Comparison of Experiments in Monotone Problems

Alfredo Di Tillio ${ }^{1}$ Marco Ottaviani ${ }^{2}$ Peter N. Sørensen ${ }^{3}$

June 22, 2022

[^0]
Decisions under Uncertainty and Experiments

- Uncertainty: Unknown state of nature $\theta \in \Theta$, prior probability $\pi(\theta)$
- Experiment: Observe $s \in S$ with probability $P(s \mid \theta)$

$$
\Longrightarrow \quad \text { Posterior } \quad \pi(\theta \mid s)=\frac{\pi(\theta) P(s \mid \theta)}{\sum_{\theta^{\prime}} \pi\left(\theta^{\prime}\right) P\left(s \mid \theta^{\prime}\right)}
$$

- Decision: Take action $a \in A$ to maximize

$$
\sum_{\theta} \pi(\theta \mid s) u(a, \theta)
$$

Blackwell's Comparison of Experiments (1951)

Experiment P is more informative than experiment Q when P allows higher expected utility than Q for every decision problem

Blackwell's Comparison of Experiments (1951)

Experiment P is more informative than experiment Q when P allows higher expected utility than Q for every decision problem

Q is a garbling of P

Garbling

Let $P: \Theta \rightarrow \Delta(S)$ and $Q: \Theta \rightarrow \Delta(T)$ be two experiments.
Q is a garbling of P if there exists $g: S \rightarrow \Delta(T)$ such that

$$
Q(t \mid \theta)=\sum_{s} P(s \mid \theta) g(t \mid s) \quad \forall \theta
$$

i.e. with experiment P you can "imitate" experiment $Q \ldots$

Comparison of Experiments in Monotone Problems

We restrict attention to monotone decision problems.
To fix ideas: $A=\left\{a_{1}, a_{2}\right\}$, with $u\left(a_{2}, \theta\right)-u\left(a_{1}, \theta\right)$ increasing in θ.

- Fewer decision problems: more experiments are comparable

Comparison of Experiments in Monotone Problems

We restrict attention to monotone decision problems.
To fix ideas: $A=\left\{a_{1}, a_{2}\right\}$, with $u\left(a_{2}, \theta\right)-u\left(a_{1}, \theta\right)$ increasing in θ.

- Fewer decision problems: more experiments are comparable

What makes good information in monotone problems?
We present new findings

- For the case where the better experiment P has binary support, we provide two new characterizations of dominated experiments Q

Comparison of Experiments in Monotone Problems

We restrict attention to monotone decision problems.
To fix ideas: $A=\left\{a_{1}, a_{2}\right\}$, with $u\left(a_{2}, \theta\right)-u\left(a_{1}, \theta\right)$ increasing in θ.

- Fewer decision problems: more experiments are comparable

What makes good information in monotone problems?
We present new findings

- For the case where the better experiment P has binary support, we provide two new characterizations of dominated experiments Q
- We consider further parts of Blackwell's theorem (not today)

Looking Ahead: Monotone Problems \Leftrightarrow IDO Preferences

States and actions are ordered so that (Quah-Strulovici, 2009)

- For all $\theta^{\prime}>\theta$ and $a^{\prime}>a$,

$$
u\left(a^{\prime}, \theta\right) \geq(>) u(a, \theta) \quad \Longrightarrow \quad u\left(a^{\prime}, \theta^{\prime}\right) \geq(>) u\left(a, \theta^{\prime}\right)
$$

whenever $u\left(a^{\prime}, \theta\right) \geq u\left(a^{\prime \prime}, \theta\right)$ for all $a^{\prime \prime}$ with $a \leq a^{\prime \prime} \leq a^{\prime}$
If action a^{\prime} is the best action in the interval $\left[a, a^{\prime}\right]$ when state is θ, a^{\prime} remains the best action in $\left[a, a^{\prime}\right]$ when state is raised to θ^{\prime}

Looking Ahead: Monotone Problems \Leftrightarrow IDO Preferences

States and actions are ordered so that (Quah-Strulovici, 2009)

