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Abstract

Most of the Bayesian nonparametric models for non–exchangeable
data that are used in applications are based on some extension to
the multivariate setting of the Dirichlet process, the best known being
MacEachern’s dependent Dirichlet process. A comparison of two re-
cently introduced classes of vectors of dependent nonparametric priors,
based on the Dirichlet and the normalized σ–stable processes respec-
tively, is provided. These priors are used to define dependent hierar-
chical mixture models whose distributional properties are investigated.
Furthermore, their inferential performance is examined through an ex-
tensive simulation study. The models exhibit different features, espe-
cially in terms of the clustering behavior and the borrowing of infor-
mation across studies. Compared to popular Dirichlet process based
models, mixtures of dependent normalized σ–stable processes turn out
to be a valid choice being capable of more effectively detecting the
clustering structure featured by the data.

Key words and phrases: Bayesian Nonparametrics; Dependent Process;
Dirichlet process; Generalized Pólya urn scheme; Mixture models; Nor-
malized σ–stable process; Partially exchangeable random partition.

1 Introduction

Bayesian inference, either in parametric or in nonparametric form, is com-
monly based on the assumption that the observations X1, . . . , Xn are drawn
from a an exchangeable sequence of random elements (Xi)i≥1. This means
that, for any n, the distribution of the vector (X1, . . . , Xn) is invariant with
respect to permutations of its components. Such an assumption reflects an
idea of analogy or homogeneity of the data and forms the basis for predictive
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inference. Furthermore, it is nicely translated into a property of conditional
independence and identity in distribution by virtue of the de Finetti repre-
sentation Theorem, namely

Xi | p̃
iid
∼ p̃, i = 1, . . . , n,

p̃ ∼ Q,
(1)

where p̃ is some random probability measure whose distribution Q plays the
role of a prior for Bayesian inference.

It is apparent that exchangeability of observations is a strong assumption
that fails in many problems of practical interest. This is the case, for in-
stance, when the data originate from different studies or refer to experiments
performed under different conditions: in such a context it is reasonable to
preserve the homogeneity condition within data that are generated from the
same study or experimental condition, while, at the same time, dropping the
conditional identity in distribution for data emerging from different stud-
ies/experiments. Recent literature in Bayesian nonparametric inference has
addressed this issue by proposing models that can accommodate for more
general forms of dependence than exchangeability. Most of the proposals rely
on the notion of partial exchangeability, as set forth by de Finetti (1938),
that formalizes the above idea: although not valid across the whole set of
observations, exchangeability can hold true within k separate subgroups of
observations. Here, for ease of exposition and with no loss of generality, we
confine ourselves to considering the case where k = 2. More formally, let X
be a complete and separable metric space whose Borel σ–algebra is hence-
forth denoted as X and let PX denote the space of all probability measures
on (X,X ). Introduce two (ideally) infinite sequences X(∞) = (Xn)n≥1
and Y (∞) = (Yn)n≥1 of X–valued random elements defined on the proba-
bility space (Ω,F , P ). The sequence (X,Y )(∞) = (X1, X2, . . . , Y1, Y2, . . .) is
termed partially exchangeable if, for any n1, n2 ≥ 1 and for all permutations
λ1 and λ2 of {1, . . . , n1} and {1, . . . , n2}, respectively, the distributions of
(X1, . . . , Xn1

) and (Y1, . . . , Yn2
) coincide, respectively, with the distributions

of (Xλ1(1), . . . , Xλ1(n1)) and (Yλ2(1), . . . , Yλ2(n2)). This notion is equivalently
formulated as

P[X(∞) ∈ A(n1), Y (∞) ∈ B(n2)]

=

∫

PX×PX

n1
∏

i=1

p1(Ai)
n2
∏

j=1

p2(Bj)Q(dp1, dp2), (2)
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for any n1 ≥ 1 and n2 ≥ 1, where A(n1) = A1 × · · · × An1
×X∞, B(n2) =

B1× · · · ×Bn2
×X∞ with Ai and Bj in X for all i and j. Furthermore, Q,

the de Finetti measure of (X,Y )(∞), is a distribution of some vector (p̃1, p̃2)
of random probability measures (RPMs) on X. Like in the exchangeable
case (1), from a Bayesian perspective Q represents a prior distribution . In
this framework, proposing a model for partially exchangeable observations
is equivalent to specifying a distribution Q. A convenient definition of such
a distribution should display a large topological support in PX × PX and
a suitable degree of flexibility in describing a whole variety of dependence
structures that range from independence of p̃1 and p̃2 to their almost sure
identity, the latter corresponding to a Q degenerate on PX.

The first proposal of Q in (2) dates back to 1978 and appears in Ci-
farelli and Regazzini (1978), where a nonparametric prior for partially ex-
changeable arrays, defined as mixture of Dirichlet processes (DP), is de-
fined. More recently, MacEachern proposed a general class of dependent
processes (MacEachern, 1999) and defined a related dependent Dirichlet
process (DDP) (MacEachern, 2000), which represented the seminal contri-
bution for a large and highly influential body of literature. Reviews and key
references can be found in Hjort, Holmes, Müller andWalker (2010). The use
of these new classes of models has been made accessible also to practitioners
by virtue of the development of suitable MCMC sampling techniques that
allow to draw approximate posterior inferences. Furthermore, it should be
mentioned that an R package, named DP–package, allows straightforward
applications to a variety of dependent models. See Jara et al. (2011) for
details. The present paper inserts itself in this line of research and its fo-
cus will be on a particular class of dependent RPMs that arise as mixtures
of independent RPMs, where one component is common to all mixtures.
This structure of dependence first appeared in Müller, Quintana and Ros-
ner (2004), where vectors of RPMs were defined as mixtures of two DPs,
one idiosyncratic and the other in common. More recently and still in the
Dirichlet setting, in Hatjispyros, Nicoleris and Walker (2011) a multivariate
Dirichlet process with a similar dependence structure has been considered
and applied to the estimation of vectors (f1, . . . , fm) of densities, by re-
sorting to a slice sampler. In Lijoi, Nipoti and Prünster (2013) a similar
approach has been followed in a general setup: dependent RPMs are de-
fined as normalization of dependent completely random measures, obtained
as mixtures of one common and one idiosyncratic component. This approach
leads to the definition of a whole class of dependent RPMs that turn out to
be analytically tractable and amenable of use in applications.

As a matter of fact, most of the dependent RPMs used in applications
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can be thought of as extensions to the multivariate setting of the DP. This
is a natural choice, the univariate DP being a widely studied object with
well known properties. Nonetheless, as shown e.g. in Ishwaran and James
(2001, 2003); Lijoi, Mena and Prünster (2005, 2007a) for the exchangeable
case, other choices for the nonparametric component are indeed possible and
allow to overcome some of the drawbacks of the DP such as, for instance, its
sensitivity to the total mass parameter and its simplistic predictive struc-
ture. See Lijoi, Mena and Prünster (2007a,b) for a discussion. Carrying out
a comparative analysis of structural features of such models also in the mul-
tivariate setting is an important task, which, to the best of our knowledge,
has not yet been addressed. Such an analysis, in addition to its practical
implications, allows also to gain a deeper understanding of the inferential
implications of the various modeling choices. This paper aims at giving a
contribution in this direction by comparing a bivariate DP with a bivariate
normalized σ–stable process. The analysis that is going to be developed
relies on the construction proposed in Lijoi, Nipoti and Prünster (2013).
Moreover, dependent DPs and normalized σ–stable processes are the natu-
ral candidates to compare since many quantities of interest can be obtained
in closed form. The nature of our comparison will therefore be two–fold: on
the one hand, we will analyze different properties of the two vectors of RPMs
by investigating their predictive distributions, while on the other hand we
will resort to a simulation study in order to appreciate the difference be-
tween the two models when applied to problems of density estimation and
clustering. Importantly, the results of the simulation study find intuitive
explanations by means of the insights gained on the predictive structures of
the models.

The outline of the paper is as follows. In Section 2 we concisely summa-
rize the vector of bivariate RPMs introduced in Lijoi, Nipoti and Prünster
(2013). A description of the dependent mixtures and a sketch of the MCMC
algorithm that is implemented for drawing posterior inferences is provided
in Section 3. In Section 4 we compare the properties of bivariate Dirichlet
and normalized σ–stable processes by investigating the structure of their
predictive distributions and the distribution of the total number of clusters
that both models induce on two vectors of observations. Finally, Section 5
is devoted to an extensive simulation study. The inferential impact of the
two models choices and of their characterizing parameters is analyzed by
focusing on the estimation of the number of clusters of the two distributions
and on the mechanism of borrowing strength between different studies. A
concise description of the implementation of the Gibbs sampler is provided
in the Appendix.
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2 Dependent normalized completely random mea-

sures

Many popular nonparametric priors Q for exchangeable data, as in (1),
arise as suitable transformations of completely random measures (CRMs).
See Lijoi and Prünster (2010) for a survey of various classes of discrete
nonparametric priors using CRMs as unifying concept. Here we also consider
models with CRMs as basic building blocks and then rely on the idea of
Lijoi, Nipoti and Prünster (2013) for defining a distribution Q of vectors
(p̃1, p̃2) of dependent random probability measures by normalizing vectors
of dependent CRMs. For this reason we concisely recall the notion of CRM,
which also allows us to introduce the main notation used throughout.

