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ABSTRACT. Motivated by dynamic asset pricing, we extend the dual pairs’ theory of Dieudonné
(1942) and Mackey (1945) to pairs of modules over a Dedekind complete f-algebra with multi-
plicative unit. The main tools are:

e a Hahn-Banach Theorem for modules of this kind;

e a topology on the f-algebra that has the special feature of coinciding with the norm
topology when the algebra is a Banach algebra and with the strong order topology of
Filipovic, Kupper, and Vogelpoth (2009), when the algebra of all random variables on a
probability space (€, G, P) is considered.

As a leading example, we study in some detail the duality of conditional Lj-spaces.
Keywords: Dual pairs, Hahn-Banach Theorem for modules, complete Lo-normed modules, au-
tomatic continuity

1. Introduction

In order to study the testable implications of the Fundamental Theorem of Asset Pricing in
a dynamic setting, Hansen and Richard [HaRi] consider pricing functions 7 that map time 7'
payoffs, modeled as Gr-measurable random variables, into prices that are also random variables,
but are constrained to be in the information set of traders at the time ¢ when the portfolio
decisions are made, that is, are Gi-measurable.!

Denoting by Lo (Gr) = Lo (Q2,Gr, P) the space of all Gr-measurable random variables,
[HaRi] replace the classical Hilbert space La (Gr) = Lo (2, Gr, P) with its conditional version

L3 (Gr) = {z € Ly (Gr) : E[z* | G4 is a.s. finite}
and they consider pricing functions 7 : L§* (Gr) — Lo (G¢) that are linear in the following sense:
7 (azx + by) = ar (x) + br (y)  for all a,b € Lo (G;) and all z,y € LY (Gr)

and bounded in the following sense: there exists ¢ € Lo (G;) such that

|7 ()| < e/E[22 | Gy for all z € LY (Gr).

Then, by means of a conditional counterpart to the Riesz Representation Theorem, they show
that pricing functions that embody conditioning information can be represented as conditional
expectations, thus extending both the unconditional and the conditional results of Harrison and
Kreps [HaKr]. More in general, they show how the main insights and results of unconditional
asset pricing find a natural extension in this fundamentally more powerful setting.

The key intuition of [HaRi] is replacing the unconditional duality (x,y) = E [zy] € R of the
Hilbert space Ly (Gr) with the conditional duality (z,4)% = E[zy | Gi] € Lo (G¢) of the Hilbert
module L§* (Gr).

This paper subsumes a previous manuscript by the second and fifth author titled “Complete L°-normed
modules and automatic continuity of monotone convex functions” and first circulated in 2008.
1VVith the natural convention t < T and G; C Gr.
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This paper stems from the observation that a general theory of conditional L,-spaces can
be developed along the lines suggested by [HaRi]. Then it expands with the objective of
understanding what kind of duality obtains when the real field R is replaced by a Dedekind
complete f-algebra A with multiplicative unit (see Aliprantis and Burkinshaw [AlBu]). The
specific choice of algebras of this kind is motivated by the possibility of encompassing, together
with Lo (G) also L (G), as well as R, for any nonempty set K, £*° and some other important
Banach algebras.?

The novel ingredient is a strong order topology on the f-algebra A that have the special
feature of coinciding with the norm topology when A is a unitary algebra (see de Jonge and van
Rooij [dJvR]), and with the topology introduced by Filipovic, Kupper, and Vogelpoth [FKV]
when A = Lo (G). The strong order topology on A allows a natural definition of weak topologies
on A-modules. A version of the Hahn-Banach Extension Theorem then allows to generalize the
Dual Pairs’ Theory of Dieudonné [Di] and Mackey [Ma] to pairs of A-modules.

The paper is concluded by returning to modules of random variables in order to exemplify
the implications of our findings.

For technical reasons the order of sections is different from the one presented above. Specif-
ically: Section 2 introduces the theory of conditional L,-spaces, thus providing a concrete ex-
ample of modules over an f-algebra. Section 3 presents an Hahn-Banach Extension Theorem,
the corresponding Kantorovich Extension Theorem appears in Section 4, and the related Hahn
Extension Theorem follows in Section 7. The strong order topology appears in Section 5 and
it is used to define weak topologies on A-modules in the subsequent Section 6, where the Dual
Pairs’ Theory is faithfully extended to A-modules. As anticipated, additional results on modules
of random variables are presented in the final Section 8.

2. Conditional L,-spaces

In this section we present an important class of modules over an f-algebra: the conditional
L,-spaces. The treatment here is elementary and the study of these spaces will be continued in
the final section where the tools developed in the main part of the paper will be available.

Let (Q,F, P) be a probability space and G be a sub-o-algebra of F.

We denote by X (F) = X (Q,F, P) the family of all equivalence classes of extended-real-
valued functions, almost surely defined on  and almost surely equal to some F-measurable
function from € to [—oo, 0], see Fremlin [Fr, Section 241]. The vector space Lg (F) of F-
measurable random variables, consists of all elements of X (F) which admit a real-valued rep-
resentative, and, as usual, L, (F) is the subspace of Lo (F) consisting of all random variables
with finite absolute p-th moment.

Letting X (G) be the subset of X (F) consisting of all equivalence classes which admit a G-
measurable representative, for every z € X (F) such that either fQ xTdP < oo or fQ = dP < o0
(for example because = > 0), there exists a unique z* € X (G) such that

/x*dP:/:I:dP VG e G
G G

such z* is called conditional expectation of x (given G with respect to P) and denoted E92. We
refer to Loéve [Lo, Section 27] for the general properties of conditional expectations.
For every p € [1,00), the set

L (F) = {z € Lo(F) : E9 2| € Lo (9)}

2Another natural extension of the approach of [HaRi] is considering general Hilbert modules and their
self-duality, this analysis is carried on by Cerreia-Vioglio, Maccheroni, and Marinacci [CMM].
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is the subspace of Lo (F) consisting of all random variables with a.s. finite conditional absolute
p-th moment. Analogously,

LI (F)={x € Lo (F) : |z| < a for some a € Lo (G)}.

We call these spaces conditional Ly-spaces. Then we define

”mHg RV EY |x|P if p € [1,00)
b infLO(g){a € Lg (g) : ‘l‘| < a} if p=oc
for all @ € LY (F).?

We are ready for the first proposition. In reading it remember that the definitions of Lg (G)-
module, Lo (G)-norm, and submodule are formally identical to those of vector space, norm, and
linear subspace, where the real field R is replaced by Lo (G).

PROPOSITION 1. Lg (F) is an Lo (G)-module and, for every p € [1, 00|,

o Lg (F) is a submodule of Lo (F);
o |- Hg : Lg (F) — Lo (G)" is an Lg (G)-norm;
° Lg (F) = Lo (G) L, (F) is the submodule of Lo (F) generated by L, (F).

PRrOOF. The first part is routine. We only check the last point. If x € Lg (F), then
-1
v = (1+ 2]) [(L+ ) ' o]
1 1 119
but (14 [2]§) . (14 [12ll§) ™" € Lo ()" and || (1 + flallf) " af| " <1

1 P
e For p € [1,00) this implies EY ‘(1 + H:L'Hg) ' 33) < 1 and integrating both sides of the

-1
inequality delivers (1 + HxHﬁ) x € L, (F).

—1
(1+118) =

The generic choice of = implies Lg (F)C Lo(G) Ly (F).
Conversely, let = ajy1 + ... + apy, with ay, ..., a, € Lo (G) and y1, ..., yn € Ly, (F), that is,
assume x belongs to the submodule of Ly (F) generated by Ly, (F). For every i =1, ...,n,
o if p € [1,00), BY (lawil’) = B9 (|ail li") = las” B9 (Jyil"), but |a;” € Lo (G) and
EY (lyil?) € L1 (G) € Lo (G), then |a;|” EY (|y;|P) € Lo (G), and a;y; belongs to LY (F);
o if p = 00, |a;yi| < |ai||yi| < |ai| 2 where o; € R is such |y;| < oy, thus a;y; € LY (F).

Since Lg (F) is a module, a1y1 + ... + anyn € Lg (F), and this implies Lo (G) L, (F) C Lg (F).m

-1
e For p = oo this implies <1 and (1 + ||x||go> x € Loo (F).

