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Decisions under Uncertainty and Experiments

• Uncertainty: Unknown state of nature θ ∈ Θ, prior probability π (θ)

• Experiment: Observe s ∈ S with probability P (s|θ)

=⇒ Posterior π(θ|s) =
π(θ)P(s|θ)∑
θ′ π(θ′)P(s|θ′)

• Decision: Take action a ∈ A to maximize∑
θ

π(θ|s)u(a, θ)

2



Blackwell’s Comparison of Experiments (1951)

Experiment P is more informative than experiment Q when P allows
higher expected utility than Q for every decision problem

⇐⇒

Q is a garbling of P
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Garbling

Let P : Θ→ ∆(S) and Q : Θ→ ∆(T ) be two experiments.

Q is a garbling of P if there exists g : S → ∆(T ) such that

Q(t|θ) =
∑
s

P(s|θ)g(t|s) ∀θ

i.e. with experiment P you can “imitate” experiment Q ...
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Comparison of Experiments in Monotone Problems

We restrict attention to monotone decision problems.

To fix ideas: A = {a1, a2}, with u(a2, θ)− u(a1, θ) increasing in θ.

• Fewer decision problems: more experiments are comparable

What makes good information in monotone problems?

We present new findings

• For the case where the better experiment P has binary support, we
provide two new characterizations of dominated experiments Q

• We consider further parts of Blackwell’s theorem (not today)
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Looking Ahead: Monotone Problems ⇔ IDO Preferences

States and actions are ordered so that (Quah-Strulovici, 2009)

• For all θ′ > θ and a′ > a,

u(a′, θ) ≥ (>) u(a, θ) =⇒ u(a′, θ′) ≥ (>) u(a, θ′)

whenever u(a′, θ) ≥ u(a′′, θ) for all a′′ with a ≤ a′′ ≤ a′

If action a′ is the best action in the interval [a, a′] when state is θ,
a′ remains the best action in [a, a′] when state is raised to θ′

IDO (interval dominance order) class of preferences includes:

• Milgrom-Shannon (1994) single-crossing preferences

• Karlin-Rubin (1956) monotone preferences
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Equivalent Comparisons 1:
Less Utility → LR Box
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Likelihood Ratio Order

In experiment P, signal s ′ is LR-greater than s (s ′ >LR s) when

P(s ′|θ′)
P(s ′|θ)

>
P(s|θ′)
P(s|θ)

∀θ′ > θ

or equivalently
π(θ′|s ′)
π(θ|s ′)

>
π(θ′|s)

π(θ|s)
∀θ′ > θ

An implication of IDO utility:

• Quah-Strulovici, Theorem 2: If s ′ >LR s, the optimal action at s ′ is
no smaller than the optimal action at s
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Pictures with Three States

Θ = {θ1, θ2, θ3} with θ1 < θ2 < θ3

Represent beliefs as points in a Marschak triangle:
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Binary IDO problem

Start from binary action problems, A = {a1, a2} with a1 < a2, then:

Green line: indifference

IDO ⇔
1. green line crosses base of triangle &

2. high action a2 optimal left of green line, low action a1 to right
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Binary Experiment

Binary experiment (S = {s1, s2}) spreads arbitrary prior π to posteriors p, q
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Likelihood Ratio Order

Belief p dominates another belief q in LR order (p >LR q) when

p2
p1

>
q2
q1

and
p3
p2

>
q3
q2

⇔ q lies below red line and above blue line
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Likelihood Ratio Order

Blue area: beliefs below p in LR order
Yellow area: beliefs above p in LR order

Thm of QS visible: any IDO indifference line through is steeper than rays:
p to right of line ⇒ entire blue area to right of line
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Likelihood Ratio Order

Similarly for another belief q:
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Non-monotone LR experiment

A binary experiment violating monotone LR property:
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MLR

A binary experiment satisfying MLR (monotone LR):
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Aside: Two states

With only two states, signals of binary experiments can always be arranged
to satisfy MLR

In this case, Proposition 1 in Jewitt (2007) implies that our comparison
notion (with IDO preferences) is equivalent to Blackwell’s (unrestricted)

