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Abstract

We extend the Fundamental Theorem of Finance and the Pricing Rule Representation Theorem to the case 
in which market frictions are taken into account but the Put–Call Parity is still assumed to hold. In turn, 
we obtain a representation of the pricing rule as a discounted expectation with respect to a nonadditive risk 
neutral probability.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

We extend the Fundamental Theorem of Finance and the Pricing Rule Representation The-
orem to markets with frictions.1 We assume the Put–Call Parity and the absence of arbitrage 
opportunities and, under these hypotheses, we obtain a representation of the pricing rule as a 
discounted expectation with respect to a nonadditive risk neutral probability. In other words, 
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the market prices contingent claims as an ambiguity sensitive, but risk neutral, decision maker. 
As a further contribution, we remove the state space structure and the contingent claim repre-
sentation that are usually assumed exogenously to model assets and markets. In particular, this 
allows us to provide a unique mathematical framework where we can both discuss the Funda-
mental Theorem of Finance and the Pricing Rule Representation Theorem.

Most of the fundamental theory of asset pricing relies on two main hypotheses: frictionless 
markets and absence of arbitrage.2 On the other hand, frictions and transaction costs are present 
in financial markets and play an important role. Important evidence of these facts is the existence 
of bid–ask spreads (see, e.g., Amihud and Mendelson [3,4]). As a consequence, the Finance 
literature developed models that incorporate transaction costs and taxes (see, e.g., Garman and 
Ohlson [17], Prisman [35], Ross [39], Jouini and Kallal [26], and Luttmer [32]). In particular, 
[35,26,32] observe how taxes/transaction costs generate pricing rules that are not linear but still 
can be compatible with the no arbitrage assumption. Inter alia, Prisman [35] shows that convex 
transaction costs or taxes generate convex pricing rules. Furthermore, if transaction costs are 
different among securities but proportional to the volumes dealt, then the respective pricing rules 
are sublinear, as in [26,32].

Our approach is different. In a standard framework, the no friction assumption paired with the 
Law of One Price yields the fundamental Put–Call Parity, first discovered by Stoll [44] (see also 
Kruizenga [30]). Moreover, the no friction assumption also implies that when a risk-free position 
is added to an existing portfolio the price of the resulting portfolio is equal to the price of the 
original portfolio plus the price of the position on the risk-free asset. This last implication is basi-
cally equivalent to say that the price on the market of the risk-free asset is linear and in particular 
the bid–ask spread is zero on this market. From an applied point of view, the absence of frictions 
on the market of the risk-free asset and the Put–Call Parity are two important assumptions since 
they can be empirically tested.3 These two joint properties are at the center of our study.

We study price functionals and pricing rules that satisfy a version of the Put–Call Parity and 
exhibit no frictions in the market of the risk-free asset. These two no frictions assumptions are 
conceptually much weaker than the standard one and much easier to test empirically. As in the 
standard case, we further retain a no arbitrage postulate. We show (Theorems 1 and 3) that these 
pricing rules can be characterized as discounted expectations with respect to a nonadditive prob-
ability, that is, by using Choquet expectations. One important feature of our result is that Choquet 
pricing rules are characterized by preserving the aforementioned financial identities but, a pri-
ori, they are not the direct result of assuming transaction costs, bid–ask spreads, or short-sales 
constraints. Instead, making these assumptions would naturally lead to sublinear pricing rules 
which have been studied exactly to account for transaction costs (as in Jouini and Kallal [26] and 
Luttmer [32]; see also Kabanov and Safarian [27]). It is then natural to ask what is the overlap 
between Choquet and sublinear pricing rules. Corollaries 1 and 2 show that a pricing rule is sub-
linear and Choquet if and only if the nonadditive probability that represents it is concave. In this 
case, the set of consistent price systems coincides with the core of this nonadditive probability. 
Thus, among the others, we provide testable conditions under which transaction costs generate a 
sublinear pricing rule which is also a nonadditive expectation.

2 See, e.g., Ross [36,38], Cox and Ross [9], and, in a dynamic setting, Harrison and Kreps [23], Harrison and 
Pliska [24], and Delbaen and Schachermayer [11]. For an introduction to the topic, see Dybvig and Ross [14], Ross [40], 
Follmer and Schied [16], and Delbaen and Schachermayer [12].

