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Abstract

In a market with informationally connected traders, the dynamics of volume, price in-

formativeness, price volatility, and liquidity are severely a�ected by the information linkages

every trader experiences with his peers. We show that in the presence of information linkages

among traders, volume and price informativeness increase. Moreover, we �nd that information

linkages improve or damage market depth, and lower or boost the traders' pro�ts, according

to whether these linkages convey positively or negatively correlated signals. Finally, our model

predicts patterns of trade correlation consistent with those identi�ed in the empirical litera-

ture: trades generated by \neighbor" traders are positively correlated and trades generated

by \distant" traders are negatively correlated.
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One pervasive feature in �nancial markets is the existence of information linkages among

market participants. Traders and investors are socially connected and have access to comparable

sources of information. Many writers describe the �nancial community as one of overlapping

groups of people who share similar opinions, either because they are endowed with comparable

signals about the fundamentals and/or communicate regularly with one another [e.g., Shiller

(1984, 2005), Shiller and Pound (1989), Hertz (1998)], or simply because they are exposed to

similar cultural biases [e.g., Guiso, Sapienza and Zingales (2006)]. Many information-based ex-

planations of asset price movements hinge upon the assumption that investors do not experience

information linkages at all. In this paper, we relax this assumption and explore the resulting

implications along several dimensions: market e�ciency, liquidity, trading volume, correlation

among trades and volumes generated by heterogenous traders, and gains from informed trading.

Our notion of information linkages is closely related to the recent empirical literature on

the value of local information, social interactions and information networks in �nancial markets.

For example, portfolio decisions are known to be related to social networks, be they cultural

or linguistic [Kelly and O'Grada (2000), Grinblatt and Keloharju (2001), Cohen, Frazzini and

Malloy (2007)]. Locality e�ects matter as well. Coval and Moskowitz (1999) provide strong

evidence that geographical proximity in
uences managers' portfolio choices. Hong, Kubik and

Stein (2005) document that US fund managers located in the same city commit to correlated

investment decisions. The authors argue that such correlated choices arise either through peer-to-

peer communication or because fund managers in a given area base their decisions upon common

sources of information - such as a local newspaper or TV station. Similarly, Feng and Seasholes

(2004) �nd that in the Chinese stock market, trades are positively correlated for geographically

close investors, but negatively correlated for distant investors.

A rational explanation of these �ndings must necessarily rely on a pronounced heterogeneity

in the investors' information endowments. Thus, at the heart of our analysis is the idea that in

asset markets, there are groups of traders whose signals and beliefs are more correlated with some

and less correlated with other groups of traders. A natural measure of informational distance

between any two traders is the amount of information they share. To generate heterogeneity in

informational distance, we consider a model with strategic traders who are locally connected to

common sources of information about the long term value of an asset. We call these local con-

nections \information linkages." Accordingly, we de�ne close traders as those who are connected

through these linkages, and distant traders as those who are not. Local connections give rise
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to overlapping networks of traders, which may include only one's closest neighbors or the entire

market. Indeed, there are no obvious arguments suggesting whether information connections

should be best thought of as local or global. Our framework is kept as general as possible to

account for a wide spectrum of possibilities.

Our model builds on the seminal papers of Holden and Subrahmanyam (1992), Foster and

Viswanathan (1996) and Back, Cao and Willard (2000), who develop multi-trader generalizations

of the Kyle's (1985) model. The point of departure is the introduction of information linkages

among traders. Our main goal is to uncover patterns of trade correlations among traders. In

equilibrium, every trader makes use of the information available at the linkages he has with

his local peers. He also knows, however, that by trading aggressively, he reveals part of this

information to distant peers. What is the ultimate e�ect on the correlation between \close" and

\distant" trades?

The central prediction of our multiperiod model is that in a market where strategic traders

have access to information linkages, the correlation among trades is heterogeneous, both tempo-

rally and spatially. More in detail, the correlation among trades is very high at the beginning

of the trading period. The same correlation decreases over time, and exhibits di�erent patterns,

depending upon the informational distance among traders:

� For traders who are su�ciently close (close neighbors), the correlation among opinions and
trades decreases over the trading period, although it remains persistently high.

� Traders' opinions and trades diverge with the informational distance. Eventually, the corre-
lation between trades is negative for relatively distant traders. A signi�cant and persistent

divergence in trades occurs even when the number of information linkages is large enough

to make any two traders' opinions quite similar at the beginning of the trading period.

The economic interpretation for the positive correlation between close trades is intuitive: the

linkages among traders raise the correlation of the information endowments and, hence, the trade

correlation. This property, although intuitive, is in sharp contrast with well-known features of

markets without information linkages, where the correlation among trades eventually becomes

negative [see Foster and Viswanathan (1996)]. At the same time, our model also matches the

empirical evidence on the negative correlation between distant trades documented in the literature

[see our previous discussion of Feng and Seasholes (2004) and the papers we mention below].
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The economic mechanism at work in the model is the following. Over time, and as in Foster

and Viswanathan (1996), the equilibrium asset price conveys more and more information about

the traders' average opinion of the asset value, not the single private opinions every trader has

about this value. Therefore, over time, traders stand on opposite sides of the market, on average,

which makes the correlation between trades decrease. In our model, this correlation tends to

become negative, especially for distant traders. However, the presence of information linkages

in the market \kicks in" for close traders. In particular, we �nd that for close traders, the

information e�ects induced by the linkages dominate the negative correlation arising from the

tendency of each trader to stay on the opposite side of the market. Therefore, the cross sectional

properties of correlated trading we unveil in this paper originate from the combined e�ects of

both the information linkages and the market maker's learning process.

Although these properties are consistent with the available empirical evidence, there remains a

number of empirical issues called for by our model. Importantly, the current empirical literature

on correlated trading relies on the unconditional correlation among trades in a given period

[as in Lakonishok, Shleifer and Vishny (1992) or, more recently, Feng and Seasholes (2004),

Hong, Kubik and Stein (2005), Bae, Yamada and Ito (2006), Barber, Odean and Zhu (2006),

and Dorn, Huberman and Sengmueller (2008)]. Our theoretical analysis suggests that a more

interesting concept is that of trade correlation occurring prior to a corporate event such as

an earnings announcement. The model implications on this correlation are quite strong. For

example, they can be used to test whether correlated trading in �nancial markets is induced by an

alternative and, perhaps, more standard mechanism, based on herding behavior. Herding would

indeed lead to a positive correlation among trades initiated by close traders. However, herding-

based explanations for correlated trading rely on agents' sequential moves [e.g., Bikhchandani

and Sharma (2001)], and should be consistent with a trade correlation that increases prior to

a corporate earnings event. As noted, our information linkages mechanism predicts just the

opposite: correlation of trades for close traders is high and positive, but it decreases over the

trading period.

Our model also predicts that information linkages among traders have implications on tra-

ditional market variables such as volume, liquidity, and e�ciency, as well as on the gains from

informed trading. Linkages do a�ect all these variables. As we shall show, even a small number

of information linkages among traders can induce a quite large e�ect on the equilibrium price

and trading activity. The predictions of our model can be streamlined as follows:
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� Compared to a market without information linkages, a market with information linkages is
characterized by higher volume, e�ciency, and in general, higher liquidity.

� Information linkages boost the expected gains from informed trading if they convey nega-

tively correlated signals. However, if the signals available at the information linkages are

positively correlated, the mere existence of these linkages damages the traders' pro�ts.

The economic interpretation for the �rst property is as follows. Consider the prediction about

volume. Heterogeneity in private information is a source of monopolistic power for traders. But

information linkages destroy part of this monopolistic power. Consequently, every trader trades

aggressively in order to preempt his peers, which makes market-wide volume increase. (The

model predictions about e�ciency and liquidity can be understood in a similar vein.)

The model implications on the gains from informed trading can be explained as follows. In

our model, information linkages a�ect the traders' pro�ts through two channels. On the one

hand, information linkages damage the traders' monopolistic power. On the other hand, the

very same linkages improve the quality of the traders' inference about the fundamental value of

the asset. If the signals available at the information linkages are positively correlated, the losses

generated by the �rst e�ect are larger than the gains stemming from the second e�ect. This

property holds under a wide range of conditions on the initial traders' beliefs and the market

structure, as summarized by the number of traders and batch auctions, as well as the initial

correlation of the signals made available at the traders' locations and the number of information

linkages. These results, however, are reversed if the signals available at the information linkages

are negatively correlated.

Although Section 3 further quali�es these �ndings, the model implications about volume

and liquidity are in general quite clear: stocks traded in markets with many informationally

connected traders are those with large volume and liquidity. To date, the available empirical

literature provides only indirect support to these predictions. For example, Dorn, Huberman and

Sengmueller (2008) show that correlated trading tends to be greater in heavily traded stocks, a

property our model generates through the information linkages channel. Similarly, Hong, Lim

and Stein (2000) supply evidence that stocks with lower analyst coverage are those for which �rm-

speci�c information 
ows more slowly to the market; Brennan and Subrahmanyam (1995) �nd

that stocks with higher analyst coverage are those with lower adverse selection costs of trading.

While analyst coverage might proxy for the information linkages in the market, there exist
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alternative measures of information connectedness devised in the more recent literature, which

purposedly capture locality and network e�ects [see, e.g., Coval and Moskowitz (1999), Grinblatt

and Keloharju (2001), Ivkovi�c and Weisbenner (2005), or the empirical networks methods sur-

veyed in Goyal (2007) and Jackson (2008)]. These measures are well suited to investigate how

trading volume and liquidity can possibly relate to the presence of information linkages among

traders. Similarly, the empirical literature lacks a systematic analysis of the impact information

linkages have on trading pro�ts. One exception is Hau (2001), who provides evidence that local

interactions between traders and �nancial intermediaries might adversely a�ect trading pro�ts.

Our theoretical work sheds new light on this �nding. At the same time, it calls for further in-

vestigations in which such preliminary evidence about information linkages and traders' pro�ts

could be expanded and related to the other testable implications of our model discussed so far.

The remainder of the article is as follows. In the next section, we develop the information

structure of the model. In Section 2, we derive the equilibrium while in Section 3, we discuss in

detail the testable implications of the model. Section 4 contains a succinct discussion of related

work. Section 5 concludes. The Appendix contains technical details omitted in the main text.

1 Information structure

1.1 The asset market and traders' location

We consider a market for one risky asset in which trading takes place in N � 1 batch auctions.
The asset pays a random payo� f � N(0; �2f ) at the end of the trading period. The crucial

feature of the model is that a number of imperfectly competitive traders experience information

linkages related to the asset payo�. Precisely, we assume that the traders are physically located

around a circle. By convention, they are ordered clockwise, such that trader i has trader i+1 as

his clockwise neighbor and trader i � 1 as his counterclockwise neighbor (see Figure 1). There
are M such traders and, for reasons developed below, we assume M is an odd number.

Signals about the fundamental value f are available at each trader's location. Let s0 =

[s1;0; � � � ; si;0]> be the M � 1 vector of the signals in the market. We assume that each signal si;0
is available at the i-th trader's location and is observed by some of the i-th trader's neighbors,

on both sides. Hence, we allow for \double-sided" information linkages. Precisely, we assume
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that the signal available at any trader's location is observed by G clockwise neighbors and G

counterclockwise neighbors of any given trader, and we take G to be exogenous in the model. The

i-th trader's information set is, then, si;0 = [si�G;0; � � � ; si;0; � � � ; si+G;0]>, G 2 [0; (M � 1) =2].1

For example, for G = 1, the signal available at the i-th trader location is also observed by traders

i�1 and i+1, as in Figure 1. In this case, traders i�1, i and i+1 observe si;0; trader i observes
si�1;0, si;0 and si+1;0, and so forth.

To ease notation, we let Ĝ = 2G+1 be the number of signals every trader has access to. Let

�si;0 denote the average signal available to the i-th trader,

�si;0 = Ĝ�1
GX

k=�G
si+k;0: (1)

In the absence of information linkages, we have that Ĝ = 1 and, hence, si;0 = �si;0 = si;0 for all

i. In principle, the maximum number of information linkages is Ĝ � 1 = M � 1, in which case
si;0 = s0 for all i. However, this market may fail to have a linear equilibrium as the number of

auctions N gets large and the uncertainty related to liquidity trades (to be introduced later) gets

small, as initially conjectured by Holden and Subrahmanyam (1992) and shown by Back, Cao

and Willard (2000). Therefore, we shall limit ourselves to analyze cases in which Ĝ < M .

Our information structure can be interpreted in a variety of ways. For example, every signal

si;0 can be thought of as being broadcast to the i-th trader's location through a local newspaper

or TV station, as suggested in the empirical work of Hong, Kubik and Stein (2005) and Ivkovi�c

and Weisbenner (2005), who argue that locality e�ects are likely to be related to information

linkages among investors. In our model, informationally linked traders are those who have access

to some common information source. In the limiting case in which Ĝ = 1, every trader gathers

information from a unique local news source, and there are no information linkages among them.