• Directly, binary action sets suffice when experiment Q is binary

• In any such problem, actions can be ordered so IDO is satisfied

Three states is the simplest case where monotonicity makes a difference
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Likelihood Ratio Box

LR box (or LR interval) from q to p >LR q is the set of beliefs r such that

p >LR r >LR q
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Main Question 1: Better Experiment without MLR

Suppose first that binary experiment (p, q) violates MLRP:
Result: (p, q) dominates (only) its Blackwell garblings

Proof:
For every experiment with at least one posterior outside the p-q segment,
there is an IDO problem that separates posteriors of that experiment,
but does not separate p from q
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Main Question 2: Better Experiment with MLR

Now suppose binary experiment (p, q) satisfies MLRP.

Take another experiment with posteriors not all inside box, as in (r , s)
(going forward, notation abuse, s denotes one posterior)
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Comparing Experiments: LR Box

If comparison experiment (r , s) has at least one posterior outside box:

Some IDO problem separates (r , s) but not (p, q).
⇒ (p, q) does not dominate any experiment with some posteriors

outside box.
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Equivalent Comparisons 2:
LR Box → Quasi-Garbling
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Quasi-Garblings

Q is a quasi-garbling of P if for every order on T there exists
g : Θ× S → ∆(T ) such that

• Q(t|θ) =
∑

s P(s|θ)g(t|θ, s) ∀θ
• g(·|θ′, s) >FOSD g(·|θ, s) ∀s and ∀θ′ > θ

23



LR Box ⊂ Quasi-Garblings

Consider experiment Q with posteriors all inside box.
Result: Q is a quasi-garbling of P.

E.g. binary experiment (r , s)
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LR Box ⊂ Quasi-Garblings

Proof for binary P with S = {s1, s2} and binary Q with T = {t1, t2}.

Assume P satisfies MLRP when s1 > s2.

Assume t1 > t2 (case t2 > t1 analogous).

Write pθ := P(s1|θ), gθ := g(t1|θ, s1) and hθ := g(t1|θ, s2).

Fix any θ and gθ, hθ such that Q(t1|θ) = pθgθ + (1− pθ)hθ.

Consider higher state θ′ > θ and equation

Q(t1|θ′) = pθ′gθ′ + (1− pθ′)hθ′ .

When P satisfies MLRP, pθ increasing in θ, so equation has solution
gθ′ , hθ′ such that gθ′ ≤ gθ and hθ′ ≤ hθ.
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Equivalent Comparisons 3:
Quasi-Garbling → Less Utility
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Informativeness of Quasi-Garblings
Let pθ denote optimal probability of choosing a2 in state θ under P.

If Q is a quasi-garbling of P, probability of choosing a2 in state θ under Q
has form

gθpθ + hθ(1− pθ)

where gθ and hθ are both decreasing in θ.

By linearity of payoffs, payoff under Q is maximized when each sequence
is, in fact, constantly 0 or constantly 1.

When both constantly 0 or both constantly 1, you are not using
information under Q.

When gθ constantly 1 and hθ constantly 0, you are replicating what you
get with P. When gθ constantly 0 and hθ constantly 1, you are inverting
what you do with P, something you could have done (but chose not to do)
with P. Thus, in any case, A does better than B.
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Direct Proof that LR Box → Less Utility

Normalization WLOG: u(a1, θ) = 0 for all θ, and u(a2, θ3) > 0 > u(a2, θ1)

Picture shows hardest case (when s leads to a2)
Only interesting IDO problem where different actions are taken at r , s

By IDO and LR-bounds, also a2 optimal at p and a1 optimal at q

28



Proof for binary-binary comparison

Claim: (r , s) can be improved upon unless s2/s1 = p2/p1 or r2/r1 = q2/q1
(or both)

• If both constraints are relaxed, room to reduce P(s|θ1)

• The change raises s2/s1 and reduces r2/r1, staying in LR box

• The change reduces weight on u(a2, θ1) < 0 in expected utility

Same claim holds for s3/s2 or r3/r2
• Otherwise room to raise P(s|θ3)

For more than three states, it works inductively
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Proof for binary-binary comparison

Claim: s ∼LR p or r ∼LR q (or both)