- For all $\theta^{\prime}>\theta$ and $a^{\prime}>a$,

$$
u\left(a^{\prime}, \theta\right) \geq(>) u(a, \theta) \quad \Longrightarrow \quad u\left(a^{\prime}, \theta^{\prime}\right) \geq(>) u\left(a, \theta^{\prime}\right)
$$

whenever $u\left(a^{\prime}, \theta\right) \geq u\left(a^{\prime \prime}, \theta\right)$ for all $a^{\prime \prime}$ with $a \leq a^{\prime \prime} \leq a^{\prime}$
If action a^{\prime} is the best action in the interval $\left[a, a^{\prime}\right]$ when state is θ, a^{\prime} remains the best action in $\left[a, a^{\prime}\right]$ when state is raised to θ^{\prime}

IDO (interval dominance order) class of preferences includes:

- Milgrom-Shannon (1994) single-crossing preferences
- Karlin-Rubin (1956) monotone preferences

Equivalent Comparisons 1: Less Utility \rightarrow LR Box

Likelihood Ratio Order

In experiment P, signal s^{\prime} is LR-greater than $s\left(s^{\prime}>_{L R} s\right)$ when

$$
\frac{P\left(s^{\prime} \mid \theta^{\prime}\right)}{P\left(s^{\prime} \mid \theta\right)}>\frac{P\left(s \mid \theta^{\prime}\right)}{P(s \mid \theta)} \quad \forall \theta^{\prime}>\theta
$$

or equivalently

$$
\frac{\pi\left(\theta^{\prime} \mid s^{\prime}\right)}{\pi\left(\theta \mid s^{\prime}\right)}>\frac{\pi\left(\theta^{\prime} \mid s\right)}{\pi(\theta \mid s)} \quad \forall \theta^{\prime}>\theta
$$

Likelihood Ratio Order

In experiment P, signal s^{\prime} is LR-greater than $s\left(s^{\prime}>_{L R} s\right)$ when

$$
\frac{P\left(s^{\prime} \mid \theta^{\prime}\right)}{P\left(s^{\prime} \mid \theta\right)}>\frac{P\left(s \mid \theta^{\prime}\right)}{P(s \mid \theta)} \quad \forall \theta^{\prime}>\theta
$$

or equivalently

$$
\frac{\pi\left(\theta^{\prime} \mid s^{\prime}\right)}{\pi\left(\theta \mid s^{\prime}\right)}>\frac{\pi\left(\theta^{\prime} \mid s\right)}{\pi(\theta \mid s)} \quad \forall \theta^{\prime}>\theta
$$

An implication of IDO utility:

- Quah-Strulovici, Theorem 2: If $s^{\prime}>_{L R} s$, the optimal action at s^{\prime} is no smaller than the optimal action at s

Pictures with Three States

$\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$ with $\theta_{1}<\theta_{2}<\theta_{3}$
Represent beliefs as points in a Marschak triangle:

Binary IDO problem

Start from binary action problems, $A=\left\{a_{1}, a_{2}\right\}$ with $a_{1}<a_{2}$, then:
Green line: indifference

Binary IDO problem

Start from binary action problems, $A=\left\{a_{1}, a_{2}\right\}$ with $a_{1}<a_{2}$, then:
Green line: indifference

1. green line crosses base of triangle \&
2. high action a_{2} optimal left of green line, low action a_{1} to right

Binary Experiment

Binary experiment $\left(S=\left\{s_{1}, s_{2}\right\}\right)$ spreads arbitrary prior π to posteriors p, q

Likelihood Ratio Order

Belief p dominates another belief q in LR order $\left(p>_{L R} q\right)$ when

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}>\frac{q_{2}}{q_{1}} \text { and } \frac{p_{3}}{p_{2}}>\frac{q_{3}}{q_{2}} \\
& \operatorname{Pr}^{\operatorname{Pr}\left(\theta_{2}\right)} \\
& \\
&
\end{aligned}
$$

Likelihood Ratio Order

Belief p dominates another belief q in LR order $\left(p>_{L R} q\right)$ when

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}>\frac{q_{2}}{q_{1}} \quad \text { and } \quad \frac{p_{3}}{p_{2}}>\frac{q_{3}}{q_{2}} \\
& \text { Pr(} \left.\theta_{2}\right)
\end{aligned}
$$

$\Leftrightarrow q$ lies below red line and above blue line

Likelihood Ratio Order

Blue area: beliefs below p in LR order Yellow area: beliefs above p in LR order

Likelihood Ratio Order

Blue area: beliefs below p in LR order Yellow area: beliefs above p in LR order

Thm of QS visible: any IDO indifference line through is steeper than rays: p to right of line \Rightarrow entire blue area to right of line