REMARK 1. Notice that, in general, given a subset S of an Lo (G)-module, the submodule
generated by S, denoted by Lo (G)S consists of all elements aisy + ... + aps, with n € N,
ai,...,an € Lo (G) and s1,...,s, € S. The proof above shows more, that © € Lg (F) if and only

if x = ay for some a € Lo (G)" and y € L, (F).
Given a (normed) Lo (G)-module, the definition of (bounded) Lg (G)-linear form 7 : L —
Ly (G) is formally identical to the one of (bounded) linear functional, where the real field R is
replaced by Lo (G) (see the introduction).
For the present analysis, the fundamental example of bounded Lo (G)-linear form is
EY¢ = E92" — E92~ vz e LY (F).

First notice that EY (21), EY (=) < EY|z| and so E9z is a well defined element of Lg (G)
for all z € LY (F). Moreover, if € LY (F), and either JoztdP < oo or [z~dP < oo,

3Notice that ||z]|% is well defined and |z| < ||z||% because Lo (G) is super Dedekind complete.
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then E92 = E92T — E92~ = EYz. For this reason we can write E9z instead of E9z for all
x € LY (F). The verification that EY : LY (F) — Lo (G) is a bounded Lo (G)-linear form relies
on the basic properties of conditional expectations.

THEOREM 1. Let p € [1,00) and q be the conjugate exponent of p. If
7 19 (F) - Lo )
is a bounded Lg (G)-linear form, there exists y € Lg (F) such that
(2.1) m(z) = EY (zy) Vze Lg (F).
Conversely, for every y € ng (F), (2.1) defines a bounded Lo (G)-linear form on L;g) (F).

PROOF. Let 7 : ng) (F) — Lo (G) be a bounded Lg (G)-linear form. There exists ¢ € Ly (G)
such that
7 (2)] < ellelly < (L+lel)llzlf Ve € LY (F)

and hence we can define an auxiliary Lo (G)-linear form
#(a)= 1+ 7 (z) VaelLd(F).

Then, for all z € LY (F), |7 (z)| < ||#]|§ and E|7 (2)]” < E (||z]|§)" = E (E9|z|’) = E|2|".
Therefore, if z € L, (F) then 7 (z) € L, (G), and the Jensen’s inequality implies

|E7 ()" < E7 (2)]” < Elzf” that is |EF (2)] < {/E ]’ = [|z[],.

But then Fo7 : L, (F) — Ris a bounded linear functional and the classical Riesz Representation
Theorem delivers the existence of z € Ly(F) (for future reference, notice that z is positive if
is positive) such that

Eﬁ(x):/ﬂfr(m)dP:/szdP Vo e L, (F).

By Lo (G)-linearity [, 7 (x)dP = [ 7 (1gz)dP = [, (1gz) 2dP = [, (zz)dP for all G € G and
x € L, (F), that is,

7(x) = EY9 (zz) Yz € L,(F).
But, by Remark 1, for all u € Lg (F) there are a € LY(G) and x € L, (F) such that u = ax
and 7 (u) = 7 (az) = a7 (z) = aFEY (x2) = EY (axz) = EY (uz) and 7 (u) = (1 + |¢|) 7 (v) =
(1+1c]) EY (uz) = EY (uy), where y = (1+|c|)z € LY (F) because of Remark 1 again (for
future reference, notice that y is positive if 7 is positive). The rest is routine. |

3. The extension theorem

In this section we present a perfect analogue of the Hahn-Banach Theorem for modules
over f-algebras. Our result jointly extends the pioneer theorem of Vincent-Smith [VS], which
corresponds to the special case in which the algebra is unitary, and the recent result of [FKV] for
modules over Ly (G) (which is not unitary). At the same time, the importance of this theorem
is not the greater generality, but the fact that (as it happens for the classical Hahn-Banach
Theorem for vector spaces) it is the backbone of all duality theory on modules.

We refer the reader to [dJvR] and [AlBu] for an introductory treatment of Riesz spaces
and Riesz algebras.

DEFINITION 1. A Riesz algebra is a Riesz space A endowed with an associative multiplication
such that for every a € A the maps b— ab and b — ba are linear, and ab > 0 for all a,b > 0.
A Riesz algebra A is an f-algebra if bA ¢ =0 implies abAc=ba Ac =0 for all a > 0.*

Also recall that:

4The definition of f-algebra dates back to Birkhoff and Pierce [BiP1].
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e A Riesz space is called Dedekind complete whenever every nonempty bounded above
subset has a supremum (or, equivalently, whenever every nonempty bounded below
subset has an infimum).

o A weak order unit for a Dedekind complete Riesz space A is an element e > 0 such
that e A a # 0 for all a > 0.

o A multiplicative unit for a Riesz algebra A is an element e # 0 such that ea = ae = a
for all a € A.

The following proposition provides a geometrically intuitive characterization of Dedekind
complete f-algebras with multiplicative unit.’

PROPOSITION 2. A Dedekind complete Riesz algebra A with multiplicative unit e is an f-
algebra if and only if e is a weak order unit. In this case, A is commutative.

Since we shall consider only this kind of algebras we give them a name.
DEFINITION 2. A Stonean algebra is a Dedekind complete f-algebra with multiplicative unit.
The multiplicative unit will always be denoted by e.5

THEOREM 2. Let A be Stonean algebra, E be an A-module, and p : E — A be a function
satisfying
(3.1) { p(ax) = ap (z) Ve € E and Va >0

p+y) <p(z)+ply) Vz,yek.
Let L C E be a submodule and f: L — A be an A-linear form such that
f(z)<p(2) Vz e L.
Then there exists an A-linear form g : E — A such that g;;, = f and g (z) < p(z) for allx € E.

3.1. Proof of Theorem 2. Notice that p (0) = p (2e0) = 2ep (0) = 2p (0) so that p (0) = 0.
We prove the theorem under slightly weaker assumptions, that will be used later. Condition
(3.1) implies that p (az) = ap (z) for all z € E and all a € AT, we will instead only assume
(3.2) { p(ax) = ap (x) Vo € E and Va € ATt UC,

' pla+y)<p(@)+ply) Vaz,yck
where
ATt = {a e AT : a7 exists in A}
is the set of all positive invertibles, and

Ce={veA" :vA(e—v)=0}

is the set of all components of e.”
Consider the set

D (h) is a submodule of E that contains L
P=<h:D(h)— A| hisan A-linear form
hip = f and h(z) <p(z) for all z € D (h)

Clearly P 3 f so P is nonempty, and the relation defined by
hg >~ hl ~— D (hg) D) D (hl) and hZ\D(hl) = hl

5It can be easily obtained by combining [dJvR, Theorem 15.9] and [A1Bu, Theorem 2.64], and it actually
holds for Archimedean Riesz algebras with multiplicative unit.

6The definitions of A-module E, A-submodule L C E, and A-linear form f: L — A are formally identical to
those of vector space, linear subspace, linear form, where the real field R is replaced by A.

"These sets are quite important in the theory of f-algebras, see, e.g., Zaanen [Za, Theorem 142.2] and [A1Bu,
Theorem 1.49]. Also 0 € C. implies p (0) = 0.
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is a partial order on P. We claim that every totally ordered subset @ in P has an upper bound.
Indeed, let Q@ = {h;},c; € P be a totally ordered subset. If Q) is empty, then it is bounded by
f, else set
D (h) =|JD (hi) and h(z) = h; (z) if 2 € D (hy).
el

It is easy to check that h is well defined, belongs to P, and is an upper bound for Q). We can
therefore apply Zorn’s lemma and obtain a maximal element g of P.

If D(g) = E, then the proof is finished. Suppose D (¢g) C E, set M = D (g), and choose
z € E\ M. It is easy to check that

N={z+az:(r,a) e M x A}

is the smallest submodule of F containing M and z. A contradiction to the maximality of ¢g will
be obtained by finding an A-linear form A : N — A such that

(3.3) hipr =g and h(z +az) <p(z+az) V(r,a) € M x A
REMARK 2. In looking for such an h, notice that, if it exists,
g(z)+ah(z)<p(x+az) V(r,a)eMxA

in particular, for (z,a) = (u,—e) and (x,a) = (w,e), this implies —p (u —2) + g (u) < h(z) <
p(w+ z) — g (w) for all u,w € M, and by Dedekind completeness

sup{-p(u—2)+gu):ue M} <h(z) <inf{p(w+2z2)—g(w):we M}.