As Ĝ increases, these sources of news overlap across traders, and the number of information

linkages every trader experiences with his peers, 2G, is interpreted as the media coverage of

information providers.

The information network we consider can also be interpreted as one in which each trader

observes the average signal of his neighbors with some error. To illustrate, consider again Figure

1In the language of the networks literature, our information structure is a regular ring lattice with M vertices

(the traders), with each of the vertices being connected to 2G neighbors through undirected edges: see, for example,

the seminal work by Watts and Strogatz (1998).

7



1. In this example, the i-th trader observes, among other things, �si+1;0 + �i;0, where �si+1;0 =
1
3 (si;0 + si+1;0 + si+2;0) is the average signal available to the (i+ 1)-th trader, and the error term

is �i;0 = �1
3si+2;0. This interpretation is important: as we shall show, each trader's strategy is

linear in his average signal, in equilibrium. Therefore, the information structure in this market

is such that in equilibrium, each trader observes the trade of his neighbors with some error.

Another interpretation of our information structure is that of social proximity among traders.

Social connections can relate to geographical, cultural, demographic or linguistic distance, and

translate into di�erences in beliefs among traders. For example, in an early contribution, Shiller

and Pound (1989) argue that the presence of social networks might explain portfolio decisions

among US investors. More recently, Grinblatt and Keloharju (2001) �nd that language, culture

and geographical distance a�ect portfolio choice in the Finnish stock market; Cohen, Frazzini and

Malloy (2007) document that education networks a�ect the trading behavior of portfolio managers

connected to senior o�cers of publicly traded companies. In general, repeated interactions among

traders can lead them to sharing close opinions and views. At the other extreme, socially distant

traders are less likely to interact and, hence, more likely to have relatively more independent

opinions and views. Then, our model can be understood as one that focuses on the asset pricing

implications of a given architecture of opinion formation. Stein (2007) lays down the foundations

for an honest exchange of ideas to arise among strategic players. This exchange stems from

complementarities in the production of ideas. For example, to come up with a useful idea about

an asset payo�, it may be necessary to have access to the peers previous ideas on the same topic.

In our model, information linkages can be thought of as the result of such fruitful conversations

among close traders.

1.2 The distribution of signals

Next, we describe the distribution of the signals available at the traders' location. We follow

Foster and Viswanathan (1996) and assume that all the signals are jointly normally distributed

with mean zero and variance-covariance matrix equal to 	0 = E([s1;0; � � � ; sM;0]> [s1;0; � � � ; sM;0]).
The unconditional distribution of the signals is symmetric in that it is invariant to a permutation
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of the indices 1; � � � ;M . The joint distribution of the vector [f s0]> is given by:

"
f

s0

#
� N

 "
0

0

#
;

"
�2f c01

>

c01 	0

#!
; 	0 =

2666664
�0 
0 � � � 
0

�0 
0
. . .

...

�0

3777775 ; (2)

where we assume that 	0 is invertible, which it is, provided �0 > � (M � 1)
0, a restriction we
maintain throughout the paper. Such restriction ensures that the average of the average signals,

�s =M�1PM
i=1 �si;0, is a su�cient statistic for the full information liquidation value,

E (f j s0) = ��s; (3)

where � = c0M (�0 + (M � 1)
0)�1.

The average signal every trader has access to, �si;0, plays a key role for each trader forecasting

problem and, hence, for the trading strategies, as we shall show below. We now derive the

distribution of the average signals (�si;0)
M
i=1, under the assumptions made so far.

We denote the unconditional variance-covariance matrix of the average signals with �	0 =

E([�s1;0; � � � ; �sM;0]> [�s1;0; � � � ; �sM;0]). The elements of this matrix depend on the number of infor-
mation linkages in the market. Accordingly, we set �	0 = �	0 (G), where

�	0 (G) =

2666664
��0 (G) �
0 (1; G) � � � �
0

�
M�1
2 ; G

�
� � � �
0 (�1; G)

��0 (G) �
0 (�2; G)
. . .

...

��0 (G)

3777775 ; (4)

and
��0 (G) = var (�si;0)

�
0 (k;G) = cov (�si+k;0; �si;0) ; k = �1;�2; � � � ;�M�1
2

denote the unconditional variance of the average signals available to any trader (��0 (G)), and

the unconditional covariance between the average signals of any two traders who are located k

positions apart (�
0 (k;G)) (k 6= 0). We have that �
0 (k;G) = �
0 (�k;G), which follows by both
the circular information structure and the double-sided nature of the information linkages in this
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market. Furthermore, ��0 (G) is the same for each trader and given by

��0 (G) =
�0 + 2G
0

Ĝ
: (5)

due to the symmetric unconditional distribution of the signals in Eq. (2).

Consider, next, any two traders i and j = i+ k with k 6= 0, and the unconditional covariance
between the average signals these two traders have access to, i.e. the o�-diagonal element �
0 (k;G)

in Eq. (4). The covariance between the average signals depends on: (i) k, the distance between

the i-th trader and the (i+ k)-th trader; and (ii) the number of information linkages in the

market, G. This dependence on k arises because the number of signals every trader shares

with the other peers depends on their relative position on the circle. For example, assume that

2G < (M � 1)/ 2. In this case, trader i shares 2G signals with trader i+ 1, 2G� 1 signals with
trader i+2 and in general 2G+1�k signals with trader i+k. As Figure 2 illustrates, eventually,
trader i shares no signals with trader i+ 2G+ 1 and beyond.

To derive explicitly the covariance between any two traders' information endowments, we

need to distinguish between two situations that may alternatively arise, depending on information

linkages being \large" or \small." Intuitively, if the number of information linkages, 2G, is larger

than the number of traders each trader has on either side, (M � 1)/ 2, some pieces of information
might \go through" over and above the dimension of the information network any trader belongs

to. Then, we need to analyze the following two cases.

(i) Small number of information linkages: 2G � (M � 1)/ 2. In this case, any two traders can
not observe common signals, provided they are located su�ciently apart, as in Figure 1

with, e.g., M = 7. However, if two traders are su�ciently close, they have access to some

common information. In Appendix A, we show that,

For 2G � M�1
2 , �
0 (k;G) =

8<:
��0 (G)� Ĝ�2 (�0 � 
0) k; for k 2 [1; 2G+ 1]


0; for k 2
�
2G+ 1; M�1

2

� (6)

(ii) Large number of information linkages: 2G � (M � 1)/ 2. In this case, information linkages
are such that any two traders might have access to common sources of information even

when each of them does not observe the signals available at the location of the other, a

property we label \double overlap." This feature of the model results in a higher information
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clustering of traders. It parallels a similar \small worlds" property analyzed in the networks

literature, by which a network may be both highly clustered and have a low average distance

among its nodes (our traders) [see, e.g., Watts and Strogatz (1998)]. Consider, for example,

Figure 3. In this example, trader i has access to the signal available at the location of

trader i�`, although he can not observe the signal available at the location of trader i+k1.
However, traders i + k1 and i � ` are informationally connected, as their relative distance

is less than G. Therefore, traders i and i+ k1 do observe some common signal (at least the

signal si�`;0), even if they are not connected to the same information linkage. In Appendix

A, we show that the \double overlap" modi�es the correlation structure in (6) as follows:

For 2G � M�1
2 , �
0 (k;G) =

(
��0 (G)� Ĝ�2 (�0 � 
0) k; for k 2

�
1; 2

�
M�1
2 �G

��
2��0 (G)� Ĝ�2M (�0 � 
0)� 
0; for k 2

�
2
�
M�1
2 �G

�
; M�1

2

�
(7)

To summarize, the variance-covariance matrix of the average signals available to all traders,

�	0 (G) in Eq. (4), depends on the number of information linkages, which makes �	0 (G) not

invariant to a permutation of the indices i = 1; � � � ;M , unlike 	0 in Eq. (2). By Eq. (5),
the elements on the main diagonal, ��0 (G), are the same. The o�-diagonal elements, instead,

are decreasing in the traders' relative distance k, according to the pattern in Eqs. (6)-(7).

Thus, the correlation between the average signals of any two traders located k positions apart,

��0 (k;G) = ��0 (G)
�
�
0 (k;G), varies with their relative distance.

Despite its asymmetry, the matrix �	0 (G) preserves a useful property of symmetric matrices.

De�ne the unconditional covariance between the average signal available to any trader i, �si;0,

with the sum of the remaining traders' average signals,

��0 (G) = cov
�P

k 6=i �sk;0; �si;0
�
=
X
k 6=i

�
0 (k;G) :

Due to the information structure in this market, ��0 (G) is the same for each trader. In Appendix

A, we prove that,

��0 (G) = (M � 1)
0 +
2G

Ĝ
(�0 � 
0) ; for all G 2

�
0; M�1

2

�
: (8)

The fact that both ��0 (G) and ��0 (G) do not depend on location implies that each trader's

forecasts of (i) the asset value and (ii) the sum of all remaining traders' average signals, are

independent of k, as we shall show below.
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2 Equilibrium price and trades

This section develops a dynamic model that relies on the information structure described in the

previous section. We derive the equilibrium price and traders' strategies (Proposition 1) following

the methods set forth in Foster and Viswanathan (1996), in which the equilibrium outcome arises

out of a set of possibly o�-equilibrium strategies and prices. Then, we provide a characterization

of the trading strategies (in Proposition 2), which we shall use to understand the correlation of

trades and volumes we uncover in Section 3.

2.1 Equilibrium characterization

Let (xi;n)
N
n=1 be the sequence of orders submitted by the i-th trader over the trading period.

Trades are chosen so as to maximize the expected pro�ts, viz

Wi;n � max (xi;t)Nt=nE
hPN

t=n (f � pt)xi;t
���Fi;ni ; n = 1; � � � ; N; (9)

where Fi;n is the trader i information set at the n-th batch auction. On top of these informed

orders, there is a sequence of liquidity trades (un)
N
n=1, where un is independent and identically

distributed as a standard normal variable, with mean zero and variance �2u. Thus, the aggregate

order 
ow is given by:

yn =
MX
i=1

xi;n + un; n = 1; � � � ; N: (10)

The (M +1)-th market participant is the market maker, who commits himself to o�set the order


ow according to the Semi-Strong e�ciency rule:

pn = E (f jFn) ; n = 1; � � � ; N: (11)

where Fn = f(yt)nt=1g denotes the market maker's information set at the n-th batch auction.
Upon observing the aggregate order 
ow, the market maker updates his estimate of the average

signal available to any trader i as

tn = E (�si;0jFn) = Ĝ�1
GX

k=�G
E (si+k;0jFn) = E (si;0jFn) ; (12)

which is independent of the i-th trader's speci�c location since the variance-covariance matrix

	0 in Eq. (2) is symmetric.
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We focus on equilibria in which both traders' strategies and the pricing function are linear with

respect to the information structure, that is, (i) each trader strategy is linear in his informational

advantage relative to the market maker,

xi;n = Ĝ�n (�si;0 � tn�1) ; (13)

and (ii) the market maker's learning about the asset value satis�es,

pn = pn�1 + �nyn; (14)

for some deterministic sequences �n and �n to be determined in equilibrium. We shall come back

later to the economic interpretation of the linear strategy xi;n in Eq. (13) (see Proposition 2).

Foster and Viswanathan (1996), Back, Cao and Willard (2000) and Bernhardt and Miao

(2004) restrict attention to the same equilibrium conditions summarized by Eqs. (13) and (14).

Moreover, Foster and Viswanathan (1996) explicitly prove that any trader i can manipulate the

remaining traders' beliefs about the asset value only through the aggregate order 
ow. The

existence of information linkages does not destroy this property, as we show in Appendix B (see

Lemma 3). Consequently, the residual order 
ow, (yi;t � xi;t)n�1t=1 , constitutes a redundant piece

of information in the information set of the i-th trader at the n-th batch auction, and we set

Fi;n = f�si;0; (yt)n�1t=1 g. It follows that (�si;0 � tn�1) is su�cient for any trader i to (i) forecast
the asset value and (ii) forecast (the sum of) the other traders' informational advantage, before

submitting his order at time n, i.e.

E (f � pn�1jFi;n) =
�
�
��n�1 (G) + ��n�1 (G)

�
M ��n�1 (G)

(�si;0 � tn�1) ; (15)

and

E
�P

j 6=i (�sj;0 � tn)
���Fi;n� = ��n�1 (G)

��n�1 (G)
(�si;0 � tn�1) : (16)

where ��n�1 (G) (resp. ��n�1 (G)) is the variance of the residual informational advantage (resp.

covariance between
P
k 6=i(�sk;0 � tn�1) and (�si;0 � tn�1)) conditional on Fn�1. Note that the

regression coe�cients in Eqs. (15)-(16) are identical for all traders, despite the asymmetry in

the variance-covariance matrix of average signals. As a consequence, the trading intensity in Eq.