Likelihood Ratio Order

Similarly for another belief q :

Non-monotone LR experiment

A binary experiment violating monotone LR property:

MLR

A binary experiment satisfying MLR (monotone LR):

Aside: Two states

With only two states, signals of binary experiments can always be arranged to satisfy MLR

Aside: Two states

With only two states, signals of binary experiments can always be arranged to satisfy MLR

In this case, Proposition 1 in Jewitt (2007) implies that our comparison notion (with IDO preferences) is equivalent to Blackwell's (unrestricted)

- Directly, binary action sets suffice when experiment Q is binary
- In any such problem, actions can be ordered so IDO is satisfied

Aside: Two states

With only two states, signals of binary experiments can always be arranged to satisfy MLR

In this case, Proposition 1 in Jewitt (2007) implies that our comparison notion (with IDO preferences) is equivalent to Blackwell's (unrestricted)

- Directly, binary action sets suffice when experiment Q is binary
- In any such problem, actions can be ordered so IDO is satisfied

Three states is the simplest case where monotonicity makes a difference

Likelihood Ratio Box

LR box (or LR interval) from q to $p>_{L R} q$ is the set of beliefs r such that

$$
p>_{L R} r>_{L R} q
$$

Main Question 1: Better Experiment without MLR

Suppose first that binary experiment (p, q) violates MLRP: Result: (p, q) dominates (only) its Blackwell garblings

Main Question 1: Better Experiment without MLR

Suppose first that binary experiment (p, q) violates MLRP: Result: (p, q) dominates (only) its Blackwell garblings

Proof:
For every experiment with at least one posterior outside the $p-q$ segment, there is an IDO problem that separates posteriors of that experiment, but does not separate p from q

Main Question 2: Better Experiment with MLR

Now suppose binary experiment (p, q) satisfies MLRP.

Main Question 2: Better Experiment with MLR

Now suppose binary experiment (p, q) satisfies MLRP. Take another experiment with posteriors not all inside box, as in (r, s) (going forward, notation abuse, s denotes one posterior)

Comparing Experiments: LR Box

If comparison experiment (r, s) has at least one posterior outside box:

Some IDO problem separates (r, s) but not (p, q).
$\Rightarrow(p, q)$ does not dominate any experiment with some posteriors outside box.

Equivalent Comparisons 2: LR Box \rightarrow Quasi-Garbling

Quasi-Garblings

Q is a quasi-garbling of P if for every order on T there exists $g: \Theta \times S \rightarrow \Delta(T)$ such that

- $Q(t \mid \theta)=\sum_{s} P(s \mid \theta) g(t \mid \theta, s) \quad \forall \theta$
- $g\left(\cdot \mid \theta^{\prime}, s\right)>_{\text {FOSD }} g(\cdot \mid \theta, s) \quad \forall s$ and $\forall \theta^{\prime}>\theta$

LR Box \subset Quasi-Garblings

Consider experiment Q with posteriors all inside box. Result: Q is a quasi-garbling of P.
E.g. binary experiment (r, s)

LR Box \subset Quasi-Garblings

Proof for binary P with $S=\left\{s_{1}, s_{2}\right\}$ and binary Q with $T=\left\{t_{1}, t_{2}\right\}$. Assume P satisfies MLRP when $s_{1}>s_{2}$.

Assume $t_{1}>t_{2}$ (case $t_{2}>t_{1}$ analogous).
Write $p_{\theta}:=P\left(s_{1} \mid \theta\right), g_{\theta}:=g\left(t_{1} \mid \theta, s_{1}\right)$ and $h_{\theta}:=g\left(t_{1} \mid \theta, s_{2}\right)$.
Fix any θ and g_{θ}, h_{θ} such that $Q\left(t_{1} \mid \theta\right)=p_{\theta} g_{\theta}+\left(1-p_{\theta}\right) h_{\theta}$.
Consider higher state $\theta^{\prime}>\theta$ and equation

$$
Q\left(t_{1} \mid \theta^{\prime}\right)=p_{\theta^{\prime}} g_{\theta^{\prime}}+\left(1-p_{\theta^{\prime}}\right) h_{\theta^{\prime}} .
$$

When P satisfies MLRP, p_{θ} increasing in θ, so equation has solution $g_{\theta^{\prime}}, h_{\theta^{\prime}}$ such that $g_{\theta^{\prime}} \leq g_{\theta}$ and $h_{\theta^{\prime}} \leq h_{\theta}$.