Suppose MX is the space of boundedly finite measures on X whose Borel
σ–algebra is denoted as MX. For details see Daley and Vere–Jones (1988).
A CRM µ is a random element defined on (Ω,F ,P) and taking values in
(MX,MX) such that for any A1, . . . , An in X , with Ai ∩ Aj = ∅ when
i ̸= j, the random variables µ(A1), . . . , µ(An) are mutually independent.
Any realization of a CRM is a discrete measure with probability one and, if
no fixed jump points are present, then

µ =
∑

i≥1

Ji δZi
, (3)

for some sequences (Ji)i≥1 and (Zi)i≥1 of random elements taking values in
R+ and X, respectively, and δx is the unit point mass at x. A CRM as in
(3) is characterized by the so–called Lévy–Khintchine representation, which
provides an expression for the Laplace functional transform of µ. Indeed,
there exists a measure ν onR+×X such that

∫

R+×Xmin(s, 1)ν(ds, dx) <∞,
and

E

[

e−
∫
X
f(x)µ(dx)

]

= exp

{

−

∫

R+×X

[

1− e−f(x)s
]

ν(ds, dx)

}

, (4)

for any measurable function f : X → R such that
∫

|f | dµ < ∞ almost
surely. The measure ν takes on the name of Lévy intensity and, by means
of (4), it uniquely identifies the CRM µ.

In order to define a vector of dependent CRMs (µ̃1, µ̃2), we draw inspi-
ration from an approach set forth in Griffiths and Milne (1978), where a
class of bivariate vectors of dependent and identically distributed Poisson
random measures is introduced. In a similar fashion, we shall consider iden-
tically distributed CRMs µ̃1 and µ̃2, with the same Lévy intensity ν, defined
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as suitable mixtures of three independent CRMs µ0, µ1 and µ2. These are
characterized by their respective Lévy intensities ν0, ν1 and ν2

ν0 = (1− Z) ν, ν1 = ν2 = Z ν,

for some random variable Z taking values in [0, 1] and independent of µi,
for i = 0, 1, 2. More precisely, we set

µ̃1 = µ1 + µ0, µ̃2 = µ2 + µ0. (5)

Hence, each µ̃ℓ is characterized by an independent CRM µℓ and by a shared
one µ0, which induces dependence. Besides having an intuitive interpreta-
tion, the dependence introduced in (5) is appealing since it leads to a joint
Laplace transform for (µ̃1, µ̃2) with a simple structure. This property is in-
herited by the proposal of Griffiths and Milne (1978) and the availability of
an explicit expression for the joint Laplace transform is pivotal in proving
the results achieved in Lijoi, Nipoti and Prünster (2013). We therefore refer
to (5) as GM–dependent CRM.

Now, by means of a suitable transformation of a GM–dependent CRM
(µ̃1, µ̃2), we are in a position to define the mixing measure Q in (2). To be
more specific, if P[µ̃ℓ(X) ∈ (0,∞)] = 1, for ℓ = 1, 2, we shall consider the
vector

(p̃1, p̃2)
d
= (µ̃1/µ̃1(X), µ̃2/µ̃2(X)) (6)

and the RPMs p̃1 and p̃2 are also termed GM–dependent. Each p̃ℓ admits an
interesting representation as a mixture of two independent RPMs, namely

p̃ℓ = wℓpℓ + (1− wℓ)p0, ℓ = 1, 2, (7)

where wℓ = µℓ(X)/[µℓ(X) + µ0(X)] and pℓ = 1(0,1](z)µℓ/µℓ(X) for ℓ =
1, 2, while p0 = 1[0,1)(z)µ0/µ0(X). Note that 1A denotes the indicator
function of set A. The weights w1 and w2 are dependent and, in general,
not independent of p0, p1, p2. The random variable Z plays a crucial role.
If Z = 0 (almost surely), then p̃1 and p̃2 coincide (almost surely) and Q
degenerates on PX: such a condition yields exchangeability of (X,Y )(∞). In
contrast, if Z = 1 (almost surely) then w1 = w2 = 1 in (7) and, therefore,
p̃1 and p̃2 are independent. Hence, the magnitude of random variable Z
provides an indication of the distance between the actual dependence in
(X,Y )(∞) and exchangeability. Note that in the exchangeable case one
obtains the class of priors introduced in Regazzini, Lijoi and Prünster (2003),
whose main inferential properties were derived in James, Lijoi and Prünster
(2006, 2009). Before describing mixture models governed by GM–dependent
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RPMs, we analyze the two specific cases that will be the object of our
analysis.

Example 1. (GM–dependent Dirichlet processes). In order to obtain a de-
pendent Dirichlet vector, one starts by considering gamma CRMs whose
Lévy intensity is given by

ν(ds, dx) =
e−s

s
c P0(dx),

for some c > 0 and some probability measure P0 on X. Henceforth it will
be assumed that P0 is non–atomic. By normalizing µ̃1 and µ̃2, as defined in
(5), one obtains a vector (p̃1, p̃2) whose components are two GM–dependent
DPs, identically distributed with total mass c and mean measure P0. We
denote such vector by GM-D(c, z, P0) or, simply, GM–D . Moreover, as for
the mixture representation of p̃1 and p̃2 in (7), we observe that p0, p1 and
p2 are independent DPs with common mean measure P0 and total mass
respectively equal to (1− Z)c, Zc and Zc.

Example 2. (GM–dependent normalized σ–stable processes). Consider a
σ–stable CRM, whose Lévy intensity is given by

ν(ds, dx) =
σs−1−σ

Γ(1− σ)
P0(dx),

with σ ∈ (0, 1) and P0 being probability measure on X that will be assumed
non–atomic. The normalization of µ̃1 and µ̃2, as defined in (5), yields a
vector (p̃1, p̃2) whose components are GM–dependent normalized σ–stable
processes, identically distributed with parameter σ and base measure P0.
We denote such vector by GM–st(σ, z, P0), or more concisely, GM–st. Note
that in this case we have set the total mass as c = 1. This does not cause
any loss of generality since for normalized σ–stable CRMs, the parameter
c is redundant. With reference to the mixture representation of p̃1 and p̃2
in (7), we observe that p0, p1 and p2 are independent normalized σ–stable
processes with common parameter σ and base measure P0. However, in
contrast to the Dirichlet case, the weights (w1, w2) and the mixed RPMs
(p0, p1, p2) are not independent.

Finally, note that both p̃1 and p̃2 select discrete probability distribu-
tions on (X,X ), almost surely. This implies that P[Xi = Xj ] > 0 and
P[Yi = Yj ] > 0 for any i ̸= j so that ties occur with positive probability
within each group of observations. Moreover, it will be henceforth assumed
that P[Z < 1] > 0, which, in turn, entails P[Xi = Yj ] > 0 for any i
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and j: there is, then, a positive probability of detecting ties also between
groups. Such properties naturally lead to consider the random partition
induced by the data and, then, determine the probability of observing a
sample {X1, . . . , Xn1

}∪{Y1, . . . , Yn2
} having a specific configuration or par-

tition structure. This extends the analysis of the random partition in the
exchangeable case (1), for which the exchangeable partition probability func-

tion (EPPF) is a key tool. Remarkably, a closed form expression for the more
general partially exchangeable case, named partially exchangeable partition

probability function (pEPPF), is available for any vector of GM–dependent
RPMs (Lijoi, Nipoti and Prünster, 2013, Proposition 2). A simple inves-
tigation of such a pEPPF shows that exchangeability holds within three
separate groups of clusters that are governed by the three independents
RPMs p0, p1 and p2. This invariance property will be better described, in
the next section, in the context of mixture models and is the key ingredi-
ent in devising an algorithm that can be thought of as an extension of the
Blackwell–MacQueen Pólya urn scheme.

3 Dependent hierarchical mixtures

One of the most widely used models in Bayesian Nonparametrics is a hier-
archical mixture, where a random probability measure p̃ is used as a mixing
measure. Indeed, if Θ is some complete and separable metric space and
h : X × Θ → R+ a transition kernel such that x +→ h(x, θ) is a density
function on X, for any θ ∈ Θ, then

f̃(x) =

∫

Θ
h(x, θ) p̃(dθ) (8)

defines a random density function on X, whose probability distribution is a
prior on the space of density functions. When p̃ is a Dirichlet process, then
f̃ is the Dirichlet process mixture introduced by Lo (1984) and popularized
thanks to the MCMC sampler proposed in Escobar and West (1995) that
has made its use straightforward in applied problems.

