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Abstract

The model considers a monopolist who optimally chooses the design and price of a prod-

uct on the Hotelling line. We characterize the set of prices and consumer surplus that can arise

in the model across all distributions of tastes. In a stark departure from the monopoly model

without product design, the seller never offers a price below a certain threshold. Moreover,

the maximal consumer surplus is strictly smaller than in the absence of product design. It is

attained by a distribution that renders the seller indifferent over a set of design/price combina-

tions. Notably, the distribution does not exhibit unit elasticity given any fixed design.
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1 Introduction

Consumer surplus plays a pivotal role in the theory of monopoly by shedding light on the economic
implications of market power and pricing strategies employed by monopolistic firms. The notion
that consumers might be willing to pay more than the offered price, resulting in consumer surplus,
and that said consumer surplus corresponds to the area below the demand and above the price was
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introduced by Dupuit (1844) and expanded upon by Marshall (1890).1 Despite its importance for
the analysis of monopoly, how the range of achievable consumer surplus depends on the demand
function (equivalently, distribution of valuations) was characterized only recently by Condorelli
and Szentes (2020). Their model takes the product as given and studies how information/demand
shapes consumer surplus. Our paper asks the question of how the seller’s ability to design the object
to conform to consumers’ tastes affects the size of the surplus accruing to consumers. Product
design has been recognised as a vital part of product placement at least since the seminal work of
Hotelling (1929). Hotelling used an example of a producer choosing the sweetness of cider with
consumers’ locations on the line representing their preferred sweetness.2

Formally, consumers have heterogeneous tastes represented by the distribution F over the prod-
uct space [−1, 1] and the seller chooses price p and design ℓ ∈ [−1, 1].3 A consumer’s willingness
to pay for the product is 1 − c(|x − ℓ|), where x is the consumer’s prefered design and c(·) an in-
creasing convex (disutility) function. A consumer’s value of the product is 1 if it perfectly matches
his taste and decreases as the distance between ℓ and x grows. Moving ℓ corresponds to deter-
mining horizontal characteristics of the product, raising some consumers’ willingness to pay but
lowering others’. The standard monopoly model can be interpreted as a special case of our model
in which the seller’s position is exogenously fixed: The further away consumers are from the seller,
the less they are willing to pay for the good. The distribution of consumers’ tastes, thus, induces a
distribution of willingness to pay and the corresponding demand function.

High consumer surplus is achieved at the coincidence of high social welfare and low produer
surplus. The former requires that consumers’ preferred designs are close to the seller’s design (in
order to have low disutility from the mismatch). The latter, that the seller charges a low price. Low
prices are, however, optimal only when consumers are sufficiently spread out. In fact, we show
that very low prices are never optimal for the seller: the seller never offers a price strictly below
1/3, regardless of the disutility function or the distribution of tastes. The result stems from the
observation that the design and the price of the product determine the interval of consumer tastes
that are willing to buy the good. The seller can split this interval into two intervals of the same
width and cover only one of them—the one with more consumers. This guarantees that the seller
reaches at least half of the initial demand at a higher price. Due to the convexity of the disutility

1Although consumer surplus is nowadays a widely employed metric of consumers’ benefits from trade, the discus-
sion around its usefulness and ability to capture compensating variations was raging for a long time; see for example
Willig (1976).

2For more on the importance of product design, see, e.g., Lancaster (1966), Johnson and Myatt (2006) and, more
recently, Bar-Isaac et al. (2023).

3The model also allows for the interpretation that the position of a consumer represents his physical location on a
linear city and the seller chooses a physical location.
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the price needed to cover half of the interval is more than double the initial price if the latter is
below 1/3. This is in stark contrast with the standard monopoly model where any price in [0, 1]

can be optimal. At its core, the ability to design a product empowers the seller to maximize the
demand at any given price. Without the element of design, the sole avenue for the seller to boost
demand is by reducing the price.

The consumer-optimal distribution strikes the balance between the opposing forces of welfare
maximization and profit minimization. It requires that the seller be indifferent over a set of de-
sign/price pairs; each design paired with a different price. The characterization of the distribution
of tastes leads to several important implications. Firstly, unlike in the standard monopoly model,
consumer demand given the seller’s equilibrium location ℓ is not unit-elastic; see Figure 3 for the
comparison of the two distributions. Indeed, any distribution of consumers’ tastes that would create
unit-elastic demand for some fixed design makes it suboptimal for the seller to choose that design.
An immediate implication is that the seller’s ability to design the product reduces the maximal
consumer surplus.

Second, when our methodology is applied to the standard monopoly model, it provides a simple
constructive proof of the distribution of valuations that maximizes consumer surplus. The idea is
to maximize consumer surplus along all distributions that induce the seller to offer some price
p. Since consumer surplus increases as valuations above the price rise, the maximum is achieved
when the seller is indifferent between offering p and any price above it. The indifference yields a
Pareto distribution. Maximization over p yields the distribution that maximizes consumer surplus.

Finally, among all increasing and convex disutilities c(·), consumer surplus is maximized when
the disutility is linear. The maximal consumer surplus with product design is, however, strictly
smaller than the maximal consumer surplus without design identified in Condorelli and Szentes
(2020). The ability to design the product is advantageous for the seller but may have a detrimental
effect on consumers.

Related Literature. The study of consumer surplus in monopoly has recently garnered signif-
icant attention. Our paper is most closely related to Condorelli and Szentes (2020), who (among
other things) characterize the distribution of valuations that maximizes consumer surplus in the
standard monopoly setting.4 Bergemann et al. (2015) characterize the set of consumer (and pro-
ducer) surplus that can arise when the seller can engage in third-degree price discrimination based
on information about consumers.5 Roesler and Szentes (2017) consider a monopoly problem when

4See also Condorelli and Szentes (2022), in which they extend their analysis to the Cournot oligopoly model.
5A recent study by Terstiege and Vigier (2023) discovers an interesting connection between Condorelli and Szentes

(2020) and Bergemann et al. (2015); they show that a multi-product version of the latter’s problem can be approximated
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the buyer chooses to acquire information about his value and the seller sets a price after observing
the buyer’s information acquisition strategy (signal). Their problem can be interpreted as the case
where the set of feasible demand (distribution) functions is restricted by the belief-consistency
(mean-preserving contraction) condition relative to an underlying distribution of buyers’ values.
As opposed to our paper, this body of work takes the design of the product as exogenously given.