Equivalent Comparisons 3: Quasi-Garbling \rightarrow Less Utility

Informativeness of Quasi-Garblings

Let p_{θ} denote optimal probability of choosing a_{2} in state θ under P.
If Q is a quasi-garbling of P, probability of choosing a_{2} in state θ under Q has form

$$
g_{\theta} p_{\theta}+h_{\theta}\left(1-p_{\theta}\right)
$$

where g_{θ} and h_{θ} are both decreasing in θ.
By linearity of payoffs, payoff under Q is maximized when each sequence is, in fact, constantly 0 or constantly 1.

When both constantly 0 or both constantly 1 , you are not using information under Q.

When g_{θ} constantly 1 and h_{θ} constantly 0 , you are replicating what you get with P. When g_{θ} constantly 0 and h_{θ} constantly 1 , you are inverting what you do with P, something you could have done (but chose not to do) with P. Thus, in any case, A does better than B.

Direct Proof that LR Box \rightarrow Less Utility

Normalization WLOG: $u\left(a_{1}, \theta\right)=0$ for all θ, and $u\left(a_{2}, \theta_{3}\right)>0>u\left(a_{2}, \theta_{1}\right)$

Picture shows hardest case (when s leads to a_{2})
Only interesting IDO problem where different actions are taken at r, s
By IDO and LR-bounds, also a_{2} optimal at p and a_{1} optimal at q

Proof for binary-binary comparison

Claim: (r, s) can be improved upon unless $s_{2} / s_{1}=p_{2} / p_{1}$ or $r_{2} / r_{1}=q_{2} / q_{1}$ (or both)

- If both constraints are relaxed, room to reduce $P\left(s \mid \theta_{1}\right)$
- The change raises s_{2} / s_{1} and reduces r_{2} / r_{1}, staying in LR box
- The change reduces weight on $u\left(a_{2}, \theta_{1}\right)<0$ in expected utility

Proof for binary-binary comparison

Claim: (r, s) can be improved upon unless $s_{2} / s_{1}=p_{2} / p_{1}$ or $r_{2} / r_{1}=q_{2} / q_{1}$ (or both)

- If both constraints are relaxed, room to reduce $P\left(s \mid \theta_{1}\right)$
- The change raises s_{2} / s_{1} and reduces r_{2} / r_{1}, staying in LR box
- The change reduces weight on $u\left(a_{2}, \theta_{1}\right)<0$ in expected utility

Same claim holds for s_{3} / s_{2} or r_{3} / r_{2}

- Otherwise room to raise $P\left(s \mid \theta_{3}\right)$

Proof for binary-binary comparison

Claim: (r, s) can be improved upon unless $s_{2} / s_{1}=p_{2} / p_{1}$ or $r_{2} / r_{1}=q_{2} / q_{1}$ (or both)

- If both constraints are relaxed, room to reduce $P\left(s \mid \theta_{1}\right)$
- The change raises s_{2} / s_{1} and reduces r_{2} / r_{1}, staying in LR box
- The change reduces weight on $u\left(a_{2}, \theta_{1}\right)<0$ in expected utility

Same claim holds for s_{3} / s_{2} or r_{3} / r_{2}

- Otherwise room to raise $P\left(s \mid \theta_{3}\right)$

For more than three states, it works inductively

Proof for binary-binary comparison

Claim: $s \sim_{L R} p$ or $r \sim_{L R} q$ (or both)

- Relies on previous claim and $p>_{L R} q$
- If $s_{2} / s_{1}=p_{2} / p_{1}$ and $r_{2} / r_{1} \geq q_{2} / q_{1}$ then $P\left(s \mid \theta_{1}\right) \leq P\left(p \mid \theta_{1}\right)$ and $P\left(s \mid \theta_{2}\right) \leq P\left(p \mid \theta_{2}\right)$ (algebra shows, next slide)
- Then also $s_{3} / s_{2}=p_{3} / p_{2}$ binds (algebra shows, next slide)
- And so on with more states, inductively
- Likewise for the case with r

