Alfredo Di Tillio¹ Marco Ottaviani² Peter N. Sørensen³

June 22, 2022

(中) (월) (문) (문) (문)

¹Bocconi ²Bocconi ³Copenhagen

Decisions under Uncertainty and Experiments

- Uncertainty: Unknown state of nature $heta\in\Theta$, prior probability $\pi\left(heta
 ight)$
- Experiment: Observe $s \in S$ with probability $P(s|\theta)$

$$\implies \text{Posterior} \quad \pi(\theta|s) = \frac{\pi(\theta)P(s|\theta)}{\sum_{\theta'} \pi(\theta')P(s|\theta')}$$

• Decision: Take action $a \in A$ to maximize

$$\sum_{\theta} \pi(\theta|s) u(a,\theta)$$

Blackwell's Comparison of Experiments (1951)

Experiment P is more informative than experiment Q when P allows higher expected utility than Q for every decision problem

Blackwell's Comparison of Experiments (1951)

Experiment P is more informative than experiment Q when P allows higher expected utility than Q for every decision problem

Q is a garbling of P

・ロト ・日下・ ・ 田下

Garbling

Let $P: \Theta \to \Delta(S)$ and $Q: \Theta \to \Delta(T)$ be two experiments.

Q is a garbling of P if there exists $g: S \to \Delta(T)$ such that

$$Q(t| heta) = \sum_{s} P(s| heta) g(t|s) \qquad orall heta$$

i.e. with experiment P you can "imitate" experiment Q ...

We restrict attention to monotone decision problems.

To fix ideas: $A = \{a_1, a_2\}$, with $u(a_2, \theta) - u(a_1, \theta)$ increasing in θ .

• Fewer decision problems: more experiments are comparable

We restrict attention to monotone decision problems.

To fix ideas: $A = \{a_1, a_2\}$, with $u(a_2, \theta) - u(a_1, \theta)$ increasing in θ .

• Fewer decision problems: more experiments are comparable

What makes good information in monotone problems?

We present new findings

• For the case where the better experiment *P* has binary support, we provide two new characterizations of dominated experiments *Q*

We restrict attention to monotone decision problems.

To fix ideas: $A = \{a_1, a_2\}$, with $u(a_2, \theta) - u(a_1, \theta)$ increasing in θ .

• Fewer decision problems: more experiments are comparable

What makes good information in monotone problems?

We present new findings

- For the case where the better experiment *P* has binary support, we provide two new characterizations of dominated experiments *Q*
- We consider further parts of Blackwell's theorem (not today)

Looking Ahead: Monotone Problems \Leftrightarrow IDO Preferences

States and actions are ordered so that (Quah-Strulovici, 2009)

• For all $\theta' > \theta$ and a' > a,

$$u(a', \theta) \ge (>) u(a, \theta) \implies u(a', \theta') \ge (>) u(a, \theta')$$

whenever $u(a', \theta) \ge u(a'', \theta)$ for all a'' with $a \le a'' \le a'$

If action a' is the best action in the interval [a, a'] when state is θ , a' remains the best action in [a, a'] when state is raised to θ'

Looking Ahead: Monotone Problems \Leftrightarrow IDO Preferences

States and actions are ordered so that (Quah-Strulovici, 2009)

• For all $\theta' > \theta$ and a' > a,

$$u(a', \theta) \ge (>) u(a, \theta) \implies u(a', \theta') \ge (>) u(a, \theta')$$

whenever $u(a', \theta) \ge u(a'', \theta)$ for all a'' with $a \le a'' \le a'$

If action a' is the best action in the interval [a, a'] when state is θ , a' remains the best action in [a, a'] when state is raised to θ'

IDO (interval dominance order) class of preferences includes:

- Milgrom-Shannon (1994) single-crossing preferences
- Karlin-Rubin (1956) monotone preferences

Equivalent Comparisons 1: Less Utility \rightarrow LR Box

◆ロト ◆御 と ◆注 と ◆注 と … 注

In experiment P, signal s' is LR-greater than s $(s' >_{LR} s)$ when

$$rac{P(s'| heta')}{P(s'| heta)} > rac{P(s| heta')}{P(s| heta)} \qquad orall heta' > heta$$

or equivalently

$$\frac{\pi(\theta'|s')}{\pi(\theta|s')} > \frac{\pi(\theta'|s)}{\pi(\theta|s)} \qquad \forall \theta' > \theta$$