(13) does not depend on each trader's location. This property keeps our model markedly distinct

from the two traders \simultaneous information acquisition" model considered by Bernhardt and
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Miao (2004), in which signals have di�erent variances (see their Section 3.2 and Proposition 5). A

further di�erence between our analysis and that in Bernhardt and Miao (2004) is that in �nding

the equilibrium, we take into account o� equilibrium paths. To this end, we follow the approach

in Foster and Viswanathan (1996), and conjecture that the price induced by past suboptimal

play shows up both in trader i strategy and in his value function. The necessary and su�cient

conditions for an equilibrium hinge upon the mutual consistency between these two conjectures:

Proposition 1. There exists a unique Bayesian Nash equilibrium in which trading strategies and

prices are as in Eqs. (13)-(14).

The complete equilibrium characterization is detailed in Appendix B. Note that in our model,

not only are traders concerned with forecasting the information the remaining traders possess.

This learning process is also complicated by the existence of heterogeneous distances among the

traders, and the number of information linkages every trader has with his neighbors. Indeed,

trading strategies and prices are sensibly a�ected by the heterogeneous correlation structure

arising from the information linkages among traders, as we shall explain in detail in Section 3.

2.2 Value estimates and subjective mispricings

Back, Cao and Willard (2000) show that in continuous time, the equilibrium trading strategies

and the expectation of the sum of others' trades are linear in the subjective mispricing perceived

by any trader i, i.e. E (f jFi;n) � pn�1. This property survives in our model with information

linkages, since traders adopt identical strategies. Our model displays the additional features that

the forecast of individual trades is linear in the subjective mispricing, and that it does depend

upon the traders' distance. We now produce the formal argument, which we shall use to develop

the interpretation of the model predictions in the next section.

We denote with �n the ratio of the market maker's residual variance of the average signal

in the market, var ( �sjF;n), to the residual variance of each trader's average signal, var ( �si;0jFn),
viz

�n =
var ( �sjFn)
var ( �si;0jFn)

: (17)

Furthermore, let �2f;n and &
2
f;n denote respectively the market maker and trader i residual variance

14



of the full information asset value after n rounds of trading

�2f;n = var [E (f j s0)jFn] (18)

&2f;n = var [E (f j s0)jFi;n+1] : (19)

The equilibrium trading strategies in Eq. (13) can then be expressed as in the following

proposition:

Proposition 2. Any trader i strategy in Eq. (13) is linear in the subjective mispricing E (f jFi;n)�
pn�1, i.e.

xi;n =
Ĝ�n
�n�1�

[E (f jFi;n)� pn�1] ; (20)

and

�n =
�2f;n � &2f;n

�2f;n
: (21)

Moreover,

E
�P

j 6=i xj;n

���Fi;n� = (M�n�1 � 1)xi;n; (22)

and

E (xi+k;njFi;n) = ��n�1 (k;G)xi;n

= E
�P

j 6=i xj;n

���Fi;n�| {z }
� Market side direction

�
�P

`=2fi;i+kg ��n�1 (`;G)
�
xi;n| {z }

� Information linkages direction

; (23)

where, for a given G, ��n (k;G) is the correlation, at the n batch, between the average signals

available to any two traders who are located k positions apart.

Proposition 2 generalizes, in a discrete time setting, Lemma 6, and other results, in Back, Cao

and Willard (2000). As in Back, Cao and Willard, Eq. (20) indicates that any trader buys/sells

the asset if he believes the asset is undervalued/overvalued. Moreover, Eq. (21) reveals that �n

is a measure of the relative \tightness of beliefs" between the market maker and the traders, i.e.

the percentage of the market maker's residual uncertainty that is accounted for by each trader's

information.

Eqs. (20) and (22) imply that any trader expects to trade in the same direction of his peers

and, thus, to be on the same side of the market if and only if the market maker's residual

15



uncertainty is su�ciently large, i.e. �n > M�1. This property generates a \rat race." When

�n < M�1, each trader expects to be on the opposite side of the market, which generates a

\waiting game." The next section demonstrates that in our model, the dynamic properties of

the \tightness of beliefs," �n, are severely a�ected by the number of information linkages every

trader has with his peers, 2G.

Finally, Eq. (23) highlights the role information linkages and traders' distance play in our

model. Consider, �rst, a market without information linkages, i.e. G = 0. In this case, trader

i information set collapses to the signal available at his location and, hence, ��n (k; 0) = 
n/�n,

which is obviously independent of k. By Eq. (23), then, the i-th trader expects any other trader

to submit the same order, i.e. E (xi+k;njFi;n) = E (xi+j;njFi;n), for all k; j, which implies that,

E (xi+k;njFi;n) =
E
�P

j 6=i xj;n

���Fi;n�
M � 1 ; for all k 6= 0:

Therefore the i-th trader believes to be on the same side of the market whenever �n > M�1,

and to be so with respect to every single trader.

In contrast, Eq. (23) reveals that in the presence of information linkages, any trader i can

expect to simultaneously trade in the same direction of the market but against some of his peers.

Indeed, Eq. (23) implies that when G > 0, the i-th trader's expects di�erent orders from di�erent

traders, i.e. E (xi+k;njFi;n) 6= E (xi+j;njFi;n), for all k; j, jjj 6= jkj.
As we explained in Section 1.2, the correlation between the traders' information endowments

decreases with their relative distance [see Eqs. (6)-(7)], which means that each trader agrees

more with his neighbors and less with his distant peers. Therefore, if the i-th trader is on the

same side of the market and, for example, believes the asset is undervalued, he has to trade in the

same direction of his close neighbors, although he might trade against peers who are su�ciently

far apart. In Eq. (23), the term labeled \Market side direction" captures the �rst e�ect (trading

with the peers), and the term labeled \Information linkages direction" captures the second e�ect

(trading against the peers). In practice, whether two traders are on the same side of the market

depends on their relative distance and the number of information linkages, as we shall show in

the next section.
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3 Predictions

This section analyzes the properties of the equilibrium predicted by the model. In Section 3.1,

we set a benchmark, based on real market data, which we use to calibrate the model parameters;

in Section 3.2, we look at the model predictions about correlated trading and volume among

traders; in Section 3.3, we analyze how information linkages a�ect the dynamics of volume,

liquidity, market e�ciency and pro�ts arising from informed trading.

3.1 The empirical benchmark and model calibration

We identify earnings announcements as natural proxies for the end of the trading period in our

theoretical model. Accordingly, we retrieve report dates of quarterly corporate earnings for all

AMEX and NYSE stocks during the �scal year 2006, using the COMPUSTAT database. Our

initial sample comprises 10077 report dates for 2723 stocks. We look at the behavior of volume

and price impacts during two trading weeks before the announcement, as in other empirical

investigations of this sort [e.g., Chae (2005)]. This choice implies a value of N = 10 trading days,

which is the trading period we shall use to produce the model predictions in Sections 3.2 and

3.3. Data on prices and trading volumes for the eleven days n days prior to announcements are

obtained from the CRSP database. They restrict our initial COMPUSTAT sample to 9088 report

dates for 2611 stocks, once we exclude data with zero volume in at least one trading period.

Let the observed prices and volumes prior to announcement j be denoted as pnj and vnj ,

for n = 1; � � � ; 10. We measure the ten price impacts occurring prior to each announcement j
as the ratios of the absolute price change divided by trading volume, �nj = j�pnj j =vnj . We
rely on a two-way sorting procedure to �gure out the volume and price impact patterns for a

typical announcement in our sample. For each announcement j, we compute the average volume,

�vj = 10�1
P10
n=1 vnj , and the average price impact,

��j = 10�1
P10
n=1 �nj , occurring over the

trading period. Then, we select the announcements preceded by (i) average volumes �vj within

the 14.645-th and 85.355-th percentiles, and (ii) average price impacts ��j within the very same

previous percentiles. This sorting delivers precisely the middle 50% range of our initial universe

of �rms, along both volume and price impact dimensions.

To appraise the behavior of volume and price impacts for a typical stock in our sample, we

take cross sectional averages relating to all �rms surviving our two-way sort, and normalize them

to their value in the �rst trading round. The second and third columns of Table 1 (labeled

17



\volume" and \lambda") report these statistics for each trading day, along with cross sectional

standard errors. Volume and price impacts display a clear pattern: volume increases slowly over

the trading period and peaks up in the last trading round; price impacts, instead, decrease over

the trading period, overall.

We further dissect our initial COMPUSTAT sample by the average dollar volume occurring

prior to each announcement j, pvj = 10
�1P10

n=1 (pnjvnj). First, we split the sample into three

sorts: large, medium and small �rms, which correspond to average dollar volumes pvj above the

80-th percentile, between the 40-th and 60-th percentiles, and below the 20-th percentile. For

each of these sub-samples, we apply the two-way sorting procedure described earlier, exclude data

with zero volume in at least one trading period, and retrieve the volume and price impacts for

a typical large, medium and small �rm in our sample. We end up with three sub-samples that

include 921 large �rms, 913 medium �rms, and 693 small �rms.

Columns 4 through 9 in Table 1 report summary statistics for the average normalized volume

and price impacts, along with cross sectional standard errors, on each of the three sub-samples.

Volume is U-shaped and increases towards the end of the trading period, in all sub-samples.

Furthermore, price impacts decrease with the trading round in each sub-sample, on average,

especially at the level of small and large �rms.

Our �ndings are similar to previous results obtained with US data: for example, Krinsky and

Lee (1996) report that at a high frequency level, volume increases prior to earnings announce-

ments; more recently, Chae (2005) uncovers a pattern for volume quite similar to ours, using daily

data. As for the price impacts, it is well-known that adverse selection costs widen just around an

earnings announcement. Our data display a similar feature. For example, at the announcement

date, the cross sectional average price impact for large �rms is 1.0604, with a standard error of

0.0259. In the remainder, however, we do not include observations for the announcement date,

as we wish to make the trading period end exactly before the announcements, in the spirit of

the model. Figure 4 displays the average volume and price impacts for large �rms, along with

cross sectional 95% con�dence bands. We use data related to these �rms to calibrate two model

parameters: the variance of the asset value, �2f , and the variance of the liquidity trades, �
2
u.
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To calibrate �2f , we use the COMPUSTAT database and collect yearly earning-per-share

(EPS) series for the stocks we previously sorted as large. We are able to retrieve 293 complete

time series for the period 1995 to 2005. For each stock j, we measure its year t EPS growth

as the �rst di�erence in yearly EPS, and compute the annualized standard deviation for each

time series of EPS growth. The cross sectional average standard deviation is 0:902, with 95%

con�dence bands equal to 0:802 and 1:011. We then set �2f = 1 in our theoretical model.

Next, we calibrate the variance of the liquidity trades, �2u, by matching the volume and price

impacts predicted by the model to their empirical counterparts for large �rms. This step requires

solving numerically the model. Therefore, we need to specify how the information is disseminated

and how many traders are active in the market. As for the �rst issue, we take the asset value, f ,

to equal the sum of all the signals available to the market,

f =
MX
i=1

si;0: (24)

Eq. (24) implies that the covariance between any signal and the asset value equals c0 = �0 +

(M � 1)
0. Accordingly, the parameter � in the full information liquidation value [see Eq. (3)]
equals the number of traders, M , which we set equal to 7, based on the empirical evidence in

Brennan and Subrahmanyam (1995) and Chordia, Huh and Subrahmanyam (2008).2 Note, Eq.

(24) also implies that with �2f = 1, the correlation between any two signals available at two

distinct locations equals,

� =
1

M (M � 1)

�
1

�0
�M

�
: (25)

That is, the unconditional variance of each signal, �0, is known, once we specify �.

We are now left with calibrating �, the number of information linkages each trader has with

his peers, 2G, and, �2u. We solve the model on a grid of
�
�2u; �

�
, for every G 2 f0; 1; 2g, and

compute a statistics summarizing the distance between the model predictions and their empirical

counterparts. The statistics is the sum of two mean squared errors (MSE) calculated over the

trading period: the MSE between the model implied volume and the cross sectional average

volume for large �rms (in percentage); and the MSE between the model implied price impacts

and the cross sectional average price impacts for large �rms (in percentage). We �nd that

2To check the robustness of our results, we experimented all combinations of M 2 f7; 51; 101g and N 2
f10; 20; 40g, and obtained results qualitatively very similar to those we report below. The only exception regards
the behavior of �n for large values of N , which becomes U-shaped for any G and M , as we explain in Section 3.3.
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�
�2u; �;G

�
=
�
1:25 � 10�1;�0:15; 2

�
minimizes this statistics. The last two columns in Table 1

report the model predictions arising in this case. The model reproduces the salient features of

data: volume is U-shaped and increases toward the end of the trading period; instead, price

impacts decrease, overall.

In the next sections, we discuss the model predictions when the signals correlation is negative,

with � = �15%, and when it is both zero and positive, with � = 10%. These correlation values
are those that make our calibrated model fall within the empirically relevant range, although

as noted, the last two columns in Table 1 minimize the distance between the model and data.