Proof for binary-binary comparison

Claim: $s \sim_{L R} p$ or $r \sim_{L R} q$ (or both)

- Relies on previous claim and $p>_{L R} q$
- If $s_{2} / s_{1}=p_{2} / p_{1}$ and $r_{2} / r_{1} \geq q_{2} / q_{1}$ then $P\left(s \mid \theta_{1}\right) \leq P\left(p \mid \theta_{1}\right)$ and $P\left(s \mid \theta_{2}\right) \leq P\left(p \mid \theta_{2}\right)$ (algebra shows, next slide)
- Then also $s_{3} / s_{2}=p_{3} / p_{2}$ binds (algebra shows, next slide)
- And so on with more states, inductively
- Likewise for the case with r

Finally, when $s \sim_{L R} p$

- then $P\left(s \mid \theta_{k}\right) \leq P\left(p \mid \theta_{k}\right)$ in all states (and proportional)
- Expected utility under (r, s) is proportional (less than one-for-one) to that under (p, q) which is positive

Beyond Binary Dominated Experiments Q

Argument with three states

Suppose dominated experiment has three posteriors r, s, t

Argument with three states

Suppose dominated experiment has three posteriors r, s, t Say s lies on one side of $p-q$ segment while r, t on the opposite side:

Argument with three states

Suppose dominated experiment has three posteriors r, s, t Say s lies on one side of $p-q$ segment while r, t on the opposite side:

View experiment (r, s, t) as composite:
Starting from prior π, belief is spread

1. either to π_{1} and then to s or r,
2. or to π_{2} and then to s or t.

Beyond Binary Dominated Experiment

Let λ be such that $\pi^{1}=\frac{P(r) r+\lambda P(s) s}{P(r)+\lambda P(s)}$.
Let $P^{1}=P(r)+\lambda P(s)$ and $P^{2}=1-P^{1}=P(t)+(1-\lambda) P(s)$

Beyond Binary Dominated Experiment

Let λ be such that $\pi^{1}=\frac{P(r) r+\lambda P(s) s}{P(r)+\lambda P(s)}$.
Let $P^{1}=P(r)+\lambda P(s)$ and $P^{2}=1-P^{1}=P(t)+(1-\lambda) P(s)$
Define $\mu^{i} \in(0,1)$ such that $\pi^{i}=\mu^{i} p+\left(1-\mu^{i}\right) q$.
Then $P(p)=\mu^{1} P^{1}+\mu^{2} P^{2}$, since $\pi=P(p) p+P(q) q=P^{1} \pi^{1}+P^{2} \pi^{2}$.

Beyond Binary Dominated Experiment

Let λ be such that $\pi^{1}=\frac{P(r) r+\lambda P(s) s}{P(r)+\lambda P(s)}$.
Let $P^{1}=P(r)+\lambda P(s)$ and $P^{2}=1-P^{1}=P(t)+(1-\lambda) P(s)$
Define $\mu^{i} \in(0,1)$ such that $\pi^{i}=\mu^{i} p+\left(1-\mu^{i}\right) q$.
Then $P(p)=\mu^{1} P^{1}+\mu^{2} P^{2}$, since $\pi=P(p) p+P(q) q=P^{1} \pi^{1}+P^{2} \pi^{2}$.
We demonstrate that $U \geq V$ in three steps:
(i) $U=P^{1} U^{1}+P^{2} U^{2}$ where U^{i} is utility from (p, q) with prior π^{i},

Beyond Binary Dominated Experiment

Let λ be such that $\pi^{1}=\frac{P(r) r+\lambda P(s) s}{P(r)+\lambda P(s)}$.
Let $P^{1}=P(r)+\lambda P(s)$ and $P^{2}=1-P^{1}=P(t)+(1-\lambda) P(s)$
Define $\mu^{i} \in(0,1)$ such that $\pi^{i}=\mu^{i} p+\left(1-\mu^{i}\right) q$.
Then $P(p)=\mu^{1} P^{1}+\mu^{2} P^{2}$, since $\pi=P(p) p+P(q) q=P^{1} \pi^{1}+P^{2} \pi^{2}$.
We demonstrate that $U \geq V$ in three steps:
(i) $U=P^{1} U^{1}+P^{2} U^{2}$ where U^{i} is utility from (p, q) with prior π^{i},
(ii) $V=P^{1} V^{1}+P^{2} V^{2}$ where V^{1} is utility from (r, s) with prior π^{1} and V^{2} is utility from (s, t) with prior π^{2}, and

