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Abstract
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1 Introduction

Three phenomena hold a prominent place in behavioral economics: (i) the endowment ef-
fect—the minimum selling price is higher than the maximum buying price for the same item
(Kahneman et al., 1991); (ii) loss aversion—subjects reject bets that return identical gains
and losses with equal probability (Kahneman and Tversky, 1979); and (iii) the certainty
effect—violations of Expected Utility in favor of certainty (Allais, 1953; Kahneman and
Tversky, 1979). All three are widely documented and used in countless studies to explain
numerous real-world observations. Several models have been developed to study them,
most prominently Cumulative Prospect Theory (Tversky and Kahneman, 1991), where the
endowment effect and loss aversion are linked to an asymmetry in the treatment of gains
and losses (‘losses loom larger than gains’), while the certainty effect is due to probability
weighting.

This paper introduces a new approach to study all three phenomena: uncertainty about
trade-offs and caution. In our model, individuals have a set of utility functions—as if unsure
of how to precisely evaluate each option—and adopt the most pessimistic one. In previous
work (Cerreia-Vioglio et al., 2015), we showed how this captures the certainty effect. This
paper shows how it (i) captures the endowment effect and loss aversion in novel ways, even
without asymmetries between gains and losses; (ii) provides new empirical predictions; and
(iii) offers a tool to organize existing evidence at odds with leading models.

We call our model Cautious Utility. It works as follows. Individuals face lotteries over
bundles in R: , where the first dimension is money and the others are goods (e.g., mugs).
The standard approach assumes a utility over bundles and Expected Utility to evaluate
lotteries. Instead, we have a set of utilitiesW and individuals use the most pessimistic one
to evaluate each option. Specifically, if E is a utility function and ? a lottery, call 2 (?, E) the
monetary certainty equivalent of that lottery using E—the amount of money indifferent to
? for utility E . Cautious Utility assigns to the lottery ? the value

+ (?) = inf
E∈W

2 (?, E).

The key ideas are (i) individuals may be unsure of how to evaluate bundles—they may
entertain multiple utility functions as plausible; and (ii) facing this multiplicity, they choose
with caution—using the utility that returns the lowest certainty equivalent.

For example, an individual who evaluates bundles of money (dimension 1) and mugs
(dimension 2) may contemplate two utilities: E1(G1, G2) = G1+G2 and E2(G1, G2) = G1+2G2.
It is as if the individual were unsure of the trade-off: a mug could be worth $1 (under E1) or
$2 (under E2). Cautious Utility stipulates that, in the face of this subjective uncertainty, the
individual applies caution and uses the utility that returns the lowest monetary certainty
equivalent.
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Cautious Utility generalizes Cautious Expected Utility of Cerreia-Vioglio et al. (2015)
and, like that model, captures the certainty effect and Allais’ paradoxes. Intuitively, de-
generate lotteries that return a given amount of money have the same certainty equivalent
with any utility, making caution irrelevant. But caution does matter for general lotteries,
lowering their value and generating an advantage for sure amounts.

After presenting our model in Section 2, in Section 3 we show that the same forces
that generate the certainty effect also generate the endowment effect and loss aversion,
providing a unified explanation. To best illustrate the role of caution, we focus on symmetric
sets of utilities—either all utilities are symmetric for gains and losses, or, if one is not, the
set also includes its specular one.

Our main result is that Cautious Utility implies the endowment effect and loss aver-
sion, in addition to the certainty effect, even under symmetry. Without symmetry, reference
effects emerge if at least one utility overweights losses: then caution and overweighting
of losses jointly contribute to reference effects. To make explicit the role of caution, we
show that individuals who use the opposite (sup instead of inf) exhibit the opposite of the
certainty effect, of the endowment effect, and of loss aversion. In other words, all three
phenomena are determined by the shape of the aggregator—inf vs. sup.

For an intuition, consider our example above, where the individual entertains two utili-
ties, E1(G1, G2) = G1+G2 and E2(G1, G2) = G1+2G2. Note how both utilities are symmetric for
gains and losses. When buying a mug, the worst-case scenario is when it is least valuable:
thus, the willingness to pay (WTP) is calculated using E1 and equals $1. When selling the
mug, the worst case is when it has the highest value: the willingness to accept (WTA) is
calculated using E2 and equals $2. Thus, WTA>WTP. Despite its simplicity, this example
captures a broader result: we show that, whenever there is uncertainty on the trade-off
between a good and money, the WTA is strictly above the WTP, generating the endowment
effect even without any asymmetry between gains and losses.

The remainder of Section 3 shows how our approach extends to exchange asymmetries,
to stochastic reference points, and presents convenient functional forms for estimation. We
also demonstrate that the only preferences compatible with both our model and Cumulative
Prospect Theory are those featuring none of our phenomena of interest. That is, the two
models are not only conceptually different, but also behaviorally fully distinct.

In Section 4 we discuss how caution can help organize empirical evidence. Several
studies show that the strength and frequency of the endowment effect vary substantially
across goods, decreasing with familiarity, and with information about market values. This
is in line with Cautious Utility, where the endowment effect depends on the uncertainty
about the value of the good. Other recent evidence shows that the endowment effect and
loss aversion are empirically unrelated, and, in fact, the latter is often absent. While in
Prospect Theory the two behaviors are driven by the same parameter and must be related,
in Cautious Utility they are decoupled. We also discuss other patterns consistent with our
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model but not with popular alternatives, and vice-versa.
Lastly, in Section 5 we give an axiomatic foundation to Cautious Utility. Dillenberger

(2010) introduced Negative Certainty Independence to capture the certainty effect over
money. We show that Cautious Utility is characterized by an extension to a form of certainty
effect over bundles, together with very basic postulates (e.g., monotonicity). Paired with our
result that Cautious Utility returns the endowment effect and loss aversion under symmetry,
this means that, assuming symmetry and basic postulates, a property that captures the
certainty effect for bundles formally implies the endowment effect and loss aversion.

1.1 Related Theoretical Literature

Cumulative Prospect Theory. The most popular model to study our behaviors of inter-
est is Cumulative Prospect Theory (Tversky and Kahneman, 1992), henceforth CPT, which
extends the original Prospect Theory (Kahneman and Tversky, 1979); see also Kahneman
et al. (1991); Tversky and Kahneman (1991) and, for a textbook treatment, Wakker (2010).
Violations of Expected Utility are captured by probability weighting. Reference dependence
is captured separately, by positing that individuals evaluate changes relative to a reference
point and that ‘losses loom larger than gains.’ The latter is formalized by assuming that the
utility is not symmetric for gains and losses and losses weigh more—a common approach
is to take _ > 1 and E (−G) = −_E (G) for G > 0. This asymmetry reduces the value of even
bets around zero and increases the gap between WTA and WTP.

Cautious Utility is different. Probabilities are taken at face value, not weighted, and
instead of a single asymmetric utility, we have many—possibly all symmetric. All three
biases come from the same source, uncertainty about the utility and caution. As mentioned
above, the difference is also behavioral: not only some behaviors can be captured by one
model and not the other, but the two models are entirely distinct—the only preference
compatible with both is standard Expected Utility with no reference effects.

Cautious Expected Utility. Our approach builds on Cerreia-Vioglio et al. (2015), which
studies preferences over monetary lotteries on a bounded interval that admit the following
Cautious Expected Utility representation: there exists a set W of strictly increasing and
continuous functions over money such that the value of a lottery ? is given by infE∈W 2 (?, E).
As explained in Cerreia-Vioglio et al. (2015), Cautious Expected Utility can be understood
as a cautious completion of an incomplete preference, paralleling Gilboa et al. (2010), and
therefore can be thought of as a possible ‘risk’ counterpart of the MaxMin Expected Utility
model of Gilboa and Schmeidler (1989).

We extend this model and its characterization to bundles of goods (explicitly discussing
gains/losses and symmetry) and to unbounded spaces. More importantly, we show that,
in this extension, the same forces that generate the certainty effect over money also gener-
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ate the endowment effect and loss aversion, providing a new model for these phenomena.
Cerreia-Vioglio (2009) characterizes preferences that satisfy convexity and shows that they
can be represented with a set of utilities and pessimism, connecting convexity with a pref-
erence for hedging in the face of uncertainty about the value of outcomes, future tastes, or
the degree of risk aversion. Our model is a special case, as our preferences are convex.

Incomplete Preferences. An alternative approach to studying reference effects is via in-
complete preferences (Bewley, 1986; Masatlioglu and Ok, 2005, 2014; Ortoleva, 2010; Ok
et al., 2015). (These papers are typically silent about loss aversion or the certainty effect
as they do not study risk preferences.) Agents have an incomplete preference relation and
deviate from their reference point (or status quo) only if an alternative is better according
to that relation. This generates status quo bias and the endowment effect. As incomplete
preferences can be represented using multiple utilities, here too the endowment effect is
related to the inability to compare bundles.

Cerreia-Vioglio et al. (2015) show that Cautious Expected Utility can be derived as a
completion of an incomplete relation, and the same is true here. Indeed, the literature on
incomplete preferences and status quo bias was an inspiration for our work. However, there
are three critical differences. First, our preferences are complete: our agent uses caution as
a criterion to complete them, and it is this criterion that drives our results. Second, risk plays
a central role in our paper: we derive reference effects from a form of certainty effect and
connect the different phenomena. There is no similar link in the models above. Third, the
models above only specify behavior when the status quo, or the reference point, is available;
here, instead, the behavior is specified independently of the availability of the status quo.

Perception, Imprecision, and Other Explanations. Central to our approach is that indi-
viduals have sets of utilities, expressing difficulty in making comparisons. This relates to the
literature on difficulties in forming preferences, including preference imprecision (Dubourg
et al., 1994, 1997; Butler and Loomes, 2007, 2011; Cubitt et al., 2015), imprecise percep-
tion and rational inattention (Gabaix and Laibson, 2017; Woodford, 2020; Frydman and
Jin, 2020; Khaw et al., 2020), or cognitive uncertainty (Enke and Graeber, 2019). Other
accounts of the endowment effect are based onmemory (Johnson et al., 2007) and reference
prices (Weaver and Frederick, 2012), while versions of saliency can generate all our behav-
iors of interest (Bordalo et al., 2012, 2013). The critical difference between our approach
and all of these is the presence of caution.
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2 Cautious Utility

We begin by introducing Cautious Utility; we discuss its axiomatic foundation in Section 5.
Given : ∈ N, let R: be the space of :-dimensional bundles (e.g., money, mugs, pens, etc.).
For ease of reference, the first dimension denotes money, used as a numeraire. Denote by
048 the bundle whose 8-th coordinate takes value 0 ∈ R while all the others are 0. With a
small abuse of notation, we denote by 0 both the number and the vector whose components
are all zero. Let Δ be the set of all lotteries, that is, (Borel) probability measures over R:

with compact support. We study a preference relation < over Δ.
Given G ∈ R: , we interchangeably use G and XG to denote the degenerate lottery that

pays G with certainty. If ? ∈ Δ and E : R: → R is strictly increasing and continuous,
then E? (E) denotes the expected utility using E , i.e.,

∫
Ed?, while 2 (?, E) ∈ R indicates,

if it exists, its monetary certainty equivalent, i.e., the unique monetary value such that
E? (E) = E (2 (?, E)41).

Definition 1. A preference relation < admits a Cautious Utility representation if there exists
a setW of strictly increasing continuous utility functions E : R: → R with E (0) = 0 such
that (i) for each G,~ ∈ R: there exists< ∈ R+ satisfying E (~+<41) ≥ E (G) ≥ E (~−<41) for
all E ∈ W; and (ii) the function + : Δ→ R, defined as

+ (?) = inf
E∈W

2 (?, E) (1)

is a continuous utility representation of <.

Cautious Utility builds upon two key tenets. First, agents have not one but a set of
utilities: they may be unsure of which utility to use. For example, agents may be unsure
of the trade-off between goods or how risk averse they should be. Second, agents act with
caution: to evaluate each alternative, they use the utility with the lowestmonetary certainty
equivalent. Using certainty equivalents guarantees that the comparison across utilities is
made after bringing each dimension to the same unit of measure (monetary amounts),
avoiding comparisons across utilities, for which normalizations matter. Condition (i) in the
definition guarantees that monetary certainty equivalents are always well-defined.

Example 1. Consider : = 2, money and mugs. SupposeW = {E1, E2} where E1 (G1, G2) =
G1 + G2 and E2 (G1, G2) = G1 + 2G2. It is as if the agent is unsure about the trade-off between
money and mugs: one mug is equivalent to $1 according to E1, and to $2 according to E2.
Because of caution, the model assigns to one mug a value + (0, 1) = min{1, 2} = 1.

To illustrate the role of caution, we also define a model that takes the opposite approach,
where the agent uses the utility with the highestmonetary certainty equivalent. We say that
a preference relation admits an Incautious Utility representation if it is represented by (1)
where sup replaces the inf.
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Remark 1. Despite the use of the most pessimistic utility, under Cautious Utility agents can be
risk averse, seeking, or have varying risk attitudes: as in Expected Utility, this depends on the
curvature of the utilities inW. Cerreia-Vioglio et al. (2015) show that agents are risk averse
when all functions are concave and risk seeking when all are convex. Similarly, if utilities are
all concave for gains and convex for losses, the individual is risk averse for gains and risk seeking
for losses. Overall, Cautious Utility does not restrict risk attitudes.

Remark 2. The use of the inf in Cautious Utility may at first appear too pessimistic, and one
may wish to consider milder formulations. For example, the agent may use some weighted
average of the inf and of the sup. A few considerations are in order. First, the set of utilities is
subjective: it reflects the agent’s preferences and is not the set of all possible utilities. Thus, the
inf is taken only over a restricted collection. Second, this representation is not necessarily very
pessimistic. For example, take a finite setW of quasi-linear utilities and some D ∈ W, and
an individual who uses the most pessimistic utility inW′ = {(1 − W) D + WE : E ∈ W}. Here
W can be understood as a ‘pessimism weight:’ the larger is W , the lower the evaluation. When
it is small, the individual is only ‘mildly’ pessimistic, yet preferences admit a Cautious Utility
representation with setW′. Finally, in Section 5, we show how Cautious Utility emerges from
a natural axiom on the certainty effect; to the extent that one accepts this requirement, the
model necessarily follows.