Optimal product design has been studied extensively, typically utilizing the Hotelling frame-
work. In fact, Hotelling (1929) himself considers the question of optimal/equilibrium positioning
(product design). Most existing studies examine an oligopoly setting with the uniform distribution
of tastes. How design and pricing in duopoly are affected by more general distributions of tastes is
investigated by, for example, Anderson et al. (1997).6

Monopoly in a Hotelling context is studied by Hidir and Vellodi (2021), Bar-Isaac et al. (2023),
and Kim and Kos (2023). Hidir and Vellodi (2021) study consumer optimal information revelation
in a model of monopolistic product design.7 Bar-Isaac et al. (2023) analyze a model of product
design where consumers are distributed on a circle while the monopolist chooses a design in a
circle. In both of these papers the distribution of tastes is assumed to be uniform. Kim and Kos
(2023) study the seller’s optimal design and pricing strategy when the seller has no information
about the distribution of tastes; a robustness problem.

The remainder of this paper is organized as follows. Section 2 formally introduces our model.
Section 3 studies the benchmark case where the design of the product is exogenously fixed. Sec-
tion 4 and Section 5 provide our main results: Section 4 determines the set of implementable
prices, and Section 5 characterizes the maximal achievable consumer surplus and a distribution
that produces it. Section 6 concludes.

2 The Model

A monopolist is facing a unit mass of consumers whose heterogeneous tastes are distributed over
[−1, 1] according to some distribution F . Given F , the seller chooses a product design (position)
ℓ and a price p ≥ 0. Each consumer’s willingness-to-pay for the seller’s product depends on the
distance between his and the seller’s positions. Given ℓ, a consumer at x ∈ [−1, 1] values the
product at 1 − c(|x − ℓ|), where c : R+ → R+ is strictly increasing and weakly convex with

by the former’s as the number of products grows.
6Rhodes and Zhou (2022) examine how personalized pricing and uniform pricing affect consumer surplus under

various distributions of tastes in a Hotelling oligopoly, albeit they do not allow for product design.
7Ali et al. (2023) study information disclosure in (among other things) duopoly on a Hotelling line, but without

product design.
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c(0) = 0. A consumer’s willingness-to-pay for the preferred design is normalized to 1, while
c(|x− ℓ|) captures disutility from preference misalignment (or “transportation cost”). The seller’s
marginal cost of production is 0.

For each p ≤ 1, let ∆(p) denote the maximal distance from the product design at which a
consumer is still willing to buy the product; that is, ∆(p) := c−1(1 − p). Given (ℓ, p), the seller’s
demand and profit are, respectively, given by

D(ℓ, p;F ) := F (ℓ+∆(p))− F−(ℓ−∆(p)) and π(ℓ, p;F ) := pD(ℓ, p;F ),

where F−(x) := limx′↑x F (x). The seller chooses (ℓ, p) to maximize her profit:

π(F ) := max
(ℓ,p)

π(ℓ, p;F ),

with B(F ) denoting the set of the solutions: B(F ) := {(ℓ, p) : π(ℓ, p;F ) = π(F )}. We write
CS(F ) for the maximal consumer surplus under the distribution F given that the seller maximizes
profit:

CS(F ) := max
(ℓ,p)∈B(F )

∫
max{1− c(|x− ℓ|)− p, 0}dF (x).

Our primary goal is to characterize a distribution that maximizes CS(F ).

Relation to the standard monopoly model. Our model differs from the standard monopoly
model, in that consumers have horizontally differentiated tastes, rather than vertically different
values, and the seller designs the good. The two models, however, are much closer than these
differences seem to suggest. In fact, the standard monopoly model can be interpreted as a special
case of our model in which the product’s design is exogenously given. To see this formally, fix
the product’s design ℓ ∈ [−1, 1]. Since a consumer’s value for the product is 1 − c(|x − ℓ|), the
distribution of consumers’ willingness-to-pay, denoted G, is given by

G(p) := 1− Pr{1− c(|x− ℓ|) > p} = 1−
∫
(ℓ−∆(p),ℓ+∆(p))

dF (x),

where ∆(p) is as defined above. The resulting demand function is

D(p) := 1−G−(p) = F (ℓ+∆(p))− F−(ℓ−∆(p)). (1)

The seller’s problem is to choose p that maximizes pD(p), just as in the standard monopoly prob-
lem.
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Conversely, consider the standard monopoly model with a downward-sloping demand function
D(p). Fix the design to ℓ = 0, and take any continuous and strictly increasing function c such that
c(1) ≥ 1.8 The given demand function can be produced by the distribution of tastes F such that

F (y) =
D(∆−1(y)) + 1

2
, for all y ∈ [0, 1] (2)

and F is symmetric around 0 (i.e., F (−y) = 1 − F−(y) for all y ∈ [0, 1]). The following result
summarizes the argument.

Proposition 1 Fix a disutility function c that is continuous and strictly increasing with c(1) ≥ 1.9

The problem given the distribution of tastes F and the design ℓ = 0 has the same solution as the

standard monopoly problem given a non-increasing demand function D : [0, 1] → [0, 1] when F

and D satisfy (1) (or (2)).

3 Maximal Consumer Surplus for a Fixed Design

We start by examining the case where the design of the product is exogenously fixed at ℓ = 0. Let
G denote the distribution of consumers’ willingness-to-pay induced by the distribution of tastes
F given the design ℓ = 0. Then, the problem of maximizing CS(F ) reduces to the following
problem of choosing G:

max
p,G∈∆([0,1])

∫ 1

p

(v − p)dG(v) s.t. p ∈ argmax
v

v · (1−G−(v)), (3)

which is identical to the problem studied by Condorelli and Szentes (2020). We provide a con-
structive solution method that extends to the problem with product design. It consists of two steps:
(i) For each price p, we identify G that maximizes consumer surplus while maintaining the seller’s
incentive to offer p. (ii) We then find the price p that maximizes consumer surplus.

8Given ℓ = 0, the consumers that are farthest away from the seller (those at −1 or 1) are willing to pay 1 − c(1).
Therefore, the assumption c(1) ≥ 1 ensures that consumers can have arbitrarily small willingness-to-pay for the
seller’s product.

9For this proposition, this condition can be relaxed to c(2) ≥ 1 by assuming that the design is given at −1 or 1. We
fix ℓ to 0 so as to make this result directly applicable to the subsequent analysis.
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For the first step, a key observation is10

∫ 1

p

(v − p)dG(v) =

∫ 1

p

(1−G(v))dv

≤
∫ 1

p

p(1−G(p))

v
dv

= − log(p)p(1−G(p)).

The first equality is through integration by parts, while the inequality uses the fact that p is an
optimal price given G and thus for each v, v(1 − G(v)) ≤ p(1 − G(p)). The upper bound
− log(p)p(1 − G(p)) is maximized when G(p) = 0 and attained by the distribution G such that
v(1 − G(v)) = p(1 − G(p)) for all v ≥ p. It follows that the optimal distribution given p is such
that its support is [p, 1] and the seller is indifferent over all prices in the interval.

Intuitively, given price p, consumer surplus increases as the distribution G rises in the sense
of first-order stochastic dominance. However, it is subject to the constraint that p should be the
seller’s optimal price. In particular, no price above p can be a profitable deviation for the seller.
This limits the extent to which one can stochastically raise G. For any value v above p, probability
mass above v can be assigned only up to the point where the seller is indifferent between charging
p and v. This fully determines the optimal distribution given p.

