R×∆σ (q),

G (t, p) = sup

{
I (ψ) :

∫
ψdp < t

}
= sup

{
I (ψ) :

∫ 1

0

δ dp
dq

(ω) δψ (1− ω) dω < t

}
. (33)

Proof. Observe that the set
{
ψ ∈ B0 :

∫
ψdp ≤ t

}
is the closure of

{
ψ ∈ B0 :

∫
ψdp < t

}
. The fact

that I is continuous implies the first equality. In what follows φ,ψ ∈ B0. If I preserves second order

stochastic dominance, then I is Schur concave. For, if φ %cx ψ then −φ %cx −ψ and −φ %icx −ψ.
Hence, ψ %ssd φ. It follows that I (ψ) ≥ I (φ). Let I be Schur concave (resp., rearrangement

invariant). Then,

sup

{
I (φ) :

∫
φdp < t

}
= sup

{
I (ψ) : there exists φ -cx ψ s.t.

∫
φdp < t

}
(resp., = sup

{
I (ψ) : there exists φ ∼d ψ s.t.

∫
φdp < t

}
).

18



But,

sup

{
I (ψ) :

∫
φdp < t for some φ -cx ψ

}
= sup

{
I (ψ) : inf

{∫
φdp : B0 ∋ φ -cx ψ

}
< t

}
(resp., sup

{
I (ψ) :

∫
φdp < t for some φ ∼d ψ

}
= sup

{
I (ψ) : inf

{∫
φdp : B0 ∋ φ ∼d ψ

}
< t

}
).

By Step 6, (33) follows. �

Step 8. (i) implies (ii) and (21), also (iv) implies (ii) and (21) provided (S,Σ, q) is adequate.

Proof. By Step 7, (i) guarantees that (33) holds, and the same is true for (iii) if (S,Σ, q) is adequate.

But,
∫ 1

0
δ dp

dq
(ω) δψ (1− ω) dω =

∫ 1

0
F−1
ψ (ω)F−1

dp
dq

(1− ω) dω for all ψ ∈ B0 and for all p ∈ ∆σ (q).

Hence, (33) implies (21). By Step 2.b and (33), it descends the following chain of implications

p -cx p′ =⇒
∫ 1

0

δ dp
dq

(ω) δψ (1− ω) dω ≥
∫ 1

0

δ dp′
dq

(ω) δψ (1− ω) dω for all ψ ∈ B0

=⇒
{
ψ ∈ B0 :

∫ 1

0

δ dp
dq

(ω) δψ (1− ω) dω < t

}
⊆

{
ψ ∈ B0 :

∫ 1

0

δ dp′
dq

(ω) δψ (1− ω) dω < t

}
∀t ∈ R

=⇒ G (t, p) ≤ G (t, p′) ∀t ∈ R.

Hence, G (t, ·) is Schur convex for all t ∈ R. �

Step 9. (i) implies (iii), (iii) implies (iv), and (ii) implies (v).

Proof. The step is proved by a routine argument. �

Finally, Steps 4 and 8 guarantee that (i)⇔(ii). In this case (20) and (21) hold. Moreover, if

(S,Σ, q) is adequate, the same steps and Step 9 deliver both (v)⇒(i)⇒(iii)⇒(iv)⇒(ii)⇒(v). �

Before proving Theorem 2, we prove two ancillary results.

Lemma 1 Let (u,G) be an uncertainty averse representation for %. If % is probabilistically sophis-

ticated wrt q ∈ ∆σ, then domG ⊆ R×∆σ (q).

Proof. By definition, domG ⊆ R×∆σ. Next, we show that G (t, p) = ∞ for all (t, p) ∈ R×∆σ\∆σ (q).

Fix t ∈ R and p ∈ ∆σ\∆σ (q). It follows that there exists A ∈ Σ such that p (A) > 0 and q (A) = 0.

Since u (X) = R, there exist {xn} , {yn} ⊆ X such that u (xn) =
√
n and u (yn) = −n. Define

fn = ynAxn for all n ∈ N. By probabilistic sophistication, it follows that fn ∼ xn for all n ∈ N.
Hence, u (xfn) = u (xn) =

√
n for all n ∈ N. But, for each n ∈ N∫

u (fn) dp = −np (A) +
√
np (Ac) → −∞ as n→ ∞.

It follows that eventually fn ∈
{
f ∈ F :

∫
u (f) dp ≤ t

}
and

√
n ∈

{
u (xf ) :

∫
u (f) dp ≤ t

}
. We

conclude that G (t, p) = ∞. �

Lemma 2 Let (u,G) be an uncertainty averse representation for % and let I be defined as in (19).