Beyond Binary Dominated Experiment

Let λ be such that $\pi^{1}=\frac{P(r) r+\lambda P(s) s}{P(r)+\lambda P(s)}$.
Let $P^{1}=P(r)+\lambda P(s)$ and $P^{2}=1-P^{1}=P(t)+(1-\lambda) P(s)$
Define $\mu^{i} \in(0,1)$ such that $\pi^{i}=\mu^{i} p+\left(1-\mu^{i}\right) q$.
Then $P(p)=\mu^{1} P^{1}+\mu^{2} P^{2}$, since $\pi=P(p) p+P(q) q=P^{1} \pi^{1}+P^{2} \pi^{2}$.
We demonstrate that $U \geq V$ in three steps:
(i) $U=P^{1} U^{1}+P^{2} U^{2}$ where U^{i} is utility from (p, q) with prior π^{i},
(ii) $V=P^{1} V^{1}+P^{2} V^{2}$ where V^{1} is utility from (r, s) with prior π^{1} and V^{2} is utility from (s, t) with prior π^{2}, and
(iii) $U^{i} \geq V^{i}$.

Steps

(i) Experiment (p, q) with prior π_{i} has utility $U^{i}=\mu^{i} u_{p}+\left(1-\mu^{i}\right) u_{q}$. $\Rightarrow U=P^{1} U^{1}+P^{2} U^{2}$ then follows from $P(p)=P^{1} \mu^{1}+P^{2} \mu^{2}$.

Steps

(i) Experiment (p, q) with prior π_{i} has utility $U^{i}=\mu^{i} u_{p}+\left(1-\mu^{i}\right) u_{q}$. $\Rightarrow U=P^{1} U^{1}+P^{2} U^{2}$ then follows from $P(p)=P^{1} \mu^{1}+P^{2} \mu^{2}$.
(ii) Experiment (r, s) with prior π^{1} has utility $V^{1}=\frac{P(r) u_{r}+\lambda P(s) u_{s}}{P^{1}}$.

Also, $V^{2}=\frac{P(t) u_{t}+(1-\lambda) P(s) u_{s}}{P^{2}}$.
$\Rightarrow V=P^{1} V^{1}+P^{2} V^{2}$ follows from definition of V.

Steps

(i) Experiment (p, q) with prior π_{i} has utility $U^{i}=\mu^{i} u_{p}+\left(1-\mu^{i}\right) u_{q}$. $\Rightarrow U=P^{1} U^{1}+P^{2} U^{2}$ then follows from $P(p)=P^{1} \mu^{1}+P^{2} \mu^{2}$.
(ii) Experiment (r, s) with prior π^{1} has utility $V^{1}=\frac{P(r) u_{r}+\lambda P(s) u_{s}}{P^{1}}$.

Also, $V^{2}=\frac{P(t) u_{t}+(1-\lambda) P(s) u_{s}}{P^{2}}$.
$\Rightarrow V=P^{1} V^{1}+P^{2} V^{2}$ follows from definition of V.
(iii) Binary experiment (r, s) with prior π^{i} delivers utility V^{i}.

By earlier claim for binary experiments, (p, q) with prior π^{i} yields

$$
U^{i} \geq V^{i}
$$

Steps

(i) Experiment (p, q) with prior π_{i} has utility $U^{i}=\mu^{i} u_{p}+\left(1-\mu^{i}\right) u_{q}$.
$\Rightarrow U=P^{1} U^{1}+P^{2} U^{2}$ then follows from $P(p)=P^{1} \mu^{1}+P^{2} \mu^{2}$.
(ii) Experiment (r, s) with prior π^{1} has utility $V^{1}=\frac{P(r) u_{r}+\lambda P(s) u_{s}}{P^{1}}$.

Also, $V^{2}=\frac{P(t) u_{t}+(1-\lambda) P(s) u_{s}}{P^{2}}$.
$\Rightarrow V=P^{1} V^{1}+P^{2} V^{2}$ follows from definition of V.
(iii) Binary experiment (r, s) with prior π^{i} delivers utility V^{i}.