• Relies on previous claim and p >LR q

• If s2/s1 = p2/p1 and r2/r1 ≥ q2/q1 then P(s|θ1) ≤ P(p|θ1) and
P(s|θ2) ≤ P(p|θ2) (algebra shows, next slide)

• Then also s3/s2 = p3/p2 binds (algebra shows, next slide)

• And so on with more states, inductively

• Likewise for the case with r

Finally, when s ∼LR p

• then P(s|θk) ≤ P(p|θk) in all states (and proportional)

• Expected utility under (r , s) is proportional (less than one-for-one) to
that under (p, q) which is positive
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Beyond Binary Dominated
Experiments Q
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Argument with three states
Suppose dominated experiment has three posteriors r , s, t

Say s lies on one side of p-q segment while r , t on the opposite side:

View experiment (r , s, t) as composite:
Starting from prior π, belief is spread

1. either to π1 and then to s or r ,

2. or to π2 and then to s or t.
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Beyond Binary Dominated Experiment

Let λ be such that π1 = P(r)r+λP(s)s
P(r)+λP(s) .

Let P1 = P(r) + λP(s) and P2 = 1− P1 = P(t) + (1− λ)P(s)

Define µi ∈ (0, 1) such that πi = µip + (1− µi )q.

Then P(p) = µ1P1 + µ2P2, since π = P(p)p + P(q)q = P1π1 + P2π2.

We demonstrate that U ≥ V in three steps:

(i) U = P1U1 + P2U2 where U i is utility from (p, q) with prior πi ,

(ii) V = P1V 1 + P2V 2 where V 1 is utility from (r , s) with prior π1 and
V 2 is utility from (s, t) with prior π2, and

(iii) U i ≥ V i .

33



Beyond Binary Dominated Experiment

Let λ be such that π1 = P(r)r+λP(s)s
P(r)+λP(s) .

Let P1 = P(r) + λP(s) and P2 = 1− P1 = P(t) + (1− λ)P(s)

Define µi ∈ (0, 1) such that πi = µip + (1− µi )q.

Then P(p) = µ1P1 + µ2P2, since π = P(p)p + P(q)q = P1π1 + P2π2.

We demonstrate that U ≥ V in three steps:

(i) U = P1U1 + P2U2 where U i is utility from (p, q) with prior πi ,

(ii) V = P1V 1 + P2V 2 where V 1 is utility from (r , s) with prior π1 and
V 2 is utility from (s, t) with prior π2, and

(iii) U i ≥ V i .

33



Beyond Binary Dominated Experiment

Let λ be such that π1 = P(r)r+λP(s)s
P(r)+λP(s) .

Let P1 = P(r) + λP(s) and P2 = 1− P1 = P(t) + (1− λ)P(s)

Define µi ∈ (0, 1) such that πi = µip + (1− µi )q.

Then P(p) = µ1P1 + µ2P2, since π = P(p)p + P(q)q = P1π1 + P2π2.

We demonstrate that U ≥ V in three steps:

(i) U = P1U1 + P2U2 where U i is utility from (p, q) with prior πi ,

(ii) V = P1V 1 + P2V 2 where V 1 is utility from (r , s) with prior π1 and
V 2 is utility from (s, t) with prior π2, and

(iii) U i ≥ V i .

33



Beyond Binary Dominated Experiment

Let λ be such that π1 = P(r)r+λP(s)s
P(r)+λP(s) .

Let P1 = P(r) + λP(s) and P2 = 1− P1 = P(t) + (1− λ)P(s)

Define µi ∈ (0, 1) such that πi = µip + (1− µi )q.

Then P(p) = µ1P1 + µ2P2, since π = P(p)p + P(q)q = P1π1 + P2π2.

We demonstrate that U ≥ V in three steps:

(i) U = P1U1 + P2U2 where U i is utility from (p, q) with prior πi ,

(ii) V = P1V 1 + P2V 2 where V 1 is utility from (r , s) with prior π1 and
V 2 is utility from (s, t) with prior π2, and

(iii) U i ≥ V i .

33



Beyond Binary Dominated Experiment

Let λ be such that π1 = P(r)r+λP(s)s
P(r)+λP(s) .