2.1 Symmetry

To study gains and losses it is helpful to introduce a notion of symmetry. Recall that E :
R: → R is odd if E (G) = −E (−G) for all G ∈ R: , that is, when there is no asymmetry in the
treatment of positive and negative values. Indeed, a function is odd when it is symmetric
with respect to the origin (like any power utility over the real line with an odd exponent).
In line with this, we say that a set of functionsW is odd if for each E ∈ W there exists
E′ ∈ W such that E (G) = −E′ (−G) for all G ∈ R: . Obviously, a set is odd when all utilities
in it are odd.

The setW in Example 1 consists of two odd functions and is thus odd. In the following
example, the set is odd even though none of the functions are.

Example 2. Consider again : = 2 andW comprised of E (G1, G2) = 5 (G1) + 5 (G2) and
E′ (G1, G2) = −5 (−G1) − 5 (−G2), where 5 (0) = 0.25 for 0 > 0 and 5 (0) = − (−0) .5 for
0 ≤ 0. Since 5 is not odd, neither are E nor E′. But E (G1, G2) = −E′ (−G1,−G2) for all G ∈ R2,
which means thatW = {E, E′} is odd.

We say that a preference relation admits a Symmetric Cautious Utility representation if
it admits a Cautious Utility representation with an odd setW. Symmetric Incautious Utility
is defined similarly.
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In some of our results below, we deliberately assume symmetry. This is not because
symmetry is necessarily appealing—there are many cases in which one may want to use
utilities, and sets of utilities, that are not odd. However, assuming symmetry for some of
our results will be helpful to show that Cautious Utility can generate reference effects even
in the presence of symmetry. As we discuss below (Remark 3), adding typical asymmetries
will only strengthen our results.

3 Caution, Loss Aversion, and the Endowment Effect

To study reference effects such as loss aversion and the endowment effect, we need to incor-
porate the role of the reference point. We take the standard approach, as in Prospect Theory,
and define Cautious Utility on relative changes with respect to a given reference point: if ~ is
the final allocation and A the reference bundle, then each bundle is viewed as G = ~ − A . For
example, if the reference point is the current endowment, a bundle that returns an extra
$3 and takes away 2 mugs is evaluated as (3,−2). This allows for direct comparisons with
other models and gives complete flexibility on the reference point—it could be the endow-
ment, the allocation of others, the expectation, etc. For now, we assume that the reference
point is deterministic; we extend to stochastic reference points in Section 3.4.

Endowment Effect. First, we define the Willingness to Pay (WTP) and the Willingness to
Accept (WTA). WTP8 (<) is the maximum amount of money that the agent is willing to pay
to purchase< units of good 8 ∈ {2, . . . , :}. Thus, it satisfies

0 ∼<48 −WTP8 (<)41.

In words, the individual is indifferent between not buying (that is, getting 0) and acquiring
< units of good 8 while foregoing WTP8 (<) units of money. Similarly, WTA8 (<) is the
minimum amount of money that the agent is willing to accept to sell < units of the 8-th
good, thus satisfying

0 ∼ −<48 +WTA8 (<) 41.
1

A preference < exhibits the endowment effect for good 8 if WTA8 (<) ≥ WTP8 (<) for all
< ∈ R+. It exhibits the endowment effect if this is the case for all 8 ∈ {2, . . . , :}. It exhibits
the opposite of the endowment effect when the inequality is reversed.

1Formally, for each 8 ∈ {2, . . . , :}, WTP8 : R+ → R+ and WTA8 : R+ → R+ are defined by WTP8 (<) =
max

{
; ∈ R+ : X<48−;41 < X0

}
and WTA8 (<) = min

{
; ∈ R+ : X−<48+;41 < X0

}
. In our model, they are always

well-defined and satisfy the simpler conditions above.
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Loss Aversion. Following Kahneman and Tversky (1979), we use loss aversion to indicate
the rejection of even bets around zero (see also Markowitz, 1952).2 Formally, a preference
< is loss averse on dimension 8 ∈ {1, . . . , :}, if for each 0 ∈ R++

X0 <
1
2
X048 +

1
2
X−048 .

It is loss averse if this is the case for all 8 ∈ {2, . . . , :}. Gain seeking and loss neutrality
are defined analogously, with < replaced by 4 and ∼, respectively. Finally, < is strictly loss
averse (resp. gain seeking) on dimension 8 if this also holds strictly for some 0 ∈ R++.

Caution and Reference Effects. We are now ready to state our results on Cautious Utility
and reference effects. We begin focusing on Symmetric Cautious Utility: since it is well-
known how asymmetry in the treatment of gains and losses can generate both the endow-
ment effect and loss aversion, to isolate the effects of caution we rule out this possibility.
(The following discussion, and Remark 3 below, show how key results generalize.)

Proposition 1. The following statements are true:

1. If < admits a Symmetric Cautious Utility representation, then (i) it exhibits the endow-
ment effect and (ii) it is loss averse.

2. If < admits a Symmetric Incautious Utility representation, then (i) it exhibits the opposite
of the endowment effect and (ii) it is gain seeking.

Proposition 1 links loss aversion and the endowment effect to caution: when there are
multiple utilities, if individuals apply caution then we have both loss aversion and the en-
dowment effect; if they are incautious, we get the opposite. This result gives a new inter-
pretation to both reference effects: they may derive not from an asymmetry in the treatment
of gains and losses but from uncertainty about the utility joint with caution.

Proposition 1 has a simple intuition, illustrated by the following two examples.

Example 1 (cont.). Consider again Example 1, where : = 2 andW consists of E1(G1, G2) =
G1 + G2 and E2(G1, G2) = G1 + 2G2. The WTP is the amount $I ≥ 0 such that (0, 0) ∼ (−I,<)
for< ≥ 0. Then,

+ (0, 0) = min {0, 0} = 0 + (−I,<) = min {−I +<,−I + 2<} = −I +<
⇒ 0 = −WTP2(<) +< ⇒ WTP2(<) =<.

2The term loss aversion is often used also to denote the asymmetry parameter of the CPT model (the
coefficient _; Section 1.1), like risk aversion is at times used to indicate both the behavioral notion and the
concavity parameter in Expected Utility.
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Similarly, WTA is the amount $A ≥ 0 such that (0, 0) ∼ (A,−<). Then

+ (A,−<) = min {A −<, A −2<} = A −2< ⇒ 0 = WTA2(<)−2< ⇒ WTA2(<) = 2<.

Therefore, WTA2(<) = 2< > < = WTP2(<) for all< > 0, the endowment effect. It is easy
to see that results are inverted with the Incautious model.

In this example, utilities are not only odd (symmetric) but even linear. The crucial
feature is that they entail a different trade-off, or ‘exchange rate,’ betweenmoney andmugs:
a mug is worth either $1 or $2. Together with caution, this generates the endowment
effect. When buying, a cautious agent is pessimistic about the value of mugs, and the WTP
is computed with the utility that values mugs at $1. When selling, the opposite happens,
and the WTA is calculated with the utility that values mugs at $2. (Below, we show how
it is generally true that WTA and WTP correspond to the highest and lowest values.) This
creates the endowment effect. The opposite holds with Incautious Utility.3

Despite the endowment effect, this agent is loss neutral: + ( 12X048 +
1
2X−048 ) = min{0, 0} =

0 = + (X0) for 8 = 1, 2. This shows that in Cautious Utility, the endowment effect may
emerge even without loss aversion. We have an endowment effect when different utilities
entail different trade-offs between a good and money. But this is not the only way to obtain
the endowment effect, as illustrated in the example below.

Example 2 (cont.). Consider again Example 2, where : = 2 andW includes E (G1, G2) =
5 (G1) + 5 (G2) and E′(G1, G2) = −5 (−G1) − 5 (−G2), with 5 (0) = 0.25 for 0 > 0 and 5 (0) =
−(−0) .5 for 0 ≤ 0. As opposed to Example 1, here money and mugs are treated identically, but
the agent considers different ‘curvatures.’ Consider the lottery 1

2X041 + 1
2X−041 , 0 > 0, 0 ≠ 1,

and note that at least one of the two utilities must return a negative expected utility, that is,

min
{

1
2
E (041) +

1
2
E (−041),

1
2
E′(041) +

1
2
E′(−041)

}
= min

{
1
2
0.25 − 1

2
0.5,

1
2
0.5 − 1

2
0.25

}
< 0.

But then, since E (0) = E′(0) = 0, also the minimum of the certainty equivalents must be
negative, and so must be the value of the lottery, that is,

+

(
1
2
X041 +

1
2
X−041

)
< 0 = + (X0).

Therefore, we have strict loss aversion on money; the same is true for mugs, since utilities are
3This also generates an ‘endowment-effect in mugs-terms.’ The minimum number of mugs the agent is

willing to accept to give up $1 is 1, but to obtain $1, the individual is willing to ‘pay’ only .5 mugs.
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the same. For the endowment effect, for any< ≥ 04

WTP2(<) = min {
√
<,<2} and WTA2(<) = max {

√
<,<2}.

Hence WTA2(<) > WTP2(<) for all< ≠ 1.

In this example, the individual considers two utilities, neither of which is odd but that
are specular to each other. As they are not odd, the utility of 041 is not minus the utility of
−041, creating an asymmetry. But since E (G) = −E′(−G), if one utility has an asymmetry in
favor of one direction, the other has the opposite. This means that the expected utility of
1
2X041 + 1

2X−041 is negative for at least one utility, and so is the certainty equivalent. Cautious
agents, who consider the most pessimistic certainty equivalent, must assign a negative value
to this lottery, becoming loss averse. In general, we show below that we have strict loss
aversion whenever at least one utility is not odd: insofar as the individual entertains the
possibility of weighting gains and losses differently, the model generates loss aversion.

These two examples illustrate two ‘forces’ that generate the endowment effect under
Cautious Utility. First, uncertainty about the trade-off between money and goods, as in
Example 1, leads to an endowment effect even without loss aversion. Second, uncertainty
about how to aggregate gains and losses, as in Example 2, gives both loss aversion and the
endowment effect. (Below, we show that we can also have loss aversion without the endow-
ment effect.) In Section 4, we discuss how these forces are linked to empirical evidence.

Certainty Effect. To see how loss aversion and the endowment effect relate to the cer-
tainty effect, following Kahneman and Tversky (1979) we say that < exhibits the cer-
tainty effect if for all G,~ ∈ R and U, V ∈ (0, 1), if UX~41 + (1 − U)X0 ∼ XG41 , then
UVX~41 + (1 − UV)X0 < VXG41 + (1 − V)X0.

Cautious Utility exhibits the certainty effect while ruling out the opposite violation of
Independence (the case where < above is reversed and holds strictly at least once), there-
fore offering a unified explanation of the three phenomena. This follows directly from the
functional form. Intuitively, while the agent acts with caution when evaluating general lot-
teries, caution does not play any role when evaluating monetary amounts—the monetary
certainty equivalent of a degenerate lottery that yields $< is< for any utility. In fact, the
implication is deeper. Section 5 shows that Cautious Utility can be derived from positing a
form of certainty effect on risk preferences.

We conclude this discussion with a remark on the role of symmetry.

Remark 3. We focus on Symmetric Cautious Utility to highlight the role of caution even un-
der symmetry. Yet, even if utilities are not odd and neither is the set, Cautious Utility gives

4+ (−I,<) = min {2 (<42 − I41, E), 2 (<42 − I41, E
′)} = 0 implies min {<.25 − I .5,<.5 − I .25} = 0, hence

WTP2 (<) = min {
√
<,<2}. An identical reasoning works for WTA. Proposition 2 below provides convenient

formulas for these computations.
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loss aversion and the endowment effect if at least one utility overweights losses. In general,
asymmetries of this kind simply add on to the other forces highlighted above. (This follows
immediately from Propositions 2 and 3 below.) If all utilities underweight losses, Cautious
Utility gives gain seeking and may, but need not, exhibit the endowment effect—depending on
the relative strength of the underweight of losses and multiplicity of utilities. To illustrate, take
W = {E, E′} where E (G1, G2) = 5 (G1) + 5 (G2) and E′(G1, G2) = 5 (G1) +W 5 (G2), with 5 (0) = 0
for 0 > 0 and 5 (0) = _0 for 0 ≤ 0, with _ > 0 and W > 1. Both utilities underweight losses
if _ < 1, while the bigger W is, the bigger the uncertainty about the trade-off. Note that for
< ≥ 0, WTA2(<) = <W_ and WTP2(<) = <

_
, which means WTA2(<) ≥ WTP2(<) if and

only if _ ≥ 1√
W
. Therefore, even when _ < 1 and all the utilities underweight losses and would

give the opposite of the endowment effect, the model may still return the endowment effect if
there is enough uncertainty about trade-offs (W high enough).

3.1 Strict Behavior and Comparative Statics

We now provide tools to easily compute the WTA and WTP, characterize when the for-
mer is strictly larger, and generate comparative statics. We focus on Cautious Utility, but
‘specular’ results hold for Incautious Utility. For any strictly increasing and continuous
utility E , let WTAE8 denote the WTA under Expected Utility, that is, the amount such that
E (−<48 +WTAE8 (<)41) = E (0). Define WTPE8 analogously.

Proposition 2. If < admits a Cautious Utility representation, then for each < ∈ R+ and
8 ∈ {2, ..., :}

WTA8 (<) = sup
E∈W

WTAE8 (<) and WTP8 (<) = inf
E∈W

WTPE8 (<) .

Proposition 2, that does not assume Symmetry, shows that the WTA in Cautious Utility is
simply the highest of the WTAs obtained by the utilities inW, while the WTP is the lowest
of the WTPs. Caution leads individuals to focus on opposite ends of the range of values.
This result has a series of implications. To derive them, note that Symmetry implies that the
‘span’ of WTAs and WTPs is the same.

Observation 1. IfW is odd, then {WTAE8 (<) : E ∈ W} = {WTPE8 (<) : E ∈ W} for all
< ∈ R+.5

This shows how Symmetry guarantees that there is no built-in unevenness betweenWTA
and WTP. Then, Proposition 2 immediately implies that Symmetric Cautious Utility exhibits
the endowment effect: the WTA and WTP take the opposite ends of the same range. It also
readily provides conditions under which the endowment effect holds strictly.