3 The empirical validity of the Put–Call Parity condition should be tested by using European options data, like in 
Kamara and Miller [28], in order to avoid issues of early exercise.
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Subadditive Choquet pricing rules were first studied and characterized by Chateauneuf, Kast, 
and Lapied [8]. Theorem 1.1 of [8] offers a generalized version of the Representation Theorem 
for Choquet pricing rules. The main assumption in [8] is comonotonic additivity which is paired 
with an assumption of no arbitrage that we also use. Comonotonic additivity is, however, a diffi-
cult property to test since it requires a contingent claim representation for the assets considered 
and it requires to verify the absence of frictions on a large class of assets’ pairs. On the other 
hand, our characterization of Choquet pricing relies on the Put–Call Parity (henceforth, also 
PCP) which is easier to test. In fact, in the literature there are several studies testing the validity 
of the PCP (see Stoll [44,45], Gould and Galai [20], Klemkosky and Resnick [29], and Kamara 
and Miller [28]).

Choquet Expected Utility (henceforth, CEU) was introduced in Economics to account for de-
viations from the standard model of Subjective Expected Utility (henceforth, SEU) as formulated 
by Savage [41] and Anscombe and Aumann [5]. Schmeidler [43] (see also Gilboa [18]) shows 
instead how the CEU model can accommodate patterns of choice not consistent with the SEU 
model, like the ones contained in Ellsberg [15], while still being able to account for Ambigu-
ity and Ambiguity Aversion.4 Despite sharing some of the mathematical tools coming from the 
literature of choice under Ambiguity, conceptually, the current paper is very different.

The rest of the paper is organized as follows. Section 2 contains our generalization of the 
Representation Theorem in the finite dimensional setting. We start in Section 2.1 with some 
mathematical preliminaries. In Section 2.2, we briefly review the famous Fundamental Theorem 
of Finance and the Pricing Rule Representation Theorem. Section 2.3 contains our main result: 
Theorem 1. In Section 2.4, we discuss some of its extensions. Appendix A provides the repre-
sentation theorem on which our results hinge. Appendix B contains our main result in its most 
general form: Theorem 3. This result is stated and proved in a very general setting where we 
dispense with the assumptions of finite dimensionality and of existence of an underlying state 
space.

2. The finite dimensional case

2.1. Mathematical preliminaries

Consider a finite state space Ω = {ω1, . . . , ωm}.5 We endow Ω with the σ -algebra coinciding 
with the power set P(Ω). A nonadditive probability is a set function ν : P(Ω) → [0, 1] such 
that ν(∅) = 0, ν(Ω) = 1, and ν(A) ≤ ν(B) whenever A ⊆ B ⊆ Ω . We say that ν is a concave 
nonadditive probability if and only if for each A and B

ν(A ∩ B) + ν(A ∪ B) ≤ ν(A) + ν(B).

A probability μ is instead an additive set function such that μ(∅) = 0 and μ(Ω) = 1. Clearly, 
an additive probability can also be identified with a vector in Rm. A nonadditive probability ν is 
balanced if and only if there exists a probability μ such that μ ≤ ν. If a nonadditive probability 
is concave, then it is balanced, but the vice versa does not hold in general. Finally, we denote by 
core(ν) the set of all probabilities μ such that μ ≤ ν.

4 For a comprehensive recent survey on the literature of choice under Ambiguity, see Gilboa and Marinacci [19].
5 In this section, we provide the mathematical preliminaries that are necessary for Section 2 and all the examples in the 

paper which refer to this section. We refer the reader to Appendix A for all the other relevant mathematical notions.
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Unless otherwise specified, Rm is endowed with the usual pointwise order. Given x ∈ Rm, 
x+ = max{x, 0} denotes the positive part of x. With a small abuse of notation, we sometimes 
denote by k both the real number k and the constant vector that takes value k. With such a 
notation, x ∧ k and x ∨ k denote the minimum and the maximum between vector x and the 
constant vector k.

We say that a function π̃ :Rm →R is

– positive if and only if x ≥ 0 implies π̃(x) ≥ 0;
– monotone if and only if x ≥ y implies π̃(x) ≥ π̃ (y);
– linear if and only if for each x, y ∈Rm and λ, γ ∈ R

π̃ (λx + γ y) = λπ̃(x) + γ π̃(y);
– translation invariant if and only if for each x ∈ Rm and k ∈R

π̃ (x + k) = π̃(x) + kπ̃(1);
– constant modular if and only if for each x ∈Rm and k ∈ R

π̃ (x ∨ k) + π̃(x ∧ k) = π̃(x) + kπ̃(1);
– subadditive if and only if for each x, y ∈ Rm

π̃(x + y) ≤ π̃ (x) + π̃(y);
– positively homogeneous if and only if for each x ∈ Rm and λ ≥ 0

π̃ (λx) = λπ̃(x);
– sublinear if and only if π̃ is subadditive and positively homogeneous.