The second step is to maximize − log(p)p. Solving it leads to the following result, which
corresponds to Theorem 1 of Condorelli and Szentes (2020).

Theorem 1 If the product’s design is fixed at ℓ = 0, the maximally attainable consumer surplus is

equal to 1/e when 1 − c(1) ≤ 1/e and −(1 − c(1)) ln(1 − c(1)) otherwise.11 It can be achieved

with the following distribution:

G0(v) =

{
1− p0

v
if v ∈ [p0, 1)

1 if v ≥ 1,

where p0 = 1/e if 1− c(1) ≤ 1/e, and p0 = 1− c(1) otherwise.

Figure 1 depicts a symmetric distribution of tastes F that induces the distribution of willingness
to payG0 in Theorem 1 (left) and its density conditional on x ̸= 0 (right); probability mass at ℓ = 0

10For ease of notation, we restrict attention to continuous G. But, the argument can apply even if G is not continuous,
because any distribution G is monotone and so can be approximated through continuous distributions.

11The second case arises because 1 − c(1) is the lowest willingness to pay by consumers. This limits the extent to
which the firm can be incentivized to lower its price, rendering the maximal consumer surplus 1/e out of reach.
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Figure 1: The symmetric distribution F associated with G0 in Theorem 1. The left panel depicts
the cumulative distribution function, while the right panel draws the probability density function,
excluding the mass point at 0 (represented as the red line on 0). In this figure, c(|x− ℓ|) = |x− ℓ|.

is represented by the solid red pillar. We first examine the symmetric F as it lends itself to simple
graphical arguments. An important feature of the distribution F is that its density increases fast
as x moves away from ℓ = 0 (i.e., as |x| increases). The property is required for the seller to
stay indifferent over a set of prices conditional on ℓ = 0. The indifference over the prices and the
shape of the density, however, render the distribution vulnerable to deviations in product design.
In particular, despite the symmetric structure of F , ℓ = 0 is not the seller’s optimal product design.
Therefore, if the seller can choose the design, consumer surplus is smaller than in Theorem 1.

To see why ℓ = 0 is not the seller’s optimal design under F , let ∆0 := c−1(1 − p0) and fix
p = 1 − c

(
∆0

2

)
. Conditional on ℓ = 0, the seller is indifferent between p = 1 − c

(
∆0

2

)
and

p0 = 1− c (∆0). Consider the seller’s deviation to (ℓ, p) =
(
∆0

2
, 1− c

(
∆0

2

))
; that is, suppose the

seller chooses the same price p = 1− c
(
∆0

2

)
but moves her position to ∆0

2
.12 As visualized in the

right panel of Figure 1, the deviation makes the seller lose consumers in
[
−∆0

2
, 0
)

but gain those
in
(
∆0

2
,∆0

]
. Due to the shape of the distribution, the latter gain is larger than the former loss, thus

raising the quantity sold.13 Since the price stays the same, the deviation is strictly profitable for the

12We use this deviation to show that ℓ = 0 is not optimal. However, it can be shown that (ℓ, p) =
(
∆0

2 , 1− c
(
∆0

2

))
is, in fact, the seller’s optimal strategy given the specific F .

13For this argument, it suffices that the density function g0 of G0 strictly increases in y. The property holds whenever
c is strictly increasing and weakly convex, because

g0(y) = (1− c(∆0))
c′(y)

(1− c(y))2
for any y ∈ (0,∆0).
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seller.
While the above argument only shows that l = 0 is not optimal under the symmetric distribution

of tastes F that generates G0, the result holds more generally.

Proposition 2 The product design ℓ = 0 is not optimal for any distribution of tastes F that induces

the willingness to pay G0.

Proof. See the appendix.

4 Pricing

We return to the main model where the seller chooses both the design of the product and the price.
Before characterizing consumer surplus we explore the seller’s pricing.

For any price p < 1, the seller can design a product that appeals to a strictly positive mass of
consumers. Price 0 is therefore never optimal. We will show that similar logic extends to all prices
below some strictly positive threshold. The following terminology will be of use.

Definition 1 A price p is implementable if there exists a distribution F of tastes and a design ℓ

such that (ℓ, p) is optimal for the seller given the distribution F.

Suppose that given the distribution F , it is optimal for the seller to choose a design ℓ and price
p; let ∆ be the corresponding reach. A necessary condition for p to be an optimal price is that the
following deviation is not profitable. The seller could choose to serve only [ℓ−∆, ℓ] or [ℓ, ℓ+∆]—a
strategy that entails a higher price while allowing the seller to capture at least a half of consumers
on [ℓ − ∆, ℓ + ∆] by choosing the more populous side. For the deviation not to be profitable, it
must be that

(1− c(∆)) (F (ℓ+∆)− F−(ℓ−∆)) ≥
(
1− c

(
∆

2

))
F (ℓ+∆)− F−(ℓ−∆)

2
,

which simplifies to 1 − c(∆) ≥ 1/2(1 − c(∆/2)). In words, the price cannot more than double.
The following result ensues.

Proposition 3 Let ∆ be the maximal value of ∆ ∈ [0, 1] such that 1− c(∆) ≥ 1/2(1− c(∆/2)).

No price p < 1− c(∆) is implementable.

Proof. In the appendix, we show that ∆ is well defined, and 1 − c(∆) ≥ 1/2(1 − c(∆/2)) holds
if and only if ∆ ≤ ∆.
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1− c(∆)
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3/7

∆

Figure 2: This figure illustrates Proposition 3. The left panel depicts the case where c(y) = y (so
1− c(y) = 1− y), while the right panel is for the case where c(y) = y2.

The result holds because 1 − c(∆) decreases faster than 1/2(1 − c(∆/2)) at any ∆, so they
can cross at most once; see Figure 2. If crossing occurs before ∆ = 1 then ∆ corresponds to the
crossing point. Otherwise (i.e., 1− c(∆) is uniformly above 1/2(1− c(∆)/2) over [0, 1]), ∆ = 1.

In Section 5, we establish the converse to Proposition 3: any p ∈ [1−c(∆), 1] is implementable.
In consequence, price p is implementable if and only if p ∈ [p, 1] where p := 1 − c(∆). We refer
to p as the minimal implementable price. The following result establishes distribution-free bounds
on p.

Corollary 1 The following holds:

1/3 ≤ p ≤ max{1/2, 1− c(1)}.

Proof. By its definition, ∆ satisfies

1− c(∆) ≥ 1

2

(
1− c

(
∆

2

))
.

Since c is convex and c(0) = 0, c
(
∆/2

)
≤ c

(
∆
)
/2. Therefore, the above inequality implies that

1− c(∆) ≥ 1

2

(
1− c(∆)

2

)
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and thus

1− c(∆) ≥ 1

3
.