In experiment P, signal s' is LR-greater than s $(s' >_{LR} s)$ when

$$rac{P(s'| heta')}{P(s'| heta)} > rac{P(s| heta')}{P(s| heta)} \qquad orall heta' > heta$$

or equivalently

$$rac{\pi(heta'|s')}{\pi(heta|s')} > rac{\pi(heta'|s)}{\pi(heta|s)} \qquad orall heta' > heta$$

An implication of IDO utility:

 Quah-Strulovici, Theorem 2: If s' >_{LR} s, the optimal action at s' is no smaller than the optimal action at s

Pictures with Three States

$$\Theta = \{ heta_1, heta_2, heta_3\}$$
 with $heta_1 < heta_2 < heta_3$

Represent beliefs as points in a Marschak triangle:

Binary IDO problem

Start from binary action problems, $A = \{a_1, a_2\}$ with $a_1 < a_2$, then:

Green line: indifference

Binary IDO problem

Start from binary action problems, $A = \{a_1, a_2\}$ with $a_1 < a_2$, then:

Green line: indifference

1. green line crosses base of triangle &

2. high action a_2 optimal left of green line, low action a_1 to right

Binary Experiment

Binary experiment ($S = \{s_1, s_2\}$) spreads arbitrary prior π to posteriors p, q

Belief p dominates another belief q in LR order $(p >_{LR} q)$ when

Belief p dominates another belief q in LR order $(p >_{LR} q)$ when

 \Leftrightarrow *q* lies below red line and above blue line

Blue area: beliefs **below** p in LR order Yellow area: beliefs **above** p in LR order

Blue area: beliefs **below** p in LR order Yellow area: beliefs **above** p in LR order

Thm of QS visible: any IDO indifference line through is steeper than rays: p to right of line \Rightarrow entire blue area to right of line

Similarly for another belief q:

Non-monotone LR experiment

A binary experiment violating monotone LR property:

MLR

A binary experiment satisfying MLR (monotone LR):

Aside: Two states

With only two states, signals of binary experiments can always be arranged to satisfy MLR

Aside: Two states

With only two states, signals of binary experiments can always be arranged to satisfy MLR

In this case, Proposition 1 in Jewitt (2007) implies that our comparison notion (with IDO preferences) is equivalent to Blackwell's (unrestricted)

- Directly, binary action sets suffice when experiment Q is binary
- In any such problem, actions can be ordered so IDO is satisfied

Aside: Two states

With only two states, signals of binary experiments can always be arranged to satisfy MLR

In this case, Proposition 1 in Jewitt (2007) implies that our comparison notion (with IDO preferences) is equivalent to Blackwell's (unrestricted)

- Directly, binary action sets suffice when experiment Q is binary
- In any such problem, actions can be ordered so IDO is satisfied

Three states is the simplest case where monotonicity makes a difference

(日)

Likelihood Ratio Box

LR box (or LR interval) from q to $p >_{LR} q$ is the set of beliefs r such that

 $p >_{LR} r >_{LR} q$

Main Question 1: Better Experiment without MLR

Suppose first that binary experiment (p, q) violates MLRP: Result: (p, q) dominates (only) its Blackwell garblings

Main Question 1: Better Experiment without MLR

Suppose first that binary experiment (p, q) violates MLRP: Result: (p, q) dominates (only) its Blackwell garblings

Proof:

For every experiment with at least one posterior outside the p-q segment, there is an IDO problem that separates posteriors of that experiment, but does not separate p from q

Main Question 2: Better Experiment with MLR

Now suppose binary experiment (p, q) satisfies MLRP.

Main Question 2: Better Experiment with MLR

Now suppose binary experiment (p, q) satisfies MLRP. Take another experiment with **posteriors not all inside box**, as in (r, s) (going forward, notation abuse, *s* denotes one posterior)

Comparing Experiments: LR Box

If comparison experiment (r, s) has at least one posterior outside box:

Some IDO problem separates (r, s) but not (p, q). $\Rightarrow (p, q)$ does not dominate any experiment with some posteriors outside box.