By earlier claim for binary experiments, (p, q) with prior π^{i} yields

$$
U^{i} \geq V^{i}
$$

Argument generalizes for dominated experiment with n posteriors in box

Literature

Closest literature

- Lehmann (1988) imposed MLR on experiments (improved by QS)
- Nothing known about case where better (p, q) violates MLR
- Gets only part of our box (MLR $(r . s)$) when (p, q) has MLR
- Kim (2021) proposes another comparison
- Characterization (monotone quasi-garbling) a priori restricts how signals in non-MLR (r, s) should map to actions
- Kim's notion gives more than our LR box (we have more DM problems)
- If s must map to high action, it only gives $p>_{L R} s$ and $r>_{L R} q$
- Far more when also dominating (p, q) violates MLR:
r LR-above some point on $p-q$ line, s LR-below
- To recover our result: monotone quasi-garble for any order on signals
- Athey and Levin (2018) likewise: monotone signal-to-action map
- They generalize Lehmann by permitting other orders than MLR
- We let experiment's monotonicity depend on decision problem

Why Drop MLR?

Why Drop MLR?

1. The MLR is strong: possible to order states and signals such that $P\left(s^{\prime} \mid \theta\right) / P(s \mid \theta)$ rises in θ for every pair $s^{\prime}>s$
2. Even when the MLR thus holds, some decision makers may have IDO preferences when Θ is differently ordered

- For example, best state for investment-action when a moderate political party wins
- But opinion polls are MLR when states are left-right ordered

General Dominating Experiments (in progress)

General Dominating Experiment: In Progress

We are working toward a general characterization

- If P has a least and greatest signal in the LR order, any less informative Q must have its support in the LR-interval between those
- Let us illustrate the issue in belief space

General Dominating Experiment: In Progress

We are working toward a general characterization

- If P has a least and greatest signal in the LR order, any less informative Q must have its support in the LR-interval between those
- Let us illustrate the issue in belief space
- The appropriate generalization of the LR box may lie in the space of $\operatorname{Pr}\left(a_{j} \mid \theta_{k}\right)$ profiles rather than beliefs
- Under Blackwell, the set of $\operatorname{Pr}\left(a_{j} \mid \theta_{k}\right)$ profiles expands for better experiments
- IDO allows a weaker experiment to have profiles in a slightly larger set, akin to our LR-box

General Dominating Experiment

- Experiment P has support p^{1}, p^{2}, p^{3}, while Q is supported on the other six points $s^{1}, s^{2}, s^{3}, r^{1}, r^{2}, r^{3}$
- Mass at p^{2} can be combined with mass from p^{1} to dominate outcomes from Q in the smaller, red box (i.e., r^{1}, s^{1})

Possible Value Functions

Another part of Blackwell's characterization theorem:

- Experiment P is better than experiment Q if and only if, for every prior π, P gives higher expected value than Q for any convex value function

Possible Value Functions

Another part of Blackwell's characterization theorem:

- Experiment P is better than experiment Q if and only if, for every prior π, P gives higher expected value than Q for any convex value function
- For any decision problem, value function is convex and continuous in posterior beliefs
- conversely, any convex continuous function is a value function for some decision problem

Possible Value Functions

Another part of Blackwell's characterization theorem:

- Experiment P is better than experiment Q if and only if, for every prior π, P gives higher expected value than Q for any convex value function
- For any decision problem, value function is convex and continuous in posterior beliefs
- conversely, any convex continuous function is a value function for some decision problem
- When restricting attention to monotone problems
- what other properties do value functions have in addition to convexity?

Conclusion

We explore Blackwell's program to compare experiments

- restricted to IDO decision problems

When the better experiment P is binary

- If P satisfies MLR, it dominates all experiments supported in its LR-interval \Leftrightarrow all its quasi-garblings
- Otherwise, P dominates all Blackwell-garbled experiments \Leftrightarrow all its quasi-garblings
More generally
- Fruitful to explore the feasible profiles of (random) state-action maps
- Possible to characterize IDO-based value functions

[^0]: ${ }^{1}$ Bocconi
 ${ }^{2}$ Bocconi
 ${ }^{3}$ Copenhagen