The second result holds because either ∆ = 1 or

1− c(∆) =
1

2
(1− c(∆/2)) ≤ 1

2
.

The lower bound in the above result is particularly striking: a price below 1/3 can never be
optimal for the seller. Note that the result holds regardless of the distribution F and the disutility
function c. The result lends itself to a geometric interpretation. Suppose c is linear and consider a
price p < 1/3 combined with some design ℓ. The seller sells to consumers on [ℓ−∆, ℓ+∆] where
∆ = c−1(1 − p). The seller could instead sell only to consumers on [ℓ − ∆, ℓ] or [ℓ, ℓ + ∆] and
guarantee to reach at least a half of the demand. The corresponding price is (p+1)/2 due to linear
disutility. If p < 1/3, the price more than doubles, while the demand at most halves. Examining
power disutility functions further elucidates the result.

Power Disutility. Suppose c(y) = tyα for some t > 0 and α ≥ 1. Then

∆α = min

{(
1

t (2− 1/2α)

)1/α

, 1

}
.

The resulting minimal implementable price is

p
α
= max

{
2α − 1

2α+1 − 1
, 1− t

}
.

Observe that this minimal price is equal to 1/3 when α = 1; the lower bound of p in Corollary 1 is
achievable when c is linear. It increases and converges to max{1/2, 1 − t} as α tends to ∞, thus
establishing that the upper bound in Corollary 1 is also binding.

The above power utility example suggests that the minimal implementable price depends on
convexity of the disutility function c. The following result shows that the result indeed holds
generally. We adopt the standard definition that a function c̃ is more convex than another function
c if there exists an increasing and convex function ψ such that c̃ = ψ(c).
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Proposition 4 Let p be the minimal implementable price under c and p̃ the minimal implementable

price under c̃. If p > 1− c(1), p̃ > 1− c̃(1),14 and c̃ is more convex than c, then p̃ ≥ p.

Proof. See the appendix.

Relation to the standard monopoly model. In the monopoly model without product design,
the monopolist distorts the outcome by offering a price above the marginal cost. Depending on
the demand (and the cost function), the price can be arbitrarily close to or even 0. Corollary 1
establishes a stark departure from this in the model with design. The seller designs a product in
such a way that the demand for the given design makes it optimal for the seller to charge a price of
at least 1/3. The combination of pricing and design, therefore, guarantees that the distortions from
pricing are substantial, as the marginal cost of production in our model is nil.

5 Consumer Surplus

In this section, we characterize the range of consumer surplus that the model with product design
can generate. The minimal consumer surplus, zero, is attained when the distribution of tastes is a
Dirac distribution. The seller designs the product all the consumers prefer and extracts full surplus
by charging price 1. Most of the subsequent analysis revolves around characterizing the maximal
attainable consumer surplus. Any level between the minimal and the maximal can be realized too.

To derive the maximal consumer surplus, we introduce a class of distributions of tastes, char-
acterize their properties, and show that for every implementable price, a distribution in this class
maximizes consumer surplus. Then we characterize the maximal consumer surplus and the Pareto
payoff frontier.

5.1 A Class of Design-Robust Distributions

In Section 3 we showed that facing a distribution of tastes that produces the maximal consumer
surplus given ℓ = 0 (which makes the seller indifferent over an interval of prices) the seller does
not find the design ℓ = 0 optimal. With that in mind, we define a class of distributions that make
the seller indifferent over a set of design-price pairs.

Definition 2 For each ∆ ∈ [0,∆], let F∆ denote a distribution such that

F∆(x) = 1− F∆(−x) =
1− c(∆)

1− c
(
x+∆
2

) for x ∈ [0,∆].

14If the minimal implementable price is 1− c(1) (i.e., ∆ = 1) then it simply depends on c(1).
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1−1 0

f(x)

∆−∆ ℓ2ℓ−∆

Figure 3: This figure depicts the density function of F∆ in Definition 2 (blue solid) and that of the
optimal distribution in Theorem 1 (red dashed), each conditional on x ̸= 0. The brown solid pillar
represents probability mass at 0. In this figure, c(|x− ℓ|) = |x− ℓ| and ∆ = e−1

e
≈ 0.6321.

Note that distribution F∆ assigns probability mass of size

lim
x→0

F∆(x)− F∆(−x) = 2

(
1− c(∆)

1− c(∆/2)
− 1

)
=

1− 2c(∆) + c(∆/2)

1− c(∆/2)

to 0. This probability is non-negative and thus well defined if and only if ∆ ∈ [0,∆] (see Proposi-
tion 3).

Figure 3 shows how F∆ (blue solid) compares to the symmetric consumer-optimal distribution
under a fixed design (at ℓ = 0) from Theorem 1, denoted F 0 (red dashed). Just like F 0, F∆ is
symmetric around 0 with probability mass (only) at 0, and its density is increasing as x moves
further away from 0. However, F∆ is less concentrated around 0: for each x ∈ (0,∆), F∆(x) −
F∆(−x) < F 0(x)− F 0(−x). This is necessary for the following property, which is a counterpart
to unit elasticity of F 0.

Lemma 1 Under F∆, for any ℓ ∈ [0,∆/2], π(0, 1− c(∆)) = π(ℓ, 1− c(∆− ℓ)).

Proof. If ℓ ∈ [0,∆/2] and p = 1 − c(∆ − ℓ) then, as visualized in Figure 3, the seller covers
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[2ℓ−∆,∆]. Therefore,

π(ℓ, 1− c(∆− ℓ)) = (1− c(∆− ℓ))(1− F∆(∆− 2|∆− ℓ|))

= (1− c(∆− ℓ))F∆(∆− 2ℓ)

= (1− c(∆− ℓ))
1− c(∆)

1− c
(
∆−2ℓ+∆

2

)
= 1− c(∆)

= π(0, 1− c(∆)),

where the second equality is because F is symmetric around 0 (i.e., F (−x) = 1 − F (x)) and the
third equality due to the definition of F∆.

Under F∆, the seller is indifferent over a set of design-price combinations: (ℓ, 1−c(∆−ℓ)) for
any ℓ ∈ [0,∆/2].15 Equivalently, the seller is indifferent between covering [−∆,∆] and covering
[2ℓ−∆,∆] for every ℓ ∈ [0,∆/2]. This is in stark contrast with—and the main difference from—
F 0 under which the seller is indifferent over covering [−∆,∆] for different values of ∆.

The following result shows that given F∆ no other deviation is profitable, and thus (ℓ, p) =

(0, 1− c(∆)) is the firm’s optimal strategy.

Proposition 5 Under F∆, π(0, 1− c(∆)) ≥ π(ℓ, p) for any (ℓ, p).

Proof. See the appendix.