ヘロア ヘロア ヘビア ヘビア

Equivalent Comparisons 2: LR Box \rightarrow Quasi-Garbling

Quasi-Garblings

Q is a quasi-garbling of P if for every order on T there exists $g: \Theta \times S \to \Delta(T)$ such that

•
$$Q(t| heta) = \sum_{s} P(s| heta)g(t| heta,s) \quad \forall heta$$

• $g(\cdot| heta',s) >_{FOSD} g(\cdot| heta,s)$ $\forall s \text{ and } \forall \theta' > \theta$

LR Box \subset Quasi-Garblings

Consider experiment Q with **posteriors all inside box**. <u>Result:</u> Q is a quasi-garbling of P.

E.g. binary experiment (r, s)

LR Box \subset Quasi-Garblings

Proof for binary P with $S = \{s_1, s_2\}$ and binary Q with $T = \{t_1, t_2\}$. Assume P satisfies MLRP when $s_1 > s_2$.

Assume $t_1 > t_2$ (case $t_2 > t_1$ analogous).

Write $p_{\theta} := P(s_1|\theta)$, $g_{\theta} := g(t_1|\theta, s_1)$ and $h_{\theta} := g(t_1|\theta, s_2)$.

Fix any θ and g_{θ}, h_{θ} such that $Q(t_1|\theta) = p_{\theta}g_{\theta} + (1 - p_{\theta})h_{\theta}.$

Consider higher state $\theta' > \theta$ and equation

$$Q(t_1| heta')=p_{ heta'}g_{ heta'}+(1-p_{ heta'})h_{ heta'}.$$

When *P* satisfies MLRP, p_{θ} increasing in θ , so equation has solution $g_{\theta'}, h_{\theta'}$ such that $g_{\theta'} \leq g_{\theta}$ and $h_{\theta'} \leq h_{\theta}$.

Equivalent Comparisons 3: Quasi-Garbling \rightarrow Less Utility

ヘロア ヘロア ヘビア ヘビア

Informativeness of Quasi-Garblings

Let p_{θ} denote optimal probability of choosing a_2 in state θ under P.

If Q is a quasi-garbling of P, probability of choosing a_2 in state θ under Q has form

$$g_{ heta} p_{ heta} + h_{ heta} (1 - p_{ heta})$$

where g_{θ} and h_{θ} are both decreasing in θ .

By linearity of payoffs, payoff under Q is maximized when each sequence is, in fact, constantly 0 or constantly 1.

When both constantly 0 or both constantly 1, you are not using information under Q.

When g_{θ} constantly 1 and h_{θ} constantly 0, you are replicating what you get with *P*. When g_{θ} constantly 0 and h_{θ} constantly 1, you are inverting what you do with *P*, something you could have done (but chose not to do) with *P*. Thus, in any case, A does better than B.

Direct Proof that LR Box \rightarrow Less Utility

Normalization WLOG: $u(a_1, \theta) = 0$ for all θ , and $u(a_2, \theta_3) > 0 > u(a_2, \theta_1)$

Picture shows hardest case (when s leads to a_2) Only interesting IDO problem where different actions are taken at r, sBy IDO and LR-bounds, also a_2 optimal at p and a_1 optimal at q

Claim: (r, s) can be improved upon unless $s_2/s_1 = p_2/p_1$ or $r_2/r_1 = q_2/q_1$ (or both)

- If both constraints are relaxed, room to reduce $P(s|\theta_1)$
- The change raises s_2/s_1 and reduces r_2/r_1 , staying in LR box
- The change reduces weight on $u(a_2, \theta_1) < 0$ in expected utility

Claim: (r, s) can be improved upon unless $s_2/s_1 = p_2/p_1$ or $r_2/r_1 = q_2/q_1$ (or both)

- If both constraints are relaxed, room to reduce $P(s|\theta_1)$
- The change raises s_2/s_1 and reduces r_2/r_1 , staying in LR box
- The change reduces weight on $u(a_2, \theta_1) < 0$ in expected utility