CramM 1. a(z, M) =sup{-p(u—2)+g(u):ue M} andb(z, M) =inf{p(w+2) — g (w) :
w € M} exist in A, they are unique, and a (z, M) < b(z, M).

ProOOF OoF CrLAIM 1. Since g € P, for every u,w € M
gu)+gw)=gu+w)<plutw)=pu—-—z+w+z)<pu—2z) +pw+2)

that is, —p(u —2) + g (u) < p(w+2) — g (w). Then A(z, M) = {-p(u—2)+g(u):ue M}
is bounded above and every element p (w + 2z) — g (w) of A is an upper bound. By Dedekind
completeness, the least upper bound a (z, M) of A (z, M) exists in A, it is unique, and a (z, M) <
p(w+ z) — g (w) for all w € M. Analogously, B (z, M) = {p(w + 2) — g (w) : w € M} admits a
unique greatest lower bound b (z, M), so that

inf{p(w+2)—gw):weM}=>b(z,M)>a(z,M)=sup{—-p(u—2)+g(u):uec M}
as wanted. O
CLAIM 2. For each ¢ € [a(z,M),b(z, M)] the function
he(z+az)=g(z)+ac Y(z,a) e M x A
is a well defined A-linear form he: N — A such that hyayr = g and he (y) < p(y) for ally € N.

This claim concludes the proof which, so far, has been identical to the one of the Hahn-
Banach Theorem.® When A = R, the proof of Claim 2 is very simple: h. is obviously well
defined, linear, and it extends g; while the invertibility of all a € R™\ {0}, together with the
positive homogeneity of g and p, guarantees that

—p(u—2)+g(u) <c=he(2)=c<pw+z)—g(w) Yu,weM = h.(y)<p(y) YyeN.
In our case, the proof Claim 2 is more delicate and requires some lemmata.

LEMMA 1. Let A be Stonean algebra, then C. = {v € [0,€] : v? = v}.

8See7 e.g., Brezis [Br, pages 1-3].
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PRrROOF. If v € C,, then e —v € C¢, and e — v > 0 implies v < e. But A is an Archimedean
f-algebra with multiplicative unit, then v L u if and only if vu = 0 (see [A1Bu, page 131]), thus

vA(e—0v)=0 = v 1l(e—v) = v(e—v)=0 = v="1°

Conversely, if v € [0,¢] and v? = v, then v > 0 and v < e, that is, e — v > 0. Since A is an
Archimedean f-algebra with multiplicative unit, then

v?=v = v(e—v)=0 = v 1l(e—v) = vA(e—2v)=0.

As wanted. u

Let S be an extremally disconnected compact Hausdorff space and C* (.S) the collection of all
continuous functions ¢ : S — [—00, oo] for which the open set dom (¢) = {s € S: —00 < ¢ (s) < o0}
is dense in S. Given @, € C* (S), define ¢+ and 1 as the unique elements of C* (S) such
that for every s € dom (¢) N dom (¢)

(e +1)(s) =w(s) + 9 (s) and (p9) (s) = @ (s) ¥ (s).

Endowed with these operations and the pointwise order, C* (S) is a Dedekind complete f-
algebra with unit 1g (see [dJVR, page 122] and Luxemburg and Zaanen [LuZa, pages 295 and
323]) that contains C (S) as a subalgebra, notice that the operations in C (S) coincide with the
usual pointwise ones.

LEMMA 2. If A is a Stonean algebra, then there exist an extremally disconnected compact
Hausdorff space S and a multiplicative Riesz isomorphism

~

T: A — A

a +— a
of A onto a solid f-subalgebra A of C* (S) such that é = 1g.

The proof is omitted, since it readily follows by the versions of the Ogasawara-Maeda The-
orem of [dJvR, Theorem 15.9], or [A1Bu, Theorem 2.64], and the fact that since A is an order
dense Riesz subspace of the Archimedean Riesz space C* (S) and A is Dedekind complete in its
own right, then A is an ideal of C* (5) (see [dJVR, Lemma 13.21] or [Al1Bu, Theorem 2.31]).
In what follows, Lemmata 1 and 2 will be repeatedly used without reference.

LEMMA 3. Let A be a Stonean algebra.

(i) If a > e for some e € RYT, thena € ATT.
(i) For every a € A there exists v € C, such that va =a™.

PRrOOF. (i) Notice that e~ 'a > e > 0, then by [dJvR, Corollary 15.10] there exists b € A
such that (5_1(1) b = e, but then a (5_16) = (s_la) b=cand e 'b=a"1.

(ii) Let a € A and set V = {s€ S:a(s)>0}. Since a is continuous and S is extremally
disconnected, then V is a clopen set in .S and

(3.4) {s€S:a(s)>0}CV_C{seS:a(s) >0}

next we show that 1y € A and 1ya = a™.

Since V is clopen, then 1y € C (S) € C™ (S). Since A is an ideal of C* (S), then |1y| <
|1s| = 15 € A implies 1y € A. By definition, 1ya is the only ¢ € C* (S) such that
(3.5) P (s) =1y (s)a(s) Vsedom(ly)Ndom(a)=dom(a).
But the function ¢ : S — [—o00, 00] defined by ¢ (s) = 1y (s) a (s) for all s € S is continuous. In
fact, given any net s, — s in 9,
o if s €V, then p(s) = 1y (s)a(s) = a(s) and, since V is open, there exists 7y such
that s, € V for all n Z ny, so that ¢ (s,) = 1v (sy) a(sy) = a(s,) for all n Z ny, but
a(sy) — a(s) and hence ¢ (s;) — ¢ (s);
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e else s € V¢ and ¢(s) = 1y (s)a(s) = 0 and, since V¢ is open, there exists ny such
that s, € V¢ for all n Z nyv, so that ¢ (s;) = 1y (sy) a(s,) = 0 for all n = ny, and
hence ¢ (s,) — ¢ (s).
Now, the continuous functions ¢, : S — [—00,00] coincide on dom (@) which is dense in S,
thus
(lva)(s) = ¢ (s) =¢(s) = lv (s)a(s) VseS.
In turn, by (3.4),
e if G(s) > 0 then s € V and (1lya)(s) = 1y (s)a(s) = a(s) = sup{a(s),0} =
(sup {a,0}) (s) = a* (s);
o ifa( ) = 0then (1ya)(s) =1y (s) (3) =0=sup{a(s),0} = (sup{a,0}) (s) =at (s);
a =

at (s )

that is, 1Va =a

_l’_

Since T~ : A — A is a multiplicative Riesz isomorphism too, by setting v = T ! (1y), we
have that
e 0 <1y < 1g implies 71 (0) <77t (1 ) < T—l( s), that is, 0 <wv <e,
o (1y)? =1y implies vo = T~ (1) T~ (1y) = T~ (1yly) =T (1y) = v,
o lya=a" implies va=T"1(1y) T (a) =T~ (1va) =T '@t = (1" ()" =at,

that is, v € C, and va = a™. [ |
LEMMA 4. Letg, M, z, a(z, M), b(z, M) be defined as above, then, for eachc € [a(z,M),b(z, M)],
(3.6) g(z)+ac<p(r+az) V(r,a)e M x A

PROOF. Arbitrarily choose z € M. Let a > 0, then a +n~"'e > n~'e belongs to AT for all
n € N by Lemma 3.
Since ¢ < inf {p(w + 2) — g (w) : w € M}, then

cgp([a—kn_le]* x+z>—g<[a+n rlx) Vn e N
by (3.2), [a+nte]c<p(z+ [a+nte]z) —g(x) <

g(x)+ac—p(z+az)<n |

plz
since A is Archimedean, then g (z) + ac —p (z + az) <0.
Since, ¢ > sup{—p (v — 2z) + g (u) : w € M}, then

c> —p([a—kn_le]*lx—z) +g([a+n_le]71:p) Vn e N

p(z+az)—g(z)+n'p(z) and
(2) — ¢ VYneN

by (3.2), —[a+nte]c<p(z— [a+n"e]z) — g(z) and
gx)—ac—p(x—az)<ntlp(-2)+¢ VYneN

so that g (x) —ac — p(x — az) < 0. Summing up, we have

(3.7) g(x)*ac<p(xtaz) Va>D0.