For the intuition behind Proposition 5, fix p = 1− c(∆̂) for some ∆̂ ∈
[
∆
2
,∆
]
,16 and consider

the deviation to (ℓ, p) for some ℓ. By Lemma 1, the seller is indifferent between (0, 1− c(∆)) and
(ℓ̂, p) where ℓ̂ = ∆ − ∆̂. Therefore, it suffices to show that ℓ̂ is the seller’s optimal design given
that she chooses p = 1 − c(∆̂), which is equivalent to D(ℓ̂, p;F∆) ≥ D(ℓ, p;F∆) for any ℓ. This
property follows from the shape of F∆: as shown in Figure 3, f∆ is increasing in |x|. Therefore,
choosing ℓ < ℓ̂ can never increase the seller’s demand—the area below f∆ over [ℓ−∆, ℓ+∆] plus
probability mass at 0.

The fact that Proposition 5 holds for any ∆ ∈ [0,∆] implies the following result.

Corollary 2 For any ∆ ∈ [0,∆], there exists a distribution under which the seller chooses p =

1− c(∆). Consequently, the distribution F∆ is a price-minimizing distribution among all possible

distributions over [−1, 1].
15Because of symmetry the seller is also indifferent between (0, 1 − c(∆)) and (−ℓ, 1 − c(∆ − ℓ)) for any ℓ ∈

[0,∆/2].
16In the appendix, we show that choosing ∆̂ < ∆/2 is strictly unprofitable for the seller, regardless of her design.
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1−1 0

f(x)

∆−∆

Figure 4: This figure depicts the density function of F∆ in Definition 2 (blue solid), a density
function that belongs to F(p) (red dashed), and one that does not belong to F(p) despite having
the same support as F∆ (dash-dotted), each conditional on x ̸= 0. The brown solid pillar represents
probability mass at 0. In this figure, c(|x− ℓ|) = |x− ℓ| and ∆ = e−1

e
≈ 0.6321.

5.2 Maximal Consumer Surplus

Let F(p) denote the set of all distributions under which it is optimal for the seller to choose price
p together with a certain location. The results so far imply that F(p) is non-empty if and only if
p = 1− c(∆) for some ∆ ∈ [0,∆], and F∆ ∈ F(1− c(∆)). The following proposition argues that
F∆ is a consumer-optimal distribution among all distributions of tastes in F(1− c(∆)).

Proposition 6 For any ∆ ∈
[
0,∆

]
and p = 1− c(∆), F∆ maximizes consumer surplus in F(p).

Proof. See the appendix.

To understand this result, fix ∆ ∈
[
0,∆

]
and p = 1 − c(∆), and consider any F ∈ F(p).

Consumer surplus is larger, the more concentrated consumers are around the seller. If, however,
too many consumers are in the seller’s immediate vicinity, she would charge a higher price. For
example, in Figure 4, given that the seller chooses (ℓ, p) = (0, 1 − c(∆)), the black dash-dotted
distribution yields more consumer surplus than the other two. However, due to a relatively high
concentration of consumers around 0, the seller would not choose (0, 1−c(∆)); it is more profitable
for her to move to ℓ ∈ [0,∆/2) and charge a higher price.

The distribution F∆ strikes a balance between the two effects: we show that for (0, p) to be
optimal, F must assign at least as much mass as F∆ above each ℓ ∈

[
0, ∆

2

]
; see the red dashed

curve in Figure 4 and compare it to f∆ (blue solid).17 This means that in the positive region F
17Recall that under F∆, the seller is indifferent between (0, p) and (−(∆ − ℓ)/2, 1 − c((∆ + ℓ)/2)) for any ℓ ∈
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dominates F∆ in the sense of first-order stochastic dominance. Applying the same logic in the
negative region, F is dominated by F∆. This stochastic dominance comparison, together with the
fact that both F and F∆ induce the same price p, implies that no F ∈ F(p) can produce larger
consumer surplus than F∆.

Proposition 6 suggests that for the purpose of maximizing consumer surplus we can restrict
attention to the class of design-robust distributions in Definition 2. This reduces the infinite dimen-
sional problem of finding a distribution that maximizes consumer surplus to a single-dimensional
problem, yielding the following characterization.

Theorem 2 Let ∆∗ be the value of ∆ ∈ (0,∆] that solves

max
∆∈[0,∆]

CS(F∆) = −c(∆) + 2

∫ ∆

0

1− c(∆)

1− c
(
x+∆
2

)dc(x). (4)

Then, F∆∗ maximizes consumer surplus in F .

To decipher this result, we consider the two canonical disutility functions, one in which c

is linear and the other in which c is quadratic, and provide a more detailed characterization of
consumer-optimal distributions and maximal consumer surplus in these two cases.

Linear Disutility. Suppose c(y) = ty for all y ≥ 0 and some t > 0. Then, c′(x) = c′
(
x+∆
2

)
= t,

so CS(F∆) can be explicitly solved:

CS(F∆) = −t∆+ 4(1− t∆) ln

(
1− t∆

2

1− t∆

)
.

Observe that this expression depends only on η := t∆. The optimal value of η, denoted η∗, satisfies
the following first order condition:

3− 4 ln

(
1− η∗

2

1− η∗

)
− 2(1− η∗)

1− η∗

2

= 0.

[0,∆/2] (Lemma 1). If F ∈ F(p) then the seller should weakly prefer (0, p) to (−(∆ − ℓ)/2, 1 − c((∆ + ℓ)/2)),
which holds only when F assigns larger probability above ℓ than F∆.
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The solution is η∗ ≈ 0.5123, and the resulting maximal consumer surplus is

CS := −η∗ + 4(1− η∗) ln

(
1− η∗

2

1− η∗

)
,

≈ 0.3113.

Since ∆ ≤ 1, the optimal reach is given by ∆∗ = min {η∗/t, 1}. Consequently, CS(F∆∗) = CS

if ∆∗ < 1, while CS(F∆∗) < CS if ∆∗ = 1.
The following two facts about this result are of particular interest. First, for t > η∗ the price

induced by the seller-optimal distribution is strictly larger than 1−c(∆)—the lowest possible price.
This means that consumer-optimal and price-minimizing distributions are distinct from each other,
although they belong to the same design-robust class in Definition 2. Second, for t ≥ η∗, the
maximal consumer surplus does not depend on the cost parameter t; it is equal to CS regardless
of t(≥ η∗). If t rises then the distribution F∆∗ becomes proportionally contracted, so the resulting
profit and consumer surplus stay constant.

Quadratic Disutility. Now suppose c(y) = ty2 for all y ≥ 0 and some t > 0. Unlike in the
previous linear case, the integral in (4) cannot be solved in closed form. Numerically, it can be
shown that ∆∗ = min{

√
0.4919/t, 1}(≤ ∆ = min{

√
4/(7t), 1}), CS(F∆∗) ≈ 0.2908 if ∆∗ < 1,

and CS(F∆∗) < 0.2908 if ∆∗ = 1.