5This immediately follows by noting that if E and E ′ inW are such that E (G) = −E ′(−G) for all G , then
WTAE8 = WTPE

′
8 .
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Corollary 1. Let < admit a Symmetric Cautious Utility representation. Given 8 ∈ {2, ..., :}
and< > 0, the following statements are equivalent:

(i) WTA8 (<) > WTP8 (<);
(ii) There exist E, E′ ∈ W such that WTAE8 (<) ≠ WTAE

′
8 (<);

(iii) There exist E, E′ ∈ W such that WTPE8 (<) ≠ WTPE
′
8 (<).

It is enough that two utilities inW differ either in their WTA or in their WTP to create a
strict wedge between the WTA and WTP of the agent. This can also be expressed using the
standard notion of Marginal Rate of Substitution (MRS). Recall that, given a differentiable
utility E : R: → R, the MRS of good 8 with respect to money is MRSE8 (G) =

E8 (G)
E1 (G) , where E 9

denotes the partial derivative of E with respect to G 9 . We now show that if two utilities have
different MRSs between money and goods, we have an endowment effect.

Corollary 2. Let < admit a Symmetric Cautious Utility representation. Given 8 ∈ {2, ..., :},
if each E ∈ W is continuously differentiable and there exist E, E′ ∈ W such that MRSE8 (G) ≠
MRSE

′
8 (G) for all G ∈ R: with G1, G8 ≠ 0, then WTA8 (<) > WTP8 (<) for all< ∈ R++.

This result also provides simple comparative statics. As standard, we use the ratio be-
tween WTA and WTP to define the strength of the endowment effect. As opposed to other
models, this strength can vary with the good or the quantity of each good.

Example 3. Consider E1(G1, G2, G3) = G1 + G2 + UG3 and E2(G1, G2, G3) = G1 + G2 + VG3, with
U > V > 0. IfW = {E1, E2}, there is an endowment effect for good 3 but not for good 2:
WTA3 (<)
WTP3 (<) =

U
V
≠ 1 =

WTA2 (<)
WTP2 (<) for all< > 0.

Example 4. Consider E1(G1, G2) = G1 + UG2 (for U > 0) and E2(G1, G2) = G1 + G3
2 . If

W = {E1, E2}, the endowment effect varies with the quantity: for< ≠ <′ with<<′ ≠ U , we
have WTA2 (<)

WTP2 (<) ≠
WTA2 (<′)
WTP2 (<′) .

In general, the strength of the endowment effect depends on the range of possible trade-
offs that the agent considers for each good: the endowment effect is more substantial when
the range is larger. For any set �, denote by co(�) its convex hull.

Corollary 3. Let < admit a Symmetric Cautious Utility representation with finite setW. For
each 8, 9 ∈ {2, . . . , :} and<,<′ ∈ R++,

co
({

WTAE8 (<) : E ∈ W
})
⊃ co

({
WTAE9 (<′) : E ∈ W

})
=⇒ WTA8 (<)

WTP8 (<)
>

WTA 9 (<′)
WTP 9 (<′)

.

Turning to loss aversion, strict loss aversion holds when at least one utility is not odd.

Proposition 3. Let < admit a Symmetric Cautious Utility representation. Given 0 ∈ R++ and
8 ∈ {1, . . . , :}, < is strictly loss averse on dimension 8 at 0, that is, X0 � 1

2X048 +
1
2X−048 , if and

only if −E (−048) ≠ E (048) for some E ∈ W.
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3.2 Loss Aversion, Endowment Effect, and Non-Expected Utility

Under Cautious Utility, loss aversion, the endowment effect, and violations of Expected
Utility are conceptually related and stem from the same source. However, this does not
mean that they should manifest themselves together or even be correlated.

Observation 2. If < admits a Symmetric Cautious Utility representation, then:

(i) The agent may be loss neutral on all dimensions yet exhibit the endowment effect strictly
(WTA8 (<) > WTP8 (<) for all< > 0 and for all 8 ∈ {2, ..., :}).

(ii) The agent may be strictly loss averse on all dimensions yet exhibit no endowment effect
(WTA8 (<) = WTP8 (<) for all< > 0 and for all 8 ∈ {2, ..., :}).

(iii) The agent may exhibit the certainty effect for monetary lotteries yet be loss neutral or
exhibit no endowment effect.

(iv) The agent may follow Expected Utility for monetary lotteries yet exhibit the endowment
effect. The agent may follow Expected Utility for monetary lotteries with only gains or
only losses yet exhibit loss aversion.

Points (8) and (88) show that the endowment effect and loss aversion are not necessarily
related: we may have one without the other, and they need not be correlated. Recall that
loss aversion is due to the uncertainty on how to aggregate gains and losses, while the
endowment effect also relates to the uncertainty on the trade-off between goods andmoney.
Example 1 provides a simple instance of (8), endowment effect without loss aversion.

For (88), loss aversionwithout endowment effect, considerW = {E, E′}, where E (G1, G2) =
(G1 + G2) .5 if G1 + G2 ≥ 0 and E (G1, G2) = −(−(G1 + G2)) .25 otherwise; and E′(G1, G2) =
−E (−G1,−G2). Similar calculations as in Example 2 show strict loss aversion on each dimen-
sion, but no endowment effect.

Points (888) and (8E) show the relation with the certainty effect. We can have viola-
tions of Expected Utility without loss aversion or the endowment effect, and the endow-
ment effect independently of the certainty effect on monetary lotteries. This is intuitive:
we have seen how the endowment effect can emerge from uncertainty about the trade-off
between different goods, while violations of Expected Utility for monetary lotteries are due
to uncertainty about how to evaluate monetary amounts. For (888), take E and E′ such that
E (G1, G2) = 5 (G1 + G2) and E′(G1, G2) = 6(G1 + G2) for some strictly increasing, continuous,
and odd 5 and 6. For the first part of (8E), use the setW of Example 1. For the second
part, use the same set used for (88). In most other models, like CPT, loss aversion and the
endowment effect are linked by one parameter, while non-Expected Utility is separate, con-
ceptually and empirically. In Cautious Utility, instead, non-Expected Utility is at the core,
but it can manifest itself in ways that can generate loss aversion, the endowment effect,
both, or neither. We will revisit Observation 2 when discussing the empirical evidence in
Section 4.
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3.3 Cautious Utility and Prospect Theory are Fully Distinct

We now show that Cautious Utility is not only conceptually different from CPT, but also fully
behaviorally distinct, in the sense that the only preferences compatible with both models
are those featuring none of the phenomena we are interested in.

To define CPT, we begin with the case in which only monetary lotteries are involved
(: = 1). Consider a strictly increasing and continuous utility function E : R → R such
that E (0) = 0, and two probability distortion functions F+,F− : [0, 1] → [0, 1], that are
strictly increasing, continuous, and take value 0 at 0 and 1 at 1. For each lottery ? over R
with compact support, denote by �? its corresponding CDF. Define

CPTE,F+,F− (?) =
∫
[0,∞)

E (G) 3F+
(
�? (G)

)
+

∫
(−∞,0]

E (G) 3F−
(
�? (G)

)
.

This is similar to Expected Utility with utility E , except that probabilities are distorted (in
their cumulative distribution). A widely used special case assumes E (−G) = −_E (G) for
G > 0, where _ denotes the coefficient of loss aversion and regulates the asymmetry in the
treatment of gains and losses, with _ > 1 capturing loss aversion.

There are two ways to extend CPT to bundles: probability distortions and reference-
dependence can be applied to each dimension separately, or the agent can first compute the
utility of each bundle, and then compare it to a ‘global’ reference point with utility zero. We
consider both cases.

The first approach, widespread in the applied literature and studied by Bleichrodt et al.
(2009), considers for each 8 ∈ {1, . . . , :} a strictly increasing and continuous utility D8 :
R→ R with D8 (0) = 0. For each lottery ? over R: , let ?8 be the marginal distribution over
dimension 8. Preferences admit an Additive CPT representation if they are represented by

+ (?) =
:∑
8=1

CPTD8 ,F+,F− (?8) .

The second approach was proposed by Tversky and Kahneman (1981, p. 456) and for-
mally derived by Wakker and Tversky (1993). The agent has a strictly increasing and con-
tinuous utility over bundles D : R: → R, with D (0) = 0. For each lottery ?, denote by ?D
the distribution it induces over utility levels.6 Preferences admit a u-CPT representation if

+ (?) = CPTE,F+,F− (?D) .

Before stating our result, we need an extra property. A finite Cautious Utility representation
6That is, for all Borel subsets � of R and for all ? ∈ Δ, ?D (�) = ? ({G ∈ R: : D (G) ∈ �}).
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is essential if for each Ẽ ∈ W there exists ? ∈ Δ such that

min
E∈W

2 (?, E) < min
E∈W\{Ẽ}

2 (?, E) .

This guarantees that no utility is redundant and that the set includes only the genuinely
relevant elements. In all our examples above, the set is essential.

Proposition 4. If < admits a Symmetric Cautious Utility representation as well as either an
Additive CPT or a u-CPT representation, then < admits an Expected Utility representation.
Moreover, if the representation is also finite and essential, then < is loss neutral and exhibits
no endowment effect.

Proposition 4 extends a similar result in Cerreia-Vioglio et al. (2015) that shows how
Cautious Expected Utility and Rank Dependent Expected Utility are fully distinct.7

3.4 Stochastic Reference Points

Cautious Utility is applied to changes relative to a reference point: for a final allocation ~
and reference bundle A , Cautious Utility is applied to G = ~−A . What if the reference point is
stochastic? For example, the reference point may be the current portfolio of financial assets
or a distribution of payoffs that the individual is expecting to receive.

Like we defined changes relative to a fixed reference point by ‘subtracting’ it, we can do
the same when the reference point is a lottery. To illustrate, we proceed in steps. Given a
reference lottery A that pays G8 with probability A (G8), the (degenerate) final allocation ~ is
evaluated as the lottery that pays ~−G8 with probability A (G8): for example, if : = 1 and the
reference point is A = 1

2$10+ 1
2$0, the final allocation $7 is evaluated by Cautious Utility as

the lottery 1
2 (−$3) + 1

2$7. Intuitively, it is as if the agent were ‘issuing’ the reference lottery
and paying its prizes in every contingency. Denote the subtraction of a lottery A ∈ Δ from
~ ∈ R: as ~ − A ; A − ~ is defined similarly.

To extend this approach to stochastic final allocations, we need to take into account the
correlation with the reference lottery. Consider a final allocation @ and reference lottery A ,
suppose both are simple lotteries, and denote by %@,A (G,~) the joint probability that@ returns
G and A returns ~. Then, define @ − A ∈ Δ simply as

∑
G,~ XG−~%@,A (G,~).8 For example, if the

final allocation is 1
2XG +

1
2X~ and the reference lottery is 1

2XI +
1
2XF then: if the two lotteries

are independent, this is evaluated as 1
4XG−I +

1
4XG−F +

1
4X~−I +

1
4X~−F ; if the two lotteries

are perfectly correlated so that @ returns G if and only if A returns I, this is evaluated as
7To see why essentiality is important, suppose : = 1 andW = {E, E ′}, where E is strictly increasing and

concave and E ′ is such that E (G) = −E ′(−G) for all G ∈ R. The setW is odd. But since E ′ is convex, it will
never be used. Therefore, preferences are Expected Utility with utility E , which, by concavity, is loss averse.

8In general, define the map ) : R: × R: → R: by ) (G,~) = G − ~ for all G,~ ∈ R: . Given @, A ∈ Δ with
joint probability %@,A , denote @ − A ∈ Δ by (@ − A ) (�) = %@,A () −1 (�)) for all Borel sets � of R: .
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1
2XG−I +

1
2X~−F . Importantly, the value of the final allocation ? when the reference point is

? itself is 0: this is relevant, for example, for calculating the WTA of a lottery tickets, as it
implies that keeping the lottery corresponds to 0.9

Endowment Effect for Lottery Tickets. Our results extend to the endowment effect for
lotteries, widely documented empirically (see Section 4). Similarly to the deterministic
case, we define WTA and WTP for a lottery ? as

WTP (?) = max {; ∈ R : ? − ;41 < 0} and WTA (?) = min {; ∈ R : ;41 − ? < 0 }.

Like above, it can be shown that WTP (?) and WTA (?) are well defined and that

? −WTP (?) 41 ∼ 0 and WTA (?) 41 − ? ∼ 0.

Given a strictly increasing and continuous utility E , let WTAE (?) denote the WTA for ? of
an Expected Utility maximizer with utility E; define WTPE (?) analogously. It is routine to
check that they are well-defined under Cautious or Incautious Utility. Our results on WTA
and WTP readily extend to this case of lotteries. (The proof follows from arguments which
are identical to those used to prove Propositions 1 and 2 and is therefore omitted.)

Proposition 5. If < admits a Cautious Utility representationW and ? ∈ Δ, then

1. IfW is odd, then WTA (?) ≥ WTP (?);
2. WTA (?) = sup

E∈W
WTAE (?) and WTP (?) = inf

E∈W
WTPE (?).

3.5 Discussion

We now turn to discuss convenient functional forms, the role of symmetry, and other impli-
cations of caution.

Convenient Functional Forms for Estimation. To bring a model to data, one needs a
functional form with few parameters that can be easily estimated. We now discuss two
convenient forms for Cautious Utility, obtained by generalizing Examples 1 and 2.

First, assumeW = {E1, E2}, where E1(G1, G2) = G1 + UG2 and E2(G1, G2) = G1 + VG2 for
some U, V ∈ R++. Despite involving only two parameters, this special case can capture any
range of trade-offs between money and the other good. As it generalizes Example 1, it also

9In accounting for the correlation between the reference lottery and the final allocation, our approach
departs from the formulation of Köszegi and Rabin (2006, 2007) and adopts an approach closer to Schmidt
et al. (2008). This is evident when the final allocation is the reference lottery itself, evaluated as 0 in our
model, while in Köszegi and Rabin (2006, 2007) it is treated as a non-degenerate lottery.
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captures the endowment effect, since WTA2(1) = max{U, V} and WTP2(1) = min{U, V},
making the estimation immediate.