Now take any a € A. By Lemma 3, there exists v € C, such that va = a™, also e—v € C, and
(e —v)a=a—a" =—a", thus

(3.8) vat =vva =va=a
(3.9) —(e—v)a =(e—v)(e—v)a=(e—v)a=—a .
But then (3.2), (3.7), and (3.8) imply

vg(z)+ate=v(g(z)+ac) <vp(z+atz) =p(ve+va®z) =p(ve+vaz) = vp(z + az)
while setting v = e — v > 0, (3.2), (3.7), and (3.9) imply

vg(z) —a c=0(g(x)—ac) <tp(z—a z) =p(vx —va” z) = p(vz + Vaz) = Up (= + az)
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and addition of the two above inequalities delivers (3.6). [

PROOF OF CLAIM 2. Arbitrarily choose ¢ € [a(z,M),b(z,M)]. Assume u + az = w + bz
for some u,w € M and a,b € A, then (u —w)+ (a —b)z =0 and ((u —w),(a —b)) € M x A,
by (3.6)

glu—w)+(a=bje<p((u—-w)+(a—-b)z)=p(0)=0
whence g (u) + ac < g (w) 4 be, and analogously, g (w) + be < g (u) + ac. Therefore
he : N — A
r+az — g(z)+ac

is well defined, and (3.6) guarantees h. (y) < p(y) for all y € N. Obviously, h. is A-linear and
extends g.

4. Positive extensions

In this section, as a simple, but important, corollary of Theorem 2 we obtain a version of
the Kantorovich Extension Theorem.”

THEOREM 3. Let A be a Stonean algebra, E be an ordered A-module, M be a majorizing
submodule, and f : M — A be a positive A-linear form. Then there exists a positive A-linear
form g : E — A such that g\ = f.

4.1. Proof of Theorem 3. We will repeatedly use the fact that for any two nonempty
index sets I and J, if a = inf;c; a; and b = infjc 7 b; exist in A, then by [LuZa, Theorem 13.1]
(4.1) a+b=inf{a;+bj:ie€land je J}.

For each x € F, set

My={ueM:u>z}

pla)= inf f(u)

that is, p (x) = inf {f (u) : M > u > x}. It is routine to check that p is well defined, monotone,"
p(2) = f(2) for all z € M, and p is subadditive.'!

Before applying Theorem 2, we need to check that
(4.2) p(az) =ap(x) Va € Eand Va € ATTUC,.

First notice that

plea+z)=p)+f(z)=p)+p(z) V(r,z)e Ex M.
In fact, u € M, implies M S u+2z > x+ 2z and u+z € M,, and, conversely, w € M, ., implies
w=(w—2)+ z with w — 2z = u € M,, that is, M,, = M, + z; therefore, by (4.1),
p(o+2) = inf f (Myys) =inf f(My+2) = inf {f(u) + ()} =p(a) + 7 (2).
In turn, this allows to show that, given a € A,
(4.3) if p(ax) = ap (v) for all z € ET, then p(ay) = ap(y) Vy € E.
In fact, for each y € E there exists z € M such that —y < z, then y 4+ z > 0, therefore
play) +af () = play+az) = p(a(y+2)) =ap(y+2) =a(p(y) + £ (=) = ap (y) + af (2).

9The definitions of ordered A-module E and positive A-linear form f: M — A are formally identical to those
of ordered vector space and positive linear form, where the real field R is replaced by A. Recall that a linear
subspace M C E (and in particular an A-submodule) is majorizing if and only if for each x € E there exists
z € M such that x < z.

101f & > y, then M, C My, f (M) C f (M,), and p(x) = inf f (M) > inf f (M,) = p (y).

UBy (4.1), p(x) 4+ p (y) = inf {f (u) + f (w) : w € My and w € M} = inf {f (u+ w) : u € M, and w € M,},
but u + w € Mgy, for every u € M, and w € M,, thus f(u+w) € f(Mz4y); hence f(Mgyyy) contains
{f(u+w):u € M, and w € My} and its infimum, inf f (Ma,1y) = p (z + y), is smaller than p (z) + p (y).
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Now let z € ET, v € C,, and set v = e — v € C,, clearly
vp(x) +op(x) =p(x) =inf{vf(z)+0f(z): M 32>z}
=inf{f (vz) + f(vz) : M 3 z and vz > vz and vz > vz} .
But for every z € M such that vz > vx and vz > vx, vz € M, and vz € Mg;; then
fvz)+ f(vz) € {f(u)+ f(w) :u € My, and w € My}
that is, {f (vz) + f (0z) : M 5 z and vz > vz and vz > vz} C {f (uv) + f (w) : u € M, and w € My, }
and
p(z) =inf{f (vz) + f (v2) : M > z and vz > vz and vz > vz}
>inf{f (u) + f(w) : u € Myy and w € My} = p (va) + p ()
by (4.1) again. The converse inequality follows by subadditivity of p, in fact, p (z) = p (vz + vz) <
p (vz) + p (vz), summing up,
vp (x) +vp (x) = p(z) = p (vzr) + p (v2).
Now, vM, C M,,, andsovp (z) =wvinf f (M,) < infouf (M) =inf f (vM,) =inf {f (vz) : z € M,},
and

(4.4) inf{f (vz):z€ M,} <inf{f (vu): M > u and vu > vz}

in fact, if w € M and vu > vz, then taking any w € M, we have vw > vz, and setting
Zuw = vu + vw € M, it follows

M 3 zyy > v+ vz =2 and f (vzy) = f (vu)
hence inf {f (vz) : M 5 z > 2} < f(vu), but this is true for every u € M such that vu > vz.
We have shown
vp (x) <inf{f (vu): M > u and vu > vx}.

Moreover, for each w € M,,, since w > vz > 0, we have w = ew > vw > v2z = vz, so that
f(w) > f(vw) >inf {f (vu) : M > u and vu > v}

and vp (z) < inf{f (vu): M > u and vu > vz} < infy,en,, f (w) = p(vz). Since this is true for
a generic v € C,, then it also holds for v, we conclude

vp (x) +vp(z) = p(vz) + p(vx) and vp (x) < p(vz) and vp(z) < p(v7)

but this implies vp (z) = p (vz) and op (z) = p (vz).!? Together with (4.3) this shows (4.2) for
all a € C..
If a € ATF, then o=t € ATH.13 Moreover, aM, = M,, for all z € E.'* As a consequence

ap (x) = ainf f (M,) <infaf (M,) = inf f (aM,) = inf f (M,,) = p (ax)

and hence ap (z) < p(ax) for all z € E and all a € A**. Therefore,

alp(azx) <p (a_lax) =p(x) ie p(ax) <ap(r) VYac AT andz € E
this shows (4.2) for all @ € AT*. By Theorem 2, we have that there exists an A-linear form
g : B — A such that gy = f and g () < p(z) for all x € E. In particular for every x > 0,

g(—z) <p(—z) <p(0)=0and g (z) > 0.

12(11 +a2 = b1 +b2 and a1 < b1 and az < ba, imply a1 = b1 + (b2 — a2) and b2 —az > 050 a1 > b1, analogously
a2:(b1—a1)+b2 and bl — al 2080 az zbz

13Get b = a”! thene=a (b+ — bf). But bT Ab™ =0, A is an f-algebra, and a > 0, then abt Ab~ =0 and
abt Aab™ = 0. Therefore e = abt —ab™ and ab™ Aab™ =0, so that ab™ =e™ = e =ab and b=1>b".

YE.g. aMy, € Maz, 6™ *Maw € My, a (0™ *Maz) C aMy, Moz C aM,.
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5. The strong order topology

In this section a novel topology on Stonean algebras is defined. This topology coincides with
the norm topology when A is a unitary algebra (see [dJvR]), and with the topology introduced
by [FKV] when A = Lo (G). Its definition and properties are analogous to those of the usual
topology of the real line. More importantly, it will allow us to develop a natural duality theory
for modules over f-algebras in the next section.

The set of positive invertibles AT* of a Stonean algebra has remerkable properties.'®

A1 is a sublattice of A;

o ATT is a commutative I-group with unit e, see Birkhoff [Birk];
e ATT is contained in the set of all weak order units;

e AT contains the set of all strong order units.