Finally, to further our understanding of how information linkages impart on market variables, we

analyze the cases in which G = 0 (no information linkages), G = 1 (information linkages) and

G = 2 (many information linkages and \double overlap").

3.2 Correlated trading and volume

Figure 5 depicts the correlation between the orders of each trader with his peers, close and distant,

corr (xi;n; xi+k;njFn�1) = ��n�1 (k;G) ;

where ��n (k;G) is the correlation between the average signals of any two traders i and i+ k (see

Proposition 2).

Figure 5 shows that for a given number of information linkages, ��n increases with the corre-

lation �, for all the batch auctions n and the peers' distance k. This feature merely re
ects the

higher correlation between the signals available at each trader's location. Moreover, for given k

and G, the trade correlation decreases over time. This pattern is related to the market maker's

learning process. As in Foster and Viswanathan (1996), over time, the price conveys more and

more information about the average signal, rather than about the individual signals available to

traders. Similarly, in our model, the market maker learns more about the average of the average

signals, �s [see Eq. (3)] than the private signals traders have about the asset value, �si;0 [see Eq.

(1)]. This feature of the learning process implies that the market maker's resolution of the resid-

ual uncertainty, �2f;n in Eq. (18), takes place somewhat faster than the resolution of the traders'

residual uncertainty, &2f;n in Eq. (19). By Eq. (21), then, the tightness of beliefs, �n, decreases

over time. At some point, �n becomes so small that the market maker sets the price to a value

quite close to the traders' average opinion of the asset value (see Figure 6), in which case the
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traders play a waiting game, as explained in Section 2.2. Inevitably, then, the traders expect to

be on opposite sides of the market, as Proposition 2 suggests.

Although each trader expects to trade against the market, our model predicts that the corre-

lation of trades varies across the market. In particular, information linkages induce each trader

to trade in the same direction as his close neighbors and in the opposite direction to his distant

peers. This property, which is formally due to Eq. (23) in Proposition 2, is well-visible from

Figure 5. This �gure shows that the trade correlation, ��n, increases with G, especially during

the �rst trading rounds. Indeed, the presence of information linkages leads to a higher duration

of the rat race, even when the correlation � is negative. This is illustrated by Figure 6, which

depicts the dynamics of �n for a large spectrum of values of � (� = �0:15, 0 and 0:90). As a
result, for close traders, ��n remains positive for the entire trading period, re
ecting the boost

in the correlation between the information endowments and the rat race. For distant traders,

however, information linkages are too weak to counterbalance the e�ects related to the market

maker's learning mechanism, by which each trader expects to trade against the market. In both

cases, the trade correlation decreases over time, a critical point we shall discuss below.

Finally, note that compared with the benchmark case of absence of information linkages

(G = 0), it takes fewer batch auctions for the trade correlation between distant traders to become

negative. Moreover, for distant traders, the trade correlation falls dramatically in the presence of

information linkages. For example, when � = 10%, the trade correlation among distant traders

at the end of the trading period is only �11%, in the absence of information linkages (G = 0),

while it reaches a value of �70% in the presence of information linkages (G = 1), and a value

of �30% in the presence of many information linkages (G = 2). Note, the trade correlation is

higher for G = 2 than for G = 1. This property arises because the presence of many information

linkages leads to the \double overlap" property described in Section 1.2 (see Figure 3). Such an

information overlap induces a quite substantial boost in the correlation between the information

endowments of all traders, which then translates into an increased trade correlation, even for

distant traders. Still, the trade correlation for distant traders is signi�cantly lower with G = 2

than in the absence of information linkages.

As outlined in the Introduction, these cross sectional properties of trading behavior are con-

sistent with previous �ndings in the empirical literature. For example, Feng and Seasholes (2004)

report that in the Chinese stock market, geographically close investors trade similarly and distant

investors submit negatively correlated orders. Bae, Yamada and Ito (2006) �nd quite similar re-
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sults in the Japanese stock market: trades initiated by foreign investors are negatively correlated

with trades initiated by local investors. Along similar lines, Dorn, Huberman and Sengmueller

(2008, p. 902) argue that correlated trading can be related to \the likelihood that the traders are

exposed to the same signals (which are interpreted similarly)." The model predictions about cor-

related trading suggest additional testable patterns for correlated trading. In our model, trade

correlation tends to decrease as the liquidation date approaches. This property holds for all

traders, close and distant. By way of contrast, consider the predictions about correlated trading

induced by herding behavior. Herding relies upon each trader \imitating" the peers' previous

trades, and would lead to a trade correlation increasing over time. Therefore, the model pre-

dictions about trade correlation help discriminate empirically between our information linkages

mechanism and herding behavior.

How does volume correlate among traders? Figure 7 depicts the correlation among the vol-

umes generated by the single traders (for brevity, the volume correlation), over the trading

period.3 The dynamics of volume correlation are related to, albeit distinct from, those of the

trade correlation. Absent any information linkages, individual trades are nearly uncorrelated

when the correlation � is negative or zero (see Figure 5), which translates into a similar property

for the volumes generated by the traders.

In the presence of information linkages, we explained that the correlation among individual

trades is positive for close neighbors, while it decays to negative values for distant traders (see

Figure 5). Moreover, this decay is more pronounced for G = 2 than for G = 1. For close

neighbors, the volume correlation features a pattern quite similar to that of the trade correlation.

However, as the distance between traders increases, the volume correlation decreases, overall, and

becomes U-shaped: few information linkages (G = 1) now lead to stronger volume correlation

than more information linkages (G = 2), except for the very �rst trading rounds. This is because

for G = 1, the increased correlation of individual trades induced by the presence of information

linkages does not o�set the correlation decay arising from the market maker's learning process.

Individual trades are strongly negatively correlated for most of the trading rounds and volume

correlation peaks up. When G = 2, the increase in the trade correlation resulting from the

information linkages dominates the decay induced from the market maker's learning process. As

3Informed volume is estimated as the conditional standard deviation of informed trades, as in Admati and

P
eiderer (1988). We compute the correlation between the individual traders' volume through simulations, as we

do not have a closed-form solution for it.
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a result, individual trades and volume are weakly correlated for most of the batch auctions.

Existing empirical studies rarely tackle the issue of correlated volumes. The array of pre-

dictions produced by our model suggests a number of relations between correlated volume and

distance that warrant empirical scrutiny. To summarize, volume correlation decreases with the

traders' distance. Moreover, the correlation of volumes for close traders does not display the

same pattern as that for distant traders and, additionally, depends on the number of information

linkages in the market, as we explained. Finally, volume correlations are quite 
at over the trading

period, in the absence of information linkages. The last observation, alone, would be su�cient to

test for the very presence of information linkages in a given market.

3.3 Volume, liquidity, e�ciency and traders' pro�ts

How do information linkages a�ect total volume, liquidity, e�ciency and traders' pro�ts? On the

one hand, a trader with many information linkages is able to estimate more precisely the asset

value, since he observes more signals on top of the one available at his location. On the other

hand, the same linkages lead a given trader to lose part of his monopolistic information power,

since other traders observe his signal. This second e�ect translates into an incentive for every

trader to anticipate his peers: trading aggressiveness increases and so does volume. This clearly

emerges from Figure 8, which plots the total volume, estimated as the conditional standard

deviation of the trades initiated by the M traders, the market maker, and the liquidity traders.

A direct consequence of such a trading behavior is that by impounding more information into

their orders, traders reduce the market maker's residual variance of the asset value, �2f;n, thus

boosting market e�ciency, as Figure 9 reveals for a large spectrum of values of � (� = �0:15,
0 and 0:90). This �gure also shows that the rate of the price discovery process increases as the

number of information linkages gets larger. In other words, information linkages are sources of

enhanced market e�ciency. Moreover, the improvement in market e�ciency is more pronounced

when the correlation � is low. These �ndings are directly related to the dynamics of the tightness

of beliefs depicted in Figure 6: information linkages make competition among informed traders

more �erce. As a result, traders impound more information into their orders, thus reducing the

market maker's residual variance and boosting market e�ciency.

The price responsiveness to the order 
ow, �n, is displayed in Figure 10. When the correla-

tion � is positive, the combined e�ect of higher aggressiveness and better price discovery is the
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reduction of the adverse selection faced by the market maker. As a result, the price impact of the

order 
ow, �n, lowers, which makes the market more liquid, overall. When the correlation � is

negative, the previous conclusions are reversed: although market e�ciency still improves, liquid-

ity deteriorates in the presence of information linkages, especially during the �rst batch auctions.

This outcome is the result of two forces. On the one hand, information linkages enhance the

traders' estimates of the asset value, as usual. On the other hand, when � < 0, the tightness

of beliefs between the traders and the market maker, �n, is considerably low (see Figure 6),

which leads the traders to play a waiting game for the entire trading period (for G = 1) or for

nearly all the batch auctions (for G = 2). Thus, the market maker faces relatively more informed

traders postponing their trades for most of the time and, hence, he raises the price responsiveness.

Naturally, these same e�ects explain the dynamic behavior of total volume depicted in Figure 8.

Our analysis shows that information linkages among traders may lead to a variety of empir-

ically plausible patterns for total volume and liquidity occurring prior to a corporate event. As

we explained in Section 3.1, the pattern that best �ts our sample is that with many information

linkages, G = 2, and a negative correlation among the signals available at each trader's location.

This combination results in increasing volume and decreasing price impacts over the trading pe-

riod, as in our data. At the same time, the model is able to generate additional predictions that

might possibly apply to alternative samples or sorting criteria, as we discussed. Moreover, our

model can explain the high frequency behavior of liquidity detected in the empirical literature.

For example, Krinsky and Lee (1996) show that with half-hour trading intervals, adverse selection

costs increase around the announcement date, a feature our sample displays as well, once we in-

clude data for the announcement dates (see Section 3.1). Results not reported here con�rm that

our model, like others [e.g., Foster and Viswanathan (1996) and Back, Cao and Willard (2000)]

does indeed predict a U-shaped pattern for the price impacts, once we increase the frequency of

trading from daily to, say, hourly.

The last task of this section is to analyze the e�ects information linkages produce on the

expected pro�ts from informed trading. Figure 11 illustrates two main results. First, information

linkages damage the expected pro�ts when the correlation � is positive, but enhance them when

the correlation is negative. Second, for any �xed G, expected pro�ts are non-monotonic in the

correlation �.

What are the origins of these �ndings? Changes in the correlation � generate two e�ects.

25



First, as � increases, the signals available at each location become informationally closer to one

other, thus reducing each trader's monopolistic power. Second, as Eq. (25) reveals, an increase

in � obviously implies a drop in �0, which makes the traders' estimates of the asset value more

precise. In the absence of information linkages, the losses in the monopolistic power dominate

over the precision gains, when � is high or negative. When, instead, � is positive and su�ciently

low, the losses in the monopolistic power are more than o�set by the precision gains. Figure

11 reveals that these properties are preserved once we introduce information linkages, although

the threshold value of � below which information linkages enhance the expected pro�ts becomes

simply zero.

In summary, the �rst model prediction in this section is that information linkages boost both

market e�ciency and aggregate volume. As we explained in the Introduction, the extant empirical

literature is supportive of this prediction [e.g., Dorn, Huberman and Sengmueller (2008), Hong,

Lim and Stein (2000)], although there does not exist yet a systematic analysis of how such a piece

of empirical evidence is related to additional properties of our model. For example, we �nd that

information linkages can a�ect liquidity in a quite rich manner: they damage it, when the signals

at the traders' location are negatively correlated, and they improve it, otherwise. Interestingly,

pro�ts from informed trading are a�ected by the presence of information connections in the exact

opposite way: traders' expected pro�ts may now increase or decrease, according to whether the

linkages convey negatively or positively correlated pieces of information.

To date, there are no empirical studies aiming at deciphering how aggregate volume, liquidity

and trading pro�ts, all relate to the information connectedness among traders. Brennan and

Subrahmanyam (1995) �nd a positive relation between liquidity and analyst coverage (a proxy for

information connectedness), and Hau (2001) provides some evidence that information connections

can lower traders' pro�ts. As discussed, our model is consistent with these empirical �ndings,

if the information linkages available to traders convey positively correlated information. At the

same time, the evidence in these papers obviously relates to di�erent samples and does not tackle

all the diverse implications of our model. Our �ndings in this section, in conjunction with those

for the cross sectional properties of informed trading and volume (discussed in Section 3.2), lead

instead to a rich and well-de�ned battery of testable predictions, which can systematically be

dealt with in future empirical research.

4 Discussion of related work
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The literature has produced prominent instances of rational explanations for heterogenous trading

behavior. Brennan and Cao (1997) develop a rational expectations model (not one with strategic

agents) in which a domestic asset is also traded by foreign investors. In their model, local

investors are able to estimate the asset value with higher precision, compared to foreign investors.