Let P1 = P(r) + λP(s) and P2 = 1− P1 = P(t) + (1− λ)P(s)

Define µi ∈ (0, 1) such that πi = µip + (1− µi )q.

Then P(p) = µ1P1 + µ2P2, since π = P(p)p + P(q)q = P1π1 + P2π2.

We demonstrate that U ≥ V in three steps:

(i) U = P1U1 + P2U2 where U i is utility from (p, q) with prior πi ,

(ii) V = P1V 1 + P2V 2 where V 1 is utility from (r , s) with prior π1 and
V 2 is utility from (s, t) with prior π2, and

(iii) U i ≥ V i .

33



Steps

(i) Experiment (p, q) with prior πi has utility U i = µiup +
(
1− µi

)
uq.

⇒ U = P1U1 + P2U2 then follows from P(p) = P1µ1 + P2µ2.

(ii) Experiment (r , s) with prior π1 has utility V 1 = P(r)ur+λP(s)us
P1 .

Also, V 2 = P(t)ut+(1−λ)P(s)us
P2 .

⇒ V = P1V 1 + P2V 2 follows from definition of V .

(iii) Binary experiment (r , s) with prior πi delivers utility V i .
By earlier claim for binary experiments, (p, q) with prior πi yields

U i ≥ V i .

Argument generalizes for dominated experiment with n posteriors in box
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Literature
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Closest literature

• Lehmann (1988) imposed MLR on experiments (improved by QS)
• Nothing known about case where better (p, q) violates MLR
• Gets only part of our box (MLR (r .s)) when (p, q) has MLR

• Kim (2021) proposes another comparison
• Characterization (monotone quasi-garbling) a priori restricts how

signals in non-MLR (r , s) should map to actions
• Kim’s notion gives more than our LR box (we have more DM problems)
• If s must map to high action, it only gives p >LR s and r >LR q
• Far more when also dominating (p, q) violates MLR:

r LR-above some point on p − q line, s LR-below
• To recover our result: monotone quasi-garble for any order on signals

• Athey and Levin (2018) likewise: monotone signal-to-action map
• They generalize Lehmann by permitting other orders than MLR
• We let experiment’s monotonicity depend on decision problem
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Why Drop MLR?
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Why Drop MLR?

1. The MLR is strong: possible to order states and signals such that
P(s ′|θ)/P(s|θ) rises in θ for every pair s ′ > s

2. Even when the MLR thus holds, some decision makers may have IDO
preferences when Θ is differently ordered

• For example, best state for investment-action when a moderate
political party wins

• But opinion polls are MLR when states are left-right ordered
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General Dominating Experiments
(in progress)
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General Dominating Experiment: In Progress

We are working toward a general characterization

• If P has a least and greatest signal in the LR order, any less
informative Q must have its support in the LR-interval between those

• Let us illustrate the issue in belief space

• The appropriate generalization of the LR box may lie in the space of
Pr(aj |θk) profiles rather than beliefs

• Under Blackwell, the set of Pr(aj |θk) profiles expands for better
experiments

• IDO allows a weaker experiment to have profiles in a slightly larger
set, akin to our LR-box
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General Dominating Experiment
• Experiment P has support p1, p2, p3, while Q is supported on the

other six points s1, s2, s3, r1, r2, r3

• Mass at p2 can be combined with mass from p1 to dominate
outcomes from Q in the smaller, red box (i.e., r1, s1)
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Possible Value Functions

Another part of Blackwell’s characterization theorem:

• Experiment P is better than experiment Q if and only if,
for every prior π, P gives higher expected value than Q for any
convex value function

• For any decision problem, value function is convex and continuous in
posterior beliefs
• conversely, any convex continuous function is a value function for some

decision problem

• When restricting attention to monotone problems
• what other properties do value functions have in addition to convexity?
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Conclusion

We explore Blackwell’s program to compare experiments

• restricted to IDO decision problems

When the better experiment P is binary

• If P satisfies MLR, it dominates all experiments supported in its
LR-interval ⇔ all its quasi-garblings

• Otherwise, P dominates all Blackwell-garbled experiments ⇔ all its
quasi-garblings

More generally

• Fruitful to explore the feasible profiles of (random) state-action maps

• Possible to characterize IDO-based value functions
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