The following statements are true wrt q ∈ ∆σ.

(a) % is probabilistically sophisticated if and only if I is rearrangement invariant on B0;

(b) % satisfies first order stochastic dominance if and only if I preserves first order stochastic dom-

inance on B0;
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(c) % satisfies second order stochastic dominance if and only if I preserves second order stochastic

dominance on B0.

Proof. First notice that B0 = {u (f) : f ∈ F}. By definition,

V (f) = I (u (f)) ∀f ∈ F

represents %.

(a) “Only if.” Consider φ,ψ ∈ B0 such that φ ∼d ψ, then

q ({s ∈ S : φ (s) = t}) = q ({s ∈ S : ψ (s) = t}) ∀t ∈ R.

Since u (X) = R, for each t ∈ R choose xt ∈ X such that u (xt) = t. Since φ and ψ are simple, it

follows that φ (S) = {t1, ..., tn} and ψ (S) = {t′1, ..., t′n′}. Define

Ai = {s ∈ S : φ (s) = ti} and Bj =
{
s ∈ S : ψ (s) = t

′

j

}
.

Finally, define f and g such that f (s) = xti if s ∈ Ai and g (s) = xt′j if s ∈ Bj . It follows that φ = u (f),

ψ = u (g) and f and g satisfy (4).21 Thus, f ∼ g. Therefore, I (φ) = I (u (f)) = I (u (g)) = I (ψ).

“If.” Suppose that f and g satisfy (4). Define φ = u ◦ f and ψ = u ◦ g. Since φ and ψ are

simple, it is immediate to see that φ ∼d ψ. Then, since I is rearrangement invariant, it follows that

I (u (f)) = I (φ) = I (ψ) = I (u (g)), which implies that f ∼ g.

(b) “Only if.” Consider φ,ψ ∈ B0 such that q ({s ∈ S : φ (s) ≤ t}) ≤ q ({s ∈ S : ψ (s) ≤ t}) for

each t ∈ R. Define f, g ∈ F to be such that φ = u (f) and ψ = u (g). It follows that

q ({s ∈ S : f (s) - x}) = q ({s ∈ S : u (f (s)) ≤ u (x)}) = q ({s ∈ S : φ (s) ≤ u (x)})

≤ q ({s ∈ S : ψ (s) ≤ u (x)}) = q ({s ∈ S : u (g (s)) ≤ u (x)})

= q ({s ∈ S : g (s) - x}) ∀x ∈ X.

Therefore, it is clear that f and g satisfy (5). It follows that f % g, and so I (φ) = I (u (f)) ≥
I (u (g)) = I (ψ).

“If.” Suppose that f and g satisfy (5). Define φ = u ◦ f and ψ = u ◦ g. It follows that

q ({s ∈ S : φ (s) ≤ t}) = q ({s ∈ S : u (f (s)) ≤ u (xt)}) = q ({s ∈ S : f (s) - xt})

≤ q ({s ∈ S : g (s) - xt}) = q ({s ∈ S : u (g (s)) ≤ u (xt)})

= q ({s ∈ S : ψ (s) ≤ t}) ∀t ∈ R.

It follows that φ %fsd ψ. Then, since I preserves first order stochastic dominance, it follows that

I (u (f)) = I (φ) ≥ I (ψ) = I (u (g)), which implies f % g.

The proof of (c) is analogous. �

Proof of Theorem 2. Consider the uncertainty averse representation (u,G) for %. Then, define the

functional I : B0 → R as in (19).

21Notice that q
(
f−1 (xt)

)
= q

(
φ−1 (t)

)
= q

(
ψ−1 (t)

)
= q

(
g−1 (xt)

)
for all t ∈ R, while q

(
f−1 (x)

)
= 0 = q

(
g−1 (x)

)
if x /∈ {xt}t∈R.
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(i) implies (ii). Since % satisfies second order stochastic dominance (wrt q), it is probabilistically

sophisticated. By Lemma 1, domG ⊆ R×∆σ (q). By Lemma 2, I preserves second order stochastic

dominance. Hence, Theorem 3 guarantees that (ii) holds.

(ii) implies (i). Since domG ⊆ R × ∆σ (q), by Theorem 3 I preserves second order stochastic

dominance. By Lemma 2, % satisfies second order stochastic dominance.

Furthermore, assume (i) or (ii) hold. By Theorem 3, I satisfies (20) and (21). Hence, (9) and (10)

follow from the observation that I (u (f)) = minp∈∆G
(∫
u (f) dp, p

)
= u (xf ) for each f ∈ F .