Thus, a good piece of public news makes those traders with more precise information (local)

trade less aggressively than those with less precise information (foreign), which might lead to

negative correlation between trades initiated by distant investors. Our paper o�ers an alternative

mechanism, in which heterogenous trade correlations occur even if the precision of the private

signals is the same for all the traders.

DeMarzo, Kaniel and Kremer (2004) consider a model in which agents belong to di�erent

communities, compete for local resources, and face capital market imperfections. These imper-

fections lead to restricted stock market participation, which makes the marginal investors' utility

decreasing in the community wealth, provided risk-aversion is su�ciently high. Then, correlated

portfolio choices within a community arise because the marginal investors price assets taking into

account their \community factors." Our explanation of correlated behavior is also based on the

broad idea that investors belong to di�erent communities (geographic, demographic, etc.). At

the same time, our model is built upon the informational distance between traders, and does not

rely on a consumption-based rationale.

Our paper also relates to the literature on social learning and information networks. (See

Goyal (2007) and Jackson (2008) for surveys of the literature on the broader area of the economics

of networks.) Early papers in this literature are those of Ellison and Fudenberg (1993, 1995), who

study learning environments in which agents base their decisions on their peers past experience.

A more recent paper is that by DeMarzo, Vayanos and Zwiebel (2003). The authors study the

process of opinion formation in social networks, and propose persuasion bias as a boundedly

rational heuristic for processing information. As explained in Section 1.1, a new contribution

to the role of communication among strategic competitors is that of Stein (2007), who develops

a model in which competitors can �nd it fruitful to engage in truthful conversations, provided

these conversations boost the quality of their initial estimates about an asset payo�. While our

contribution shares similarities with all these papers in so far as we consider information networks,

our work explicitly analyzes the role played by these networks in the context of �nancial markets.

In independent work, Ozsoylev (2006) develops a model in which every investor observes

the expectations of his neighbors. (See, also, Malinova and Smith (2006) for a related rational

27



expectation model.) His information network is similar in spirit to our local information linkages

mechanism. Indeed, our model can be interpreted as one in which every trader observes the

signals of the neighbors with some error, as we explained in Section 1.1. However, our work

di�ers from Ozsoylev's for two reasons. First, Ozsoylev considers a setup in which the investors

do not enjoy market power. The assumption of no-market power allows the author to investigate

asymmetric information networks. In our model, traders do enjoy monopolistic market power

and, hence, need to forecast the forecasts of others. To simplify this dimensionality issue, we

consider a symmetric network. The second di�erence with Ozsoylev's model is that ours is

dynamic. Ozsoylev's work and ours therefore complement each other.

5 Conclusion

Why do individual investors exhibit a correlated trading behavior? One explanation put forward

in the empirical literature is that proximity a�ects portfolio choice, which makes informationally

close investors trade in the same direction, and informationally distant investors exhibit quite

distinct portfolio choices. Although this argument is simple and appealing, it is not clear whether

it can be made consistent with rational behavior. For example, it may be argued, the mere

observation of the equilibrium price and additional public signals might induce investors to all

trade in the same direction. Nor are the implications of an heterogeneous trading behavior clear,

both empirically and theoretically. For example, what are the implications of correlating trading

on market e�ciency, liquidity, volume, or pro�tability from informed trading? Under which

conditions do correlated trading and volume arise in a market and, eventually, disappear from

it? How di�erently should we expect informationally distant investors to trade?

This paper contributes to providing answers to these questions. We consider a market in

which traders belong to overlapping information networks, connected through what we term

information linkages. We show that these linkages exert a quite substantial impact on trading

strategies as well as market variables. First, they a�ect the cross sectional properties of correlated

trading: our model predicts that \neighbor" trades are positively correlated and \distant" trades

are negatively correlated. While this prediction is consistent with the extant empirical literature,

the model also leads to one additional testable implication that calls for further empirical scrutiny:

the correlation among trades (close and distant) decreases over the trading period. This property

helps discriminate our rationale for correlated trading from others. For example, a theory based
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on herding would imply an increasing correlation among close trades, due to each trader imitating

the previous moves made by his peers.

The second testable implication of the model relates to the cross section of volumes initiated

by informed traders. In the presence of linkages, the correlation of volumes depends on the

traders' location as well: it is always positive, and larger for close traders than for distant

traders. Moreover, over the trading period, this correlation is decreasing for close traders, and

non-monotonic for distant traders. Instead, we show that in the absence of information linkages,

the correlation among volumes is quite 
at over the trading period, and close to zero. This feature

is particularly useful in testing for the existence of information networks among traders.

The third set of implications of our model relates to aggregate variables. We show that in-

formation linkages raise volume and price informativeness, and signi�cantly a�ect liquidity con-

ditions and gains from informed trading. The model predicts that the traders' expected pro�ts

increase (or decrease), and liquidity worsens (or improves), according to whether the information

linkages convey quite distinct (or positively correlated) signals about the fundamentals. These

properties are broadly consistent with previous empirical �ndings, although their de�nite empir-

ical validation would need to be performed in conjunction with a systematic assessment of the

cross sectional properties our theoretical work suggests for informed trading and volume.
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Appendix

A. Preliminary results

Derivation of Eqs. (5)-(8). To derive Eq. (5), we use the de�nition of the average signal in Eq. (1). A
simple computation leaves:

var (�si;0) =
Ĝ�0 + 2GĜ
0

Ĝ2
;

or equivalently (5). Next, we derive Eqs. (6) and (7). These equations correspond to two cases: (i)
2G � (M � 1)/ 2, and (ii) 2G � (M � 1)/ 2. We study these two cases separately. We introduce the
following piece of notation

~si;0 = fsi�G;0; � � � ; si;0; � � � ; si+G;0g ;
to denote the set of signals each trader i has access to, as a result of the presence of information linkages.

Case (i) (2G � (M � 1)/ 2). Consider traders i and j = i + k, k 6= 0. We have: si+k;0 =2 ~si;0 for all
jkj > G. Therefore

�
0(k;G) = cov (�si;0; �si+k;0) = Ĝ�2
GP

l=�G

GP
m=�G

cov (si+l;0; si+k+m;0) = 
0;

for all jkj > 2G; which is the second line in Eq. (6). If, instead, jkj � 2G, si+k;0 2 ~si;0 for all jkj � G and
~si+k;0 \ ~si;0 6= f;g. In particular, trader i shares (2G + 1 � k) signals with trader i + k. Each of these
signals contributes for (�0 + 2G
0)/ (2G+ 1)

2 to �
0(k;G). Shared signals thus contribute for

�0 + 2G
0
(2G+ 1)2

� (2G+ 1� k)

to �
0(k;G). The remaining (not shared) k signals contribute for

(2G+ 1)
0

(2G+ 1)
2 � k

to �
0(k;G). Therefore,

�
0(k;G) =
(�0 + 2G
0) (Ĝ� k) + Ĝ
0k

Ĝ2
:

Grouping terms in the previous expression yields the �rst line in Eq. (6).

Case (ii) (2G � (M � 1)/ 2). This case di�ers from the previous one due to the double overlap
discussed in Section 1.2 (see Figure 3). In this case, the number of signals shared by traders i and i+ k is:

L(k;G) = 2G+ 1� k + n(k;G); k = 1; � � � ; M�1
2 : (A1)

The term n(k;G) arises because traders located on the trader i's right hand side semicircle might be
sharing signals with traders located between i+1 and i+ (M � 1)/ 2 on the left hand side semicircle (see
Figure 3); and obviously the i-th trader shares signals with traders located between i � 1 and i � G as
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well. The double overlap occurs if and only if trader i+ k on the left hand side semicircle and trader i� `
with ` 2 [1; M�1

2 ] on the right hand side semicircle are such that ` and k satisfy:8>>>><>>>>:
M � 1
2

� (`� 1) + M � 1
2

� k � G

G � ` � 1
M � 1
2

� k � 1

The �rst inequality in the previous restrictions requires trader i� ` to share his signal with trader i+ k.
The second and third constraints restrict trader i � ` to be on the right hand side semicircle and trader
i + k to be on the left hand side semicircle relative to trader i. Thus, for �xed k (1 � k � (M � 1)/ 2),
the double overlap occurs if and only if

G � ` �M �G� k; k = 1; � � � ; M�1
2 ;

and ` � 1. Clearly, mink (M �G� k) = M�1
2 �G+1 � 1. Hence, the constraint that ` � 1 is redundant.

By the previous inequalities, it follows that:

n(k;G) = max fG� (M �G� k) + 1; 0g :

By replacing this result into Eq. (A1) leaves:

L(k;G) =

(
4G+ 1� (M � 1); M�1

2 � k � 2
�
M�1
2 �G

�
2G+ 1� k; 1 � k � 2

�
M�1
2 �G

�
For all k 2

�
1; 2

�
M�1
2 �G

��
, �
0(k;G) is thus exactly as in case (i) for k 2 [1; 2G], and the �rst line of

Eq. (7) follows. For all k 2
�
2
�
M�1
2 �G

�
; M�1

2

�
, tedious but straightforward computations lead to the

second line of Eq. (7).

Finally, we demonstrate that Eq. (8) holds true. As usual, we consider the two cases in which 2G ?
(M � 1)/ 2. If 0 � 2G � (M � 1)/ 2, there are [M � (4G+ 1)] traders i+ k such that ~si+k;0 \~si;0 = f;g.
In correspondence of these indexes, cov (�si+k;0; �si;0) = 
0. Therefore,

��0 (G) = 2
2GP
k=1

�
0 (k;G) + [M � (4G+ 1)]
0:

The 2G covariances in the summation can be computed through the �rst line in (6). Eq. (8) follows by
the expression of ��0(G) in Eq. (5). Next, consider the case (M � 1)/ 2 � 2G �M � 1. We have:

��0 (G) = 2

�
M�1�2GP
k=1

�
0 (k;G) +

�
2G� M � 1

2

��
2��0(G)�

M (�0 � 
0)
Ĝ2

� 
0
��

:

By plugging Eqs. (7) and (5) into the previous equation, we �nd that the expression of ��0 (G) is the same
as the one obtained in the case 0 � 2G � (M � 1)/ 2, and Eq. (8) follows. �
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E
�P

j 6=i �sj;0jsi;0
�
= E

�P
j 6=i �sj;0j�si;0

�
= (M � 1)�1�si;0; (26)

Derivation of Eq. (26). Consider the projection of si+k;0 onto si;0 for jkj � G. We have si+k;0 2 si;0
for k = 0;�1; � � � ;�G. Hence,

E (si+k;0j si;0) = si+k;0; k = 0;�1; � � � ;�G: (A1)

Next, consider a signal si+k;0 a given trader i does not have access to, i.e. si+k;0, for k = � (G+ 1) ; � � � ;�M�1
2 .

Let 	0;G = E(si;0s
>
i;0) be the Ĝ� Ĝ variance-covariance matrix of the vector si;0. 	0;G is a Ĝ� Ĝ subma-

trix extracted from 	0, and its inverse can be obtained with the same strategy of proof as in Foster and
Viswanathan (1996) (p. 1479). Let K = [(�0 � 
0) (�0 + 2G
0)]�1. Then,

	�10;G = K �

2664
�0 + (2G� 1)
0 �
0 � � � �
0

�0 + (2G� 1)
0 �
0
. . .

...
�0 + (2G� 1)
0

3775 :
For jkj > G, we have that cov (si+k;0; si;0) = 
01Ĝ, and by the Projection Theorem,

E (si+k;0jsi;0) = 
01> (	0;G)�1 si;0

= 
0
�0 + (2G� 1)
0 � 2G
0
(�0 � 
0) (�0 + 2G
0)

1>si;0

=
Ĝ
0

�0 + 2G
0
�si;0; k = 0;�1; � � � ;�G: (A2)

Therefore, gathering Eqs. (A1) and (A2),

E (si+k;0jsi;0) =

8>><>>:
si+k;0 for k = 0;�1; � � � ;�G

Ĝ
0
�0 + 2G
0

�si;0 for k = � (G+ 1) ; � � � ;�M�1
2

We now compute, for a given trader i, his forecast of the sum of the remaining traders' average signals

onto si;0. We obviously have
PM

j=1 �sj;0 =
PM

j=1 sj;0. Therefore,

E
�P

j 6=i �sj;0

��� si;0� =
MP
j=1

E (sj;0j si;0)� �si;0

= 1>Gsi;0 +
P

jkj>GE (si+k;0j si;0)� �si;0

= (2G+ 1) �si;0 +
(M � (2G+ 1))
0

�0 + 2G
0
(2G+ 1) �si;0 � �si;0

=
(M � 1) (2G+ 1)
0 + 2G (�0 � 
0)

�0 + 2G
0
�si;0:

Eq. (26) follows by rearranging terms in the last equality, and by the de�nition of �1 in the main text. �
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De�nitions and notation. We make the following de�nitions:

� The i-th trader residual informational advantage (relative to the market maker) on (i) the signal
available at his location, si;0, and (ii) his average signal, �si;0, are de�ned to be:

si;n = si;0 � tn; �si;n = �si;0 � tn; (A2)

after n rounds of trading.