Here we consider an extension of this model that accommodates for ex-
periments yielding two groups of observations {X1, . . . , Xn1

} and {Y1, . . . , Yn2
}

generated from random densities f̃1 and f̃2. These are defined by

f̃ℓ(x) =

∫

Θ
h(x; θ) p̃ℓ(dθ), ℓ = 1, 2. (9)

Moreover, for ℓ = 1, 2, let θ(ℓ) = (θ1,ℓ, . . . , θnℓ,ℓ) stand for vectors of latent
variables corresponding to the two samples. Then the mixture model can
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be represented in hierarchical form as

(Xi, Yj) | (θ
(1),θ(2))

ind
∼ h( · ; θi,1)h( · ; θj,2),

θj,ℓ | (p̃1, p̃2)
iid
∼ p̃ℓ, j = 1, . . . , nℓ, ℓ = 1, 2,

(p̃1, p̃2)
d
= GM–dependent normalized CRM.

(10)

As remarked in the previous section, the combination of the almost sure
discreteness of p̃ℓ and of the dependence structure introduced in (7) implies
that there can be ties within each vector θ(ℓ) and among elements of the
two vectors θ(1) and θ(2) with positive probability. Therefore, for ℓ = 1, 2,
there will be kℓ + k0 ≤ nℓ distinct values in θ(ℓ) that we denote as

{θ∗1,ℓ, . . . , θ
∗
kℓ,ℓ, θ

∗
1,0, . . . , θ

∗
k0,0}. (11)

In (11) θ∗i,1, for i = 1, . . . , k1, does not match any value of the other vector

θ(2). On the other hand θ∗i,0, for i = 1, . . . , k0, is shared by both vectors θ(1)

and θ(2). The description of the partition structure of the sample is then
completed by the corresponding frequencies. For each ℓ = 1, 2, we denote
them by

{n∗1,ℓ, . . . , n
∗
kℓ,ℓ, q

∗
1,ℓ, . . . , q

∗
k0,ℓ}.

Moreover, for i = 1, . . . , k0, n∗i,0 indicates the sum qi,1 + qi,2, that is the
frequency of θ∗i,0 when both vectors are considered.

The simulation algorithm we are going to use relies on the decomposition
displayed in (7) and on two collections of (non observable) auxiliary random
variables ζ(1) = (ζi,1)i≥1 and ζ(2) = (ζj,2)j≥1 such that P[ζi,1 = 1] = 1 −
P[ζi,1 = 0] = w1 and P[ζj,2 = 2] = 1 − P[ζj,2 = 0] = w2. We can then
provide an alternative representation of the mixing measure in (10) in terms
of these auxiliary variables as

θi,1 | ζi,1, µ1, µ2, µ0
ind
∼ pζi,1 , i = 1, . . . , n1,

θj,2 | ζj,2, µ1, µ2, µ0
ind
∼ pζj,2 , j = 1, . . . , n2, (12)

(ζi,1, ζj,2) |µ1, µ2, µ0
iid
∼ bern (w1; {0, 1})× bern (w2; {0, 2}) .

Now observe that
P [θi,ℓ = θj,κ | ζi,ℓ ̸= ζj,κ] = 0,

for ℓ,κ ∈ {1, 2} and i = 1, . . . , nℓ, j = 1, . . . , nκ, which means that the
latent variables can coincide only if their corresponding auxiliary variables
coincide. If the latent variables are associated to different groups, that is
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ℓ ̸= κ, they can match only if the corresponding auxiliary variables are both
equal to 0. Thus, the auxiliary variables corresponding to the distinct values
appearing in θ(ℓ) in (11) can be written as

{ζ∗1,ℓ, . . . , ζ
∗
kℓ,ℓ, ζ

∗
1,0 = 0, . . . , ζ∗k0,0 = 0},

To sum up, θ(1) and θ(2) can be gathered into three separate groups, U0,
U1 and U2, according to the values taken by the corresponding auxiliary
variables ζi,1 and ζj,2. For ℓ = 1, 2, elements in θ(ℓ) that are labeled with
ℓ will end up in group Uℓ, while variables of both groups with label 0 will
form U0. The latter includes all variables that display ties between vectors.
Each group Ui has cardinality n̄i and consists of k̄i distinct values, where

n̄1 =
n1
∑

i=1

ζi,1, n̄2 =
n2
∑

i=1

ζi,2/2, n̄0 + n̄1 + n̄2 = n1 + n2.

Moreover, k̄1 =
∑k1

i=1 ζ
∗
i,1, k̄2 =

∑k2
i=1 ζ

∗
i,2/2 and k̄0 + k̄1 + k̄2 = k0 + k1 + k2.

The distinct values appearing in group Ui, if i = 0, 1, 2, will be denoted by
{θ̃∗1,i, . . . , θ̃

∗
k̄i,i

} and the corresponding frequencies will be {ñ1,i, . . . , ñk̄i,i}.

Another important feature of GM–dependent RPMs is that it is possi-
ble to find a closed expression for the joint distribution of the observations
(X1, . . . , Xn1

, Y1, . . . , Yn2
), the latent variables (θ(1),θ(2)), the auxiliary vari-

ables (ζ(1), ζ(2)) and possible further parameters, after integrating out the
CRMs µ0, µ1 and µ2: this will, then, allow us to derive all the full condi-
tionals that are needed in order to implement the MCMC algorithm we are
going to describe.

Our goal is to apply this model to estimate the density functions of the
Xi’s and of the Yj ’s and the number of clusters each sample displays. This is
achieved by devising a Gibbs type algorithm that features three independent
Pólya urns and that can be summarized in the following steps:

1. generate initial values for the latent variables, the auxiliary variables
and the parameters;

2. update the auxiliary variables and the parameters using their full con-
ditional distributions;

3. divide the latent variables in three groups according to the values of
the auxiliary variables;

4. update the latent variables of each group via independent Pólya urn
schemes;

5. go back to step 2.
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4 Prediction and clustering with GM–dependent

Dirichlet and normalized σ–stable CRMs

Hierarchical mixture models with (almost surely) discrete mixing measure
offer a flexible and effective framework for model–based clustering. In fact,
they naturally induce a distribution on the number of clusters the data can
be grouped in, which can then be estimated through the posterior distribu-
tion. Looking at the clustering structure naturally leads to studying random
partitions. Various proposals of priors for random partitions for partially
exchangeable data, which belong to or are allied to the class of product
partition models of Hartigan (1990), have appeared in the literature. In
these cases the prior is covariate dependent and a borrowing strength phe-
nomenon, analogous to the one we are studying here, takes place. See, e.g.,
Leon–Novelo et al. (2012) and Müller, Quintana and Rosner (2011). See
also Petrone and Raftery (1997). However, a comparative analysis of the
inferential implications of the choices of the nonparametric mixing measures
has not yet been carried out in the partially exchangeable setting. Here
we fill this gap and specifically focus on the clustering behavior associated
to hierarchical models of the type described in (10), which allows us to re-
place the Dirichlet process with alternative discrete mixing measures in a
quite straightforward way. In particular, we devote the present section to
the analysis of the predictive and related clustering properties associated to
GM–D and GM–st normalized CRMs (p̃1, p̃2). Posterior inferences on the
clustering of the data are then determined by the marginal partition prob-
ability function induced by each p̃ℓ on the latent variables θ(ℓ), as in the
exchangeable case, and by the specific dependence structure between f̃1 and
f̃2 governed by the mixing measures. This second aspect is new and peculiar
to the partially exchangeable scheme in (10) that is examined. Our analy-
sis proceeds in two directions. In this section we study the clustering and
dependence structure by investigating the predictive distribution induced
by the mixing measures and the prior distribution of the total number of
clusters that they induce. In the next section, relying on such findings, we
will carry out an extensive simulation study.