Assume that (S,Σ, q) is adequate.

(i) implies (iii) and (iii) implies (iv). The statement is proved by a routine argument.

(iv) implies (v). Since % is probabilistically sophisticated, by Lemma 1, domG ⊆ R×∆σ (q), and

by Lemma 2, I is rearrangement invariant. By Theorem 3, (v) holds.

By Theorem 3, (v) implies (ii), which concludes the proof. �

A.3 Proofs of Corollary 1, Proposition 1, and Proposition 2

Let I : B0 → R be defined as in (19). For each φ ∈ B0 the normalized Greenberg-Pierskalla superdif-

ferential of I at φ is the set

∂I (φ) =

{
p ∈ ∆ :

∫
φdp ≥

∫
ψdp⇒ I (φ) ≥ I (ψ)

}
.

Proposition 4 Let (u,G) be an uncertainty averse representation for %. The following conditions

are equivalent for p̄ ∈ ∆:

(i) % is more uncertainty averse than %u,p̄;

(ii) G (t, p̄) = minp∈∆G (t, p) for all t ∈ R;

(iii) p̄ ∈
∩
t∈R

∂I (t).

Proof. (i) implies (ii). Since %u,p̄ is a SEU preference, setting

Ḡ (t, p) =

{
t if (t, p) = (t, p̄)

∞ otherwise
(34)

for all (t, p) ∈ R ×∆, it follows that the pair
(
u, Ḡ

)
is an uncertainty averse representation of %u,p̄.

By [5, Proposition 6], the fact that % is more uncertainty averse that %u,p̄ translates into

t ≤ G (t, p) ≤ Ḡ (t, p) ∀ (t, p) ∈ R×∆. (35)

Substituting p = p̄ in (35) delivers

G (t, p̄) = t = min
p∈∆

G (t, p) ∀t ∈ R

where the last equality follows from G ∈ L (R×∆).

(ii) implies (iii). Since (u,G) is an unbounded uncertainty averse representation,

G (t, p) = sup

{
u (xf ) :

∫
u (f) dp ≤ t

}
= sup

{
I (u (f)) :

∫
u (f) dp ≤ t

}
= sup

{
I (ψ) :

∫
ψdp ≤ t

}
(36)
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for all (t, p) ∈ R × ∆. Let ψ ∈ B0 be such that
∫
ψdp̄ ≤ t, then, by (36), I (ψ) ≤ G (t, p̄). But (ii)

implies that G (t, p̄) = t. Thus I (ψ) ≤ t = I (t) implies that if
∫
ψdp ≤

∫
tdp̄ then I (ψ) ≤ I (t) and

we conclude that p̄ ∈ ∂I (t).

(iii) implies (i). Let f ∈ F and x ∈ X. Since p̄ ∈
∩
t∈R

∂I (t), it follows that p̄ ∈ ∂I (u (x)). Therefore,

∫
u (f) dp̄ ≤

∫
u (x) dp̄⇒ I (u (f)) ≤ I (u (x))

that is

x %u,p̄ f ⇒ x % f.

But the latter condition can be easily seen to be equivalent to % being more uncertainty averse that

%u,p̄.22 �

Proof of Corollary 1. For each p ∈ ∆σ (q), by Jensen’s inequality,∫
ℓ

(
dp

dq

)
dq ≥ ℓ

(∫
dp

dq
dq

)
= ℓ (1) =

∫
ℓ

(
dq

dq

)
dq

for all convex functions ℓ : R → R. This implies that p %cx q for all p ∈ ∆σ (q). By Theorem 2,

G (t, ·) is Schur convex for all t ∈ R. Therefore, for each t ∈ R, G (t, p) ≥ G (t, q) if p ∈ ∆σ (q) and

G (t, p) = ∞ if p ̸∈ ∆σ (q). That is, q ∈ argminG (t, ·) for all t ∈ R. By Proposition 4, the statement

follows. �

Let u : X → R be a nonconstant affine function and C a nonempty subset of ∆. Set

f %∗ g ⇐⇒
∫
u (f) dp ≥

∫
u (g) dp ∀p ∈ C. (37)

Notice that%∗ is complete (and represented by u) onX, hence the definition of nontrivial unambiguous

event can be naturally extended to this more general setting.23 Next we prove that the equivalence

among points (i)-(iii) of Proposition 1 holds more in general for any relation %∗ defined as above (the

special case is obtained by setting C = dom∆G and observing that % and %∗ coincide on X).