Same claim holds for s_3/s_2 or r_3/r_2

• Otherwise room to raise $P(s|\theta_3)$

Claim: (r, s) can be improved upon unless $s_2/s_1 = p_2/p_1$ or $r_2/r_1 = q_2/q_1$ (or both)

- If both constraints are relaxed, room to reduce $P(s|\theta_1)$
- The change raises s_2/s_1 and reduces r_2/r_1 , staying in LR box
- The change reduces weight on $u(a_2, \theta_1) < 0$ in expected utility

Same claim holds for s_3/s_2 or r_3/r_2

• Otherwise room to raise $P(s|\theta_3)$

For more than three states, it works inductively

Claim: $s \sim_{LR} p$ or $r \sim_{LR} q$ (or both)

- Relies on previous claim and $p >_{LR} q$
- If $s_2/s_1 = p_2/p_1$ and $r_2/r_1 \ge q_2/q_1$ then $P(s|\theta_1) \le P(p|\theta_1)$ and $P(s|\theta_2) \le P(p|\theta_2)$ (algebra shows, next slide)
- Then also $s_3/s_2 = p_3/p_2$ binds (algebra shows, next slide)
- And so on with more states, inductively
- Likewise for the case with r

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○国

Claim: $s \sim_{LR} p$ or $r \sim_{LR} q$ (or both)

- Relies on previous claim and $p >_{LR} q$
- If $s_2/s_1 = p_2/p_1$ and $r_2/r_1 \ge q_2/q_1$ then $P(s|\theta_1) \le P(p|\theta_1)$ and $P(s|\theta_2) \le P(p|\theta_2)$ (algebra shows, next slide)
- Then also $s_3/s_2 = p_3/p_2$ binds (algebra shows, next slide)
- And so on with more states, inductively
- Likewise for the case with r

Finally, when $s \sim_{LR} p$

- then $P(s|\theta_k) \leq P(p|\theta_k)$ in all states (and proportional)
- Expected utility under (r, s) is proportional (less than one-for-one) to that under (p, q) which is positive

(日)

Argument with three states

Suppose dominated experiment has three posteriors r, s, t

Argument with three states

Suppose dominated experiment has **three posteriors** r, s, tSay s lies on one side of p-q segment while r, t on the opposite side:

Argument with three states

Suppose dominated experiment has **three posteriors** r, s, tSay s lies on one side of p-q segment while r, t on the opposite side:

View experiment (r, s, t) as **composite**: Starting from prior π , belief is spread

- 1. either to π_1 and then to s or r,
- 2. or to π_2 and then to *s* or *t*.

Let λ be such that $\pi^1 = \frac{P(r)r + \lambda P(s)s}{P(r) + \lambda P(s)}$. Let $P^1 = P(r) + \lambda P(s)$ and $P^2 = 1 - P^1 = P(t) + (1 - \lambda) P(s)$

Let λ be such that $\pi^1 = \frac{P(r)r + \lambda P(s)s}{P(r) + \lambda P(s)}$. Let $P^1 = P(r) + \lambda P(s)$ and $P^2 = 1 - P^1 = P(t) + (1 - \lambda) P(s)$ Define $\mu^i \in (0, 1)$ such that $\pi^i = \mu^i p + (1 - \mu^i)q$. Then $P(p) = \mu^1 P^1 + \mu^2 P^2$, since $\pi = P(p)p + P(q)q = P^1\pi^1 + P^2\pi^2$.