EXAMPLE 1. Let S be an extremally disconnected compact Hausdorff space. If A = C*> (S),
AT ={p e C®(S):[¢p > 0] is dense in S}

coincides with the set of all weak order units of A. While, when the principal ideal A = C ()
of A is considered,
(A" ={peC(S):[p>0] =5}

coincides with the set of all strong order units of A. which is strictly included in Ae N ATT.

Needless to say that, if A = R, then A™" = R**. The above properties suggest that this
analogy is rather strong. The next proposition seems to be conclusive in this respect. We will
often denote by r a generic element of A1+,

PROPOSITION 3. Let A be a Stonean algebra, and set
a>b < a—bec AT

then:

(i) r>0 & re AT,

(ii) ifa € A and a > r >0, then a > 0;
(iii) > is a strict partial order (that is, an antireflexive and transitive binary relation);
(iv) ifa>b, thena+c>b+c for allc € A and ra > rb for allT € ATTURTT.

PROOF. The only non-routine point is (ii), which in turn implies that AT is closed under
addition, and since A*T is also closed under multiplication, the other properties follow.

(ii) By Lemma 2, A can be considered as a f-subalgebra and an ideal of C'*° (), with unit
1g, for some extremally disconnected, compact, and Hausdorff space S. Since r is positive and
invertible in A, it is positive and invertible in C*° (.S), then [r > 0] is dense in S. But a > r >0
implies [r > 0] C [a > 0], then [a > 0] is dense in S and «a is positive and invertible in C*° ().
For each s in the open and dense [r > 0] Ndom () N [a > 0] N dom (a)

1 L _ i

~1 S

TS T
then 0 < a=! < r~!. Since AT+ is a group, 7=! € AT+ C A, but A is an ideal of C* (S) and
therefore a™1 € A (because ‘a_l} < ‘r_l‘). [ |

We call > the strong order on A (in analogy with the strong order on R™). Define, for every
ac€Aandre ATT,

B(a,r)={b€ A:|b—a|] <7} and B(a,r) ={bc A:|b—a| <r}
and notice that:

15Gce again [Za, Theorem 142.2].
161f 4 is a strong order unit, there exists n € N such that na > e > 0, that is, a > n ‘e > 0, so a € ATT by
Lemma 3.
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a € B(a,r),
for each b € B (a,r) we have B (b,r — |b—a|) C B (a,r),'"
if 1,79 > 0 and r1 < 79, then B (a,r1) C B (a,r2),'®
for each b € B (a1,71) N B (az,r2) we have
be B (b, (7’1 — ‘b — a1|) A (7’2 — |b — CLQ’)) CB (al,rl) NnB (az,?”g).lg
That is {B (a,r) : (a,r) € A x AT} is a basis for a topology on A that we call strong order
topology, a, %% a means that the net a, converges to a in this topology.

PROPOSITION 4. Let A be a Stonean algebra, then:

(i) the strong order topology is the order topology generated by the strong order;
(ii) for each a € A, {B(a,r)},s¢ and {B(a,r)} are neighborhood bases for the strong
order topology at a;

> >0

(iii) a, 23 a implies a, = a;
(iv) if e is a strong unit, the strong order topology coincides with the supnorm topology.
PrOOF. (i) Notice that |a| < bimplies —a < |a| < band a < |a| < b, then —b < a < b, and
conversely —b < a < b implies b—a, b+a € ATT, which is a lattice, so that (b — a)A(b+a) > 0,
that is, b — (a V —a) > 0 and |a| < b. Therefore
B(a,r)={bcA:—r<b—a<gr}={bcld:a—r<bga+r}
d+c d-c d+c d—c}_B<d~|—c d—c>
2 - )

b
<<<<2—i-2 5 " 9

{bEA:c<<b<<d}:{b€A:

for all a,c,d € A with ¢ < d and all r € AT+.20

(ii) Obviously {B(a,r)},s is a neighborhood basis at a. Moreover notice that for every
a € (0,1), B(a,ar) C B(a,ar) and

be B(a,ar) <= —ar<b—a<ar

but r —ar = (1 —a)r > 0, then —r < —ar < ar < r, thus B (a,ar) C B (a,ar) C B(a,r).

(iii) By (ii), ay = a if and only if for every r >> 0 there exists 7, such that |a, — a| < r for
all n = n,. But when A1 is directed by the inverse order (ry 7= 72 if and only if 71 < rg), then
the net defined by b, = r for all r € A*T decreases to 0, denoted b, | 0. Thus a,, 2> a implies
that there exists b, | 0 such that for every r there exists 7, such that |a, — a| < b, for all n 2Z n,,
that is, ay 2 a2
(iv) For each a € A and every p € R**, the closed unit ball By, (a, p) induced by the supnorm

Nl oo

|||, coincides with B (a, pe). Thus a, 23 a implies a, —° a. Conversely, each r € A*+ is a
strong unit, then there exists n = n (r) € N such that e < nr and

Bso <a,1> :B<a,1e> Z{SES:|b—a|§1e}QB(a,T).
n n n

Il N s0
Thus a, —° a implies a, = a. |

1T fact, r — [b—a| > 0 and letting r1 = r — |b— al, for each ¢ € B (b,r1) we have
lc—a|<|lc=bl+|b—a|l<K<r1+|b—al=7

but a1 < as < agimplies az — a1 > az — a2 > 0 that is a1 < a3, whence |¢c — a| K 7.

181 fact, b € B(a,m1) <= 71> |b—al|, then r2 > r1 > |b—al, but as > a2 > a1 implies a3 — a1 >
az — a1 > 0 that is asz > a1, whence rz > |b — al.

91 fact, r1 — |b—a1|,m2 — |b—az| € AT and so

AT S (= b—ai]) A (r2 — |b—az]) <7 — |b—ai

thus B (b, (r1 — |b — a1|) A (r2 — |b —az2])) € B (b,7; — |b — a;]) € B(as,rs) for i =1,2.

20Notice that ¢ < d implies 271 (d —¢) € AT and that A has no largest and no smallest element since
at+e>a>a—eforalacA

21ee Abramovich and Aliprantis [AbAl, Exercise 1.2.4].



DUALITY OF MODULES OVER f-ALGEBRAS 13

THEOREM 4. Let A be a Stonean algebra, then the strong order topology is Hausdorff and
all operations are continuous.

PRrROOF. We have seen that a, 25 @ implies that ap 2 a, and order limits are unique.
Addition and lattice operations. If a, %% @ and by, 2% b, then for each r >> 0 there exists m;
such that |a, —a| < 27y for all n = 0y, there exists 72 such that |b, — b < 271 for all 5 2 ns.
Taking n3 2 m, 2, for all n 2 n3,
(an +by) = (a+b)| < lay —al + by —b] <
llagl = lall < lay —a < 27 <7

then a, + by, 2 a+b, |y %% |a|. Moreover, if a € R, then for each 7 > 0, since ar %% a, there
exists 74 such that |a, —a| < (1 + la) "' for all 5 = 74, thus

\a\ r<r

—oaal < —al <
Joay — ] < Jof [ay —al < e <

and aay, 28 aa. Continuity of the other lattice operations follows, in fact

]. So
an y by = 3 [(an + by) £ |ay — by|] = 5 [(a+b)+]a—1b|]] =a)b.

Multiplication. Notice that

e |c, — ¢| 2 0 if and only if for each r > 0 eventually |, — c| < r, that is, ¢, = ¢;

e if d, 2 0 and eventually |c,| < |d,|, then ¢, %3 0;

o if ¢, 23 cand d >> 0, for each 7 >> 0 eventually |c, — c| < d~1r, then

|de,y —dc| < |d| ey —c| <7
so that dc, % de.
Finally, if a,, =5 a and b, 23 b, then |a,b, — ab| < |ayb, — ayb| + |ayb — ab] < |ay||b, — b| +
la, — al b], but |a,| = |a| implies that eventually |a,| € B (|a|,e + |b]), then eventually |a,| <
la| + e + |b| and obviously |b| < |a| + e + |b|, whence eventually
anby = ab| < (Jal + ¢+ ) by = 8 + ey —a (al + ¢+ b)) 220

SO
and a,b, = ab. [ |

6. Dual A-modules

Let F' be a nonempty subset of A-linear forms on E and w = o (E, F') the weak topology
generated by F on E once A is endowed with the strong order topology.?? The following
“omnibus theorem” regroups the fundamental properties of w. Recall the F' is said to be total
if and only if for each = # y in E, there exists f € F' such that f (z) # f (y).