Alternatively, takeW = {E1, E2} where E1 (G1, G2) = 6 (G1) + 6 (G2) and E′ (G1, G2) =
−6 (−G1) − 6 (−G2), where 6 (0) = 0U for 0 > 0 and 6 (0) = − (−0)V for 0 ≤ 0 with
U, V ∈ R++. As a generalization of Example 2, this two-parameters specification allows for
the endowment effect, loss aversion, as well as different risk attitudes for gains and losses.

On Asymmetry of Utility Function(s). Our results mainly focus on Symmetric represen-
tations. This allows us to demonstrate in the starkest way how caution alone generates
the endowment effect and loss aversion even without any asymmetry. We emphasize that
our goal is not to argue that utilities are genuinely symmetric, but to propose a different
force—caution—that may be at play possibly jointly with asymmetry. As noted in Remark
3, assuming that utilities overweight losses only strengthen our implications, giving us two
forces pushing for the endowment effect and loss aversion. Because these forces do not
coincide, they may together contribute to improving the fit with data. Which of the two
is most important in each context, and whether we should expect one to be particularly
relevant, is an empirical question we do not aim at addressing here.

Choice. Since Kahneman et al. (1990), some experiments measure not only WTA and
WTP but also “Choice”: the amount of money that makes the agent indifferent between
receiving it or receiving one unit of the object, that is, $I such that (I, 0) ∼ (0, 1). Choice
typically falls between WTA andWTP, though often very close to WTP. This is easy to obtain
in Cautious Utility. With the utilities in Example 1, Choice coincides with WTP; with those
in Example 2, it is strictly between the WTA and WTP (except for< = 1).

Exchange Asymmetries and Status Quo Bias. It is widely documented that individuals
are status quo biased and often reject exchanges favoring to keep their current endowment
(status quo) even when no money is involved (e.g., Knetsch, 1989). For example, an indi-
vidual may be given a mug and asked to exchange it for a chocolate bar, or given a chocolate
bar and asked to exchange it for a mug, and reject both. Under Cautious Utility, this hap-
pens whenever the individual considers a utility for which the mug is better, and another
for which the chocolate bar is better. As a simple example, if mugs and chocolate bars
are dimension 2 and 3, extend Example 1 and supposeW = {E1, E2} with E1(G1, G2, G3) =
G1 + 2G2 + G3 and E2(G1, G2, G3) = G1 + G2 + 2G3. Then, + (0,−1, 1) = min{−2 + 1,−1 + 2} =
−1 < 0 = + (0, 0, 0) and + (0, 1,−1) = min{2 − 1,−2 + 1} = −1 < 0 = + (0, 0, 0).

Randomization. Preferences under Cautious Utility are convex in probabilities, allowing
for strict preference for randomizationwhile ruling out the opposite (see also Cerreia-Vioglio
et al. 2019). To illustrate, consider the same example above of an individual unsure about

17



the trade-offs between mugs and chocolate bars. The individual is indifferent between one
mug and one chocolate bar, since+ (0, 1, 0) = min{2, 1} = 1 and+ (0, 0, 1) = min{1, 2} = 1,
but strictly prefers a 50/50 lottery ? between the two, since+ (?) = min{0.5 ·1+0.5 ·2, 0.5 ·
2 + 0.5 · 1} = 1.5. Unsure which is best, our individual prefers to ‘hedge’.

4 Cautious Utility and Empirical Evidence

We now relate Cautious Utility to empirical evidence. We show how it can accommodate
data incompatible with leading alternative models and may be used to organize widely doc-
umented patterns, although it fails to capture other regularities. Given its prominence, this
section will contrast Cautious Utility mostly with CPT, yet we note that other models are also
compatible with some of the patterns below. Our aim is not to run a competition between
models based on theoretical elegance and descriptive validity, but rather to demonstrate
the merit of adding caution as a potential source of reference effects. Naturally, we can-
not discuss in full the immense evidence regarding our phenomena of interest, so we focus
on differentiating aspects; we refer to DellaVigna (2009) and O’Donoghue and Sprenger
(2018) for recent surveys of reference effects.

The Endowment Effect: Varying Strength and Information. A key aspect of the evi-
dence of the endowment effect is how its strength and frequency vary substantially across
goods and environments. It appears strongest with less common goods, it is reduced for
ordinary market goods, and disappears for objects of known value, like monetary tokens.10

In addition, the endowment effect is severely affected by information. For example,
Weaver and Frederick (2012) show that when subjects are given information on market
values that suggest a high price, above typical WTAs, the endowment effect is very pro-
nounced; when the information points to an intermediate price, between typical WTAs and
WTPs, the endowment effect shrinks or disappears; when the information points to a very
low price, below typical WTPs, the endowment effect increases again. Shogren et al. (1994)
and List (2004a) find that the endowment effect is reduced by showing continuous trading
in a public auction or by providing trading experience. List (2003, 2004b) shows how ex-
perienced traders exhibit much less endowment effect for goods they frequently trade.

Accommodating these patterns in CPT requires that the ‘pain of losing’ encoded by the
10In their widely-cited metastudy of the empirical literature, Horowitz and McConnell (2002, p. 427) de-

scribe the heterogeneity of ratios between WTAs and WTPs across forty-five studies and note: “With regard to
patterns in the observed ratios, we find that, on average, the less the good is like an ‘ordinary market good,’
the higher is the ratio. The ratio is highest for public and non-market goods, next highest for ordinary private
goods, and lowest for experiments involving forms of money. A generalization of this pattern holds even when
we account for differences in survey design: ordinary goods have lower ratios than non-ordinary ones. This
pattern is the major result we discover.”
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overweighting of losses not only varies across dimensions, but (i) it is higher for unfamiliar
goods than for familiar ones; and (ii) it varies substantially and non-monotonically with
information—it disappears when subjects observe trading or are informed of intermediate
prices, while it increases if told very high or very low prices. These assumptions, particularly
the second one, seem to us a less plausible way of modeling how the ‘pain of losing’ should
vary.

Cautious Utility is not only compatible with these patterns but predicts them under
very natural assumptions. Here, the endowment effect varies in strength depending on the
uncertainty about trade-offs. We can expect more uncertainty, thus a bigger endowment
effect, for less common goods, for inexperienced traders, and in the absence of information.
We can expect the opposite for familiar goods, for professional traders, or after receiving
information that brings utilities to converge, such as with market prices between the WTA
and the WTP. When information increases doubts about trade-offs, such as with very high
or very low market prices, the endowment effect may instead increase. Finally, we should
see no effect when there is no uncertainty about the trade-off—e.g., monetary tokens.

Loss Aversion and its Relation to the Endowment Effect. As CPT ascribes both loss
aversion and the endowment effect to the same parameter, it implies that (i) we cannot
observe one without the other and (ii) that they must be empirically correlated.

However, the empirical evidence of rejection of fair bets around zero—that is, the be-
havioral definition of loss aversion—is much less robust than that of the endowment effect.
Although many papers document it (Camerer, 1995; Starmer, 2000), several studies find
it to be fragile (Ert and Erev, 2008, 2013), while others find loss neutrality. For exam-
ple, Chapman et al. (2019, 2021) measure loss aversion using different techniques in large
representative samples, and find average loss neutrality, even though they document (ro-
bustly) the endowment effect. L’Haridon et al. (2021) find loss neutrality also in the lab
after carefully accounting for other features of CTP.

In terms of the correlation between loss aversion and the endowment effect, surprisingly
few studies analyze it empirically. Gächter et al. (2007) and Dean and Ortoleva (2019) test
this on students and find a (mild) positive correlation. However, Chapman et al. (2021) test
it in large representative samples and find loss aversion to be unrelated to the endowment
effect for lottery tickets. This is incompatible with CPT or any model that ascribes the
endowment effect to loss aversion.

Instead, we have seen that Cautious Utility does not entail a relationship between loss
aversion and the endowment effect; each may exist without the other, or they may coexist
and be unrelated.11

11It is also easy to construct examples of Cautious Utility in which loss aversion for money is independent of
the endowment effect for monetary lottery tickets (in the sense that we can identify a parametric family and
a distribution of parameters in the population such that the endowment effect is distributed independently of
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Gain-Loss Separability. A central feature of most models of reference-dependence under
risk, including CPT, is Gain-Loss Separability: the overall utility of a lottery can be expressed
as the sum of the utilities of its positive and negative components. Behaviorally, this means
that if individuals prefer both the ‘gain’ part of ? to that of @ and the ‘loss’ part of ? to that
of @, they must prefer ? to @. Formally, focusing on the simpler case of : = 1, for any ? with
finite support define its ‘gain’ part, ?+, and its ‘loss’ part, ?−, by

?+ (G) =


? (G) G > 0
? ({~ ∈ supp(?) |~ ≤ 0}) G = 0

0 G < 0
?− (G) =


? (G) G < 0

? ({~ ∈ supp(?) |~ ≥ 0}) G = 0
0 G > 0

That is, ?+ (resp. ?−) agrees with ? on the strictly positive (resp. negative) prizes and assigns
all the remaining probability to the prize zero. We say that < satisfies Gain-Loss Separability
if for any ? and @, if both ?+ < @+ and ?− < @−, then ? < @.

Gain-Loss Separability is satisfied not only by Expected Utility but also by CPT and RDU.
However, experimental tests of this property find that it often fails. For example, Wu and
Markle (2008) consider, among others, ? = 1

2X4200 + 1
2X−3000 and @ = 3

4X3000 + 1
4X−4500,

and find (within-subjects) that a majority ranks @+ < ?+, @− < ?−, but ? � @. See also
Birnbaum and Bahra (2007); Por and Budescu (2013).

Cautious Utility can accommodate violations of Gain-Loss Separability. As different util-
ities can be relevant for different lotteries, it is easy to construct a setW where the utility
used for mixed lotteries is different from the ones used with only gains or losses.12

Evidence of Randomization. Several papers document preferences for randomization for
many types of objects; see Agranov and Ortoleva (2017, 2022) for a review. As we have
seen, Cautious Utility allows for preferences for randomization. However, the model rules
out strict preference for randomization with degenerate monetary amounts, documented
in Feldman and Rehbeck (2020) and Agranov and Ortoleva (2021). Under RDU and CPT
with pessimistic probability weighting, subjects should be averse to randomization, while
with S-shaped probability weighting, preferences for randomization are expected in specific
regions and not in others.

Evidence of the Certainty Effect. We briefly review the relationship with the evidence of
the certainty effect and refer to Cerreia-Vioglio et al. (2015) for an in-depth discussion.

the distribution of loss aversion).
12For example, let ? = 1

2X4 + 1
4X0 + 1

4X−2 and @ = 1
3X9 + 2

3X− 3
4
. LetW = {E, E ′}, where E (G) = G , and

E ′(G) =
√
G if G ≥ 0 and E ′(G) = −

√
−G if G < 0. ClearlyW is odd. We have ?+ ∼ @+ (with + (?+) = 1),

?− ∼ @− (with + (?−) = −0.5), but ? � @, since + (?) = (1 − 1
4

√
2)2 > (1 − 2

3

√
0.75)2 = + (@).
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An extensive literature documented Allais-type behavior when one option is risk-free.13

Other stylized facts are that violations are less frequent when no option is risk-free and
mixed fanning—indifference curves becoming flatter as we move towards better prizes in
the Marschak–Machina triangle. All are compatible with Cautious Utility, RDU, and CPT.14

Another robustly documented pattern is that the strength of the certainty effect appears
to vary significantly with stake sizes: Allais-type behavior is considerably less frequent for
small stakes.15 This is incompatible with RDU and CPT, as probability weighting does not
change if all stakes are modified without changing their rank. Cautious Utility allows for it:
for example, if one utility is most risk averse for all prizes close enough to zero, then behavior
in this region is indistinguishable from Expected Utility, implying no certainty effect.

To our knowledge, less attention has been given to the certainty effect for losses since
Kahneman and Tversky (1979), which document the opposite.16 Such reversals are incom-
patible with Cautious Utility.

The 4-fold Pattern. An often-cited regularity of risk preferences is the 4-fold pattern: risk
aversion for gains of large probabilities and losses of small probability; risk seeking for gains
of small probability and losses of large probability. This is easily captured by RDU and CPT,
assuming probability weighting of inverted-S shape. Cautious Utility is compatible with
risk aversion for gains and risk seeking for losses, but it cannot capture these two patterns
globally together with risk seeking for all lotteries that give gains with small probabilities.17

5 Foundation

We conclude with the axiomatic foundation of Cautious Utility. Endow R: with the usual
Euclidean topology and Δ with a version of the weak topology.18 Consider a binary relation
< on Δ, on which we impose the following axioms.

13See Camerer (1995) for a review. Some papers document the opposite (Blavatskyy et al., 2022; Jain and
Nielsen, 2020); this is compatible with Incautious Utility and less-often used versions of CPT and RDU.

14Bernheim and Sprenger (2020) provide evidence against rank dependency, the basic principle underlying
probability weighting in CPT. For its design, their experiment cannot be used to neither refute nor support
Cautious Utility.

15Conlisk (1989); Camerer (1989); Burke et al. (1996); Fan (2002); Huck and Müller (2012).
16Ruggeri et al. (2020) is a large-scale, multi-country replication of the experiments in Kahneman and

Tversky (1979). While most effects replicate, the evidence of the opposite of the certainty effect for losses is
weaker: few subjects exhibit the certainty effect in that range, but there is no evidence of its opposite, with
the majority of subjects exhibiting a behavior compatible with Expected Utility (a pattern compatible with
Cautious Utility and with CPT with no probability weighting for losses.)

17A few recent papers argue that risk seeking for gains with small probabilities may be due to a misunder-
standing of lottery descriptions and not to innate preferences. Hertwig et al. (2004) and Abdellaoui et al.
(2011) show that risk seeking for small probabilities disappears and is replaced by risk aversion if subjects are
allowed to learn probabilities through sampling, instead of being simply given a description of a lottery.

18A generalized sequence {?U }U ∈� in Δ converges to ? if and only if E?U (E) → E? (E) for all E ∈ �
(
R:

)
.
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Axiom 1 (Weak Order). The relation < is complete and transitive.

Axiom 2 (Continuity). For each @ ∈ Δ the sets {? ∈ Δ : ? < @} and {? ∈ Δ : @ < ?} are
closed.