In order to further simplify notation, henceforth we shall use the symbol
Pz to denote a probability distribution conditional on Z = z and Ez as the
corresponding expected value.
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4.1 Predictive structures

With reference to the model (10), one can, in line of principle, determine
the predictive distribution for θnℓ+1,ℓ, for ℓ = 1, 2, given two vectors of ob-
servations θ(1) and θ(2) governed by any GM–dependent normalized CRM
via the evaluation of the corresponding pEPPF. One could, then, handle
both GM–D(c, z, P0) and GM–st(σ, z, P0) mixtures in a similar fashion as
in the exchangeable case. Unfortunately the resulting expressions, although
available in closed form, are not of immediate use since they involve sums
that are hard to compute even for small sample sizes n1 and n2. See Nipoti
(2011); Lijoi, Nipoti and Prünster (2013). Nonetheless these analytical re-
sults display a key invariance property, recalled in the previous section, that
leads to devise a simple MCMC simulation algorithm. In particular, since
exchangeability holds true within three separate groups of observations iden-
tified by the realization of the auxiliary variables ζ(1), ζ(2), one can, then,
determine the predictive distribution of θnℓ+1,ℓ, given ζ(1), ζ(2) and ζnℓ+1,ℓ.
The invariance property and the corresponding representation in terms of
the, although non–observable, auxiliary variables ζ(1) and ζ(2) yields very
neat interpretations of the underlying predictive structure. Also, the exam-
ination of the two extreme cases of independence between p̃1 and p̃2 (that
corresponds to Z degenerate at z = 1) and almost sure identity (that is, Z
degenerate at z = 0) provides further insight on the structural properties of
the model. According to the framework described in the previous section

P[θnℓ+1,ℓ ∈ Ui | ζnℓ+1,ℓ = j] =

⎧

⎨

⎩

1 if i = j

0 otherwise,

where U0, U1 and U2 denote, as before, three groups into which θ(1) and θ(2)

are gathered together. Therefore, the conditional predictive distribution of
θnℓ+1,ℓ for GM–D processes coincides with

Pz[θnℓ+1,ℓ ∈ · |θ(1),θ(2), ζ(1), ζ(2), ζnℓ+1,ℓ = i]

=
z̄c

z̄c+ n̄i
P0(·) +

k̄i
∑

j=1

ñj,i

z̄c+ n̄i
δθ̃∗j,i

(·), (13)

where i ∈ {0, ℓ}, z̄ = (1−z)1{0}(i)+z1{ℓ}(i). Recall that ñj,i and n̄i identify

the number of components in θ(1) and in θ(2) equal to θ∗j,i and belonging to
group Ui, respectively. Similarly, for GM–st processes, we have
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Pz[θnℓ+1,ℓ ∈ · |θ(1),θ(2), ζ(1), ζ(2), ζnℓ+1,ℓ = i]

=
σk̄i
n̄i

P0(·) +
k̄i
∑

j=1

ñj,i − σ

n̄i
δθ̃∗j,i

(·). (14)

Interestingly the expressions in (13) and (14) correspond to the well–known
predictive distributions of the DP and of the normalized σ–stable processes,
respectively. This is due to the fact that, conditionally on the latent vari-
ables ζ’s, the analysis of the predictive distributions induced by a pair of
GM–dependent processes boils down to the study of the three (condition-
ally) independent processes, whose behavior is known. The mechanism for
allocating the mass underlying the distributions in (13) and in (14) is best il-
lustrated as the result of a two step procedure. The first step corresponds to
the generation of either a new value θ̃∗

k̄i+1,i
or of one of the already observed

values {θ̃∗1,i, . . . , θ̃
∗
k̄i,i

}. In the GM–D case, the corresponding probability

coincides with

Pz

[

θnℓ+1,ℓ ̸∈ {θ̃∗1,i, . . . , θ̃
∗
k̄i,i

} |θ(1),θ(2), ζ(1), ζ(2), ζnℓ+1,ℓ = i
]

=
z̄c

z̄c+ n̄i
,

which depends solely on the number of observed values n̄i and the total mass
z̄c. In contrast, for the GM–st case one has

Pz

[

θnℓ+1,ℓ ̸∈ {θ̃∗1,i, . . . , θ̃
∗
k̄i,i

} |θ(1),θ(2), ζ(1), ζ(2), ζnℓ+1,ℓ = i
]

=
σk̄i
n̄i

, (15)

which depends explicitly on the number of observed clusters k̄i, in addition
to n̄i and the model parameter σ. Therefore the latter predictive structure
is richer in that it makes explicit use of a larger portion of the sample
information for dictating the allocation between new and already observed
values. As for the second step in prediction, one has that, if θnℓ+1,ℓ is a
new value, then it is sampled from P0; instead, if θnℓ+1,ℓ is not new, one
deduces the probability of coincidence with any θ̃∗j,i from (13) and (14).
Such coincidence probabilities are proportional to the cluster size ñj,i in
the GM–D case, while they are not proportional to the cluster size for the
GM–st process, since they depend on σ as well.

These different predictive features are very influential when developing
an analysis of the clustering of the data as we shall detail in the next sub-
section.
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4.2 Prediction and clustering

Although in both considered models the predictive distribution is a convex
linear combination of the base probability measure P0 = E[p̃ℓ] and a pos-
sibly weighted empirical distribution, the resulting mass allocation among
“new” and “old” distinct values in θ(ℓ), for ℓ = 1, 2, is significantly different
therefore affecting posterior inferences on clustering.

First, in both cases the probability of observing a new value is an in-
creasing function of the parameter of the process, that is c or σ: it is concave
for the DP and linear for normalized σ–stable processes. More interestingly,
in the GM–st setting, such a probability also depends on k̄i: this is an ap-
pealing feature since it formalizes the idea that, for a fixed sample size n̄i,
the larger the number of already observed distinct values, the higher the
probability of observing a new one. Hence, the larger k̄i, the larger the esti-
mated number of clusters tends to be. As a further remark, specific to the
dependent case, note that z appears, through z̄, only in (13). This might
lead, in the GM–D model, to a significant discrepancy between the proba-
bilities of observing a new value in U0 and Uℓ. Indeed, if we suppose that
n̄0 = n̄ℓ, we have that

Pz[θnℓ+1,ℓ = ”new” | ζnℓ+1,ℓ = 0, . . .]

Pz[θnℓ+1,ℓ = ”new” | ζnℓ+1,ℓ = ℓ, . . .]
=

1− z

z
. (16)

Hence, if z < 0.5, which means we are closer to a situation of total ex-
changeability where p̃1 = p̃2, then the ratio in (16) is greater than 1, while
if z > 0.5, which corresponds to being closer to independence between p̃1
and p̃2, the same quantity is smaller than 1. For a fair analysis of this last
feature, one has to take into account that this tendency is balanced by the
fact that the parameter z plays also a role in determining the cardinalities
n̄0 and n̄ℓ since, for both GM–D and GM–st models, Ez[w1] = Ez[w2] = z.
In other words Pz[ζi,ℓ = ℓ] = 1− Pz[ζi,ℓ = 0] = z for any i and ℓ.

The description of the predictive structure in GM–dependent models is
then completed by describing the mass allocation to already observed values
{θ̃∗1,i, . . . , θ̃

∗
k̄i,i

}. By looking at the ratio of the probabilities assigned to any

pair of observed values (θ̃∗j,i, θ̃
∗
l,i), for a GM–D model this is equal to the

ratio of their cardinalities ñj,i/ñl,i and, therefore, each cluster is assigned
mass proportional to its cardinality. Things are significantly different in the
case of GM–st models, in which the parameter σ plays a key role. In fact,
in terms of the probability of generating a new value displayed in (15), it
is apparent that the larger σ, the higher is such a probability. Now, once
a new value has been generated, it will enter the predictive distribution of
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the next step: since it will clearly have frequency 1, from (14) one sees that
its mass will be proportional to (1− σ), instead of 1 as in the GM–D case,
and, correspondingly, a mass proportional to σ is added to the probability of
generating a new value. Therefore, new values are assigned a mass which is
less than proportional to their cluster size (that is 1) and the remaining mass
is added to the probability of generating a new value. On the other hand, if
a value is re–observed, the associated mass is increased by a quantity which
is now proportional to 1, and not less than proportional. This implies that
the ratio of the probabilities assigned to any pair of observed values (θ̃∗j,i, θ̃

∗
l,i)

is equal to (ñj,i − σ)/(ñl,i − σ). If ñj,i > ñl,i, this is an increasing function
of σ and, as σ increases the mass is reallocated from θ̃∗j,i to θ̃∗l,i. This means
that the sampling procedure tends to reinforce, among the observed clusters,
those having higher frequencies. Such a reinforcement is analogous to the
one discussed in exchangeable case in Lijoi, Mena and Prünster (2007a). In
light of the above considerations the role of σ can then be summarized as
follows: the larger σ the higher is the probability of generating a new value
and at the same time the stronger is the reinforcement mechanism.