Proof of Proposition 1. (ii) implies (i). This implication follows immediately from the definition

of unambiguous event and the fact that %∗ is nontrivial on X.

(i) implies (iii). By definition, f %∗ g if and only if
∫
u (f) dp ≥

∫
u (g) dp for all p ∈ C. By (i), there

exist x, y, z ∈ X such that x ≻∗ z ≻∗ y and xAy ∼∗ z. It follows that u (x) p (A) + (1− p (A))u (y) =

u (z) for all p ∈ C. Since u (x) > u (z) > u (y), we can conclude that

0 < p (A) =
u (z)− u (y)

u (x)− u (y)
< 1, ∀p ∈ C,

as desired.

22Indeed, consider two preorders %1 and %2 on F . Assume that %i over X is represented by an affine nonconstant

function ui and for each f ∈ F there exists xif ∼i f (i = 1, 2). Then, the following conditions are equivalent:

(i) For each f ∈ F and each x ∈ X, f %1 x⇒ f %2 x;

(ii) %1 coincides with %2 on X and x2f %1 x1f for all f ∈ F ;

(iii) For each f ∈ F and each x ∈ X, f ≻1 x⇒ f ≻2 x (i.e. x %2 f ⇒ x %1 f).

23An event A in Σ is nontrivial and unambiguous if there exist x, y, z ∈ X such that x ≻∗ z ≻∗ y and xAy ∼∗ z.
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(iii) implies (ii). Consider x, y ∈ X such that x ≻∗ y. By (iii), it follows that there exists α ∈ R
such that α =

∫
u (xAy) dp for all p ∈ C and u (x) > α > u (y). Since u (X) is an interval, it follows

that there exists z ∈ X such that u (z) = α =
∫
u (xAy) dp for all p ∈ C. It follows that x ≻∗ z ≻∗ y

and, by (37), that xAy ∼∗ z. �

A subset C of ∆σ (q) is Schur convex (wrt q ∈ ∆σ) if and only if {p ∈ ∆σ (q) : p -cx p′} ⊆ C for

each p′ ∈ C.

Proposition 5 Let q ∈ ∆σ and %∗ be defined as in (37). If A is a nontrivial unambiguous event for

%∗ and C is Schur convex (wrt q), then C = {q}.

Proof. Wlog p (A) = α ∈ (0, 1/2] for all p ∈ C. Let p̄ ∈ C, then, by Step 1 of the proof of Theorem

3,

max

{∫
1Adp : ∆

σ (q) ∋ p -cx p̄
}

=

∫ 1

0

δ1A (ω) δ dp̄
dq

(ω) dω

min

{∫
1Adp : ∆

σ (q) ∋ p -cx p̄
}

=

∫ 1

0

δ1A (ω) δ dp̄
dq

(1− ω) dω.

Since q ∈ {p ∈ ∆σ (q) : p -cx p̄} ⊆ C andA is a nontrivial unambiguous event, then
{∫

1Adp : ∆
σ (q) ∋ p -cx p̄

}
=

{q (A)} = {α}, hence, ∫ 1

0

δ1A (ω) δ dp̄
dq

(ω) dω =

∫ 1

0

δ1A (ω) δ dp̄
dq

(1− ω) dω.

As well known,

δ1A (ω) =

{
1 ω ∈ (0, α)

0 ω ∈ [α, 1) .

Therefore, ∫ α

0

δ dp̄
dq

(ω) dω =

∫ α

0

δ dp̄
dq

(1− ω) dω (38)

but δ dp̄
dq

: (0, 1) → [0,∞) is decreasing and
∫ 1

0
δ dp̄

dq
(ω) dω = 1 [11, 4.3]. Therefore, by standard

arguments, (38) implies δ dp̄
dq

= 1 (λ-a.e.). It follows that dp̄
dq = 1 (q-a.e.) [11, 2.8], and p̄ = q. �

Proof of Proposition 2. Let A be a nontrivial unambiguous event for %.

(i) Sufficiency is immediate. As to necessity, notice that %∗ is represented by (13) and, by Theorem

2, dom∆G is a Schur convex subset of ∆σ (q). Proposition 5 delivers dom∆G = {q}. By definition of

dom∆G and since G ∈ L (R×∆), it follows that for each (t, p) ∈ R×∆

G (t, p) =

{
t if (t, p) = (t, q)

∞ otherwise.

The statement follows.

(ii) Assume that (S,Σ, q) is adequate. Sufficiency is trivial. As for necessity, notice that, by

Theorem 2, % satisfies second order stochastic dominance and the statement follows. �
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