Axiom 3 (Monotonicity). For each G,~ ∈ R:

G > ~ =⇒ _XG + (1 − _) A < _X~ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ

and _XG + (1 − _) A � _X~ + (1 − _) A for some _ ∈ (0, 1] and for some A ∈ Δ.19

Axiom 4 (Monetary equivalent). For each G,~ ∈ R: there exists< ∈ R+ such that

_X~+<41 + (1 − _) A < _XG + (1 − _) A < _X~−<41 + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

The first three postulates are standard. Monetary equivalent simply stipulates that for
any two bundles G,~ ∈ R: , there is a monetary amount < large enough that receiving
that amount on top of ~ is better than G and losing that amount is worse than G , and this
remains true even if we mix with some other lottery A . This axiom will guarantee that
monetary certainty equivalents, WTAs, and WTPs are well defined.

The following axiom is our key assumption. It extends the Negative Certainty Inde-
pendence (NCI) axiom of Dillenberger (2010) and Cerreia-Vioglio et al. (2015) to multi-
dimensional bundles and generalizes the definition of certainty effect of Kahneman and
Tversky (1979).

Axiom 5 (Multi-Dimensional Negative Certainty Independence (M-NCI)). For each ? ∈ Δ

and for each< ∈ R

? < X<41 =⇒ _? + (1 − _) A < _X<41 + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Like the original NCI, this property states that if a sure amount of money< is not pre-
ferred to a lottery ?, then this ranking does not change if we mix both with another lottery.
M-NCI is a weakening of standard Independence that captures the certainty effect. Intu-
itively, mixing< with a lottery eliminates its certainty appeal. Therefore, if< is worse than
? when certain, it will remain so after the mixture.

For ease of comparison, it is also helpful to consider the inverse postulate that rules out
the certainty effect while allowing for the opposite.

Axiom 6 (Multi-Dimensional Positive Certainty Independence (M-PCI)). For each ? ∈ Δ

and for each< ∈ R

X<41 < ? =⇒ _X<41 + (1 − _) A < _? + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.
19G > ~ means that G8 ≥ ~8 for all 8, where at least one of the inequalities is strict.
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Our characterization theorem below focuses on canonical representations. To define
them, we first introduce the following subrelation <′:

? <′ @
def⇐⇒ _? + (1 − _) A < _@ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Intuitively, <′ captures the rankings of which the agent is sure: ? <′ @ when not only ? < @,
but also any mixture featuring ? is better than the corresponding mixture with @. It is easy
to verify that <′ is the largest subrelation of < that satisfies the Independence axiom of
Expected Utility, and that it is incomplete (yet still transitive) whenever preferences are
not Expected Utility. We say that a Cautious Utility representationW (see Definition 1) is
canonical if it also represents <′, in the sense that

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W .

Theorem 1. A binary relation < on Δ satisfies Axioms 1-5 if and only if it admits a canonical
Cautious Utility representation.

This theorem shows that Cautious Utility can be derived from an axiom that postulates
the certainty effect, M-NCI, together with basic properties. It is routine to show that Incau-
tious Utility is characterized by the same axioms with M-NCI replaced by M-PCI.

Technically, this result extends the main representation theorem of Cerreia-Vioglio et al.
(2015) to a setup of lotteries over multi-commodity bundles and to an unbounded domain,
necessary to define monetary certainty equivalents.

In the main text, we discussed Cautious Utility representations which are not necessarily
canonical. WhenW is finite, as in most applications, preferences represented in this way
satisfy all the above axioms (Axioms 1-5; see Remark 5 in the Appendix). Without additional
structure, Monotonicity is guaranteed only in a weaker form, that is,

G ≥ ~ =⇒ _XG + (1 − _) A < _X~ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Foundations of Symmetry. We now give a simple foundation to our symmetry assump-
tion. For each ? ∈ Δ, denote by f (?) ∈ Δ the lottery that, compared to ?, swaps gains with
losses, that is, f (?) (�) = ? (−�) for all Borel subsets � of R: .

A natural form of symmetry posits that if ? is better than @, then f (@) is better than
f (?) (the two must be swapped as we are inverting gains and losses). But this would be
too strong, as it rules out loss aversion and the endowment effect.20 A weaker version posits
that if not only ? < @, but also each mixture of ? is better than the corresponding mixture
of @, that is ? <′ @, then we obtain f (@) < f (?). This is exactly the form of symmetry
corresponding to the Symmetric Cautious (or Incautious) Utility model.

20Since X0 = f (X0) and 1
2X048 +

1
2X−048 = f

( 1
2X048 +

1
2X−048

)
, we get X0 ∼ 1

2X048 +
1
2X−048 (loss neutrality).

23



Axiom 7 (Weak Symmetry). For each ?, @ ∈ Δ

? <′ @ =⇒ f (@) < f (?).

Proposition 6. A binary relation < on Δ satisfies Axioms 1-5 and 7 if and only if it admits a
canonical Symmetric Cautious Utility representation.

6 Conclusion

This paper introduces a new way of modeling the endowment effect and loss aversion to-
gether with the certainty effect: caution.

Conceptually, caution can be viewed as a heuristic adopted to make decisions when
agents are unsure of what to do. Called upon choosing in a situation of indecisiveness, our
individuals adopt a conservative criterion. As such, caution can be understood as introduc-
ing a form of ‘uncertainty aversion’ even to choices with no objective risk—like choosing
the price to pay for a mug. Agents unsure of the trade-offs have subjective uncertainty, and
caution gives them a criterion of how to address it. Applied to resolve uncertainty about
trade-offs, how to aggregate gains and losses, or risk aversion over money, caution generates
the endowment effect, loss aversion, and the certainty effect.

Our results connect the three behaviors of interest to caution but also to each other.
Our last set of results showed that, under Weak Symmetry and basic postulate, Symmet-
ric Cautious Utility is characterized by M-NCI, a property that rules out the opposite of the
certainty effect. Proposition 1 showed how this model gives us loss aversion and the endow-
ment effect. Together, these results imply that, under Weak Symmetry and basic axioms,
ruling out the opposite of the certainty effect over bundles (as encoded by M-NCI) formally
implies loss aversion and the endowment effect: reference effects can be derived from a
form of the certainty effect over bundles.
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Appendix A: Preliminary Results

We begin by proving some ancillary results. Recall the definition of <′ in Section 5. The
goal of this section is to provide a Multi-Expected Utility representation for <′.

Lemma 1. Let < be a binary relation on Δ that satisfies Weak Order. The following statements
are true:

1. The relation < satisfies M-NCI if and only if for each ? ∈ Δ and for each< ∈ R

? < X<41 =⇒ ? <′ X<41 . (Equivalently ? %′ X<41 =⇒ X<41 � ?.)

2. If < satisfies Monotonicity, then for each G,~ ∈ R:

G > ~ =⇒ XG �′ X~ . (2)

3. If < satisfies Monetary equivalent, then for each G,~ ∈ R: there exists< ∈ R+ such that

X~+<41 <
′ XG <

′ X~−<41 . (3)

Proof. All three points follow from the definition of <′ and M-NCI, Monotonicity, and Mon-
etary equivalent, respectively. �

A.1 Aumann Utilities and Multi-Expected Utility Representations

In this section, in our formal results, we consider a binary relation <∗ over Δ such that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W (4)

whereW ⊆ �
(
R:

)
. Recall that a function E ∈ �

(
R:

)
is an Aumann utility if and only if

? �∗ @ =⇒ E? (E) > E@ (E) and ? ∼∗ @ =⇒ E? (E) = E@ (E) .

We denote by 4 the vector whose components are all 1s. We endow�
(
R:

)
with the distance

3 : �
(
R:

)
×�

(
R:

)
→ [0,∞) defined by

3 (5 , 6) =
∞∑
==1

(
1
2

)=
min

{
max

G∈[−=4,=4]
|5 (G) − 6 (G) | , 1

}
∀5 , 6 ∈ �

(
R:

)
.
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It is routine to show that
(
�

(
R:

)
, 3

)
is separable.21 Moreover, if {5<}<∈N ⊆ �

(
R:

)
is such

that 5<
3→ 5 , then {5<}<∈N converges uniformly on each compact subset of R: .

Proposition 7. If <∗ is as in (4) and such that

G > ~ =⇒ XG �∗ X~, (5)

then <∗ admits a strictly increasing Aumann utility.

Proof. By (4), observe that G > ~ implies E (G) ≥ E (~) for all E ∈ W. This implies that
each E ∈ W is increasing. By Aliprantis and Border (2006, Corollary 3.5), there exists a
countable 3-dense subset � ofW. Clearly, we have that

? <∗ @ =⇒ E? (E) ≥ E@ (E) ∀E ∈ �. (6)

Vice-versa, consider ?, @ ∈ Δ such that E? (E) ≥ E@ (E) for all E ∈ �. Since ? and @ have
compact support, there exists =̄ ∈ N such that [−=̄4, =̄4] contains both supports. Consider
E ∈ W. Since � is 3-dense inW, there exists a sequence {E; };∈N ⊆ � such that E;

3→ E . It
follows that E; converges uniformly on [−=̄4, =̄4]. This implies that

E? (E) =
∫
[−=̄4,=̄4]

Ed? = lim
;

∫
[−=̄4,=̄4]

E;d? = lim
;
E? (E; )

≥ lim
;
E@ (E; ) = lim

;

∫
[−=̄4,=̄4]

E;d@ =

∫
[−=̄4,=̄4]

Ed@ = E@ (E) .

By (4) and (6) and since E was arbitrarily chosen, we can conclude that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ �. (7)

Since� is countable, we can list its elements: � = {E<}<∈N. Set1; = ;+max {|E; (−;4) | , |E; (;4) |}
for all ; ∈ N and 0< = Π<

;=11; ≥ 1< for all< ∈ N. Finally, define E : R: → R by

E (G) =
∞∑
<=1

E< (G)
0<

∀G ∈ R: . (8)

We first prove that E is a well defined continuous function. Fix G ∈ R: . It follows that there
exists <̄ ∈ N such that G ∈ [−<4,<4] for all< ≥ <̄. Since each E< is increasing, we have
that |E< (G) | ≤ max {|E< (−<4) | , |E< (<4) |} ≤ 1< ≤ 0< for all< ≥ <̄. Since 0< ≥ <! for

21A proof is available upon request.
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all< ∈ N, it follows that

|E< (G) |
0<

=
|E< (G) |
1<0<−1

≤ 1
0<−1

≤ 1
(< − 1)! ∀< ≥ <̄ + 1.

This implies that the right-hand side of (8) converges. Since G was arbitrarily chosen, E is
well defined. Next, consider = ∈ N. From the same argument above, we have that

|E< (G) |
0<

≤ 1
(< − 1)! ∀G ∈ [−=4, =4] ,∀< ≥ = + 1.

By Weierstrass’"-test and since {E</0<}<∈N is a sequence of continuous functions, we can
conclude that E =

∑∞
<=1

E<
0<

converges uniformly on [−=4, =4], yielding that E is continuous
on [−=4, =4]. Since = was arbitrarily chosen, it follows that E is continuous.

Finally, assume that ? �∗ @ (resp. ? ∼∗ @). By (7), we have that E? (E<) ≥ E@ (E<) for
all< ∈ N and E? (E<̂) > E@ (E<̂) for some <̂ ∈ N (resp. E? (E<) = E@ (E<) for all< ∈ N).
In particular, we have that E? (E</0<) ≥ E@ (E</0<) for all < ∈ N and E? (E<̂/0<̂) >

E@ (E<̂/0<̂) for some <̂ ∈ N (resp. E? (E</0<) = E@ (E</0<) for all< ∈ N). Since
∑∞
<=1

E<
0<

converges uniformly on compacta and the supports of ? and @ are compact, we can conclude
that

E? (E) − E@ (E) = E?

( ∞∑
<=1

E<

0<

)
− E@

( ∞∑
<=1

E<

0<

)
= lim

;

;∑
<=1

E?

(
E<

0<

)
− lim

;

;∑
<=1

E@

(
E<

0<

)
= lim

;

[
;∑

<=1

(
E?

(
E<

0<

)
− E@

(
E<

0<

))]
.

This implies that if ? �∗ @ (resp. ? ∼∗ @), then E? (E) > E@ (E) (resp. E? (E) = E@ (E)),
proving that E is an Aumann utility. In particular, by (5), E is strictly increasing. �

Consider a binary relation <∗ on Δ. DefineWmax (<∗) as the set of all strictly increasing
functions E ∈ �

(
R:

)
such that E (0) = 0 and ? <∗ @ implies E? (E) ≥ E@ (E). We say that a

setW in �
(
R:

)
has full image if and only if

∀G,~ ∈ R: , ∃< ∈ R+ s.t. E (~ +<41) ≥ E (G) ≥ E (~ −<41) ∀E ∈ W .

Proposition 8. Let <∗ be a binary relation on Δ represented as in (4). If <∗ satisfies (2) and
(3), thenWmax (<∗) is a nonempty convex set with full image that satisfies (4).

Proof. Consider E1, E2 ∈ Wmax (<∗) and _ ∈ (0, 1). Since both functions are strictly in-
creasing and continuous and such that E1 (0) = 0 = E2 (0), it follows that _E1 + (1 − _) E2 is
strictly increasing, continuous, and takes value 0 in 0. Since E1, E2 ∈ Wmax (<∗), if ? <∗ @,
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then E? (E1) ≥ E@ (E1) and E? (E2) ≥ E@ (E2). This implies that

E? (_E1 + (1 − _) E2) = _E? (E1) + (1 − _) E? (E2)
≥ _E@ (E1) + (1 − _) E@ (E2) = E@ (_E1 + (1 − _) E2) ,

proving that _E1 + (1 − _) E2 ∈ Wmax (<∗) and, in particular, Wmax (<∗) is convex. By
Proposition 7, there exists a strictly increasing Ê ∈ �

(
R:

)
such that

? �∗ @ =⇒ E? (Ê) > E@ (Ê) and ? ∼∗ @ =⇒ E? (Ê) = E@ (Ê) .