As far as the analysis of the dependence structure is concerned, it is
useful to resort to the two extreme cases of total exchangeability (i.e. z =
0 implying p̃1 = p̃2 almost surely) and independence between p̃1 and p̃2
(implied by z = 1), since they provide useful hints for understanding the
behaviour in intermediate situations corresponding to z ∈ (0, 1). When
z = 0, then ζ(1) = 0n1

and ζ(2) = 0n2
(almost surely), where 0n is vector

of 0s of size n. This is equivalent to considering the predictive distributions
(13) and (14) with ζnℓ+1,ℓ = 0, n̄ℓ = 0, n̄0 = n1 + n2 and, therefore, k̄ℓ =
0 and k̄0 = k1 + k2. In contrast, if z = 1 then ζ(1) = 1n1

and ζ(2) =
21n2

(almost surely), where 1n stands for a n–sized vector of 1s. This
implies that ζnℓ+1,ℓ = ℓ, n̄ℓ = nℓ, n̄0 = 0 and, therefore, k̄ℓ = kℓ and
k̄0 = 0. In Figure 1 we compare the prior distribution of the total number of

clusters K(z)
n1+n2

for two vectors of observations of size n1 = n2 = 200, whose
corresponding latent variables are governed by GM–D(c, z, P0) and by GM–
st(σ, z, P0), where z ∈ {0, 1}. The characterizing parameters c and σ are

chosen so that E[K(0)
n1+n2

] ≈ 5 in 1(a), E[K(0)
n1+n2

] ≈ 10 in 1(b), E[K(0)
n1+n2

] ≈

20 in 1(c) and E[K(0)
n1+n2

] ≈ 50 in 1(d). This choice reflects the idea of
having two equivalent specifications in terms of the prior information on
the number of clusters, thus making the comparison fair. The distribution

of K(0)
n1+n2

coincides with the distribution of the number of clusters for a
single processes governing n1+n2 exchangeable latent variables; on the other

extreme, the distribution of K(1)
n1+n2

is the convolution of the distributions of
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two random variables yielding the number of distinct values among n1 and n2

exchangeable random elements, respectively, governed by two independent
processes.
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Figure 1: Prior distribution of the number of clusters of two samples of sizes n1 =
n2 = 200 governed by GM–D processes (red lines) or GM–st processes (black lines)
in the two extreme cases of z = 0 (dashed lines) and z = 1 (solid lines). The
parameters c and σ are chosen so that, with z = 0, the expected number of clusters
is approximately equal to 5 in (a), 10 in (b), 20 in (c) and 50 in (d).

It is apparent that both c and σ, for every z ∈ {0, 1}, have a role in deter-
mining the location: the larger they are, the greater is the expected number
of clusters. This is in accordance with what was observed earlier, since the
larger are c and σ, the greater is the probability of observing a new value in
(13) and (14) respectively. Nonetheless, the model based on a GM–st pro-
cess gives rise to much flatter distributions than those corresponding to the
GM–D case. This is evident for both, small and large values of the param-
eters: in Figure 1(a), for example, GM–D models determine distributions
that, although concentrated around small values, give very low probability
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to the event K(z)
n1+n2

≤ 2 whereas, for GM–st models, the probability of the

same event is remarkably larger and the distribution of K(0)
n1+n2

has its mode
in 1; from Figure 1(d) we see that, while the models based on GM–st pro-
cesses determine flat distributions, for GM–D processes, the distribution of

K(z)
n1+n2

has a much smaller variance and is highly concentrated around its
mode. Such findings are in accordance with the analysis developed, for the
exchangeable case, in Lijoi, Mena and Prünster (2007a).

A further aspect to remark concerns the effect that, for each model,
the dependence structure has on the clustering behavior. In this respect it
should be recalled that, according to (13) and (14), the variable Z directly
affects the probability of having a new value in the predictive distribution
only for Dirichlet case. It is, then, expected that the degree of dependence,
i.e. Z, is more influential in determining the clustering for the GM–D rather
than for the GM–st process. This issue can be further investigated by com-
paring the two extreme cases, i.e. z = 0 vs z = 1: the closer they are in
terms of the prior guess at the overall number of clusters in the two samples,
the lower the influence of dependence on the clustering behaviour associated

to the model. For this reason we consider the ratio E[K(1)
n1+n2

]/E[K(0)
n1+n2

]
and check for which model it is closer to 1. In particular, this analysis is per-

formed by setting the values of the parameters c and σ such that E[K(0)
n1+n2

]
takes on all possible values between 1 and n1 + n2 = 400. For each of

these pairs (c,σ) the expected number of clusters E[K(1)
n1+n2

] (z = 1 mean-
ing independence between p̃1 and p̃2) for both GM–D and GM–st models is
computed so to yield the ratios depicted in Figure 2.
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Figure 2: Plot of the ratio E[K(1)
n1+n2

]/E[K(0)
n1+n2

], as a function of E[K(0)
n1+n2

], for
mixture models based on GM–D and GM–st processes, with n1 = n2 = 200.
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As expected, in both cases, the ratio is a decreasing function that tends to

2 when E[K(0)
n1+n2

] approaches 1, that is when c→ 0 and σ → 0, and tends

to 1 when E[K(0)
n1+n2

] approaches n1 + n2, that is when c → ∞ and σ → 1.
More importantly, the curve is significantly lower for GM–st models than
for GM–D models. This provides further evidence of the intuition according
to which, in terms of expected number of clusters, the GM–st model is less
sensitive to the specification of the parameter z. In light of the previous
considerations it then comes to no surprise that these different predictive
features are very influential in determining the clustering of the data. And,
the insights gained on such predictive structures allow to understand the
underlying reasons leading to the results obtained in the next section.

5 Simulation study

We perform an extensive simulation study for GM–dependent mixture mod-
els (10) by implementing the Gibbs sampling algorithm described in Sec-
tion 3, and further detailed in the Appendix. We specifically focus on the
posterior estimation of a pair of dependent densities and of the marginal
clustering structures.

The datasets are generated from three different types of mixtures de-
picted in Figures 3. The first one is particularly simple and we use it to
highlight specific features of the models. The other two examples refer to
densities that are more challenging to estimate and include components that
are not easily captured. They provide further support to the conclusions
reached in the first example showing that GM–dependent mixtures can be
successfully applied also in complex settings.

The goal of our analysis is two–fold. On the one hand, we aim at highlight-
ing the borrowing strength phenomenon induced by the bivariate models if
compared to the corresponding univariate analysis with the exchangeability;
the latter corresponds to (p̃1, p̃2) with Z being degenerate at z = 1. The
second target is the comparison between the GM–D and the GM-st mixtures
in terms of inference on the clustering structure of the data. The analysis
of the performances of the two models in this numerical study essentially
vouches the arguments that have emerged while investigating the predictive
structure of the underlying processes.

Before entering the specific examples, we detail the models’ specifications
that are used henceforth. Unlike the previous sections, where Z was fixed
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(d) Ex. 3: f1 (cont. line) & f2 (dashed line)

Figure 3: [Examples 1,2 & 3]. True densities f1 and f2 generating the simulated
datasets.

at a specific value z, here we introduce a prior distribution for it: this allows
the data to provide information on the degree of dependence between p̃1
and p̃2. The specification is completed by an extension to the partially
exchangeable case of the quite standard specification of Escobar and West
(1995). In particular, we shall assume that θ = (M,V ) ∈ R × R+ and
h( · ;M,V ) is a Gaussian density with mean M and variance V . We also
take P0 to be a normal/inverse–gamma distribution

P0(dM, dV ) = P0,1(dV )P0,2(dM |V ),

with P0,1 being an inverse–gamma probability distribution with parameters
(1, 1) and P0,2 is Gaussian with mean m and variance τV . Moreover, the
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corresponding hyperpriors are of the form

τ−1 ∼ Ga(1/2, 50),

m ∼ N(D̄, 2),

Z ∼ U(0, 1),

c ∼ Ga(2, 1) in GM–D models,

σ ∼ U(0, 1) in GM–st models,

(17)

where D̄ = (
∑n1

i=1Xi +
∑n2

j=1 Yj)/(n1 + n2) is the over all sample mean.
In the above specification, Ga(a, b) stands for the gamma distribution with
expected value a/b. From the specification in (17) one can immediately com-
pute the a priori marginal expected number of components of the considered
mixtures for different sample sizes. In the following examples we will con-
sider sample sizes nℓ = 50 and nℓ = 200, which correspond to E[K50] ∼= 6.64
and E[K200] ∼= 9.34 for the GM–D mixtures and to E[K50] ∼= 13.32 and
E[K200] ∼= 39.67 for GM–st mixtures. Henceforth, we shall slightly modify
the notation and use KX and KY in order to highlight the marginal num-
ber of clusters in the samples X = (X1, . . . , Xn1

) and Y = (Y1, . . . , Yn2
),

respectively.
All estimates are based on 80000 iterations of the algorithm after 20000

burn–in sweeps.

5.1 Example 1

The data X and Y are generated as two independent samples of size n1 =
n2 = 200, from densities f1 and f2, respectively, where

fj = gj + g0, j = 1, 2,

with common component g0 ∝ N(−7, 1) + N(2, 0.6) and idiosyncratic com-
ponents g1 ∝ N(−12, 0.6) + N(12, 1) and g2 ∝ N(−2, 0.6) + N(7, 1). See
Figure 3(a)–3(b). We then apply our algorithm to obtain estimates of: (i)
the densities fℓ, with ℓ = 1, 2 by means of the posterior expected value of
the model; (ii) the number of clusters by means of the distribution of KX

and KY .
First the density estimates for both GM–D(c, Z, P0) and GM–st(σ, Z, P0)

mixtures are derived. These are reported in Figure 4 and show a good fit for
both marginal densities and both models. It is also not surprising that the
estimates obtained from the two models do not differ significantly: indeed,
the differences at the latent level due to the mixing measures are smoothed
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out by the density kernel and also one can always achieve a good fit with a
larger number of components than actually needed.
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Figure 4: [Example 1]. True data generating densities (f1 on the left column and
f2 on the right column) with histograms of the simulated data. Corresponding
estimates are obtained with the GM–st(σ, Z, P0) mixture model (first row) and the
GM–D(c, Z, P0) mixture model (second row).