Consumer Surplus and Disutility. Note that the maximal consumer surplus is strictly higher
with linear disutility than with quadratic disutility. In fact, a stronger result holds: CS ≈ 0.3113 is
a tight upper bound for consumer surplus, as formally stated in the following result.

Proposition 7 For any increasing and convex function c, CS(F∆) ≤ CS ≈ 0.3113.

Proof. Since c is convex, we have c
(
x+∆
2

)
≤ c(x)+c(∆)

2
for any x ∈ [0,∆]. This implies that

CS(F∆) = −c(∆) + 2(1− c(∆))

∫ ∆

0

1

1− c
(
x+∆
2

)dc(x)
≤ −c(∆) + 2(1− c(∆))

∫ ∆

0

1

1− c(x)+c(∆)
2

dc(x)

= −c(∆) + 4(1− c(∆)) ln

(
1− c(∆)

2

1− c(∆)

)
,

where the last equality is through direct calculus. As shown in the case of linear disutility, the last
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expression is maximized when c(∆) = η∗, and the maximized value is equal to CS.

Recall (from Theorem 1) that the maximal consumer surplus in Condorelli and Szentes (2020)
is 1/e ≈ 0.3679, which is strictly larger than CS ≈ 0.3113. This means that consumer surplus in
our model can never be as large as the maximal level in Condorelli and Szentes (2020),18 demon-
strating that the seller’s ability to design her product, which is clearly beneficial to her, can be
harmful to consumers.

5.3 Consumer Surplus and the Pareto Frontier

The above results can be used to characterize the full range of consumer surplus that can arise
in our model. We characterized the maximal consumer surplus and a distribution that attains it.
At the other extreme, the smallest consumer surplus is attained by Dirac distributions. One such
Dirac distribution is F∆ with ∆ = 0. Since the highest consumer surplus is attained by F∆∗ for
some ∆∗ > 0 and CS(F∆) is continuous in ∆, the intermediate value theorem implies that any
consumer surplus in the range [0, CS(F∆∗)] can be achieved by some design-robust distribution.

Proposition 8 The set of attainable consumer surplus is [0, CS(F∆∗)].

Pareto Frontier. Recall that for each ∆ ∈ [0,∆], F∆ maximizes consumer surplus among all
distributions in F(p) where p = 1− c(∆) (Proposition 6). In addition, under F∆, the seller serves
all consumers, so her profit is p = 1 − c(∆). Conditional on charging p, the seller’s profit clearly
cannot exceed p. This implies that F∆ Pareto dominates all distributions in F(p). This observation
allows us to obtain the following characterization of the Pareto payoff frontier—the upper envelope
of payoff vectors attainable in our model.19

Proposition 9 The Pareto payoff frontier across all distributions is given by

{
(p, CS(p)) : p ∈ [1− c(∆∗), 1]

}
,

where CS(p) is defined as

CS(p) := max{CS(F∆) : 1− c(∆) ≥ p}.
18This comparison itself is a corollary of Proposition 2: Facing the distribution of tastes that, conditional on ℓ = 0,

produces the consumer-optimal distribution in Condorelli and Szentes (2020), the seller has no incentive to choose
ℓ = 0. Therefore, consumer surplus can never be 1/e. Proposition 7, however, provides a tight upper bound.

19Our characterization of the frontier is similar in spirit to Bergemann et al. (2015) and Roesler and Szentes (2017),
though the set of distributions here is not restricted by Bayes plausibility.
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π

CS

0 11− c(∆)1− c(∆∗)

CS

c(∆∗)

c(∆)

Figure 5: The maximal consumer surplus (red dot) and the Pareto frontier (red solid) when c(y) =
0.8y. The blue dashed line represents the case where full surplus of 1 is realized (i.e., CS+π = 1).

Proof. See the appendix.

Figure 5 illustrates Proposition 9. For the linear disutility function, consumer surplus from
design-robust distributions, CS(F∆), is quasi-concave in ∆, increasing until ∆∗ and then decreas-
ing. In this case, the Pareto payoff frontier is spanned by {F∆ : ∆ ∈ [0,∆∗]}. If CS(F∆) is not
quasi-concave, then the Pareto frontier is spanned by a subset of {F∆ : ∆ ∈ [0,∆∗]}. In that case,
for each p ∈ [1 − c(∆∗), 1] it suffices to identify the highest attainable consumer surplus with a
weakly higher price; note that CS(p) is necessarily quasi-concave.

The total available surplus is 1, which is achieved when all consumers have the same taste and
the seller chooses their favorite design. In that situation, however, the seller would extract full
surplus by charging p = 1, minimizing consumer surplus. This implies that positive consumer sur-
plus necessarily involves market inefficiency, that is, social surplus is strictly less than 1 whenever
consumer surplus is positive. In Figure 5, this is reflected in the fact that the Pareto payoff frontier
lies strictly lower than the efficiency frontier (blue dashed).

6 Conclusion

We study how optimal pricing and consumer surplus depend on the monopolistic seller’s ability
to design the product. Product design gives the seller a strategic edge, rendering low prices never
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optimal. The seller never chooses a design/price combination with a price below 1/3 regardless of
the distribution of tastes. This is a striking departure from the standard monopoly model (without
product design) where the seller can be induced to offer prices arbitrarily close to zero.

The seller’s ability to design the product has significant implications for consumer surplus.
Consumer surplus is maximized by a distribution of tastes that makes the seller indifferent over a
certain set of design/price combinations. Unlike in the model without product design, the distri-
bution is not unit elastic given a design. In fact, any distribution of tastes that induces unit-elastic
demand for some fixed design makes that design suboptimal for the seller. Due to this difference,
the maximal attainable consumer surplus is strictly lower in our model than in the model without
product design.

While the Hotelling model has been used to study a wide variety of questions in industrial orga-
nization, little attention has been dedicated to how the distribution of tastes affects product design
and, through that, market participants. Our model can be extended in various ways. For example,
while degenerate distributions minimize consumer surplus in monopoly with product design, they
induce Bertrand competition and thus produce maximal consumer surplus in the oligopoly setting.
Less clear in that environment is what kind of distributions lead to low consumer surplus. A further
avenue of research would be the value of information in the presence of product design, both for
the seller(s) as well as consumers.

References

Ali, S Nageeb, Greg Lewis, and Shoshana Vasserman, “Voluntary Disclosure and Personalized
Pricing,” The Review of Economic Studies, 2023, 90 (2), 538–571.

Anderson, Simon P, Jacob K Goeree, and Roald Ramer, “Location, location, location,” journal

of economic theory, 1997, 77 (1), 102–127.