THEOREM 5. Let A be a Stonean algebra, E be an A-module, F' a nonempty set of A-linear
forms f: E— A, and w =0 (E,F). Then:
(i) @y — x <= f(2,) =% f(2) for all f € F;
(ii) w is Hausdorff if and only if F is total;
(iii) for every x, € E, the sets

Vi, (N, 1) = {:L‘ € E:sup|f(zx)— f(x)] < r}
feN

where N is a finite subset of F and r € AT form a neighborhood basis for w at x,,
and they are A-convex;
(iv) the module operations of sum and scalar product are continuous;

22Thus w is the weakest topology on E that makes all the functions f € F' continuous.
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(v) the submodule of Homy (E, A) generated by F coincides with the set of all A-linear
forms that are w-continuous.

As usual, Homy4 (E, A) denotes the module of all A-linear forms from E to A.

6.1. Proof of Theorem 5. Point (i) is true for any weak topology.

Assume F is total. If x,, = x and x, — y, then f (z,,) = f () and f (z,;) > f (y) for
all f € F, since the strong order topology on A is Hausdorff, this implies f (z) = f (y) for all
f € F, and totality of F' implies x = y. Thus w-convergent nets have unique limits, that is, w
is Hausdorff.

Conversely, if F' is not total, there are x # y such that f (z) = f (y) for all f € F and the
constant net x, = x w-converges both to « and y, and w cannot be Hausdorff. This proves (ii).

Denote by Py (F') the class of all nonempty and finite subsets of F. For each (N,r) €
Po (F) x AT and each z, € E, it is easy to check that

Vo (Nor)={z € E:[f ()= f(z,)| <r VfeN}= (N {z€E:|f(x)— f (o) <7}

feN

=N {zcE:fa)e =) £ (B (2),7))
JEN feEN
As a consequence, for each (N,r), V. (N,r) 2 (ﬂfeN fYB(f (xo),r))> > x,; therefore

Ve, (N,7) is a neighborhood of x, in w;*® V,, (N,r) is also A-convex (and hence R-convex), in
fact, let x,y € V., (N,r) and a € [0, €], then for every f € N

FEED I} = s e Sar @ e < )

that is, |f (az + (e —a)y) — f (zo)| <r and az + (e —a)y € V, (N, 7).
Next we show that the class of neighborhoods V,, = {V,, (N,r) : (N,r) € Py (F) x ATt} is
actually a decreasing net in the class N’ of all neighborhoods of .

LemMA 5. For every x, € E, the relation
(N1,71) 2 (Na2,r2) <= Ni D Ny and 1 <79
is a direction on Py (F) x ATt such that
(N1,7m1) = (Noy19) = Vo, (N1,71) C Vy, (No,72).
Moreover, each net {x(NJ,)} in E, such that x(y,y € Vi, (N,r) for all (N,r) € Py (F) x AT,

w-converges 1o x,.

PRrROOF. Clearly, =~ is a preorder, moreover,

(N1 U N2, 71 Are) 75 (N1,71) 5 (N2y72) Y (N1,71), (N2, 72) € Po (F) x AT

so that 7 is a direction and {V;, (N, )}y, is a net in N
If (Nl,rl) (Na,r2), then N7 2 Ny and 1 < ro, thus for each z € V., (Ny,71)
sup |f (x) = f (zo)| < sup |f(z) = f (2o)] S 71 <72
fEN2 feM
so that « € Vg, (N2, 72), and Vg, (N1,71) C Vi, (N2, 72), that is, {Va, (N, 1)}y ) is decreasing.
Let {l‘(N’T)} be a net in E such that z(y,) € Vg, (N,r) for all (N,r). Fix f € F, for each
d > 0 there exists
(Ndvrd) = ({f}ad) € Po (F) x AT

23B (f (wo) ,7) is open in A and each f is continuous.
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such that for all (N,r) = (Ng,74), since x(y ) € Vi, (N,7) € Vo, ({f},4d),
|f (@vm) = f (o) < d
that is, f ('I(N,r)) 22 f (z,). Since this is true for all f € F', then T(N ) s z,. [ |

LEMMA 6. Let (X, 7) be a topological space, x, € X, {Va}ycp a decreasing net of neighbor-
hoods of x,. The following conditions are equivalent:

(i) {Va: XA € A} is a neighborhood basis at x,;
(ii) Each net {xx}ycp in X such that x) € V) for all X € A converges to x,.

PRrROOF. (i) implies (ii). Let {zx},cn be a net in X such that z) € V) for all A € A.
For each U € N there exists A = A(U) such that V5 C U. Since {Vi},c, is decreasing,
xy € V) C V5 CU for all A 75 A, that is, z\ — ,.

(ii) implies (i). Assume each net {z)},c, in X such that ) € V), for all A € A converges to
Zo, and per contra {Vy : A € A} is not a neighborhood basis. Then there exists a neighborhood
U of z, such that U N V) # @ for all A € A. Choose arbitrarily z) € U° NV, for all A € A.
Then 2\ — x, and it never meets U € /\/;CTO, which is absurd. |

Summing up: for every z, € E, V,, = {V,, (N,r): (N,r) € Py (F) x AT} is a neighbor-
hood basis for w at z, consisting of A-convex sets and (iii) holds.

Next we show that operations are continuous, thus also (iv) holds:

o if (x,,y,) — (x,y) in the w x w topology on E x E, then
z, — zand y, —y = f(v,) —> f(z) and f (y,) —> f(y) Vf€EF
= flzg)+fy) == f@)+fly) VfeF
— f(on+yy) == f(z+y) VfeF
= T+ Yy — T+
e if (ay,,z,) — (a,) in the so x w topology on A x E, then
ap - aand ¥, — r = a, — a and f (z,) = f(z) VfEF
= a,f () > af(z) VfeF
— flagey) % f(az) VfeEF
= a,T,; — ax.
Finally, we turn to point (v). Clearly, AF is a is a submodule of the module Hom" (E, A) of

all w-continuous A-linear forms and 0 € AF'. Conversely, let f # 0 be a w-continuous A-linear
form. Since f is continuous at 0, there exist k € N, f1, fo, ..., fr € F', and r > 0 such that

6.1) fUzeE:|fitx)|<r Vi=1,.,k})=fVo{fi, fo - fx},7) € B(0,¢)
but then for all y € ﬂle ker fi, y € Vo ({f1, fo, -, fr},7), and so f (y) C B(0,e), that is,

k
f (ﬂ ker f2> C B(0,e)
i=1

but f <ﬂf:1 ker fz> is a submodule of A, therefore f <ﬂf:1 ker f,) = {0} (because A is Archimedean)
and ﬂle ker f; C ker f. Then
fily)=fi(z) Vi=1,..,k
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implies f (y) =

T (E) — A defined by ¢

f(2). The map

T: E — AF

Y —

(fl (y) 7f2 (y)v

» Jie ()

(fl (y) 7f2 (y) ERRRD

is an A-module homomorphism and so T (E) is a submodule of A*.
= f(y) is a well defined A-linear form. Next
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fe (v))

Moreover, the map ¢ :

we show that ¢ is bounded by the A-sublinear function

on A*. We know that,
(6.2)

p(a1,asg, ...

fi (@) <r Vji=1,.