It is to be noted that, since we rely on an MCMC procedure that incorporates
the marginalization of the underlying RPMs, measures of variability of the
density estimates are not part of the MCMC output. This is a well–known
issue with marginal methods. A possible solution, though not straightfor-
ward to extend to the present context, is devised in Gelfand and Kottas
(2002).

The most interesting aspects emerging from model comparison concern
the analysis of the number of clusters. We first compare the dependent
and the independent case, namely bivariate dependent and two univariate
mixtures with GM–D and GM–st mixing measures. Figure 5 displays such
a comparison and focuses on the first sample X. Similar conclusions, even
though not depicted here, hold true for KY .
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(a) Posterior distribution of KX with a GM–
D(c, z, P0) mixture model
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(b) Posterior distribution of KX with a GM–
st(σ, z, P0) mixture model
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(c) Posterior distribution of KX with a GM–
D(c, 1, P0) mixture model
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(d) Posterior distribution of KX with a GM–
st(σ, 1, P0) mixture model

Figure 5: [Example 1]. GM–D and GM–st mixtures (top row) vs. two indepen-
dent univariate Dirichlet and normalized σ–stable process mixtures (bottom row):
posterior distributions of the number of clusters for the first sample.

The superiority of the dependent partially exchangeable models is appar-
ent: the marginal posterior distributions of the number of clusters KX , for
both GM–D and GM–st models, tend to be more concentrated around the
true value 4. Such differences are not surprising since they reveal that a
phenomenon of borrowing strength applies when Z < 1, thus leading to a
more reliable estimate of the number of clusters. The qualitative findings
highlighted by Figure 5 are further corroborated by the numerical estimates
in Table 1. Indeed, the estimates of KX and KY , with GM–D(c, Z, P0) and
GM–st(σ, Z, P0) mixtures are closer to the true value than the estimates
resulting from the GM–D(c, 1, P0) and GM–st(σ, 1, P0) mixtures. This hap-
pens regardless as to whether the estimates are evaluated in terms of poste-
rior expectations or in terms of maximum a posteriori values, K̂X and K̂Y .
More importantly, the posterior distributions of both KX and KY obtained
with GM–D(c, 1, P0) and GM–st(σ, 1, P0) mixtures display a higher variabil-
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Table 1: [Example 1]. GM–D mixture vs. independent univariate Dirichlet process
mixtures (Rows 1 and 2) and GM–st mixture vs. independent univariate normalized
σ–stable process mixtures (Rows 3 and 4): posterior expected number of clusters
(Cols. 1 and 2), maximum a posteriori values (K̂X , K̂Y ) and posterior probability
of 6 or more clusters per sample (Cols. 5 and 6).

E[KX |·] E[KY |·] K̂X K̂Y P[KX ≥ 6|·] P[KY ≥ 6|·]

GM–D(c, Z, P0) 4.83 5.18 4 5 0.21 0.33

GM–D(c, 1, P0) 5.25 6.79 5 6 0.35 0.73

GM–st(σ, Z, P0) 4.31 4.50 4 4 0.05 0.10

GM–st(σ, 1, P0) 5.17 6.98 4 5 0.31 0.68

ity with heavier right–tails as can be ascertained by inspecting, e.g., the mass
assigned to values of KX and of KY greater than 6: such probability masses
are significantly larger if compared to those yielded by GM–D(c, Z, P0) and
GM–st(σ, Z, P0) mixtures. See also Figures 5(c)–5(d). Finally, note that,
while the performances of GM–D(c, 1, P0) and GM–st(σ, 1, P0) are rather
similar with the latter showing a slightly larger concentration around the
true value 4, the GM–st(σ, Z, P0) mixture seems to be superior to the GM–
D(c, Z, P0) in detecting the correct number of components, as can be appre-
ciated through both Figures 5(a)–5(b) and Table 1.

5.1.1 Fixing the parameters σ and c

The previous analysis clearly shows the superiority of dependent models
over models with independent p̃1 and p̃2. However, in order to make a
fair comparison between GM–D(c, Z, P0) and GM–st(σ, Z, P0) mixtures, one
needs to adopt “similar” prior specifications for the vectors (c, Z) and (σ, Z).
Hence, we assume the same prior for Z in both mixtures and set degenerate
priors for σ and c in (17). Given we want to compare their performance
in terms of clustering, c and σ are fixed so to obtain for both mixtures
the same marginal a priori expected number of clusters. Hence, we shall
consider values of σ and c such that under both a Dirichlet and a normalized
σ–stable process one has

E[KX ] = E[KY ] ∼= 15. (18)
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Solving (18) leads to set c = c1 = 3.587 and σ = σ1 = 0.4884, respec-
tively. The idea is to specify parameter values yielding a prior opinion that
is far from the truth (i.e. 4 clusters) and identify which mixture model
better detects, on the basis of the information conveyed by the data, the
correct number of clusters. Alternatively, the parameters c and σ can be
fixed in such a way that they yield similar prior variance structures for p̃1
and p̃2 in both models. To this end, one can resort to (James, Lijoi and
Prünster, 2006, Proposition 1) which implies that Var[p̃ℓ(B)] is the same
both for a Dirichlet and a normalized σ–stable process, for any B in X

and ℓ = 1, 2, if and only if (c + 1)−1 = 1 − σ. Hence, for c = c1 the
variances match if σ = σ2 = 0.782. On the other hand, if σ = σ1 the vari-
ances coincide if c = c2 = 0.9547. This leads to draw three comparisons
of mixtures: (i) GM–D(c1, Z, P0) vs GM–st(σ1, Z, P0); (ii) GM–D(c1, Z, P0)
vs GM–st(σ2, Z, P0); (iii) GM–D(c2, Z, P0) vs GM–st(σ1, Z, P0). Posterior
inferences on the marginal number of clusters, KX and KY , are summarized
in Table 2.

Table 2: [Example 1]. Comparisons between GM–D(c, Z, P0) vs. GM–st(σ, Z, P0)
mixtures. The parameters c and σ are fixed in such a way that: (i) condition (18)
holds true (Row 1 vs. Row 3); (ii) marginal prior variance structures of p̃i in both
models match (Row 1 vs. Row 2 & Row 3 vs. Row 4).

E[K] E[KX |·] E[KY |·] K̂X K̂Y P[KX ≥ 6|·] P[KY ≥ 6|·]

GM-D(c1, Z, P0) 15 6.96 7.82 7 7 0.81 0.91

GM–st(σ2, Z, P0) 67.95 4.81 5.27 4 4 0.20 0.35

GM–st(σ1, Z, P0) 15 4.62 4.96 4 4 0.14 0.25

GM-D(c2, Z, P0) 5.69 4.81 5.12 4 5 0.19 0.31

These unequivocally show a better performance of the GM–st mixture. For
example, the posterior distributions of the number of clusters for the GM–
D(c1, Z, P0) mixture feature much heavier right–tails if compared to the
estimates resulting from the GM–st(σ1, Z, P0) mixture. This means that
the GM–st mixture yields estimates of the posterior distributions of both
KX and KY concentrated around the correct number of components of the
mixtures that have actually generated the data, despite the prior misspeci-
fication. Also in terms of the posterior estimates of KX and KY , reported
in Table 2, the GM–st mixture stands out regardless of whether they are
estimated by means of posterior expectation or by maximum a posteriori
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values. Similar conclusions can be drawn for the other two comparisons
where the prior marginal variance structure is taken to be the same under
both models. Of these, the most interesting is, indeed, the case where the
GM–st(σ2, Z, P0) mixture outperforms the GM(c1, Z, P0) mixture: though
the GM–st mixture specification yields an expected number of components
much larger than that of the GM–D mixture, it is still able to recover the
correct number of components. This can also be noted for the last com-
parison, summarized in the third and fourth lines of Table 2, where in the
GM–D case the prior for both KX and KY is concentrated around the true
number of components, in contrast to the GM–st process for which the prior
expected number of components is 15. Despite this prior misspecification,
the GM–st(σ1, z, P0) mixture leads to posterior estimates of KX and KY

close to the truth and posterior distributions for KX and KY with lighter
right tails.

The empirical evidence displayed in Table 2 shows that GM–st models
are less sensitive to the misspecification of their characterizing parameters.
This could be explained by the fact that such models give rise to prior distri-
butions for the number of clusters that are much flatter, i.e. less informative,
than the corresponding distributions for GM–D mixtures. See also Figure 1.

5.1.2 The role of σ in GM–st mixtures

Since the posterior results obtained so far suggest that GM–st mixture mod-
els typically lead to a more effective detection of the clustering structure of
the observations, it is worth analyzing empirically the role of σ ∈ (0, 1) in
such models. To this end we fixe a grid of values, {0.1, 0.3, 0.5, 0.7, 0.9}, for
σ and determine the corresponding posterior estimates of the densities f1
and f2 and the posterior distributions of the number of clusters KX and
KY in the two samples. Two interesting indications on the role of σ can
be deduced from this analysis. First, the density estimates, although not
reported, are not significantly sensitive to the choice of σ. Second, as shown
by Table 3, the value of σ affects the distribution of the number of clusters.