Bar-Isaac, Heski, Guillermo Caruana, and Vicente Cuñat, “Targeted product design,” Ameri-
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Appendix: Omitted Proofs

Proof of Proposition 2. Consider any (asymmetric) distribution F that induces G0. Given ℓ = 0,
the seller is indifferent between charging p0 = 1− c(∆0) and 1− c(∆0/2). Therefore, we have

π(0, p0) = (1− c(∆0))(F (∆0)− F−(−∆0))

= 1− c(∆0)

= π(0, 1− c(∆0/2))

= (1− c(∆0/2)) (F (∆0/2)− F−(−∆0/2)).

Similarly, the seller is indifferent between charging p0 and 1, so we also have

π(0, p0) = 1− c(∆0) = π (0, 1) = F (0)− F−(0).

Claim 1 The following holds:

max {F (∆0)− F−(0), F (0)− F−(−∆0)} ≥ 1− c(∆0)

2
.

Proof. If the inequality fails then the following contradiction emerges:

1 = F (∆0)− F (−∆0)

= (F (∆0)− F−(0)) + (F (0)− F−(−∆0))− (F (0)− F−(0))

< 2− c(∆0)− (1− c(∆0)) = 1.

Claim 2 If c is weakly convex then for any y > 0 we have

(1− c(y/2))

(
1− c(y)

2

)
> 1− c(y).
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Proof. For any convex c, we have c(y/2) ≤ c(y)/2. Therefore,

(1− c(y/2))

(
1− c(y)

2

)
≥
(
1− c(y)

2

)(
1− c(y)

2

)
= 1− c(y) +

c(y)2

4

> 1− c(y).

We proceed to show that it is a profitable deviation for the seller to move her location to either
−∆0/2 or ∆2/2 and charge 1− c(∆0/2). In Claim 1, without loss of generality, suppose F (∆0)−
F−(0) ≥ 1− c(∆0/2). Then, we have

π(∆0/2, 1− c(∆0/2)) = (1− c(∆0/2))(F (∆0)− F−(0))

≥ (1− c(∆0/2))

(
1− c(∆0)

2

)
> 1− c(∆0) = π(0, 1− c(∆0)),

where the weak inequality is due to Claim 1, while the strict inequality is due to Claim 2.

Proof of Proposition 3. Define f(∆) := 2c(∆) − c(∆/2). Then, ∆ can be interpreted as the
maximal value of ∆ ∈ [0, 1] such that f(∆) ≤ 1. We show that f is continuous and strictly
increasing; this implies not only that ∆ is well defined, but also that 1− c(∆) ≥ 1/2(1− c(∆/2))

holds if and only if ∆ ≤ ∆.
Continuity of f follows from that of c. For monotonicity, consider any 0 ≤ ∆ < ∆′. Then,

f(∆′)− f(∆) = 2(c(∆′)− c(∆))− (c(∆′/2)− c(∆/2))

= c(∆′)− c(∆) + [(c(∆′)− c(∆))− (c(∆′/2)− c(∆/2))]

> c(∆′)− c(∆) > 0,

where the first inequality holds because c is convex.

Proof of Proposition 4. Let ϕ(y, ε, c) denote the value (“probability premium”) such that

c(y) =

(
1

2
+ ϕ(y, ε, c)

)
c(y − ε) +

(
1

2
− ϕ(y, ε, c)

)
c(y + ε).
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Since c is strictly increasing and convex, ϕ(y, ε, c) is well defined and non-negative for any ε ∈
(0, y]. If c̃ is more convex than c, then ϕ(y, ε, c̃) ≥ ϕ(y, ε, c); see Proposition 6.C.2 in Mas-Colell
et al. (1995).

Consider the case where y = ε = ∆/2, and let ϕ̂(c) := ϕ(∆/2,∆/2, c). Then, we have

1− c
(
∆/2

)
=1−

((
1

2
+ ϕ̂(c)

)
c(0) +

(
1

2
− ϕ̂(c)

)
c(∆)

)
=1−

(
1

2
− ϕ̂(c)

)
c(∆)

where the second equality holds because c(0) = 0. The assumption that ∆ < 1 (equivalently,
p > 1− c(1)) implies that 1− c(∆) = 1/2(1− c(∆/2)). Combining this with the above equation
leads to

2
(
1− c(∆)

)
= 1−

(
1

2
− ϕ̂(c)

)
c(∆),

which can be rewritten as

p = 1− c(∆) = 1− 1

3/2 + ϕ̂(c)
.

Since c̃ is more convex than c, ϕ̂(c̃) ≥ ϕ̂(c) and therefore p̃ ≥ p.

Proof of Proposition 5. Consider p = 1 − c(∆̂) where ∆̂ ∈
[
∆
2
,∆
]
. By Lemma 1, π(0, 1 −

c(∆)) = π
(
ℓ̂, p
)

where ℓ̂ = ∆ − ∆̂. We show that π(ℓ̂, p) ≥ π(ℓ, p) for any ℓ ∈ [−1, 1]. Since

supp(F∆) = [−∆,∆], the inequality clearly holds if ℓ > ℓ̂ or ℓ < −ℓ̂. The result for ℓ ∈ [0, ℓ̂)

follows from the fact that

D(ℓ, p)−D(ℓ̂, p) =
(
F (2ℓ̂− ∆̂)− F (2ℓ̂− ∆̂− (ℓ̂− ℓ))

)
−
(
1− F (∆− (ℓ̂− ℓ))

)
< 0,

where the inequality holds because the density function is symmetric around 0 and strictly increas-
ing in |x|. A symmetric argument applies when ℓ ∈ (−ℓ̂, 0).

Now, consider p = 1 − c(∆̂) for ∆̂ ∈
[
0, ∆

2

)
. Given the shape of F∆, there are two cases to
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consider, one in which ℓ = ∆̂ and the other in which ℓ = ∆− ∆̂. In the former case, the inequality

π(ℓ, p) = p(F∆(2∆̂)− F∆−(0))

≤ π(0, 1− c(∆))

= 1− c(∆)

is equivalent to

1

1− c
(
∆̂ + ∆

2

) +
1

1− c
(
∆
2

) ≤ 1

1− c(∆)
+

1

1− c(∆̂)
,

which holds because convexity of c(·) implies that 1
1−c(·) is strictly convex, (∆̂+ ∆

2
)+ ∆

2
= ∆+∆̂,

and max{∆
2
, ∆̂ + ∆

2
} ≤ ∆. In the latter case, inequality

π(ℓ, p) = p
(
F∆(∆)− F∆(∆− 2∆̂)

)
≤ π(0, 1− c(∆))

= 1− c(∆)

is equivalent to

1

1− c(∆)
≤ 1

1− c(∆̂)
+

1

1− c(∆− ∆̂)
.

Since 1
1−c(·) is strictly convex, the right-hand side is minimized when ∆̂ = ∆

2
. Therefore, the

inequality holds for any ∆̂ ∈
[
0, ∆

2

)
if and only if

1

1− c(∆)
≤ 2

1− c
(
∆
2

) ,
which holds due to ∆ ≤ ∆ (see Proposition 3).