Without loss of generality, we can assume that Ê (0) = 0 (given Ê , set E = Ê − Ê (0)) and,
in particular, we have that Ê ∈ Wmax (<∗), proving thatWmax (<∗) is nonempty. Since <∗

satisfies (3), it follows thatWmax (<∗) has full image. Since <∗ satisfies (2), E is increasing
for all E ∈ W. This implies that for each E ∈ W and for each = ∈ N the function E= =(
1 − 1

=

)
E+ 1

=
Ê−

[ (
1 − 1

=

)
E (0) + 1

=
Ê (0)

]
∈ Wmax (<∗). By definition, if ? <∗ @, thenE? (E) ≥

E@ (E) for all E ∈ Wmax (<∗). Vice-versa, we have that

E? (E) ≥ E@ (E) ∀E ∈ Wmax (<∗)

=⇒ E?

((
1 − 1

=

)
E + 1

=
Ê

)
≥ E@

((
1 − 1

=

)
E + 1

=
Ê

)
∀E ∈ W,∀= ∈ N

=⇒ E? (E) ≥ E@ (E) ∀E ∈ W =⇒ ? <∗ @,

proving that (4) holds withWmax (<∗) in place ofW. �

We conclude by discussing Multi-Expected Utility representations which feature odd
sets. To do this, we make two simple observations. First, recall the map f : Δ→ Δ, which
swaps gains with losses, defined by

f (?) (�) = ? (−�) for all Borel subsets of R: and for all ? ∈ Δ.

It is immediate to see that f is affine and f (f (?)) = ? for all ? ∈ Δ. Second, by the Change
of Variable Theorem (see, e.g., Aliprantis and Border 2006, Theorem 13.46), we have that

Ef (A ) (E) =
∫
R:
Edf (A ) = −

∫
R:
ĒdA = −EA (Ē) ∀A ∈ Δ,∀E ∈ �

(
R:

)
(9)

where Ē : R: → R is defined by Ē (G) = −E (−G) for all G ∈ R: and for all E ∈ �
(
R:

)
.

Proposition 9. Let <∗ be a binary relation on Δ represented as in (4) which satisfies (2) and
(3). The following statements are equivalent:
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(i) For each ?, @ ∈ Δ
? <∗ @ ⇐⇒ f (@) <∗ f (?) .

(ii) For each ?, @ ∈ Δ
? <∗ @ =⇒ f (@) <∗ f (?) .

(iii) Wmax (<∗) is odd.

Moreover, ifW in (4) is odd, then (i) and (ii) hold.

For the last part of the statement, that is proving that ifW is odd, then (i) and (ii) hold,
we can dispense with the assumption that <∗ satisfies (2) and (3). The proof will clarify.
Proof. By Proposition 8, we have that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<∗) .

In other words, for the first part of the statement, we can replaceW in (4) withWmax (<∗).
(i) implies (ii). It is obvious.
(ii) implies (iii). Fix E ∈ Wmax (<∗). By definition of Ē and since each E inWmax (<∗) is

strictly increasing, continuous, and such that E (0) = 0, we have that Ē is strictly increasing,
continuous, and such that Ē (0) = 0. By assumption and (9), we have that

? <∗ @ =⇒ f (@) <∗ f (?) =⇒ Ef (@) (E) ≥ Ef (?) (E) =⇒ −E@ (Ē) ≥ −E? (Ē) =⇒ E? (Ē) ≥ E@ (Ē) .

By definition ofWmax (<∗), we can conclude that Ē ∈ Wmax (<∗), proving thatWmax (<∗)
is odd.

(iii) implies (i). By (9) and sinceW is odd and represents <∗, we have that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W ⇐⇒ E? (Ē) ≥ E@ (Ē) ∀E ∈ W
⇐⇒ Ef (@) (E) ≥ Ef (?) (E) ∀E ∈ W ⇐⇒ f (@) <∗ f (?) ,

proving the implication (sinceWmax (<∗) represents <∗) and also the second part of the
statement. �

A.2 Representing <′

We can finally provide a Multi-Expected Utility representation for <′.

Proposition 10. If < satisfiesWeak Order, Continuity, Monotonicity, andMonetary equivalent,
then

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<′) .

Moreover,Wmax (<′) is a nonempty convex set with full image.

29



Proof. By the same techniques of Cerreia-Vioglio (2009, Proposition 22) (see also Cerreia-
Vioglio et al. 2017, Lemma 1 and Footnote 10), <′ is a preorder that satisfies Sequential
Continuity and Independence.22 By Evren (2008, Theorem 2), there exists a setW ⊆
�

(
R:

)
such that ? <′ @ if and only if E? (E) ≥ E@ (E) for all E ∈ W. By Lemma 1 and since

< is a Weak Order which satisfies Monotonicity and Monetary equivalent, we have that <′

satisfies (2) and (3). By Proposition 8 and considering <′ in place of <∗,W can be chosen
to beWmax (<′), proving the statement. �

Appendix B: Proof of the Main Results

We begin by proving the axiomatic foundation of our model (Theorem 1). We then proceed
to the foundation of its symmetric version (Proposition 6). We then make two observations
about the foundation of Incautious Utility and the necessity of the axioms (Remarks 4 and
5). We conclude by proving the other results in the paper.

Proof of Theorem 1. “Only if.” We proceed by steps.

Step 1. There exists a continuous utility function D : Δ→ R for < such that D
(
X<41

)
=<

for all< ∈ R.

Proof of the Step. Let ? ∈ Δ. Since ? has compact support, there exists = ∈ N such
that [−=4, =4] contains the support of ?. By Lemma 1 and since < satisfies Weak Order
and Monetary equivalent, we have that there exist<′,<′′ ∈ R+ such that X<′41 <

′ X=4 <′

X−<′41 and X<′′41 <
′ X−=4 <′ X−<′′41 . By Lemma 1 and since < satisfies Weak Order and

Monotonicity, if we set < = max {<′,<′′}, we obtain that X<41 <
′ X=4, X−=4 <′ X−<41 . By

Proposition 10 and since < satisfies Weak Order, Continuity, Monotonicity, and Monetary
equivalent and each element ofWmax (<′) is increasing, we have that

X<41 <
′ X=4 <

′ ? <′ X−=4 <
′ X−<41 .

Since <′ is a subrelation of <, we can conclude that X<41 < ? < X−<41 . Consider the
sets * =

{
< ∈ R : X<41 < ?

}
and ! =

{
< ∈ R : ? < X<41

}
. It follows that * and ! are

nonempty. Since < satisfies Weak Order, we have that * ∪ ! = R. By the same arguments
of Aliprantis and Border (2006, Theorem 15.8) and invoking Aliprantis and Border (2006,
Theorem 2.55), the map G ↦→ XG is a (continuous) embedding. Since < satisfies Continuity,
this implies that both * and ! are closed. Since R is connected and * ∪ ! = R, we can
conclude that * ∩ ! is nonempty and, in particular, ? ∼ X<41 for all< ∈ * ∩ !. By Lemma

22That is, for each two generalized sequences {?U }U ∈� and {@U }U ∈� in Δ

?U <
′ @U ∀U ∈ �, ?U → ?, and @U → @ =⇒ ? <′ @.
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1 and since < satisfies Weak Order, Monotonicity, and M-NCI, we have that< ≥ <′ if and
only if X<41 <

′ X<′41 if and only if X<41 < X<′41 . This implies that * ∩ ! is a singleton.
We denote by <? ∈ R the unique element such that ? ∼ X<?41 . Since ? was arbitrarily
chosen, we define D : Δ → R by D (?) = <? for all ? ∈ Δ. By construction, we have that
D

(
X<41

)
=< for all< ∈ R. Moreover, since < satisfies Weak Order, we have that

? < @ ⇐⇒ X<?41 < X<@41 ⇐⇒ <? ≥ <@ ⇐⇒ D (?) ≥ D (@) ,

proving that D is a utility function for <. Finally, since < satisfies Continuity, this implies
that for each C ∈ R

{? ∈ Δ : D (?) ≥ C} =
{
? ∈ Δ : D (?) ≥ D

(
XC41

)}
=

{
? ∈ Δ : ? < XC41

}
is closed, proving that D is upper semicontinuous. A specular argument yields lower semi-
continuity, proving that D is continuous. �

Step 2. <′ is represented byWmax (<′) which has full image, in particular,

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<′) ⇐⇒ 2 (?, E) ≥ 2 (@, E) ∀E ∈ Wmax (<′) .
(10)

Proof of the Step. By Proposition 10, the first part of (10) follows. SinceWmax (<′) has
full image and each element ofWmax (<′) is strictly increasing and continuous, 2 (?, E) is
well defined for all ? ∈ Δ and for all E ∈ Wmax (<′), and also the second part of (10)
follows. �

Step 3. For each ? ∈ Δ we have that infE∈Wmax (<′) 2 (?, E) ∈ R.

Proof of the Step. Fix ? ∈ Δ. By the same arguments of the first part of Step 1, there
exists< ∈ R+ such that EX<41 (E) ≥ E? (E) ≥ EX−<41 for all E ∈ Wmax (<′). It follows that
< ≥ infE∈Wmax (<′) 2 (?, E) ≥ −<.

Step 4. For each ? ∈ Δ we have that

D (?) ≤ inf
E∈Wmax (<′)

2 (?, E) .

Proof of the Step. Fix ? ∈ Δ. By Step 3, <̄ = infE∈Wmax (<′) 2 (?, E) is a real number. Pick
< ∈ R such that< > <̄. This implies that there exists E ∈ Wmax (<′) such that 2 (?, E) <
< = 2

(
X<41, E

)
. By Step 2, it follows that ? %′ X<41 . By Lemma 1 and Step 1 and since <

satisfies Weak Order and M-NCI, we have that X<41 � ?, yielding that< = D
(
X<41

)
> D (?).

Since< was arbitrarily chosen to be just strictly greater than <̄, we have that D (?) ≤ <̄,
proving the statement. �
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Step 5. For each ? ∈ Δ we have that

D (?) ≥ inf
E∈Wmax (<′)

2 (?, E) .

Proof of the Step. Fix ? ∈ Δ. By Step 3, <̄ = infE∈Wmax (<′) 2 (?, E) is a real number. By
Step 2, we have that

2 (?, E) ≥ <̄ = 2
(
X<̄41, E

)
∀E ∈ Wmax (<′) .

By Steps 1 and 2 and since <′ is a subrelation of <, this implies that ? <′ X<̄41 and, in
particular, ? < X<̄41 , that is, D (?) ≥ D

(
X<̄41

)
= <̄, proving the statement. �

By imposingW =Wmax (<′), the implication follows from Steps 1, 2, 4, and 5.

“If.” It is routine (cf. Remark 5). �

Proof of Proposition 6. “Only if.” By the proof of Theorem 1 and since < satisfies Axioms
1-5, we have thatWmax (<′) is a canonical Cautious Utility representation, in particular,
Wmax (<′) represents <′ and <. By definition of <′ and since < satisfies Weak Symmetry,
<′ satisfies Independence, and f is affine and idempotent, this implies that

? <′ @ =⇒ _? + (1 − _) f (A ) <′ _@ + (1 − _) f (A ) ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ f (_@ + (1 − _) f (A )) < f (_? + (1 − _) f (A )) ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ _f (@) + (1 − _) f (f (A )) < _f (?) + (1 − _) f (f (A )) ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ _f (@) + (1 − _) A < _f (?) + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ f (@) <′ f (?) .

By Lemma 1 and since < satisfies Weak Order, Monotonicity, and Monetary equivalent, we
have that <′ satisfies (2) and (3). By Proposition 9, we can conclude thatWmax (<′) is odd,
proving thatWmax (<′) is a canonical Symmetric Cautious Utility representation.

“If.” By Theorem 1, Axioms 1-5 follow. SinceW is a canonical Symmetric Cautious Util-
ity representation,W represents <′. By the second part of Proposition 9 and the discussion
thereafter, we can conclude that for each ?, @ ∈ Δ

? <′ @ ⇐⇒ f (@) <′ f (?) .

Since <′ is a subrelation of <, this implies that for each ?, @ ∈ Δ

? <′ @ =⇒ f (@) <′ f (?) =⇒ f (@) < f (?) ,

proving that < satisfies Weak Symmetry. �

32



The two proofs above provide a foundation of the Cautious Utility model and its sym-
metric version. In the next remark, we discuss the foundation of the Incautious one.

Remark 4. Recall that an Incautious Utility representation features the same exact objects of
a Cautious one except that the inf is replaced by sup. It is then important to observe that
the Multi-Expected Utility representation of <′ in Appendix A and the symmetry property of
its representation (Propositions 8–10) have been derived without ever using the M-NCI axiom.
The same is true for Steps 1–3 in the proof of Theorem 1 where Step 3 could have been written
with sup in place of inf using the same arguments.23 Thus, substituting M-NCI with M-PCI
allows for replacing in Steps 4 and 5 the inf with sup. Finally, Proposition 6 is a result just in
terms of <′ without ever relying on M-NCI.

Next, we comment on the necessity of the axioms when the Cautious Utility represen-
tation chosen might not be canonical, as we always posit in the main text.

Remark 5. Consider a Cautious Utility representationW for < (not necessarily canonical).
By definition, we have thatW is a set of strictly increasing and continuous utility functions
E : R: → R such that for each G,~ ∈ R: there exists< ∈ R+ such that

E (~ +<41) ≥ E (G) ≥ E (~ −<41) ∀E ∈ W, (11)

E (0) = 0 for all E ∈ W, and + : Δ→ R, defined by

+ (?) = inf
E∈W

2 (?, E) ∀? ∈ Δ,

is a continuous utility function for <. It is then immediate to observe that < satisfies Weak
Order and Continuity. As for the other axioms, define the binary relation

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W .

Clearly, <∗ is a preorder that satisfies Independence. Fact 1–4 below follow from immediate
computations and the definition of <∗. Fact 5 follows by the second part of Proposition 9 and
the discussion thereafter, providedW is odd:

1. For each ?, @ ∈ Δ
? <∗ @ =⇒ ? < @.

2. For each ? ∈ Δ and for each< ∈ R

? < X<41 =⇒ ? <∗ X<41 .

23In Step 1, using M-PCI in place of M-NCI seamlessly yields the same result.
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3. For each G,~ ∈ R:

G > ~ =⇒ XG �∗ X~ .

4. For each G,~ ∈ R: there exists< ∈ R+

X~+<41 <
∗ XG <

∗ X~−<41 and X~+<41 < XG < X~−<41 .