Let λ be such that $\pi^1 = \frac{P(r)r + \lambda P(s)s}{P(r) + \lambda P(s)}$. Let $P^1 = P(r) + \lambda P(s)$ and $P^2 = 1 - P^1 = P(t) + (1 - \lambda) P(s)$ Define $\mu^i \in (0, 1)$ such that $\pi^i = \mu^i p + (1 - \mu^i)q$. Then $P(p) = \mu^1 P^1 + \mu^2 P^2$, since $\pi = P(p)p + P(q)q = P^1\pi^1 + P^2\pi^2$. We demonstrate that $U \ge V$ in three steps:

(i) $U = P^1 U^1 + P^2 U^2$ where U^i is utility from (p, q) with prior π^i ,

Let λ be such that $\pi^1 = \frac{P(r)r + \lambda P(s)s}{P(r) + \lambda P(s)}$. Let $P^1 = P(r) + \lambda P(s)$ and $P^2 = 1 - P^1 = P(t) + (1 - \lambda) P(s)$ Define $\mu^i \in (0,1)$ such that $\pi^i = \mu^i p + (1-\mu^i)q$. Then $P(p) = \mu^1 P^1 + \mu^2 P^2$, since $\pi = P(p)p + P(q)q = P^1 \pi^1 + P^2 \pi^2$. We demonstrate that U > V in three steps: (i) $U = P^1 U^1 + P^2 U^2$ where U^i is utility from (p, q) with prior π^i , (ii) $V = P^1 V^1 + P^2 V^2$ where V^1 is utility from (r, s) with prior π^1 and V^2 is utility from (s, t) with prior π^2 , and

Let λ be such that $\pi^1 = \frac{P(r)r + \lambda P(s)s}{P(r) + \lambda P(s)}$. Let $P^1 = P(r) + \lambda P(s)$ and $P^2 = 1 - P^1 = P(t) + (1 - \lambda) P(s)$ Define $\mu^i \in (0,1)$ such that $\pi^i = \mu^i p + (1-\mu^i)q$. Then $P(p) = \mu^1 P^1 + \mu^2 P^2$, since $\pi = P(p)p + P(q)q = P^1 \pi^1 + P^2 \pi^2$. We demonstrate that U > V in three steps: (i) $U = P^1 U^1 + P^2 U^2$ where U^i is utility from (p, q) with prior π^i , (ii) $V = P^1 V^1 + P^2 V^2$ where V^1 is utility from (r, s) with prior π^1 and V^2 is utility from (s, t) with prior π^2 , and (iii) $U^i > V^i$.

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 0

(i) Experiment (p, q) with prior π_i has utility $U^i = \mu^i u_p + (1 - \mu^i) u_q$. $\Rightarrow U = P^1 U^1 + P^2 U^2$ then follows from $P(p) = P^1 \mu^1 + P^2 \mu^2$.

(i) Experiment (p, q) with prior π_i has utility $U^i = \mu^i u_p + (1 - \mu^i) u_q$. $\Rightarrow U = P^1 U^1 + P^2 U^2$ then follows from $P(p) = P^1 \mu^1 + P^2 \mu^2$.

(ii) Experiment (r, s) with prior π^1 has utility $V^1 = \frac{P(r)u_r + \lambda P(s)u_s}{P^1}$. Also, $V^2 = \frac{P(t)u_t + (1-\lambda)P(s)u_s}{P^2}$. $\Rightarrow V = P^1V^1 + P^2V^2$ follows from definition of V.

(i) Experiment (p, q) with prior π_i has utility $U^i = \mu^i u_p + (1 - \mu^i) u_q$. $\Rightarrow U = P^1 U^1 + P^2 U^2$ then follows from $P(p) = P^1 \mu^1 + P^2 \mu^2$.

(ii) Experiment (r, s) with prior π^1 has utility $V^1 = \frac{P(r)u_r + \lambda P(s)u_s}{P^1}$. Also, $V^2 = \frac{P(t)u_t + (1-\lambda)P(s)u_s}{P^2}$. $\Rightarrow V = P^1V^1 + P^2V^2$ follows from definition of V.

(iii) Binary experiment (r, s) with prior π^i delivers utility V^i . By earlier claim for binary experiments, (p, q) with prior π^i yields

 $U^i \geq V^i$.

(i) Experiment (p, q) with prior π_i has utility $U^i = \mu^i u_p + (1 - \mu^i) u_q$. $\Rightarrow U = P^1 U^1 + P^2 U^2$ then follows from $P(p) = P^1 \mu^1 + P^2 \mu^2$.