� The market maker's updates of the residual variances are:

�n = var (si;0jFn) ; 
n = cov (si;0; sj;0jFn) (A3)

and

��n (G) = var ( �si;0jFn) ; �
n (k;G) = cov ( �si;0; �si+k;0jFn) ; ��n (G) =
P

k 6=i
�
n (k;G) ; (A4)

where �n and 
n (resp. ��n (G) and �
n (k;G)) are the residual variance and covariance of the signals
available at each trader's location (resp. of the average signals available to each trader). Note that
by Eq. (5),

��n (G) =
�n + 2G
n

Ĝ
: (A5)

We shall repeatedly use the results recorded in the following three lemmas, which are easy generaliza-
tions of results given in Foster and Viswanathan (1996).

Lemma 1. The relation between the market maker's updated estimate of the asset value, pn, and the
market maker's updated estimate of trader i average signal, tn, is given by

pn = �tn: (A6)

Proof of Lemma 1. By Semi-Strong market e�ciency, pn = E (f jFM+1;n). By Eq. (3), �s is a su�cient
statistic for E (f j s0). Therefore,

pn = E (f jFM+1;n)

= E fE [E (f j s0)j �s; FM+1;n]jFM+1;ng

= E [E (��sj �s; FM+1;n)jFM+1;n]

=
�

M
E

�
MP
i=1

�si;0

����FM+1;n

�
= �tn;

where the last line follows by Eq. (12). �

Lemma 2. Let �2f;n and
��n (G) be as in Eqs. (18) and (A4). We have,

�2f;n =
�2

M
[�n + (M � 1)
n] : (A7)
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Furthermore, the following recursions hold,


n�1 � 
n = �n�1 � �n; (A8-a)

�2f;n�1 � �2f;n = �2 (�n�1 � �n) ; (A8-b)

��n�1 (G)� ��n (G) = �n�1 � �n, all G; (A8-c)

�
n�1 (k;G)� �
n (k;G) = �n�1 � �n, all k;G; (A8-d)

��n�1 (G)� ��n (G) = (M � 1) (�n�1 � �n) , all G: (A8-e)

Proof of Lemma 2. First, we derive Eq. (A7). By Eq. (3), and the Law of Iterated Expectations,
E (��sjFM+1;n) = E [E (f j s0)jFM+1;n] = E (f jFM+1;n) = pn. Hence, by the �rst equation in (A3) and
Eq. (A6),

�2f;n = var (��s� pnjFM+1;n)

= E

"�
�

M

MP
i=1

�si;0 �
�

M

MP
i=1

ti;n

�2�����FM+1;n

#

=
�2

M2
E

"�
MP
i=1

�si;n

�2�����FM+1;n

#

=
�2

M2
E

"�
MP
i=1

si;n

�2�����FM+1;n

#

=
�2

M
[�n + (M � 1)
n] :

Next, we derive Eqs. (A8-a)-(A8-e). Let

�n = cov (si;n�1; ynjFM+1;n�1) : (A9)

Let 	n = E
�
[s1;0 � tn; � � � ; sM;0 � tn]> [s1;0 � tn; � � � ; sM;0 � tn]

���FM+1;n

�
. By the Projection Theorem,

	n = 	n�1 �
�2n

var (ynjFM+1;n�1)
11>;

which gives the recursions:

�n = �n�1 �
�2n

var (ynjFM+1;n�1)
; (A10)


n = 
n�1 �
�2n

var (ynjFM+1;n�1)
;

or equivalently (A8-a). Taking one lag in Eq. (A7) yields:

�2f;n�1 =
�2

M
[�n�1 + (M � 1)
n�1] ;
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giving the recursion:

�2f;n�1 � �2f;n =
�2

M
[�n�1 � �n + (M � 1) (
n�1 � 
n)] = �2 (�n�1 � �n) ;

where the last equality follows by Eq. (A8-a). Eq. (A8-c) follows by Eqs. (A8-a) and (A5), and by simple
computations. We now provide the update for �
n (k;G), thus completing the speci�cation of the variance-

covariance matrix �	n (G) = E
�
[�s1;0 � tn; � � � ; �sM;0 � tn]> [�s1;0 � tn; � � � ; �sM;0 � tn]

���FM+1;n

�
. By Eq.

(A8-a) and the expression of the o�-diagonal elements in �	n (G) [see Eqs. (6) and (7) evaluated at n],

�
n�1 (k;G)� �
n (k;G) = �n�1 � �n; all k;G.

Finally, the following recursion is readily obtained by Eq. (8),

��n�1 (G)� ��n (G) = (M � 1) (�n�1 � �n) : �

Lemma 3. The market maker learning about individual and average signals evolves according to

tn = tn�1 + �nyn; �n =
�n

var (ynjFn�1)
: (A11)

The relation between the updating parameters �n and �n is given by

�n = ��n: (A12)

Finally, the trading strategy of any trader i does not depend on the residual order 
ow (yi;t � xi;t)n�1t=1 .
Precisely, we have:

xi;n = Ĝ�n

�
�si;0 �

Pn�1
r=1 �ryr

�
: (A13)

Proof of Lemma 3. By the de�nition of tn and si;n,

tn � tn�1 = E (si;0 � tn�1jFM+1;n) = E (si;n�1jFM+1;n) = �nyn;

where �n is the regression coe�cient of si;n�1 on yn, viz

�n =
cov (si;n�1; ynjFM+1;n�1)

var (ynjFM+1;n�1)
=

�n
var (ynjFM+1;n�1)

; (A14)

which proves Eq. (A11). As regards Eq. (A12), we have that, by Eqs. (A11) and (A6), 0 = �tn� �tn�1�
��nyn = pn � pn�1 � ��nyn, and Eq. (A12) follows by Eq. (14).

Finally, we show Eq. (A13). By the assumption that trading strategies are linear, as in Eq. (13), and
the market maker's recursive update in Eq. (A2) and (A11),

xi;n = Ĝ�n�si;n�1 = Ĝ�n (�si;0 � tn�1) = Ĝ�n

�
�si;0 �

Pn�1
r=1 �ryr

�
: �
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Derivation of Eqs. (15)-(16). We have:

E
�P

j 6=i �sj;n�1

���Fi;n� = E
�P

j 6=i �sj;n�1

��� �si;n�1; Fn�1� = ��n�1 (G)
��n�1 (G)

�si;n�1; (A15)

which is Eq. (16). Moreover:

E (f � pn�1jFi;n) = E [E (f � pn�1j s0)jFi;n]
= E (��s� pn�1jFi;n)

=
�

M
E
�
�si;n�1 +

P
j 6=i �sj;n�1

���Fi;n�
=

�

M

�
1 +

��n�1 (G)
��n�1 (G)

�
�si;n�1;

where the �rst line follows by the Law of Iterated Expectations, the second by Eq. (3), the third by Eq.

(A6) in Lemma 1 and the fact that ��s� pn�1 = �
M

PM
i=1 �si;n�1, and the fourth by Eq. (A15).

B. Proofs of Propositions 1 and 2

We characterize each trader's behavior o� the equilibrium path. We conjecture that:

� The i-th trader deviation, x0i;n say, coincides with the equilibrium strategy in Eq. (13), plus an
additional term re
ecting the price deviation induced by suboptimal play in the previous n � 1
rounds,

x0i;n = Ĝ�n�si;n�1 + 
n
�
pn�1 � p0n�1

�
; (B1)

where p0n�1 is the price process that would emerge should the i-th trader have decided to deviate in
the previous rounds of trading.

� The price induced by past suboptimal play of the i-th trader shows up in the value function in Eq.
(9),

Wi;n = �n�s
2
i;n +  n�si;n (pn � p0n) + �n (pn � p0n)

2
+ �n: (B2)

B.1 Proof of Proposition 1

We claim that the conditions reported below guarantee mutual consistency between Eqs. (B1) and (B2):

Claim 1. The necessary and su�cient conditions for a unique Bayesian Nash equilibrium in which trading
strategies and prices are as in Eqs. (13)-(14) are as follows:

(i) The trading strategy coe�cients �n and 
n:

�n =
��n�

2
u

ĜM�2f;n
; (B3-a)


n =
(1� 2�n�n)

h
1� ��1Ĝ (M � 1)�n�n

i
2�n (1� �n�n)

: (B3-b)
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(ii) The price impact �n is the unique real, positive solution to:

0 =
�(M � Ĝ) (�n � 
n)�4u

ĜM2�4f;n
�4n +

�2u n
��n (G)

�2f;n
�3n �

��2u[2�n + (M � 1)
n � 2G
Ĝ
(�n � 
n)]

M�2f;n
�2n

�  n��n (G)�n +
�2f;n
�

(B4)

(iii) The value function coe�cients satisfy the recursions:

�n�1 = �n

h
1� ��1Ĝ (1 + (M � 1)�n)�n�n

i2
+ Ĝ2�n [�n � �n�n (1 + (M � 1)�n)]

 n�1 =  n

h
1� �n
n � ��1Ĝ (M � 1)�n�n

i h
1� ��1Ĝ (1 + (M � 1)�n)�n�n

i
+ Ĝ

n

n [�n � �n�n (1 + (M � 1)�n)]� �n
n�n + �n

h
1� ��1Ĝ (M � 1)�n�n

io
(B5)

�n�1 = �n

h
1� �n
n � ��1Ĝ (M � 1)�n�n

i2
+ 
n

h
1� �n
n � ��1Ĝ (M � 1)�n�n

i
�n�1 = �n + �

�2�n�
2
n�

2
u + �

�2Ĝ2�n�
2
n�

2
nvar

�P
j 6=i �sj;n�1

���Fi;n�
where �N =  N = �N = �N = 0 and

�n =
��n�1 (G)

(M � 1) ��n�1 (G)
; (B6-a)

�n =
�
�
��n�1 (G) + ��n�1 (G)

�
ĜM ��n�1 (G)

; (B6-b)

var
�P

j 6=i �sj;n�1

���Fi;n� =M [�n�1 + (M � 1)
n�1]�
h
1 + �2n (M � 1)2

i
��n�1 (G)� 2��n�1 (G) :

(B7)

(iv) The full information residual variance satis�es the recursion:

�2f;n =
�
1� ��1ĜM�n�n

�
�2f;n�1:

(v) Finally, the following inequality must hold:

�n (1� �n�n) > 0: (B8)

Note that Proposition 1 is proven, once we demonstrate that Claim 1 holds true. To prove Claim 1,
we proceed in three steps. In the �rst step, we derive a recursive expression for the price deviation induced
by traders' suboptimal play. In the second step, we derive the traders' optimality conditions. In the third
step, we compute the market maker updates.

We need the results in Lemmas 4 to 6 below.
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Lemma 4. Let y0n and t0n be the aggregate order 
ow and the market maker's update of any trader's
average signal, when trader i deviates to (x0i;k)

n�1
k=1 during the �rst n� 1 auctions. The deviation in trader

j residual informational advantage, �s0j;n = �si;0 � t0n, satis�es:

�sj;n�1 � �s0j;n�1 =
1

�

�
p0n�1 � pn�1

�
: (B9)

Proof. By Eq. (10), y0n =
P

j 6=i xj;n + x0i;n + un, and by Eq. (A11) in Lemma 3, t
0
n =

Pn
k=1 �ky

0
n.