5. For each ?, @ ∈ Δ
? <∗ @ =⇒ f (@) <∗ f (?) .

By point 1 and since <′ is the largest subrelation of < that satisfies Independence, we
have that <∗ is a subrelation of <′, that is, ? <∗ @ =⇒ ? <′ @. In light of this
and given the definition of <′, point 2 (resp. point 4) implies that < satisfies M-NCI
(resp. Monetary equivalent). Point 3 implies a weaker form of the Monotonicity axiom
with strict inequalities replaced by weak ones.24 If the setW is also finite (as in all our
examples), then Monotonicity holds as stated: with strict inequalities. Finally, points 1
and 5 imply that < satisfies a weaker form of symmetry, that is ? <∗ @ =⇒ f (@) <
f (?), wheneverW is odd. This form of symmetry is sufficient to obtain our results on
the endowment effect and loss aversion.

Proof of Proposition 2. Consider a Cautious Utility representationW for < (not necessarily
canonical). For each 8 ∈ {2, ..., :} recall that WTA8 : R+ → R+ and WTP8 : R+ → R+ are
the functions defined by

WTA8 (<) = min
{
; ∈ R+ : X−<48+;41 < X0

}
∀< ∈ R+ (12)

and
WTP8 (<) = max

{
; ∈ R+ : X<48−;41 < X0

}
∀< ∈ R+. (13)

By points 1, 3, and 4 of Remark 5 and since < is represented by a continuous utility, these
functions are well defined and X−<48+WTA8 (<)41 ∼ X0 as well as X<48−WTP8 (<)41 ∼ X0 for all
< ∈ R+ and for all 8 ∈ {2, ..., :}. Given E ∈ W, recall that we define WTAE8 and WTPE8
according to definitions (12) and (13) for the corresponding Expected Utility preference
with Bernoulli utility E . By (11) and since each E ∈ W is strictly increasing and continuous,
it is immediate to see that WTAE8 (<) and WTPE8 (<) are the unique solutions of the equations

E (−<48 + ;41) = 0 and E (<48 − ;41) = 0.

By (11) and since E is strictly increasing and continuous, this implies that both WTAE8
and WTPE8 are continuous functions. Fix < ∈ R+ and 8 ∈ {2, ..., :}. By point 2 of Re-

24That is, given G,~ ∈ R: , G ≥ ~ implies _XG + (1 − _) A < _X~ + (1 − _) A for all _ ∈ (0, 1] and for all A ∈ Δ.
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mark 5 and the definition of <∗, and since each Ê inW satisfies Ê (0) = 0, we have that
X−<48+WTA8 (<)41 <

∗ X0 and X<48−WTP8 (<)41 <
∗ X0, that is,

Ê (−<48 +WTA8 (<) 41) ≥ 0 and Ê (<48 −WTP8 (<) 41) ≥ 0 ∀Ê ∈ W .

By the definitions of WTAE8 and WTPE8 and since each Ê inW is strictly increasing, this
implies that WTA8 (<) ≥ WTAÊ8 (<) and WTPÊ8 (<) ≥ WTP8 (<) for all Ê ∈ W, yielding
that

WTA8 (<) ≥ sup
Ê∈W

WTAÊ8 (<) and inf
Ê∈W

WTPÊ8 (<) ≥ WTP8 (<) . (14)

Vice-versa, by the definitions of WTAE8 and WTPE8 and since each E inW is strictly increasing,
we have that

E

(
−<48 + sup

Ê∈W
WTAÊ8 (<) 41

)
≥ 0 and E

(
<48 − inf

Ê∈W
WTPÊ8 (<) 41

)
≥ 0 ∀E ∈ W .

By the definition of <∗ and point 1 of Remark 5, we obtain that X−<48+supÊ∈W WTAÊ
8
(<)41
<∗

X0 and X<48−inf Ê∈W WTPÊ
8
(<)41

<∗ X0, and, in particular, X−<48+supÊ∈W WTAÊ
8
(<)41

< X0 and
X<48−inf Ê∈W WTPÊ

8
(<)41
< X0. By the definitions of WTA8 and WTP8 , this implies that

WTA8 (<) ≤ sup
Ê∈W

WTAÊ8 (<) and inf
Ê∈W

WTPÊ8 (<) ≤ WTP8 (<) .

Since< and 8 were arbitrarily chosen, we can conclude that

WTA8 (<) = sup
Ê∈W

WTAÊ8 (<) and WTP8 (<) = inf
Ê∈W

WTPÊ8 (<) ∀< ∈ R+,∀8 ∈ {2, ..., :} ,

proving the statement. �

Proof of Proposition 1. We begin with a part which is common to both models. Consider
8 ∈ {2, . . . , :}, < ∈ R+, and E : R: → R strictly increasing, continuous, and such that
E (0) = 0. Recall that Ē : R: → R is defined by Ē (G) = −E (−G) for all G ∈ R: . In
particular, Ē is strictly increasing, continuous, and such that Ē (0) = 0. It is then immediate
to see that

E
(
−<48 +WTAE8 (<) 41

)
= 0 ⇐⇒ Ē

(
<48 −WTAE8 (<) 41

)
= 0 ⇐⇒ WTAE8 (<) = WTPĒ8 (<) .

(15)
We can now prove points 1.i and 2.i.

1.i. Consider 8 ∈ {2, . . . , :} and< ∈ R+. Let E′, E′′ ∈ W. Without loss of generality, we
can assume that WTAE

′
8 (<) ≥ WTAE

′′
8 (<). By Proposition 2 and (15), and since Ē′′ ∈ W,
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we have that

WTA8 (<) = sup
E∈W

WTAE8 (<) ≥ WTAE
′
8 (<) ≥ WTAE

′′
8 (<) =

= WTPĒ
′′
8 (<) ≥ inf

E∈W
WTPE8 (<) = WTP8 (<) .

Since< ∈ R+ and 8 ∈ {2, ..., :} were arbitrarily chosen, the statement follows.

2.i. We first discuss how Proposition 2 becomes for Incatious Utility. If < admits an
Incautious Utility representation, then for each< ∈ R+ and for each 8 ∈ {2, ..., :}

WTA8 (<) ≤ inf
E∈W

WTAE8 (<) and WTP8 (<) ≥ sup
E∈W

WTPE8 (<) .

In order to derive these inequalities, we only need to observe that, for Incatious Utility, point
2 of Remark 5 becomes: for each ? ∈ Δ and for each< ∈ R

X<41 < ? =⇒ X<41 <
∗ ?.

The inequalities above then follow by a specular argument up to (14). We can now prove
2.i. Consider 8 ∈ {2, . . . , :} and < ∈ R+. Let E′, E′′ ∈ W. Without loss of generality, we
can assume that WTAE

′
8 (<) ≥ WTAE

′′
8 (<). By the inequalities above and (15) and since

Ē′ ∈ W, we have that

WTA8 (<) ≤ inf
E∈W

WTAE8 (<) ≤ WTAE
′′
8 (<) ≤ WTAE

′
8 (<) =

= WTPĒ
′
8 (<) ≤ sup

E∈W
WTPE8 (<) ≤ WTP8 (<) .

Since< ∈ R+ and 8 ∈ {2, ..., :} were arbitrarily chosen, the statement follows.

We next prove points 1.ii and 2.ii.

1.ii. Consider 8 ∈ {1, . . . , :} and 0 ∈ R++. By contradiction, assume that 1
2X048 +

1
2X−048 �

X0. By point 2 of Remark 5, we have that 1
2X048 +

1
2X−048 <

∗ X0. By point 5 of Remark 5,
X0 = f (X0) <∗ f

( 1
2X048 +

1
2X−048

)
= 1

2X048 +
1
2X−048 . By point 1 of Remark 5, we can conclude

that X0 <
1
2X048 +

1
2X−048 , a contradiction.

2.ii. We begin by recalling that for Incautious Utility points 1 as well as 3–5 of Remark
5 hold while point 2 becomes: for each ? ∈ Δ and for each< ∈ R

X<41 < ? =⇒ X<41 <
∗ ?. (16)

Consider 8 ∈ {1, . . . , :} and 0 ∈ R++. By contradiction, assume that X0 � 1
2X048 +

1
2X−048 .

By (16), we have that X0 <
∗ 1

2X048 +
1
2X−048 . By point 5 of Remark 5, 1

2X048 +
1
2X−048 =
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f
( 1

2X048 +
1
2X−048

)
<∗ f (X0) = X0. By point 1 of Remark 5, we can conclude that 1

2X048 +
1
2X−048 < X0, a contradiction. �

Proof of Corollary 1. Fix 8 ∈ {2, ..., :} and< > 0. Before proving the statement, we make
few observations. Given E ∈ W, recall that Ē : R: → R is defined by Ē (G) = −E (−G) for
all G ∈ R: . SinceW is odd, Ē ∈ W. Moreover, it is immediate to check that ¯̄E = E for all
E ∈ W. By the first part of the proof of Proposition 1, in particular (15), we have that for
each E ∈ W

WTAE8 (<) = WTPĒ8 (<) . (17)

Since Ē ∈ W and
_
Ē = E for all E ∈ W, we can conclude that for each E ∈ W

WTAĒ8 (<) = WTP¯̄E
8 (<) = WTPE8 (<) . (18)

(i) implies (ii). By Proposition 2 and sinceWTA8 (<) > WTP8 (<), we have that supE∈WWTAE8 (<) =
WTA8 (<) > WTP8 (<) = infE∈WWTPE8 (<) . By (18), this implies that there exist E, E′ ∈ W
such that WTAE

′
8 (<) > WTPE8 (<) = WTAĒ8 (<). Since Ē ∈ W, this proves the implication.

(ii) implies (iii). By assumption, there exist E, E′ ∈ W such that WTAE8 (<) ≠ WTAE
′
8 (<).

By (17), we have that

WTPĒ8 (<) = WTAE8 (<) ≠ WTAE
′
8 (<) = WTPĒ

′
8 (<) .

Since Ē, Ē′ ∈ W, this proves the implication.

(iii) implies (i). By assumption, there exist E, E′ ∈ W such that WTPE8 (<) ≠ WTPE
′
8 (<).

Without loss of generality, we can assume that WTPE8 (<) > WTPE
′
8 (<). By Proposition 2

and (18) and since Ē ∈ W, we have that WTA8 (<) = supE∈WWTAE8 (<) ≥ WTAĒ8 (<) =
= WTPE8 (<) > WTPE

′
8 (<) ≥ infE∈WWTPE8 (<) = WTP8 (<), proving the implication. �

Proof of Corollary 2. Fix 8 ∈ {2, ..., :}. Consider E, E′ ∈ W which are continuously differ-
entiable and such that MRSE8 (G) ≠ MRSE

′
8 (G) for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0. By

definition of WTAE8 and WTAE
′
8 and since E and E′ are strictly increasing, WTAE8 (<) > 0

and WTAE
′
8 (<) > 0 for all < > 0. In particular, given < > 0, we have that if G =

−<48 + WTAE8 (<) 41, then G1 ≠ 0 and G8 ≠ 0. Since MRSE8 and MRSE
′
8 are well defined

for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0 and E and E′ are strictly increasing, we have that
the partial derivative with respect to the first component is strictly positive for both E and
E′ for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0. By the Implicit Function Theorem and the
definition of WTAE8 and since E is strictly increasing, we have that WTAE8 is continuously
differentiable on (0,∞) and the derivative at < > 0 is MRSE8

(
−<48 +WTAE8 (<) 41

)
. For

ease of notation, define 5E , 5E ′ : (0,∞) → R by 5E (<) = MRSE8
(
−<48 +WTAE8 (<) 41

)
and

5E ′ (<) = MRSE
′
8

(
−<48 +WTAE8 (<) 41

)
for all< > 0. Since E and E′ are continuously dif-

ferentiable and MRSE8 (G) ≠ MRSE
′
8 (G) for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0, we can
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conclude that 5E and 5E ′ are continuous on (0,∞) and such that 5E (<) ≠ 5E ′ (<) for all
< > 0. By the Intermediate Value Theorem, this implies that either 5E (<) < 5E ′ (<) for all
< > 0 or 5E (<) > 5E ′ (<) for all< > 0. Consider the function ℎ : [0,∞) → R defined by
ℎ (<) = E′

(
−<48 +WTAE8 (<) 41

)
for all< ≥ 0. Since E′ and< ↦→ WTAE8 (<) are contin-

uous and WTAE8 (0) = 0, note that ℎ is continuous and ℎ (0) = 0. Since E′ is continuously
differentiable and so is WTAE8 (<) on (0,∞), we have that ℎ is continuously differentiable
on (0,∞) and

ℎ′ (<) = mE′

mG1

(
−<48 +WTAE8 (<) 41

)
5E (<) −

mE′

mG8

(
−<48 +WTAE8 (<) 41

)
=
mE′

mG1

(
−<48 +WTAE8 (<) 41

) (
5E (<) −

mE ′

mG8

(
−<48 +WTAE8 (<) 41

)
mE ′
mG1

(
−<48 +WTAE

8
(<) 41

) )
=
mE′

mG1

(
−<48 +WTAE8 (<) 41

)
(5E (<) − 5E ′ (<)) ∀< > 0.

Since mE ′

mG1

(
−<48 +WTAE8 (<) 41

)
> 0 for all< > 0, we can conclude that either ℎ′ (<) < 0

or ℎ′ (<) > 0 for all< > 0. In the first (resp. second) case, since ℎ′ is continuous on (0,∞),
we have that

ℎ (<) − ℎ (</2=) =
∫ <

</2=
ℎ′ (C) 3C < 0 (resp. > 0) ∀< > 0,∀= ∈ N.

Since ℎ is continuous, ℎ (0) = 0, and the sequence is {ℎ (<) − ℎ (</2=)}=∈N is decreasing
(resp. increasing), we have that

E′
(
−<48 +WTAE8 (<) 41

)
= ℎ (<) = lim

=
[ℎ (<) − ℎ (</2=)] < 0 (resp. > 0) ∀< > 0.