Small values of σ correspond to centering the prior of the number of compo-
nents on small values: therefore, it is natural that in this specific case, where
we have a small number of components (i.e. 4), a small value of σ provides
a better fit. Nonetheless, as already seen before we performed the variance
match, the model shows to adapt reasonably well even for large values of
σ, which in this example correspond to severe prior misspecification. Such
prior specification issues could be circumvented by placing a prior on σ: as
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Table 3: [Example 1]. GM–st(σ, Z, P0) mixture: estimated number of clusters and
posterior probability of 6 or more clusters per sample for different values of σ.

σ 0.1 0.3 0.5 0.7 0.9 random

E[KX |·] 4.17 4.44 4.65 4.74 4.83 4.31

E[KY |·] 4.24 4.66 4.96 5.18 5.32 4.50

P[KX ≥ 6|·] 0.04 0.08 0.15 0.18 0.21 0.05

P[KY ≥ 6|·] 0.05 0.15 0.25 0.33 0.36 0.10

mentioned before, in (17) we have set a uniform prior on (0, 1) and the cor-
responding posterior estimate for σ is equal to 0.21. But it is evident that
GM–st mixtures work fairly well also for fixed (and possibly misspecified)
σ. In contrast, for GM–D mixtures putting a prior on the parameter c is
crucial in order to reasonably detect the clustering structure but, depending
on the specific clustering structure, one may even end up with the unpleas-
ant feature of the inferences depending on the type of prior specified for c.
See Dorazio et al. (2008).

5.2 Example 2

Example 1 has served as a “toy example” useful for displaying specific fea-
tures of GM–D and GM–st mixtures and for drawing a comparison between
the two. Here, we consider a more challenging situation. A first source of
difficulty is due to the sizes of the two independent samples. We consider an
unbalanced situation where the size of the first sample, n1 = 200, is much
larger than the size of the second sample, n2 = 50. This is combined with
the choice of data generating mixtures that have both two components which
are very close one to the other. More precisely we consider two densities f1
and f2 defined as

f1 ∼
1

2
N(0, 3) +

1

2
N(−2, 0.5), f2 ∼

1

2
N(0, 3) +

1

2
N(2, 0.5), (19)

which share one component and are depicted in Figure 3(c). In order to esti-
mate f1, f2, KX and KY we rely, as before, on the prior specifications (17).
The density estimates, not displayed here, again show a good fit. In terms
of inference on the clustering structure, the dependent model heavily bene-
fits from the borrowing strength effect as apparent from Table 4, where the
results are compared to the independent case (Z = 1). Even for the second
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(under-represented) sample, both mixtures are able to get close to the cor-
rect number of components. More importantly, the posterior distributions
of KX and KY in the dependent case are much more concentrated around
the true number of components assigning significantly less probability to 4
or more components.

Table 4: [Example 2]. GM–D mixture vs. independent univariate Dirichlet process
mixtures (Rows 1 and 2) and GM–st mixture vs. independent univariate normalized
σ–stable process mixtures (Rows 3 and 4): posterior expected number of clusters
(Cols. 1 and 2), maximum a posteriori values (K̂X , K̂Y ) and posterior probability
of 4 or more clusters per sample (Cols. 5 and 6).

E[KX |·] E[KY |·] K̂X K̂Y P[KX ≥ 4|·] P[KY ≥ 4|·]

GM–D(c, Z, P0) 2.76 3.17 2 2 0.19 0.33

GM–D(c, 1, P0) 3.44 4.06 2 3 0.38 0.53

GM–st(σ, Z, P0) 2.22 2.23 2 2 0.03 0.03

GM–st(σ, 1, P0) 3.23 2.86 2 2 0.27 0.22

As to the comparison of GM–D and GM–st mixtures, both yield roughly
the same estimates for the marginal number of components, but the GM–
st(σ, Z, P0) mixture is by far superior when looking at the variability of
the posterior distributions of KX and KY . This confirms the findings of
Section 5.1: GM–st models outperform GM–D models when it comes to
drawing inferences on the clustering structure featured by the data. Such
conclusions are even more apparent if an analysis along the lines of Section
5.1.1, and not reported here, is carried out.

5.3 Example 3

In this final example we consider data generated by mixtures with a large
number of modes and with components having different weights. We gen-
erate two independent samples of size n1 = n2 = 200 from densities f1
and f2 defined as mixtures of seven normals with four of them in common.
Moreover, the common mixed densities are weighted differently in the two
mixtures. More precisely, we set

f1 ∼
10
∑

i=1

aiN(µi,σi), f2 ∼
10
∑

i=1

biN(µi,σi), (20)
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where the vectors of means and standard deviations are respectively equal
to µ = (−10,−8,−6,−3,−1, 1, 3, 5, 7, 10) and σ = 1

4(2, 1, 2, 3, 1, 2, 1, 2, 1, 4).
The weights in (20) are identified by a = (1, 2, 0, 3, 0, 3, 1, 0, 2, 2)/14 and b =
(2, 0, 2, 3, 2, 0, 2, 2, 1, 0)/14. The two mixtures are displayed in Figure 3(d)
which allows to visualize the different weights assigned to the components
shared by the mixtures defining f1 and f2. Density estimates are represented
in Figure 6 and even in such a challenging example we achieve a satisfactory
fit. Moreover, as expected, they do not significantly differ among the two
GM–D and GM–st models.

!!" !# " # !"
"

"$%

&

&

'()*+,-./& *-01& 23!)*&

!!" !# " # !"
"

"$%

&

&

'()*+,-./& *-01& 23!)*&

!!" !# " # !"
"

"$%

&

&

'()*+,-./& *-01& 23!4&

!!" !# " # !"
"

"$%

&

&

'()*+,-./& *-01& 23!4&

Figure 6: [Example 3]. True data generating densities (f1 on the left column and
f2 on the right column) with histograms of the simulated data. Corresponding
estimates are obtained with the GM–st(σ, Z, P0) mixture model (first row) and the
GM–D(c, Z, P0) mixture model (second row).

The posterior inferences concerning the marginal clustering structure
are reported in Table 5 and lead to results similar to those obtained in Sec-
tions 5.1 and 5.2. Indeed, posterior estimates of KX and of KY based on
both GM–D(c, Z, P0) and GM–st(σ, Z, P0) mixtures are very close to the
actual value that has generated the data. However, the lighter right–tails
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Table 5: [Example 3]. GM–D mixture vs. independent univariate Dirichlet process
mixtures (Rows 1 and 2) and GM–st mixture vs. independent univariate normalized
σ–stable process mixtures (Rows 3 and 4): posterior expected number of clusters
(Cols. 1 and 2), maximum a posteriori values (K̂X , K̂Y ) and posterior probability
of 9 or more clusters per sample (Cols. 5 and 6).

E[KX |·] E[KY |·] K̂X K̂Y P[KX ≥ 9|·] P[KY ≥ 9|·]

GM–D(c, Z, P0) 8.03 7.96 7 7 0.27 0.25

GM–D(c, 1, P0) 9.49 8.95 9 8 0.64 0.52

GM–st(σ, Z, P0) 7.45 7.39 7 7 0.08 0.06

GM–st(σ, 1, P0) 9.93 9.27 9 8 0.60 0.54

of the GM–st mixture that are highlighted in the last two columns of Ta-
ble 5 suggest that the dependent GM–st model is preferable. Moreover,
a comparison with univariate mixtures (Z = 1) shows again the beneficial
effect of the borrowing strength phenomenon. In this respect, estimates aris-
ing from both the GM–D(c, 1, P0) and GM–st(σ, 1, P0) processes are farther
away from the true number of components if compared to those obtained
through the corresponding bivariate dependent model. Furthermore, in the
case Z = 1 the posterior probability assigned to number of clusters larger
than 9 is significantly larger as can be seen from the last two columns of
Table 5.

6 Concluding remarks

Both GM–D and GM–st dependent mixture models exhibit a good perfor-
mance in terms of density estimation even in challenging problems. However,
when it comes to estimation of the number of clusters they show significantly
different features. First, GM–st models stand out for being less sensitive to
the specification of their characterizing parameters. This property can be
explained by the flatness of the prior distribution for the number of clusters
induced by such models and is a result of the predictive structure thor-
oughly described in Section 4. Second, while for both classes of mixture
models, the borrowing strength is remarkable, it seems that GM–st mod-
els better profit from the borrowed information by greatly improving their
performance. Overall, there is clear evidence that GM–st models feature
an improved capability of learning from the data and detecting the cor-
rect number of clusters. Such a phenomenon, that was first noted in the
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univariate case in Lijoi, Mena and Prünster (2007a), is confirmed in the
dependent case. Moreover, we showed that it also has a positive influence
on the borrowing information. These findings show that models based on
dependent normalized σ–stable processes represent an appealing alternative
to the commonly used models based on dependent DPs.
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Appendix. Full conditional distributions

Here we provide the full conditional distributions for random variables and
hyperparameters involved in the model introduced in (10) and (12), with the
hyperpriors specified in (17). For a more general and detailed treatment,
refer to Lijoi, Nipoti and Prünster (2013).