Given a generic y € E and a generic n € N,

If ()l =

but for each j =1,..., k

sup;_1.x |fi (y)] + %T

aak) =r

! sup o

1.k

1=1...

sk = |f(@)| <e.

r

r

sup;_1.x |fi ()| + %T

d

sup;—1_ | fi (y)

r

r

1

and |f; (y)| < supi—y i |fi (¥)| + Ltr € AT, multiplication by (sup,—,_|fi (y)| + 1r)”

115 ()]

)

sup;_1_x | fi ()| + %r

sup;—1__x |fi ()]
but then, by (6.2),

+ET

{

sup;—1_ | fi (y)

f5 ()]

r

sup;—1x |fi ()| + %r

! yields

k

T < e and

1

r

(

sup;—q.. ,|fi

sup;—1. | fi ()| + 27

sup;—1_ | fi (¥)| +

WL y)‘ < e and

r

<rforall j=1,...,

)

1f ()l =

Since A is Archimedean, then |f (y)]
k) € T (E) there exists y

(a1,a2,...,a

al
a2
¥

ay

r

d

s

r—

€
()
)

sup;—1_x | fi (¥)| +

Ysup,_; 1 |fi ()] for all y € E. Since for every
such that (aq,ag, ...,

y)| <

- 1
Lsup |fi (y) + —e.
i=1..k n

)

ar) = (f1 (W), f2(y) s fe (),
ay
az
" sup |fi(y)|=p
i=1...k
3

By Theorem 2 there exists an A-linear extension 1 : A¥* — A of ¢. Therefore, for every x € E,

fi
f
f(z)=¢ ’

T

e

0

0

(z) fi ()
@ |_ | 2@
() fi (@)
0
@) +..+9

fi(x) 0
0 0
: NET) :
0 fr (2)

k
z) = bifi(x)
i=1

24For notational convenience we indifferently use rows or columns to denote the elements of A*.
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k
where b; = ¢ ( (d;5€ k) and §;; is the Kronecker delta, that is, f = bif; € AF.
J=75=1 J
i=1

7. Normed A-modules

In this section the strong order is used to define a topology on a normed A-module. Like
in the previous one, this topology turns out to be very well behaved in terms of continuity of
A-linear forms, and the analogy with (normed) vector spaces remains completely faithful.

The definition of a norm |[|-|| : E — A" on an A-module E is again formally identical to the
usual one, where the real field R is replaced by A, and it generates a topology with basis

Bg(z,r)={yeE:|ly—z]| <r} VreFEandVr>0

Bg (z,7) is defined analogously (with < instead of <). It is easy to show that:
® Bp(z,r)={ye E:lly—zl|l € Ba(0,r)} =2+ B (0,7);
S BE (CC,T’),
for each y € Bg (z,r) we have Bg (y,r — ||y — z|) C Bg (z,7),
if r1,79 > 0 and r; < ry, then Bg (z,71) C Bg (x,r2),
for each y € B (x1,11) N Bp (22,72), y € Be (y, (11— lly — 21l) A (r2 — [ly — 22])) €
Bg (56'1,7“1) N Bg (.%'2, 7’2),
{Bg (z,7)},50 and {Bg (a:,r)}r>>0 are neighborhood bases for the norm topology at
-

)
2y Do = o, —af S0,

the norm topology is Hausdorff;
the module operations of sum and scalar product are continuous;
if e is a strong order unit, then

|z), =min{A>0: |z <X} VzxeE

is a (real valued) norm on F and it generates the the same topology as ||-||.2

PROPOSITION 5. Let A be Stonean algebra (with the strong order topology), E be a normed A-
module (with the norm topology), and f : E — A be an A-linear form. The following properties
are equivalent:

(i) f is continuous;
(ii) f is continuous at 0;
(iii) there exists r > 0 such that

If ()| <r|lz| VzeFE;
(iv) f is bounded, that is, there exists a € A such that
If (z)| <allz| VzekE.

PRrROOF. We only prove that (ii) implies (iii), the rest being routine. For every z € E, n € N,
and r > 0, we have the following chain of implications

— — — -1
lall +ne > llall = e |zl (Jall +n7¢) ™ = r> |r (2] +n7"e) 2.

By continuity at 0, there exists r > 0 such that f (Bg (0,7)) € Ba (0,e) C B4 (0,¢e), but we
have just shown that r (||z|| + n_le)_l x € B (0,r) for all x € E and n € N, then

)f (7" (”SUH + n_le)

which yields |f (z)| < 77! ||z| because A is Archimedean. [ |

)| <e = r(lal+n7le) @) <e = 1f @] < (2l +n7le)

25By definition |||, is the ||-|| . of ||z|| € A, it is actually a norm on E, when the latter is regarded as a vector

space, and z, -y z = ||z, —z|| B0 = |z, — 2| LES 0 = |l(lzg —z|)]|oc = 0 <= ||zy — 2|, — 0.

oo



18 S. CERREIA-VIOGLIO¥, M. KUPPERS, F. MACCHERONI?, M. MARINACCI#, N. VOGELPOTH'

Following the usual analogy, it is easy to show that the set of all bounded A-linear forms on
a normed A-module E form an A-module E~ that can be normed by setting
IfII” =min{a € A" :|f(z)| <alz| VzeE}= Sup |/ ()]
z||<e

for all f € E~.20 At this point, we can state, without proof, the corresponding version of the
Hahn Extension Theorem.

PROPOSITION 6. Let A be Stonean algebra, E be a normed A-module, L C E be a submodule,
and f : L — A be a continuous A-linear form. Then there exists a continuous A-linear form
g:E — A such that g, = f and ||gl|z~ = || flI7~-

The only non-routine observation in the proof is that the topology inherited by L as a
submodule of F coincides with the one generated by the restriction to L of the norm of E.

We conclude with a pioneer result of Haydon, Levy, and Raynaud [HLR|] showing that
when the Stonean algebra A = Lo (G) is considered, a fifth equivalent point can be added to
Proposition 5. Before stating it we recall that

d1y(0) (a,b):/(\a—b|/\1)dP Va,be A
Q

is a metric on A that induces the topology of convergence in probability.

ProPOSITION 7 (Haydon-Levy-Raynaud). Let A = Lo (G) and E be a normed A-module.
Then the translation invariant metric

dg (x,y) :dLo(g) (H.’E—yH,O) Vo,y € B

induces a linear topology on E,?" and the following properties are equivalent for an A-linear form
f:E— A:

(iv) f is bounded;

(v) f is de-dpyg)-continuous.

8. Modules of random variables

Like in our opening example, the focus of this final section is on Lo (G)-submodules of Lg (F)
which we call modules of random variables. They form a large family of “concrete” A-modules
that proved to be useful in financial modelling.?®

REMARK 3. As we already observed, A = Lo (G) is a Stonean algebra, moreover:

e c=1;
e ATt ={a € Ly(G):a(w) >0 for almost all w € Q};**
e C.={lg:Geg}

The Lo (G)-linearity of conditional expectations and the duality results of Section 6 suggest
the following definition.

26The verification of the above claims builds on a remarkable property of Stonean algebras: if B C A is
nonempty and bounded above (resp. below) and ¢ € AT, then csup B = sup (cB) (resp. cinf B = inf (¢B)). In
fact, the map a +— ca is a positive orthomorphism of A ([A1Bu, Theorem 2.62]), as such it is an order continuous
([AIBu, Theorem 2.44]) lattice homomorphism ([A1Bu, page 115]), and therefore it preserves arbitrary suprema
and infima ([A1Bu, page 106]).

27 . . dLg(g) . dg dp
It also makes the module scalar product continuous: if a,, — a in A and x, — z, then a,x, — ax.

28Like in the cited [HaRi] and in the more recent Frittelli and Maggis [FrMa] and Filipovic, Kupper, and
Vogelpoth [FKV2].

29With the usual abuse of notation, a (-) denotes the generic representative of the equivalence class a. We
tacitly choose real-valued and G-measurable representatives in what follows.

30Here the converse abuse is performed by writing a representative instead of the corresponding equivalence
class.
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DEFINITION 3. A pair (L, L") of modules of random variables is called a conditional dual
pair if and only if:
(i) EY |xy| € Lo (G) for all (z,y) € L x L';
(ii) EY (zy) =0 for ally € L' implies x = 0;
(iii) EY (zy) =0 for all x € L implies y = 0.
In this case, we set
(@,9)? = B9 (zy) V(w,y) e Lx L'
and by identyfing y € L’ with
<'7y>g L — Lo (g)
z = (ay)°
L’ can be seen as a total submodule of Homp, gy (L, Lo (G)).>! By the previous Theorem 5,
L' = Hom7, ) (L, Lo (G)) when L is endowed with the o (L, L) topology w.

COROLLARY 1. If (L, L") is a conditional dual pair, then o (L, L") is Hausdorff, and for every
o (L, L")-continuous Lgy (G)-linear form © on L, there exists one and only one y € L' such that

(8.1) 7 (x) = EY (zy) VzelL.
Conversely, (8.1) defines a o (L, L')-continuous Lg (G)-linear form m on L, for everyy € L'.