2.2. The classical framework

We consider a two periods market where all tradings happen at time 0. Let n be the number 
of primary assets. We denote by Ω = {ω1, . . . , ωm} the state space that we eventually use to 
represent the uncertainty behind any asset evaluation at time 1. In this case, an asset or a portfolio 
of assets can also be represented as a vector x ∈Rm. We denote by G the Arrow–Debreu tableau 
of securities’ payoffs which is a matrix with m rows and n columns. Each row i denotes the 
payoff/evaluation of each primary asset in state ωi , while each column j is the primary asset j
in its contingent claim form. In other words, the entry gij of G represents the payoff/evaluation 
of primary asset j in state ωi . We also assume that the rows of G are different from each other, 
that is, that there are not redundant states of the world in Ω . The market of all tradable portfolios 
can thus be represented by the vector space P = Rn, where a vector η represents the portfolio 
consisting of ηi units of each primary asset i. Each portfolio η ∈ P has also a representation as a 
contingent claim Gη ∈ Rm, and the space of portfolios has a contingent claim representation as 
C = {Gη : η ∈Rn}.

Assumption. C ∩Rm++ = ∅.

Thus, a two periods market can be modeled in two ways: a) the space of all portfolios P , b) the 
space of all tradable contingent claims C. The two spaces are connected via the linear function T :
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Rn → C ⊆ Rm that associates to each portfolio η the contingent claim T (η) = Gη. Given these 
two representations, prices can then be modeled in two ways: a) as a function p : P →R, b) as 
a function π̃ : C → R. In the main text, functions of the first kind are termed price functionals, 
while functions of the second kind are called pricing rules.

In the classical framework, a further datum are the prices of the n primary assets: p1, . . . , pn. 
The hypothesis of no frictions in the market (NF) amounts to assume that the price functional 
p : P → R is linear, that is,

p(η) =
n∑

i=1

piηi ∀η ∈Rn. (NF)

The value p(η) is the market value of η. Another fundamental assumption in Asset Pricing is the 
no arbitrage assumption (NA)6:

p(η) < 0 ⇒ Gη � 0. (NA)

It amounts to impose that there do not exist portfolios that have negative price and yield a non-
negative payment in each contingency. It is immediate to see that under NF the no arbitrage 
assumption yields the weaker Law of One Price, that is, if two portfolios η1 and η2 induce the 
same contingent claim (Gη1 = Gη2), then p(η1) = p(η2).

Under the Law of One Price, any price functional p induces a well defined pricing rule π̃p :
C →R over contingent claims. In fact, the price of a contingent claim x ∈ C is defined by

π̃p(x) = p(η)

where η ∈ Rn is such that x = Gη. Note that the Law of One Price yields that if η1 and η2 in 
P are such that Gη1 = x = Gη2, then p(η1) = p(η2), showing that π̃p is well defined. We thus 
have:

Fundamental Theorem of Finance. Let p : P → R be a nonzero price functional and let π̃p :
C →R be the associated pricing rule. The following statements are equivalent:

(i) there are no frictions in the market (NF) and no arbitrage opportunities (NA);
(ii) π̃p is a well defined positive linear pricing rule.

At the same time, also positive linear pricing rules can be characterized:

Representation Theorem. Let π̃ : C → R be a nonzero pricing rule. The following statements 
are equivalent:

(i) π̃ is a positive linear pricing rule;
(ii) there exist a risk neutral probability μ and a riskless rate r > −1 such that

π̃(x) = 1

1 + r
Eμx = 1

1 + r

m∑
i=1

xiμi ∀x ∈ C. (1)

6 A stronger version of the NA assumption (see also [31,40]) is p(η) ≤ 0 implies Gη ≯ 0. This is a condition of strict 
positivity, while NA is a condition of positivity.
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From a mathematical point of view, the NF assumption is an assumption of linearity of both: 
the price functional p and the pricing rule π̃p . The NA assumption is an assumption of positivity 
of the pricing rule π̃p . At first sight, the NA condition does not seem to have a clear mathematical 
counterpart for p since it is based on the contingent claim representation of portfolios. Neverthe-
less, the NA assumption is a positivity condition of the price functional p whenever the space of 
portfolios P is endowed with the preorder induced by G, that is,

η1 ≥G η2 ⇐⇒ Gη1 ≥ Gη2.

In other words, a portfolio η1 is declared at least as good as a portfolio η2 if and only if each 
possible evaluation at time 1 of η1 is greater than the one of portfolio η2. The preorder ≥G is 
typically very different from the pointwise order with which Rn is naturally endowed. In light of 
this observation, p satisfies the NA condition if and only if

η ≥G 0 ⇒ p(η) ≥ 0,

which is a condition of positivity for p.
In both cases, given the linearity of p and π̃p , the positivity assumption contained in the NA 

condition is equivalent to monotonicity of both p and π̃p .