(ii) Experiment (r, s) with prior π^1 has utility $V^1 = \frac{P(r)u_r + \lambda P(s)u_s}{P^1}$. Also, $V^2 = \frac{P(t)u_t + (1-\lambda)P(s)u_s}{P^2}$. $\Rightarrow V = P^1V^1 + P^2V^2$ follows from definition of V.

(iii) Binary experiment (r, s) with prior π^i delivers utility V^i . By earlier claim for binary experiments, (p, q) with prior π^i yields

$$U^i \geq V^i$$
.

Argument generalizes for dominated experiment with *n* posteriors in box

Literature

Closest literature

- Lehmann (1988) imposed MLR on experiments (improved by QS)
 - Nothing known about case where better (p, q) violates MLR
 - Gets only part of our box (MLR (r.s)) when (p,q) has MLR
- Kim (2021) proposes another comparison
 - Characterization (monotone quasi-garbling) a priori restricts how signals in non-MLR (r, s) should map to actions
 - Kim's notion gives more than our LR box (we have more DM problems)
 - If s must map to high action, it only gives $p >_{LR} s$ and $r >_{LR} q$
 - Far more when also dominating (p, q) violates MLR:
 r LR-above some point on p q line, s LR-below
 - To recover our result: monotone quasi-garble for any order on signals
- Athey and Levin (2018) likewise: monotone signal-to-action map
 - They generalize Lehmann by permitting other orders than MLR
 - · We let experiment's monotonicity depend on decision problem

Why Drop MLR?

Why Drop MLR?

- 1. The MLR is strong: possible to order states and signals such that $P(s'|\theta)/P(s|\theta)$ rises in θ for every pair s' > s
- 2. Even when the MLR thus holds, some decision makers may have IDO preferences when Θ is differently ordered
 - For example, best state for investment-action when a moderate political party wins
 - But opinion polls are MLR when states are left-right ordered

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

General Dominating Experiments (in progress)

イロト イボト イヨト イヨト

General Dominating Experiment: In Progress

We are working toward a general characterization

- If *P* has a least and greatest signal in the LR order, any less informative *Q* must have its support in the LR-interval between those
- Let us illustrate the issue in belief space

General Dominating Experiment: In Progress

We are working toward a general characterization

- If *P* has a least and greatest signal in the LR order, any less informative *Q* must have its support in the LR-interval between those
- Let us illustrate the issue in belief space
- The appropriate generalization of the LR box may lie in the space of $Pr(a_j | \theta_k)$ profiles rather than beliefs
- Under Blackwell, the set of $Pr(a_j | \theta_k)$ profiles expands for better experiments
- IDO allows a weaker experiment to have profiles in a slightly larger set, akin to our LR-box

General Dominating Experiment

- Experiment P has support p¹, p², p³, while Q is supported on the other six points s¹, s², s³, r¹, r², r³
- Mass at p² can be combined with mass from p¹ to dominate outcomes from Q in the smaller, red box (i.e., r¹, s¹)

Possible Value Functions

Another part of Blackwell's characterization theorem:

• Experiment P is better than experiment Q if and only if, for every prior π , P gives higher expected value than Q for any convex value function

Possible Value Functions

Another part of Blackwell's characterization theorem:

- Experiment P is better than experiment Q if and only if, for every prior π , P gives higher expected value than Q for any convex value function
- For any decision problem, value function is convex and continuous in posterior beliefs
 - conversely, any convex continuous function is a value function for some decision problem

Possible Value Functions

Another part of Blackwell's characterization theorem:

- Experiment P is better than experiment Q if and only if, for every prior π , P gives higher expected value than Q for any convex value function
- For any decision problem, value function is convex and continuous in posterior beliefs
 - conversely, any convex continuous function is a value function for some decision problem
- When restricting attention to monotone problems
 - what other properties do value functions have in addition to convexity?

Conclusion

We explore Blackwell's program to compare experiments

• restricted to IDO decision problems

When the better experiment P is binary

- If P satisfies MLR, it dominates all experiments supported in its LR-interval ⇔ all its quasi-garblings
- Otherwise, *P* dominates all Blackwell-garbled experiments \Leftrightarrow all its quasi-garblings

More generally

- Fruitful to explore the feasible profiles of (random) state-action maps
- Possible to characterize IDO-based value functions