Proof of Proposition 6. Let F̃ denote a consumer-optimal distribution in F(p) and ℓ̃ denote the
seller’s optimal location under F̃ at which p is the seller’s optimal price.

(i) Under F̃ , the seller should serve all consumers, that is, F̃
(
ℓ̃+∆

)
− F̃−

(
ℓ̃−∆

)
= 1.
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Suppose F̃
(
ℓ̃+∆

)
− F̃−

(
ℓ̃−∆

)
< 1. Then, consider the following alternative distribution:

F̂ (x) =


0 if x < ℓ̃−∆
F̃ (x)−F̃−(ℓ̃−∆)

F̃ (ℓ̃+∆)−F̃−(ℓ̃−∆)
if x ∈ [ℓ̃−∆, ℓ̃+∆]

1 if x ≥ ℓ̃+∆.

In other words, F̂ takes all probability of F̃ outside of [ℓ̃−∆, ℓ̃+∆] and spreads it over [ℓ̃−∆, ℓ̃+∆]

proportionally to F̃ . By construction, F̂ preserves the firm’s preferences over its strategies inside
[ℓ̃ − ∆, ℓ̃ + ∆] and makes them more profitable than the other strategies (overlapping with the
interval below ℓ̃ − ∆ or the interval above ℓ̃ + ∆) relative to F̃ . Therefore, (ℓ̃, p) remains the
seller’s optimal strategy. It is straightforward that F̃ produces larger consumer surplus than F̃ ,
which is a contradiction.

(ii) Without loss of generality, assume ℓ̃ = 0. Then, F̃ (x) ≤ F∆(x) for all x ∈ (0,∆] and
F̃ (x) ≥ F∆(x) for all x ∈ [−∆, 0).

Fix x ∈ (0,∆]. Let ∆′ = x+∆
2

and notice that ∆′ ∈
(
∆
2
,∆
]
. Then, by Lemma 1

π(x−∆′, 1− c(∆′);F∆) = (1− c(∆′))F∆(x)

= π(0, 1− c(∆);F∆)

= 1− c(∆).

If F̃ (x) > F∆(x) then

π(x−∆′, 1− c(∆′); F̃ ) = (1− c(∆′))F̃ (x)

> (1− c(∆′))F∆(x)

= π(0, 1− c(∆);F∆)

= π(0, 1− c(∆); F̃ ).

This implies that p = 1− c(∆) is not the seller’s optimal price under F̃ , contradicting F̃ ∈ F(p).
A symmetric argument applies in the straightforward fashion to the case when F̃ (x) < F∆(x) for
some x ∈ (−∆, 0).

(iii) F̃ = F∆ almost surely.
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We show that CS(F̃ ) ≤ CS(F∆). By (i) and the construction of F∆, we have

CS(F̃ ) = 1− c(∆)−
∫ ∆

−∆

c(|x|)dF̃ (x),

and

CS(F∆) = 1− c(∆)−
∫ ∆

−∆

c(|x|)dF∆(x),

yielding

CS(F̃ )− CS(F∆) =

∫ 0

−∆

c(−x)d(F∆(x)− F̃ (x)) +

∫ ∆

0

c(x)d(F∆(x)− F̃ (x)).

(ii) implies that F̃ (first-order) stochastically dominates F∆ above 0, so
∫ ∆

0
c(x)d(F∆(x)−F̃ (x)) ≤

0. To the contrary, below 0, F∆ stochastically dominates F̃ , so
∫ 0

−∆
c(−x)d(F∆(x) − F̃ (x)) ≤ 0.

The desired result follows from the fact that if F̃ (x) ̸= F∆(x) over a positive measure of values
then CS(F̃ ) < CS(F∆), which contradicts the optimality of F̃ .

Proof of Theorem 2. By Proposition 3 , it suffices to consider prices in [1 − c(∆), 1]. Then,
by Proposition 6, a consumer-optimal distribution necessarily belongs to the class of design-robust
distributions. This means that the problem reduces to

max
∆∈[0,∆]

CS(F∆) =

∫ ∆

−∆

(c(∆)− c(|x|))dF∆(x).

In turn, ∫ ∆

−∆

(c(∆)− c(|x|))dF∆(x)

= (c(∆)− c(0)) lim
x→0

(F∆(x)− F∆(−x)) +
∫
(−∆,0)∪(0,∆)

(c(∆)− c(|x|))dF∆(x)

= 2

(
F∆(0)−

1

2

)
c(∆) + 2

∫
(0,∆]

(c(∆)− c(x))dF∆(x)

= 2

(
F∆(0)−

1

2

)
c(∆) + 2

[
(c(∆)− c(x))F∆(x)|∆0 +

∫
(0,∆]

F∆(x)dc(x)

]
= −c(∆) + 2(1− c(∆))

∫ ∆

0

dc(x)

1− c
(
x+∆
2

) ,
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where the second equality is due to c(0) = 0 and symmetry of F , the third is through integration
by parts, and the last uses the fact that F∆(0) = (1− c(∆))/(1− c(∆/2)).

Proof of Proposition 9. If ∆ = 0 then (π(F∆), CS(F∆)) = (1, 0), which is the seller-
optimal point on the Pareto frontier. The consumer-optimal point on the Pareto frontier is given by
(π(F∆∗), CS(F∆∗)): by Proposition 6 and Theorem 2, F∆∗ is a consumer-optimal distribution, so
(π(F∆∗), CS(F∆∗)) must be Pareto efficient.

For each p ∈ [π(F∆∗), 1], define CS(p) := max{CS(F∆) : 1 − c(∆) ≥ p}. By construction,
CS(p) is weakly decreasing. Note that if CS(F∆) is strictly increasing in ∆ ∈ [0,∆∗] then
CS(1− c(∆)) = CS(F∆).

Pick any π ∈ [π(F∆∗), 1] such that CS is strictly decreasing over [π, π + ε) for some small
ε > 0. By construction, CS(π) = CS(F∆†) where ∆† = c−1(1 − π). Since total demand
cannot exceed 1, the firm can obtain this profit only when its price is not smaller than π. By
Proposition 6, for each p = 1− c(∆) ≥ π, F∆ maximizes consumer surplus in F(p). In addition,
π(F∆) = 1 − c(∆) (i.e., all consumers purchase), and CS(1 − c(∆))—the maximal consumer
surplus—is increasing in ∆ (decreasing in p). This implies that given π ∈ (π(F∆∗), 1), consumer
surplus cannot exceed CS(F∆†).

28


	1 Introduction
	2 The Model
	3 Maximal Consumer Surplus for a Fixed Design
	4 Pricing
	5 Consumer Surplus
	5.1 A Class of Design-Robust Distributions
	5.2 Maximal Consumer Surplus
	5.3 Consumer Surplus and the Pareto Frontier

	6 Conclusion