In the first (resp. second) case, by definition of WTAE
′
8 (<) and since E′ is strictly increasing,

we have that WTAE8 (<) < WTAE
′
8 (<) (resp. >) for all < > 0. By Corollary 1 and since

E, E′ ∈ W, this implies the statement. �

Proof of Corollary 3. Consider ; ∈ {2, ..., :} and<′′ ∈ R++. By (15) and sinceW is odd,
we have that{

WTAE
;
(<′′) : E ∈ W

}
=

{
WTPĒ

;
(<′′) : E ∈ W

}
=

{
WTPE

;
(<′′) : E ∈ W

}
.

By Proposition 2 and sinceW is finite, this implies that

WTA; (<′′) = max
E∈W

WTAE
;
(<′′) = max co

({
WTAE

;
(<′′) : E ∈ W

})
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and

WTP; (<′′) = min
E∈W

WTPE
;
(<′′) = min co

({
WTPE

;
(<′′) : E ∈ W

})
= min co

({
WTAE

;
(<′′) : E ∈ W

})
.

We can conclude that if co
({

WTAE8 (<) : E ∈ W
})
⊃ co

({
WTAE9 (<′) : E ∈ W

})
, then

WTA8 (<) ≥ WTA 9 (<′) and WTP8 (<) ≤ WTP 9 (<′) (19)

and one of the two inequalities is strict, since the inclusion is proper. Moreover, sinceW is
finite and since each E ∈ W is strictly increasing, we have that WTP8 (<) = WTPE8 (<) > 0
for some E ∈ W. By (19) and since WTP8 (<) > 0, we have that WTP 9 (<′) > 0, proving
the statement. �

Proof of Proposition 3. Set ? = 1
2X048 +

1
2X−048 . Since < admits a Symmetric Cautious Utility

representation and, in particular,W is odd, we have that

X0 � ? ⇐⇒ 0 > inf
E∈W

2 (?, E) ⇐⇒ ∃E ∈ W 0 > 2 (?, E)

⇐⇒ ∃E ∈ W 0 = E (0) > 1
2
E (048) +

1
2
E (−048)

⇐⇒ ∃E ∈ W − E (−048) > E (048) ,
⇐⇒ ∃E ∈ W − E (−048) ≠ E (048)

proving the statement. �

We next show that if < admits a finite essential Cautious Utility representation, then it
is canonical. This fact will be key in proving the second part of Proposition 4.

Lemma 2. If < admits a finite essential Cautious Utility representation, then it is canonical.

Proof. Define <∗ to be such that ? <∗ @ if and only if E? (E) ≥ E@ (E) for all E ∈ W where
W is a finite essential Cautious Utility representation of <. SinceW is finite, we have
that the smallest convex cone containingW, denoted by cone (W), is closed with respect
to the f

(
�

(
R:

)
,Δ

)
-topology and so is the set cone (W) +

{
\1R:

}
\∈R. By definition of

Wmax (<∗), it follows that cone (W) \ {0} ⊆ Wmax (<∗). By Proposition 8, Remark 5, and
(Evren, 2008, Theorem 5) and sinceW is a Cautious Utility representation, we have that
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(where the closure is in the f
(
�

(
R:

)
,Δ

)
-topology)

cone (W) +
{
\1R:

}
\∈R = cl

(
cone (Wmax (<∗)) +

{
\1R:

}
\∈R

)
⊇ cl

(
Wmax (<∗) +

{
\1R:

}
\∈R

)
⊇ Wmax (<∗) +

{
\1R:

}
\∈R ,

yielding that cone (W) \ {0} ⊇ Wmax (<∗) and, in particular, cone (W) \ {0} =Wmax (<∗).
Since the functional E ↦→ 2 (?, E) is quasiconcave over cone (W) \ {0} for all ? ∈ Δ, it is
immediate to see that

+ (?) = min
E∈W

2 (?, E) = min
E∈cone(W)\{0}

2 (?, E) ∀? ∈ Δ.

By Remark 5 and sinceW = {E8}=8=1 is a finite Cautious Utility representation, we have
that < satisfies Axioms 1- 5. By Theorem 1 and its proof,Wmax (<′) is a canonical Cautious
Utility representation for <. In particular, we have that

+ (?) = min
E∈W

2 (?, E) = min
E∈cone(W)\{0}

2 (?, E) = inf
E∈Wmax (<′)

2 (?, E) ∀? ∈ Δ.

Since <′ is the largest subrelation of < that satisfies the Independence axiom and ? <∗ @
implies ? < @, we have that <∗ is a subrelation of <′ andWmax (<′) ⊆ Wmax (<∗) =
cone (W) \ {0}. By contradiction, assume thatWmax (<′) ≠ cone (W) \ {0}. SinceWmax (<′)
is a convex set closed with respect to strictly positive scalar multiplications, this implies
thatW * Wmax (<′). IfW is a singleton, then < is Expected Utility and, in particu-
lar, <′ is complete and coincides with <. This implies thatW = {E1} andWmax (<′) =
{_E1}_>0 = cone (W) \ {0}, a contradiction. Assume W is not a singleton. Consider
Ĕ ∈ W\Wmax (<′). SinceW is essential, there exists ?̄ ∈ Δ such that minE∈W 2 (?̄, E) <
minE∈W\{Ĕ} 2 (?̄, E). SinceW = {E8}=8=1 and = ≥ 2, without loss of generality, we can set
Ĕ = E= ∉Wmax (<′). In particular, we have that

inf
E∈Wmax (<′)

2 (?̄, E) = min
E∈W

2 (?̄, E) = 2 (?̄, E=) < 2 (?̄, E8) ∀8 ∈ {1, ..., = − 1} . (20)

Consider a sequence {Ê<}<∈N ⊆ Wmax (<′) such that 2 (?̄, Ê<) ↓ infE∈Wmax (<′) 2 (?̄, E). By
construction and sinceWmax (<′) ⊆ cone (W) \ {0}, there exists a collection of scalars{
_<,8

}
<∈N,8∈{1,...,=} ⊆ [0,∞) such that Ê< =

∑=
8=1 _<,8E8 for all < ∈ N. Since Ê< is strictly

increasing, we have that for each< ∈ N there exists 8 ∈ {1, ..., =} such that _<,8 > 0. Define
_<,f =

∑=
8=1 _<,8 > 0 for all< ∈ N. For each< ∈ N and for each 8 ∈ {1, ..., =} define also

_̄<,8 = _<,8/_<,f as well as Ẽ< =
∑=
8=1 _̄<,8E8 = Ê</_<,f . Since _<,f > 0 for all < ∈ N, it

is immediate to see that 2 (?̄, Ẽ<) = 2 (?̄, Ê<) for all < ∈ N and, in particular, 2 (?̄, Ẽ<) ↓
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infE∈Wmax (<′) 2 (?̄, E). For each< ∈ N denote by _̄< the R= vector whose 8-th component is
_̄<,8 . Since

{
_̄<

}
<∈R is a sequence in the R= simplex, there exists a subsequence

{
_̄<;

}
;∈N

such that _̄<; ,8 → _̄8 ∈ [0, 1] for all 8 ∈ {1, ..., =} and
∑=
8=1 _̄8 = 1. It is immediate to see that

Ẽ<; =
∑=
8=1 _̄<; ,8E8

f (� (R:),Δ)
→ ∑=

8=1 _̄8E8 = Ẽ where Ẽ is continuous, strictly increasing, and
such that Ẽ (0) = 0. Moreover, for each ?, @ ∈ Δwe have that ? <′ @ implies E? (Ẽ) ≥ E@ (Ẽ),
proving that Ẽ ∈ Wmax (<′). Note that _̄= < 1, otherwise, we would have that E= = Ẽ ∈
Wmax (<′), a contradiction. By (20) and since _̄= < 1 and the functional E ↦→ 2 (?, E) is
explicitly quasiconcave over co (W) for all ? ∈ Δ,25 we have that

2 (?̄, E=) < 2 (?̄, Ẽ) = lim
;
2
(
?̄, Ẽ<;

)
= lim

<
2 (?̄, Ẽ<) = inf

E∈Wmax (<′)
2 (?̄, E) = 2 (?̄, E=) ,

a contradiction. It follows thatWmax (<′) = cone (W) \ {0} and, in particular,W repre-
sents also <′. This implies thatW is canonical. �

Proof of Proposition 4. We first prove the first part of the statement assuming < satisfies
u-CPT, then we will move to the additive case. Since D (0) = 0 and D is strictly increasing, it
follows that there exists C̄ > 0 such that [−C̄ , C̄] ⊆ ImD. Let Δ0 ( [0, C̄]) be the set of finitely
supported probabilities over [0, C̄]. Consider ?̃ ∈ Δ0 ( [0, C̄]). By definition, we have that
there exist two unique collections {C8}=8=1 ⊆ [0, C̄] and {_8}=8=1 ⊆ [0, 1] such that supp? =

{C8}=8=1,
∑=
8=1 _8 = 1, and ?̃ =

∑=
8=1 _8XC8 . Without loss of generality, we can assume that

C1 < ... < C=. We define +̃ : Δ0 ( [0, C̄]) → R by

+̃ (?̃) =
=−1∑
9=1

(
F+

(
=∑
8= 9

_8

)
−F+

(
=∑

8= 9+1
_8

))
E
(
C 9
)
+F+ (_=) E (C=)

for all ?̃ ∈ Δ0 ( [0, C̄]). We next show that for each ?̃ ∈ Δ0 ( [0, C̄]) and for each C̃ ∈ [0, C̄], if
+̃ (?̃) = +̃ (XC̃ ), then +̃ (_?̃ + (1 − _) XC̃ ) = +̃ (XC̃ ) for all _ ∈ (0, 1). Consider ?̃ ∈ Δ0 ( [0, C̄])
and C̃ ∈ [0, C̄] such that +̃ (?̃) = +̃ (XC̃ ). Given ?̃ ∈ Δ0 ( [0, C̄]), since {C8}=8=1 ⊆ [0, C̄] ⊆ ImD,
there exists {G8}=8=1 ⊆ R: such that D (G8) = C8 for all 8 ∈ {1, ..., =}. Consider ? =

∑=
8=1 _8XG8 .

It is immediate to see that +̃ (?̃) = + (?). Since < admits a Symmetric Cautious Utility
representation, there exists 2 ∈ R such that ? ∼ X241 . This implies that + (?) = +

(
X241

)
and, in particular, D (241) ∈ [0, C̄]. Moreover, since D and E are strictly increasing, we
have that D (241) = C̃ ∈ [0, C̄] and +

(
X241

)
= +̃ (XC̃ ). By Remark 5 and since < admits a

Symmetric Cautious Utility representation, we have that < satisfies M-NCI. This yields that
25Formally, see e.g. (Aliprantis and Border, 2006, p. 300), given ? ∈ Δ, for each ℎ ∈ N\ {1}, for each
{E; }ℎ;=1 ⊆ co (W), and for each {_; }ℎ;=1 ⊆ [0, 1] such that

∑ℎ
;=1 _; = 1 and _ℎ < 1

2 (?, E8 ) > 2 (?, Eℎ) ∀8 ∈ {1, ..., ℎ − 1} =⇒ 2

(
?,

ℎ∑
8=1

_8E8

)
> 2 (?, Eℎ) .
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_? + (1 − _) X241 ∼ X241 for all _ ∈ (0, 1). This implies that

+̃ (_?̃ + (1 − _) XC̃ ) = +
(
_? + (1 − _) X241

)
= +

(
X241

)
= +̃ (XC̃ ) .

By Bell and Fishburn (2003, Theorem 1) applied to +̃ , it follows that F+ is the iden-
tity. The same proof, performed with [−C̄ , 0] in place of [0, C̄] and F+ replaced by F−,
yields that F− is the identity. These two facts together allows us to conclude that + (·) =
CPT (E,F+,F−)

(
�·,D

)
is an Expected Utility functional with utility E ◦ D : R: → R. We

next assume that < admits an Additive CPT representation. As before consider C̄ > 0. De-
fine Δ0 ( [0, C̄]) and +̃ as before with E replaced by D1. For each ?̃ ∈ Δ0 ( [0, C̄]) define ?
in Δ to be the product measure ?̃ ⊗ X0... ⊗ X0. It is immediate to see that +̃ (?̃) = + (?)
for all ?̃ ∈ Δ0 ( [0, C̄]). As before, we can show that for each ?̃ ∈ Δ0 ( [0, C̄]) and for each
C̃ ∈ [0, C̄], if +̃ (?̃) = +̃ (XC̃ ), then +̃ (_?̃ + (1 − _) XC̃ ) = +̃ (XC̃ ) for all _ ∈ (0, 1). Consider
?̃ ∈ Δ0 ( [0, C̄]) and C̃ ∈ [0, C̄] such that +̃ (?̃) = +̃ (XC̃ ). This implies that + (?) = +

(
C̃41

)
,

that is, ? ∼ XC̃41 . By Remark 5 and since < admits a Symmetric Cautious Utility representa-
tion, we have that < satisfies M-NCI. This yields that _?+(1 − _) XC̃41 ∼ XC̃41 for all _ ∈ (0, 1).
This implies that

+̃ (_?̃ + (1 − _) XC̃ ) = +
(
_? + (1 − _) XC̃41

)
= +

(
XC̃41

)
= +̃ (XC̃ ) .

By Bell and Fishburn (2003, Theorem 1) applied to +̃ , it follows thatF+ is the identity. The
same proof, performed with [−C̄ , 0] in place of [0, C̄] andF+ replaced byF−, yields thatF−

is the identity. This implies that < admits an Expected Utility representation with utility
D : R: → R defined by D (G) = ∑:

8=1D8 (G8) for all G ∈ R: .

As for the second part of the statement, by Lemma 2 and sinceW is a finite essential
Cautious Utility representation, we have thatW is a canonical representation, that is,W =

{E8}=8=1 represents also <
′. Since < is Expected Utility with utility E◦D (where in the additive

case E is the identity and D is additively separable), we have that <′ coincides with <,
yielding that for each 8 ∈ {1, ..., =} there exists _8 > 0 such that E8 = _8 (E ◦ D). This implies
that 2 (?, E8) = 2 (?, E ◦ D) for all ? ∈ Δ and for all 8 ∈ {1, ..., =}. SinceW is essential, this
implies thatW is a singleton. SinceW = {E1} andW is odd, this implies that E1 is odd
and, in particular, < is loss neutral and exhibits no endowment effect. �
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