Therefore, by Eq. (A2),

�sj;n�1 � �s0j;n�1 = (�sj;0 � tn�1)�
�
�sj;0 � t0n�1

�
=

n�1P
k=1

�ky
0
k �

n�1P
k=1

�kyk

=
1

�

�
n�1P
k=1

�ky
0
k �

n�1P
k=1

�kyk

�
=
1

�

�
p0n�1 � pn�1

�
;

where the third line follows by Eq. (A12), and the fourth line holds as Eq. (14) implies that pn =Pn
k=1 �kyk. �

Lemma 5. The conditional moments of the residual informational advantage satisfy:

E ( �si;njFi;n) =
"
1� Ĝ�n�n

�
(1 + (M � 1)�n)

#
�si;n�1; (B10)

and

E
�
�s2i;n
��Fi;n� = h1� ��1Ĝ�n�n (1 + (M � 1)�n)

i2
�s2i;n�1

+ ��1�2n�
2
u + �

�1Ĝ2�2n�
2
nvar

�P
j 6=i �sj;n�1

���Fi;n� ; (B11)

where var
�P

j 6=i �sj;n�1

���Fi;n� is given in Eq. (B7).
Proof. By Eqs. (A2) and (A11),

�si;n = �si;0 � tn = �si;n�1 � (tn � tn�1) = �si;n�1 � �nyn:
Substituting for the equilibrium order 
ow, using Eqs. (13) and (A12), and taking expectations yields:

E ( �si;njFi;n) = �si;n�1 �
Ĝ�n�n
�

h
�si;n�1 + E

�P
i 6=j �si;n�1

���Fi;n�i :
Eq. (B10) follows by Eq. (16) and the de�nition of �n in Eq. (B6-a). As for the proof of Eq. (B11), note
that by Eqs. (A2) and (A11),

E
�
�s2i;n
��Fi;n� = �s2i;n�1 + �2nE �y2n��Fi;n�� 2�n�si;n�1E (ynjFi;n)

=
h
1� ��1Ĝ�n�n (1 + (M � 1)�n)

i2
�s2i;n�1 + �

�1�2n�
2
u + �

�1Ĝ2�2n�
2
nvar

�P
j 6=i �sj;n�1

���Fi;n� ;
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where the expression for var
�P

j 6=i �sj;n�1

���Fi;n� is given in Eq. (B7) and follows by simple computations.
�

Lemma 6. The price impact and the residual variance of the full information asset value are given by :

�n =
�MĜ�n�

2
f;n�1�

ĜM�n

�2
�2f;n�1 + �

2�2u

: (B12-a)

�2f;n =
�2�2u�

2
f;n�1�

ĜM�n

�2
�2f;n�1 + �

2�2u

: (B12-b)

Proof. We �rst use Eq. (13) and rewrite the aggregate order 
ow in Eq. (10) as

yn =
PM

i=1 Ĝ�n (�si;0 � tn�1) + un: (B13)

Since
PM

i=1 �si;0 =
PM

i=1 si;0 and tn�1 2 Fn�1, then

cov (si;n�1; ynjFn�1) = Ĝ�ncov
�
si;0;

PM
i=1 si;0jFn�1

�
= ��2ĜM�n�

2
f;n�1; (B14)

where the last line follows from Eq. (A7) in Lemma 2. Moreover, by Eq. (A6) in Lemma 1 and the fact

that ��s� pn�1 = �
M

PM
i=1 �si;n�1, the aggregate order 
ow in Eq. (B13) becomes

yn = ��1ĜM�n (��s� pn�1) + un; (B15)

so that

var (ynjFn�1) = ��2
�
ĜM�n

�2
var (��s� pn�1jFn�1) + �2u = ��2

�
ĜM�n

�2
�2f;n�1 + �

2
u; (B16)

where the last line follows from Eq. (3) and the de�nition of �2f;n in Eq. (18). Since �n = ��n by Eq.

(A12) in Lemma 3, then �n in Eq. (B12-a) obtains from Eqs. (B14) and (B16).
By Eq. (3) and the Law of Iterated Expectations cov (f; ynjFM+1;n�1) = cov (��s; ynjFn�1) ; and Eq.

(B15) yields

cov (f; ynjFn�1) = ��1ĜM�nvar (��s� pn�1jFn�1) = ��1ĜM�n�
2
f;n�1: (B17)

Equation (B17) together with the Projection Theorem gives

�2f;n = �2f;n�1 � �ncov (f; ynjFn�1) = �2f;n�1

�
1� ��1ĜM�n�n

�
; (B18)

and Eq. (B12-b) follows replacing �n from Eq. (B12-a) in the previous equality. �

We are now ready to prove Claim 1 in three steps.
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Step 1: Price deviation. Using the equilibrium strategies in Eqs. (13)-(14), the price deviation writes
as:

pn � p0n = pn�1 � p0n�1 + �n
hP

j 6=i Ĝ�n
�
�sj;n�1 � �s0j;n�1

�
+ Ĝ�n�si;n�1 � x0i;n

i
:

Plugging Eq. (B9) in Lemma 4 into the previous equation, we obtain the following recursive equation for
the price deviation:

pn � p0n =
�
pn�1 � p0n�1

� h
1� ��1Ĝ (M � 1)�n�n

i
+ Ĝ�n�n�si;n�1 � �nx0i;n: (B19)

Step 2: Traders' strategies. First, we show that the strategy in Eq. (B1) and the value function in Eq.
(B2) are mutually consistent. Any trader i faces the following recursive problem:

Wi;n�1 = maxx0i;n E

2664
0BB@f � �p0n�1 + �nx0i;n + �nPj 6=i xj;n

�
| {z }

=p0n

1CCAx0i;n +Wi;n

��������Fi;n
3775 : (B20)

Given the conjectured value function in Eq. (B2), the trading strategies in Eq. (13) and Eq. (B19), the
optimality conditions of the previous problem lead to:

0 = E (f � pn�1jFi;n) +
�
pn�1 � p0n�1

�
� Ĝ�n�n

P
j 6=i
�
�s0j;n�1 � �sj;n�1

�
� Ĝ�n�nE

�P
j 6=i �sj;n�1

���Fi;n�� 2�nx0i;n � �n nE ( �si;njFi;n)� 2�n�nE (pn � p0njFi;n) :
together with the second order condition in (B8). By replacing Eq. (B9) in Lemma 4, Eq. (B10) in
Lemma 5 and Eq. (B19) in the previous equation, and by rearranging terms, we obtain Eq. (B1), where

n is as in Eq. (B3-b) and

�n =
�n � Ĝ�1�n n

�n
�
1 +

�
1� ��1�n n

�
(1 + (M � 1)�n)

� : (B21)

Next, we use Eq. (B1), and �nd that the expected pro�t in any single auction is:

E
�
(f � pn)x0i;n

��Fi;n�
= Ĝ2�n [�n � �n�n (1 + (M � 1)�n)] �s2i;n�1
+ 
n

h
1� �n

�

n + �

�1Ĝ (M � 1)�n
�i �

pn�1 � p0n�1
�2

+
n

n (�n � 2�n�n) + �n

h
1� (M � 1)�n

�

n�n + �

�1Ĝ�n

�io
Ĝ�si;n�1

�
pn�1 � p0n�1

�
: (B22)

By taking the conditional expectation of the value function in Eq. (B2) leaves:

E (Wi;njFi;n) = �nE
�
�s2i;n
��Fi;n�+  n (pn � p0n)E ( �si;njFi;n) + �n (pn � p0n)2 + �n: (B23)

Next, use Eqs. (B10) and (B11) in Lemma 5 together with Eqs. (B7) and (B19) into Eq. (B23). Finally,
plug the resulting expression for Eqs. (B22) and (B23) into Eq. (B20) and identify terms to obtain the
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recursions for the coe�cients �n; �n;  n and �n in Eq. (B5). Finally, Eqs. (B6-a), (B6-b) and (B7) follow
by a direct computation and Lemma 3.

Step 3: Market maker updates. By combining Eqs. (B12-a) and (B12-b) in Lemma 6 we �nd an
alternative expression for �n,

�n =
ĜM�n
�

�2f;n
�2u

; (B24)

which is Eq. (B3-a). By solving Eq. (B12-b) in Lemma 6 for �2f;n�1 gives

�2f;n�1 = �
�2�2u�

2
f;n�

ĜM�n

�2
�2f;n � �

2�2u

: (B25)

By combining Eqs. (B3-a), (B24) and (B25) together with �n = �n�1� �n � cov (si;n�1; ynjFn�1), we �nd
that �n solves,

�n�1 � �n = �
�4u�

ĜM�n

�2
�2f;n � �

2�2u

�2n = �
�2n�

2
u�

2
f;n

�2
�
�2n�

2
u � �2f;n

� ; (B26)

Also, Eqs. (A8-c) and (A8-e) in Lemma 2 imply that

��n�1 (G)
��n�1 (G)

=
��n (G) + (M � 1) (�n�1 � �n)

��n (G) + (�n�1 � �n)
: (B27)

By eliminating �n between Eqs. (B3-a) and (B21), we �nd that

��2u�
2
n

�
1 +

�
1� ��1�n n

�
(1 + (M � 1)�n)

�
=
�
Ĝ�n � �n n

�
M�2f;n;

and substituting Eqs. (B6-a) and (B6-b) in the previous equation leaves

��2u�
2
n

�
1 +

�
1� ��1�n n

��
1 +

��n�1 (G)
��n�1 (G)

��
=

�
�

M

�
1 +

��n�1 (G)
��n�1 (G)

�
� �n n

�
M�2f;n:

The quartic equation F (�n) = 0 in Eq. (B4) is obtained by substituting Eqs. (5) and (8) evaluated at n,
Eq. (A7) in Lemma 2 and Eqs. (B26) and (B27) into the previous equation, and by tedious computations.

To show that Eq. (B4) admits a unique positive solution, note that the constant and the coe�cient
of �4n are both positive, and that the coe�cient of �

2
n is negative. (Let �n = 
n=�n be the correlation

coe�cient between individual signals. Since j�nj � 1, then �n � 
n � 0 and the coe�cient for �4n
is non-negative. Moreover, �n + (M � 1)
n > 0 and, hence, 2�n + (M � 1)
n > 0.) On the other
hand, the sign of  n determines the sign of the terms in �

3
n and �n. However, regardless of whether

 n is positive or negative, there are only two sign changes. By Descartes' rule, Eq. (B4) has at most

two real positive roots. By Eq. (B18), �2f;n < �2f;n�1 , ��1�n�nĜM < 1. By Eq. (B3-a) this

restriction becomes �2n < �2f;n�
�2
u or equivalently �n < ��1u �f;n. By Eq. (B4), F (� = 0) = ��1�2f;n > 0,

F
�
�n = ��1u �f;n

�
= � (�M)�1 �2f;n < 0 and F (� = +1) = +1; hence, there is one and only one positive

root between 0 and ��1u �f;n. �
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B.2 Proof of Proposition 2

We need the following preliminary result.

Lemma 7. Let �n be as in Eq. (17). Then,

�n =

�
��n (G) + ��n (G)

��
M

��n (G)
: (B28)

Proof. De�ne,

��n (G) = (M � 1)
n +
2G

Ĝ
(�n � 
n) : (B29)

Then,

var ( �sjFn) = var
�
M�1PM

i=1 �si;0

���Fn�
= M�2

h
M ��n (G) +M � cov

�P
j 6=i �sj;n; �si;n

���Fn�i
= M�2 �M ��n (G) +M ��n (G)

�
=

�
��n (G) + ��n (G)

��
M;

where the �rst line follows by the de�nition of �s. Then, Eq (B28) follows by the previous equality and the
de�nition of �n in Eq. (17). �

We now proceed with the proof of Proposition 2. First, by Lemma 7 and Eq. (B6-b),

�n�1 =
Ĝ�n
�
: (B30)

By plugging Eq. (15) into Eq. (13) leaves

xi;n =
�n
�n
[E (f jFi;n)� pn�1] =

Ĝ�n
��n�1

[E (f jFi;n)� pn�1] ; (B31)

where the last equality holds by Eq. (B30). This is Eq. (20).
Next, we prove Eq. (22). We have,

E
�P

j 6=i xj;n

���Fi;n� = E
�P

j 6=i Ĝ�n�sj;n�1

���Fi;n�
= Ĝ�n (M � 1)�n�si;n�1

= Ĝ�n
��n�1 (G)
��n�1 (G)

�si;n�1

=
��n�1 (G)
��n�1 (G)

xi;n;

= (M�n�1 � 1)xi;n

=
Ĝ�n
��n�1

(M�n�1 � 1) [E (f jFi;n)� pn�1] ;
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where the �rst line holds by the expression for the trading strategy in Eq. (13), the second line follows by
the expression for the forecast of the traders' informational advantage in Eq. (16), the third line follows
by Eq. (B6-a), the fourth line follows, again, by Eq. (13), the �fth line follows by Eq. (B28) in Lemma 7,
and, �nally, the sixth line holds by Eq. (B31).

To prove Eq. (21), note that by Eqs. (A5) and (B29),

��n (G) + ��n (G) =
�n + 2G
n

Ĝ
+ (M � 1)
n +

2G

Ĝ
(�n � 
n) = �n + (M � 1)
n:

Hence, we can rewrite Eq. (A7) in Lemma 2 as

�2f;n =
�2

M

�
��n (G) + ��n (G)

�
: (B32)

In terms of Eq. (B32), Eq. (B7) is,

var
�P

j 6=i �sj;njFi;n+1
�
=M

�
��n (G) + ��n (G)

�
�
h
1 + (M � 1)2 �2n+1

i
��n (G)� 2��n (G) :

Next, we substitute �n+1 from Eq. (B6-a) in the previous equation, and obtain,

var
�P

j 6=i �sj;njFi;n+1
�
=M

�
��n (G) + ��n (G)

�
�
��n (G)

2
+ ��n (G)

2

��n (G)
� 2��n (G) : (B33)

We now compute &2f;n de�ned in Eq. (19),

&2f;n = var (��sjFi;n+1) = var

�
�
1

M

PM
i=1 �si;0

����Fi;n+1� = � �

M

�2
var

�P
j 6=i �sj;n

���Fi;n+1� ;
where we use �sj;n = �sj;0 � tn and the fact that tn 2 Fi;n+1 to get the last equality. Plugging Eq. (B33)
into the previous equation yields,

&2f;n =

�
�

M

�2 "
M
�
��n (G) + ��n (G)

�
�
��n (G)

2
+ ��n (G)

2

��n (G)
� 2��n (G)

#
: (B34)

By Eqs. (B32) and (B34), we have

�2f;n � &2f;n =
�
�

M

�2 ���n (G) + ��n (G)�2
��n (G)

:

Eq. (21) follows by the previous equality, the expression for �2f;n in Eq. (B32), and the expression for �n
in Eq. (B28) in Lemma 7.