In particular, when the conditional dual pair (Lg (F) ,ng (F)) with 1 < p < oo is considered,

the above result shows that ng (F) is not only the “strong” dual of Lg (F), as shown in Theorem
1, but also its “weak” dual. This suggests an even deeper analogy between classical L,-spaces
and conditional L,-spaces. The final part of this paper is specifically devoted to investigate this
analogy in greater detail.

8.1. The conjugate space of Lg (F)y, 1 <p < oo. We can now complete the conditional
“Riesz” representation Theorem 1.

THEOREM 6. Let p € [1,00) and q be the conjugate exponent of p. The operator
I: L{(F) — LY (F)~
y o= ()
is a module isomorphism such that Hy||g = |1 (y)||~ forally € ng (F).

PrOOF. Theorem 1 guarantees that I is well defined and onto and it is easy to check it is a
homomorphism. Next we show that it preserves the Lo (G)-norms of the two spaces.
Let y € ng (F) and set I, = I (y). By the conditional Holder inequality

|1y (2)] < B |ay| < |lylgll=)f vz € L (F)

and hence || 1,[|™~ < [jy[|¢ for all p € [1,00).
If p> 1, let z = |y|? ' sgn (y) and notice that |z| = |y|? !, therefore
2P = [y|* and 2y = |y|* " sgn (y) y = |y|’
then EY 2| = EY |y|? € Ly (G) and so z € L§ (F), moreover
1y (2)| = |EY (zy)| = B9 [y|".

Now if @ € Loy (G)" is such that |I, (z)| < a ||a;|]g for all z € LY (F), then taking z = z we obtain
1
a (B9 y)7 = alz|] > |1, (2)| = B9 |y|*.

31Notice that point (i) of the definition guarantees that (-,-)9 is well defined; while points (i) and (iii) are
automatically satisfied if L’ and L contain the (equivalence classes of) indicators of all elements of F.
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But notice that, given a,b € Ly ()™,
abv > b < a> b

which, for b= E9 |y|?, delivers a > ||y[|¢. The arbitrariness of a delivers
1,0 = inf {a € Lo (6)" : |1, (=) < allall§ Ve € L (F)} > ).

Else p=1. Let D = {a €ELo(G)" |, (z)<a ||a;|]f Vo € LY (.7-")}, we already observed that
||yHgo € D. Assume, per contra, that there exists a € D such that ||y\|go £ a, then for all
z e LY (F)
Iy (@) < allz{ and |1, (2)] < [lyIE lI7
imply |1, (2)] < a ol Ayl 21 = (an I91%) 2§ and so b= anfiyll, € D and b < [y]|Z.
Since b € Lo (G), b > |y| would imply b > ||y\|go > b, then F={w e Q:b(w) < |y (w)|} € F and
1pb < 1p|y|. Set z = 1psgn (y) € LY (F) and notice that |z| = 1p, then
|1y (=) = | EY (Lrsgn (y) y)| = B9 (1r |y))
(but EY is strictly positive, so) > EY (1zb) = bEY (1) = b HZH%

which contradicts b € D. Therefore |y||%, is the minimum of D, that is, [[y| = ||1,[|"
Finally, I is injective because I (y) = 0 implies HyHg = |l (y)||” =0, and so ker (1) = {0}.1

8.2. Metric completeness of Lg (F), 1 < p < oco. In this section we consider ng, (F)
endowed with its Lévy metric

dy (2,9) = dioiq) (ko = 9lS,0) = B (o —yl)  Vo,y € LS (F)

where 1 (t) = t A1 for all ¢ € RT. By the conditional Holder inequality HJ}H% < Hfo < Hng
if 1 <r <p < oco. Therefore by the conditional Jensen inequality and since 1) is concave and
monotone, for every x € Lg (F),

By (I1219) = Be (21§ ) = B (B Jal) > B (ES (o A1) = B (E% (2] A1) = By (Jz)
and so

dy (2,9) = B (2 = yl§) = B (o = yl) = dro(r) (@,9) Yo,y € LY (F).

We can conclude that every Cauchy sequence in Lg (F) is a Cauchy sequence in Lg (F).
THEOREM 7. For every p € [1,00), (Lg’ (F) ,dp) is a Frechet lattice.

PROOF. Let p € [1,00). We already observed that Lg (F) is a submodule and hence a vector
subspace of Lo (F), and the topology induced by d,, is linear (see Proposition 7).
Moreover if z € LY (F) and y € Lo (F), then

(8.2) lyl < || = B9yl < B9 [aff

in turn this means that y € Lg’ (F), showing that Lg (F) is an ideal in Lo (F). Inequality (8.2)
also shows that every open ball centered at 0 in (Lg (F),dp) is solid, thus (Lg (F),dyp) is a
locally solid Riesz space. At this point we only have to prove completeness.

Let {y,} be a Cauchy sequence in Lg (F), it is enough to prove that it admits a subsequence
that converges in Lg (F). Since {yn} is also a Cauchy sequence in Lg (F), then it converges in
probability to some x € Lo (F) and it admits a subsequence that converges to x a.s., but such
a subsequence is a Cauchy sequence in Lg (F). Therefore, it suffices to prove that if {x,} is a
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Cauchy sequence in Lg (F) that a.s. converges to x € Lo (F) it also converges to x in Lg (F).
For every n € N, by the conditional Fatou Lemma

Ev ((/Eg |z, — :1:|p> = Ev ((/Eg L&E}noomn — wmﬂ) < Ey <</limm_,ooEg |z, — Jim|p> .

Moreover,

p=to g R = (0,1
is continuous and increasing, and so ¢ (lim,, . tm) = lim,, @ (ty) for any sequence {t,,} C
RT. Thus, for every n € N, by the unconditional Fatou Lemma

0< Ey ({/Eg |z, — m|p> < By (lim,, oo BY |2 — 2 |’) = E [lim,, oo (EY |20 — m|")]

< lim Eyp (Eg |20 — 2m|7) = lim,, oo dp (@n, Tm)

m— 00
and the latter quantity vanishes as n — oo since {z,} is a Cauchy sequence in Lg (F).
In particular, for each ¢ € (0,1/3), there is n = n. € N such that E ({:/Eg |z, — 2P A 1) <
€2, and by the Markov inequality

P{wEQ: {/Eg\mn—m]p(w)>s}—P{w€Q: Eglxn—m\p(w)/\1>5}
E({/Eg\xn—x]p/\1>

<e.
If, per contra, EY |z|P ¢ Lo (G), then there exists G € G such that P (G) > 0 and EY |z|P (w) = oo

for all w € G. Let ¢ = P(G) /6 and n = n., by the conditional Minkowski inequality and since
an € LY (F), there exists W € F with P (W) = 1 such that

8B Lo () < /B9 fenl? (@) + {/ES |2n — ol ()

and {/FE9 |z,|P (w) € R, for all w € W. But then {/E9 |z, — 2|’ (w) = oo for all w € GNW,
and since P (GNW) = P(G) = 6¢ it follows that

62P{w€Q: (/Eg|mn—m|p(w)>€}2P{w€Q: (/Eg|xn—:n|p(w):oo}26€

a contradiction. We conclude that EY |z’ € Lo (G), x € Lg (F), and

dy (T, x) = Ev <{/Eg|xn—xp> —0

as n — 00, as wanted. |

COROLLARY 2. Let p € [1,00) and q be the conjugate exponent of p. A map w : Lg (F) —
Ly (G) is a positive Lo (G)-linear form if and only if there exists y € ng (F)* such that

(8.3) 7 (x) = E9 (zy) Vze Lg (F).

ProOOF. We only prove sufficiency. Notice that 7 : Lg (F) — Lo (G) is a positive linear
operator between Frechet lattices, therefore by Aliprantis and Border [A1Bo, Theorem 9.6], 7
is (Lg (F) ,dp)—(Lo (9) ,dLO(g))—continuous. By Proposition 7, w is bounded. As observed in the
proof of Theorem 1, since 7 is positive, it can be represented in the sense of (8.3) by y € Lg (F)*T.
|

First notice that by Theorem 6, y is unique. More importantly the argument we just dis-
cussed leads to the following, very general remark.
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REMARK 4. Let E be a normed Lo (G)-module such that the metric dg is complete, and E™
be a dg-closed convex cone such that E = ET —EY. If f : E — Lo (G) is convex and monotone,
then, by Borwein [Bor, Corollary 2.4], f is dg-dp(g)-continuous.
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