For each ℓ = 1, 2, we call ζ(ℓ)∗ the vector of the auxiliary random variables

corresponding to the distinct values of θ(ℓ) and we let ζ(ℓ)−j,∗ denote the vector

obtained by removing the j–th component from ζ
(ℓ)
∗ . Moreover, we indicate

with h the vector of all the hyperparameters involved in the model, that is
z, c, τ and m for GM–D model and z,σ, τ and m for GM–st model . We
introduce the notation

πj,1(x) := P[ζ∗j,1 = x | ζ(1)−j,∗, ζ
(2)
∗ ,θ(1),θ(2),X,Y ,h].

If θ∗j,1 does not coincide with any of the distinct values of the latent variables
for the second sample, then, for the GM–D model, we have

πj,1(x) ∝ 1{0,1}(x)
zx (1− z)1−x

(α)n2
(βx)n2

× 3F2
(

α− cz + n1 − n̄−j,1 − xn∗j,1, n1, n2;α+ n1,βx + n2; 1
)

, (21)

where (a)n is the Pochhammer symbol, 3F2 denotes the generalized hy-
pergeometric function, n̄−j,1 :=

∑

i ̸=j n
∗
i,1ζ

∗
i,1 and α and βx are defined as

α = c+ n2 − n̄2 and βx = c+ n1 − n̄−j,1 − xn∗j,1. For the GM–st model, we
have

πj,1(x) ∝ 1{0,1}(x) z
x(1− z)1−x

×

∫ 1

0

wn−n̄−j,1−xn∗j,1+(k̄−j,1+x)σ−1(1− w)n2−n̄2+k̄2σ−1

{1− z + zwσ + z(1− w)σ}k
dw, (22)

where k̄−j,1 =
∑

i ̸=j ζ
∗
i,1. For both (21) and (22), the normalizing constant

is determined by πj,i(0) + πj,i(1) = 1. The full conditionals for the ζ∗j,2 can
be determined analogously.

As for the latent variables θ(1) and θ(2), one can sample θj,ℓ from

w0P
∗
j,ℓ(dθ) +

∑

i∈J−j,ζj,ℓ

wiδθ̃∗i,ζj,ℓ
(dθ), (23)
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where J−j,ζj,ℓ is the set of indices of distinct values from the urn labeled ζj,ℓ
after excluding θj,ℓ. For the GM–D model, the weights in (23) are given by

w0 ∝ c
z̄ (1 + τ)

[2(1 + τ) + (m− xj,ℓ)2]
3/2

,

wi ∝ n(−j)
i,ℓ

1
√

2πṼ ∗i,ζj,ℓ

exp

{

−
(xj,ℓ − M̃∗

i,ζj,ℓ
)2

2Ṽ ∗i,ζj,ℓ

}

,
(24)

where z̄ = (1 − z)1{0}(ζj,ℓ) + z1{ℓ}(ζj,ℓ), n(−j)
i,ℓ is the size of the cluster

containing θ̃∗i,ζj,ℓ , after deleting θj,ℓ, and θ̃∗i,ζj,ℓ = (M̃∗
i,ζj,ℓ

, Ṽ ∗i,ζj,ℓ).

For the GM–st model, the weights in (23) are given by

w0 ∝ k−j,ζj,1σ
z̄ (1 + τ)

[2(1 + τ) + (m− xj,ℓ)2]
3/2

,

wi ∝
(

n(−j)
i,ℓ − σ

) 1
√

2πṼ ∗i,ζj,ℓ

exp

{

−
(xj,ℓ − M̃∗

i,ζj,ℓ
)2

2Ṽ ∗i,ζj,ℓ

}

.
(25)

The distribution P ∗j,ℓ of a new value θ = (M,V ) in (23) is again a
normal/inverse–gamma distribution, that is

P ∗j,ℓ(dM, dV ) = P (1)
j,ℓ (dV )P (2)

j,ℓ (dM |V ), (26)

with P (1)
0,1 being an inverse–gamma probability distribution with parameters

(3/2, 1+(m−xj,ℓ)2/(2(τ+1))) and P (2)
0,2 Gaussian with mean (τxj,ℓ+m)/(τ+

1) and variance τ/(τ + 1)V .
Let now D−r stand for the set of all random variables of the model (that

is, latent variables (θ(1),θ(2)), auxiliary variables (ζ(1), ζ(2)) and hyperpa-
rameters h) but r. As for the full conditional for z, one has, for the GM-D
model,

κz(z |X,Y ,D−z) ∝ 1(0,1)(z) z
k̄1+k̄2(1− z)k̄0

× 3F2 (α− cz + n1 − n̄1, n1, n2;α+ n1,β + n2; 1) ,

where α = c+ n2 − n̄2 and β = c+ n1 − n̄1. For the GM-st model, one has

κz(z |X,Y ,D−z) ∝ 1(0,1)(z) z
k̄1+k̄2(1− z)k̄0
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×

∫ 1

0

wn1−n̄1+k̄1σ−1(1− w)n2−n̄2+k̄2σ−1

{1− z + zwσ + z(1− w)σ}k
dw. (27)

As for the parameters c and σ that characterize respectively GM–D and
GM-st models, we have

κc(c |X,Y ,D−c) ∝
ck+1e−c

(α)n1
(β)n2

× 3F2 (α− cz + n1 − n̄1, n1, n2;α+ n1,β + n2; 1) ,

and

κσ(σ |X,Y ,D−σ) ∝ 1(0,1)(σ) σ
k−1 ξσ(n

(1),n(2),n(0))

×

∫ 1

0

wn1−n̄1+k̄1σ−1(1− w)n2−n̄2+k̄2σ−1

{1− z + zwσ + z(1− w)σ}k
dw, (28)

where

ξσ(n
(1),n(2),n(0)) =

k1
∏

j=1

(1− σ)n∗j,1−1

k2
∏

i=1

(1− σ)n∗i,2−1

m
∏

r=1

(1− σ)n∗r,0−1.

Notice that a numerical evaluation of the integrals in (27) and (28) is
straightforward.

Finally, for both GM–D and GM–st models, τ and m are sampled from
the following distributions

τ | (X,Y ,D−τ ) ∼ IG

(

1 + k0 + k1 + k2
2

,
100 +W ′

2

)

, (29)

m | (X,Y ,D−m) ∼ N(RT, T ), (30)

where, IG denotes the inverse–gamma distribution and

W ′ =
2

∑

i=0

k̄i
∑

j=1

(M̃∗
j,i −m)2

Ṽ ∗j,i
,

T =

⎡

⎣

1

2
+

1

τ

⎛

⎝

k̄1
∑

i=1

1

Ṽ ∗i,1
+

k̄2
∑

j=1

1

Ṽ ∗j,2
+

k̄0
∑

r=1

1

Ṽ ∗r,0

⎞

⎠

⎤

⎦

−1

,

R =

⎡

⎣

D̄

2
+

1

τ

⎛

⎝

k̄1
∑

i=1

M̃∗
i,1

Ṽ ∗i,1
+

k̄2
∑

j=1

M̃∗
j,2

Ṽ ∗j,2
+

k̄0
∑

r=1

M̃∗
r,0

Ṽ ∗r,0

⎞

⎠

⎤

⎦

−1

.
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Acceleration step

In order to speed up the mixing of the chain, at the end of every iteration, we
resample the distinct values θ̃∗j,i, for i = 0, 1, 2 and j = 1, . . . , k̄i, from their
conditional distribution. This distribution depends on the choice of p̃1 and
p̃2 only through their base measure P0 and therefore it is the same for GM–
D and GM–st models. For every j = 1, . . . , k̃1, the conditional distribution
of θ̃∗j,1 = (M̃∗

j,1, Ṽ
∗
j,1) is normal/inverse–gamma. More specifically, we can

sample from

Ṽ ∗j,1 ∼ IG

(

1 +
ñj,1

2
, 1 +

W ′′

2

)

,

M̃∗
j,1 | Ṽ

∗
j,1 ∼ N

(

m+ τ
∑

(∗) xi,1

1 + τ ñj,1
, Ṽ ∗j,1

τ

1 + τ ñj,1

)

,

where

W ′′ =
∑

(∗)

x2i,1 +
m2ñj,1 −

∑

(∗) xi,1
(

2m+ τ
∑

(∗) xi,1
)

(1 + τ ñj,1)

and
∑

(∗) denotes the sum over all the indexes corresponding to observa-

tions whose latent variable coincides with θ̃∗j,1. Analogous expressions, with

obvious modifications, hold true for θ̃∗j,2 and θ̃∗j,0.
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