Finally, we prove Eq. (23). For k 6= 0, we have,

E (xi+k;njFi;n) = Ĝ�nE ( �si+k;n�1jFi;n) = Ĝ�n
�
n�1 (k;G)
��n�1 (G)

�si;n�1 = ��n�1 (k;G)xi;n;

which is the �rst line in Eq. (23). Moreover, we have,

M�n�1 � 1 =
��n�1 (G)
��n�1 (G)

= ��n�1 (k;G) +
P

`=2fi;i+kg ��n�1 (`;G) ;

where the �rst equality follows by Eq. (B28) in Lemma 7. The second line in Eq. (23) follows by the
previous equality, Eq. (22) and the �rst line in Eq. (23). �
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C. Computation of the equilibrium

We solve for the equilibrium using backward induction. By Eq. (A8-a), �n � 
n = �0 � 
0. We �x
a terminal value for �N and compute 
N = �N + 
0 � �0. �2f;N then follows by Eq. (A7). Since

�N =  N = �N = �N = 0, we solve for �N in Eq. (B4), which yields �N and 
N through Eqs. (B3-a)-
(B3-b). To compute the value function coe�cients as of at time N � 1, one needs to express �N�1 and

N�1 in terms of variables known at time N . Below, we show that:

�n�1 =
��n � Ĝ (M � 1)�n�n (�n � 
n)

� � ĜM�n�n
: (C1)

Then, �N�1 is obtained by evaluating Eq. (C1) at n = N , and 
N�1 is obtained by the equality

N�1 = �N�1 + 
0 � �0. Finally, we retrieve the regression coe�cients �N and �N through Eqs. (B6-
a)-(B6-b) and the equality ��N�1 = ��N + (M � 1) (�N�1 � �N ) [see Eq. (A8-e)]. The value function
coe�cients at N � 1, then, are uniquely determined by Eq. (B5).

The above procedure is applied at each trading round n 2 [1; N ], yielding the initial value of �0 implied
by the choice of the terminal value of �N . Then, the resulting initial value of �0 is compared to that we
posited as the initial parameter, and repeat the procedure for di�erent choices of �N , until we achieve
convergence.

Derivation of Eq. (C1). By Eqs. (A10), (A14), the expression for �n found above, and Eq. (A12),

�n = �n�1 � �n�n = �n�1 �
MĜ�n�n

�3
�2f;n�1: (C2)

Taking one lag in Eq. (A7) and substituting the result into Eq. (C2) yields:

�n�1 = �n +
Ĝ�n�n
�

[�n�1 + (M � 1)
n�1] :

Since 
n�1 � 
n = �n�1 � �n [see Eq. (A8-a)],


n�1 = 
n +
Ĝ�n�n
�

(�n�1 � 
n�1 +M
n�1) =
�
n + Ĝ�n�n (�n�1 � 
n�1)

� �MĜ�n�n
:

By solving for 
n�1 we �nd that


n�1 =
�
n + Ĝ�n�n (�n�1 � 
n�1)

� � Ĝ�n�nM
: (C3)

Finally,

�n�1 = �n +
n�1 � 
n =
��n � Ĝ�n�n [M (�n � 
n)� (�n�1 � 
n�1)]

� � Ĝ�n�nM
;

where we have used Eq. (C3). Eq. (C1) follows by replacing �n � 
n = �n�1 � 
n�1 in the previous
equation. �
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Computation of the correlation among volumes. By de�nition, the correlation among the volume
generated by any two traders i and j is,

�V;n (i; j) =
cov (jxi;nj ; jxj;nj)

var (jxi;nj)
; for i 6= j. (C4)

To produce the results in Figure 11, we set � = �0:15, � = 0:10 or � = 0:90. We simulate S = 5000

values of the initial signals (si;0)
M
i=1, and compute the dynamics of the individual trades over the ten batch

auctions. Thus, we obtain a sequence of trades (xsi;n)
S
s=1 for each trader i and each batch auction n. We

estimate �V;n (i; j) in Eq. (C4) through the estimator �̂S;V;n (i; j) given below,

�̂S;V;n (i; j) =

PS
s=1

���xsi;n��� 1
S

PS
s=1

��xsi;n��� ���xsj;n��� 1
S

PS
s=1

��xsj;n���rPS
s=1

���xsi;n��� 1
S

PS
s=1

��xsi;n���2 �PS
s=1

���xsj;n��� 1
S

PS
s=1

��xsj;n���2 :
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Figures 
 
 
 
 

 
 
 
 
 
 
 
Figure 1: Geographical location of traders 
This  figure depicts an example of a network of  information  linkages among M  traders who are physically 
located around a circle. Traders are ordered clockwise: trader i has trader i+1 as his clockwise neighbor and 
trader  i–1 as his  counterclockwise neighbor,  so  that  each  trader has  (M–1)/2  clockwise peers and  (M–1)/2 
counterclockwise peers. In this example, each trader has 2G=2  information  linkages: the signal available at 
the location of the i–th trader is also observed by one clockwise and one counterclockwise neighbor. 

i – 1i + 1 

i + (M – 1)/2 i – (M – 1)/2

i + 2 i – 2

i
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Figure 2: Overlapping information sets 
This figure illustrates how signals overlap across the traders, when there are M≥11 such traders and each of 
them has 2G=4  information  linkages with his peers. The  empty  circles denote  the  signals available at  the 
location  of  the  traders.  The  filled  circles  denote  the  signals  every  trader  observes  on  top  of  the  signal 
available at his location. The signals on the left (resp. right) of the empty circles are those that are available at 
the location of left (resp. right) neighbors. 
 
 
 
 

si + 2 si + 1 si – 1 s i – 2 si  . . . 
trader  i 

trader i – 1

Signals available at the location of trader i 

. . . 

trader  i – 5
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Figure 3: “Small worlds” 
This figure illustrates a “double overlap” in the signals available at the location of the traders. This property 
arises when the number of  information  linkages among traders  is  large,  i.e. 2G≥(M–1)/2. In this figure, the    
i–th  trader does not observe  the signal available at  the  location of  the  (i+k1)–th  trader, but only  the signals 
available  at  the  location  of  all  traders  up  to  (i+G)  and  (i–G)  –  e.g.,  the  signal  at  the  (i l− )—th  trader’s 
location. Yet the (i+k1)–th trader observes the signal available at the location of the (i l− )—th trader, which 
makes the i–th and the (i+ k1)–th traders have correlated information endowments. 
 

 
 
 
 
 
 

i – 1i + 1

i + (M – 1)/2 i – (M – 1)/2

i + G i – G
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l−i
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Figure 4: Volume and price impacts for large firms  
Cross sectional properties of volume and price impacts for 921 firms during the fiscal year 2006. Firms are sorted by the 
average dollar volume over the trading period leading to a corporate earnings announcement, and by a two‐way sorting 
procedure (along volume and price  impact dimensions) that  leaves the middle 50% range of the firms above the 80‐th 
percentile for average dollar volume. The left‐hand side panel displays the cross sectional averages (solid line) and 95% 
confidence bands (dashed lines) for volume up to, and excluding, the announcement date. The right‐hand side displays 
cross sectional averages (solid line) and 95% confidence bands (dashed lines) for the price impacts. 
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Figure 5: Heterogeneity in the correlation among trades  
Correlation among trades in a market with information linkages, seven informed traders, one unit of initial variance of 
information, one and ¼ units of  liquidity trader variance across all periods and ten trading rounds. The  left‐hand side 
panels depict the dynamics of correlation among trades arising when the initial correlation among the signals available 
at  the  traders’  information  linkages  is  negative  (ρ=–0.15).  The  remaining  panels  depict  the  dynamics  of  correlation 
among trades when this correlation is zero (middle panels) and positive (ρ=0.10) (right‐hand side panels). The top panels 
depict the correlation dynamics between two close neighbors, i.e. the dynamics of trade correlation between traders i and 
i–1. The bottom panels depict the correlation dynamics between two distant traders, i.e. the dynamics of the correlation 
among the trade emanating from traders  i and  i–3. Each panel displays the dynamics of correlation arising when each 
trader has a number of information linkages equal to 2G, with G=0,1 and 2. 
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Figure 6: Tightness of beliefs 
The dynamics of  nΔ ,  the  tightness of beliefs between  the market maker and any  trader,  in a market with 
information linkages, seven informed traders, one unit of initial variance of information, one and ¼ units of 
liquidity traders variance across all periods and ten trading rounds. The horizontal line is the inverse of the 
number of traders,  1−M . When  1−>Δ Mn , traders engage in a rat race. When  1−<Δ Mn , traders play a 

waiting game. The left‐hand side panel depicts the dynamics of  nΔ  when the initial correlation among the 
signals available at the traders’ information linkages is negative (ρ=–0.15). The remaining panels depict the 
dynamics  of  nΔ when  this  correlation  is  zero  (middle  panel)  and  positive, with  ρ=0.90  (right‐hand  side 

panel). Each panel displays  the dynamics  of  nΔ   arising when  each  trader  has  a  number  of  information 
linkages equal to 2G, with G=0,1 and 2. 
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Figure 7: Heterogeneity in the correlation among volumes  
Correlation among volumes initiated by informed traders in a market with information linkages, seven informed traders, 
one unit of initial variance of information, one and ¼ units of liquidity trader variance across all periods and ten trading 
rounds. The left‐hand side panels depict the dynamics of correlation among volume arising when the initial correlation 
among the signals available at the traders’ information  linkages  is negative (ρ=–0.15). The remaining panels depict the 
dynamics of correlation among volume when this correlation  is zero (middle panels) and positive (ρ=0.10) (right‐hand 
side panels). The top panels depict the correlation dynamics between two close neighbors, i.e. the dynamics of volume 
correlation between traders i and i–1. The bottom panels depict the dynamics of volume correlation between two distant 
traders,  i.e.  the dynamics  of  correlation  among  the  volume  generated  by  traders  i  and  i–3. Each  panel displays  the 
dynamics of  the volume correlation arising when each  trader has a number of  information  linkages equal  to 2G, with 
G=0,1 and 2. 
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Figure 8: Total volume 
The dynamics of  total volume  in a market with  information  linkages, seven  informed  traders, one unit of 
initial  variance  of  information,  one  and ¼  units  of  liquidity  traders  variance  across  all  periods  and  ten 
trading rounds. The left‐hand side panel depicts the dynamics of volume when the initial correlation among 
the signals available at the traders’ information linkages is negative (ρ=–0.15). The remaining panels depict 
the dynamics of volume when this correlation is zero (middle panel) and positive (ρ=0.10) (right‐hand side 
panel). Each panel displays the dynamics of volume arising when each trader has a number of information 
linkages equal to 2G, with G=0,1 and 2. 
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Figure 9: Efficiency 
The  price‐discovery  process  in  a market with  information  linkages,  seven  informed  traders,  one  unit  of 
initial variance of information, one and ¼ units of liquidity trader variance across all periods and ten trading 
rounds.  The  left‐hand  side  panel  depicts  the  price‐discovery  process  arising when  the  initial  correlation 
among the signals available at the traders’ information linkages is negative (ρ=–0.15). The remaining panels 
depict price‐discovery process arising when this correlation is positive but low (ρ=0.10) (middle panel) and 
high  (ρ=0.90)  (right‐hand side panel). Every panel displays  the price‐discovery process arising when each 
trader has a number of information linkages equal to 2G, with G=0,1 and 2. 
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Figure 10: Price impacts 
Price‐impacts in a market with information linkages, seven informed traders, one unit of initial variance of 
information, one and ¼ units of liquidity trader variance across all periods and ten trading rounds. The left‐
hand  side panel depicts  the dynamics of  the price  impacts arising when  the  initial correlation among  the 
signals available at the traders’ information linkages is negative (ρ=–0.15). The remaining panels depict the 
dynamics of price impacts when this correlation is zero (middle panel) and positive (ρ=0.10) (right‐hand side 
panel).  Each  panel  displays  the  dynamics  of  price‐impacts  arising  when  each  trader  has  a  number  of 
information linkages equal to 2G, with G=0,1 and 2. 
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Figure 11: Tradersʹ expected profits 
The  traders’  expected  profits  in  a market  with  seven  informed  traders,  one  unit  of  initial  variance  of 
information,  one  and  ¼  units  of  liquidity  trader  variance  across  all  periods  and  ten  trading  rounds. 
Displayed are the expected profits arising when each trader has a number of information linkages equal to 
2G, with G=0,1 and 2; and  the  initial correlations among  individual signals equals ρ=–0.15, –0.10, 0.01, 0.1, 
0.2,…,0.9, and 0.99. 