2.3. Our main result

In this section, we focus on pricing rules π̃ : C → R and present a generalization of the 
Representation Theorem (for a generalization of the Fundamental Theorem of Finance, see Ap-
pendix B). We start by observing that, in the Representation Theorem, the probability measure μ
takes the name of risk neutral probability. It is unique when the market is complete, that is, when 
all contingent claims are available and C =Rm. In the rest of the section, we assume that

Assumption. C =Rm and the columns of G are linearly independent.

Since the goal of our paper is to characterize pricing rules which satisfy, among the others, the 
Put–Call Parity, it is natural to consider all possible calls and puts with nonnegative strike price. 
In light of this fact, the assumption of market completeness is almost a necessary assumption. 
Indeed, it is well known that completeness of markets can be achieved by assuming closure 
with the respect to option contracts (see Ross [37] and Green and Jarrow [22]). Finally, for 
simplicity, we further assume that the columns of G are linearly independent. This amounts to 
impose that in the market of primary assets there are not redundant securities (see also LeRoy 
and Werner [31], Follmer and Schied [16], and Appendix B.1). Mathematically, this translates 
into T being injective.

One important consequence of the market being complete is that the risk-free asset is avail-
able, that is, the constant unit vector belongs to C. We denote it by xrf . Given a contingent 
claim x in C, we denote by cx,k the call option (resp., px,k the put option) on x with strike price 
k ≥ 0. Recall that cx,k is the contingent claim (x − kxrf )+ and px,k is the contingent claim 
(kxrf − x)+. We have the following well known equality

cx,k − px,k = x − kxrf . (2)

If π̃ were linear, this equality would deliver a version of the famous PCP, that is,

π̃ (cx,k) + π̃ (−px,k) = π̃(x) − kπ̃(xrf ). (PCP)
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At time 0, PCP alone requires that the difference between the ask price for the call option cx,k

and the bid price for the put option px,k coincides with the difference between the ask price of 
the underlying asset x and the price of k units of the risk-free asset. In other words, the two 
payoff equivalent strategies in (2) must have the same cost. If there are frictions, a violation of 
the PCP might not lead to an immediately available arbitrage opportunity. Nevertheless, if one 
of the two strategies was costing more than the other, in an economy with rational agents, then 
its demand would be zero and no agent would buy the more expensive portfolio, thus yielding an 
(equivalent) equilibrium price where the PCP is satisfied.

In this paper, in terms of pricing rules π̃ , we assume:

PCP The PCP holds for all x ∈ C and all k ≥ 0.
Cash Invariance For each x ∈ C and each k ∈ R

π̃(x + kxrf ) = π̃(x) + kπ̃(xrf ).

Monotonicity If x ≥ y, then π̃(x) ≥ π̃ (y).

We already discussed the PCP condition. On the other hand, Cash Invariance mathematically 
coincides with translation invariance and it is a linearity assumption when the risk-free asset is 
involved. In fact, it implies that π̃(kxrf ) = kπ̃(xrf ) for all k ∈ R. It is a well known postulate 
in Mathematical Finance (see Follmer and Schied [16]) that models the absence of frictions on 
the market of the risk-free asset. The motivation behind this assumption is that the risk-free 
asset is a very liquid asset and frictions are inversely proportional to liquidity (see Amihud and 
Mendelson [4]).

Monotonicity states that if a contingent claim yields a better payoff than another in each 
state of the world, then the former should have a higher price. If there are frictions, a violation 
of Monotonicity might not lead to an immediately available arbitrage opportunity. Nevertheless, 
Monotonicity is a rationality assumption. If x ≥ y and π̃(x) < π̃(y), in an economy with rational 
agents, then the demand of y would be zero, thus yielding an (equivalent) equilibrium price where 
Monotonicity is satisfied.

Those above are the three assumptions we need to state our nonlinear version of the Rep-
resentation Theorem which characterizes Choquet pricing rules. As mentioned in the introduc-
tion, subadditive Choquet pricing rules have also been characterized by Chateauneuf, Kast, and 
Lapied [8].7 The assumptions characterizing π̃ in [8] are Comonotonic Additivity, Subadditivity, 
and Monotonicity. Recall that two assets are comonotonic if and only if the associated contingent 
claims x and y satisfy

(xi − xj )(yi − yj ) ≥ 0 ∀i, j ∈ {1, . . . ,m}.

Comonotonic Additivity If x and y are comonotonic, then π̃(x + y) = π̃(x) + π̃ (y). Subad-
ditivity models the presence of transaction costs (see also Section 2.4).
Subadditivity If x, y ∈ C, then π̃(x + y) ≤ π̃(x) + π̃(y).

Theorem. (Chateauneuf, Kast, and Lapied [8].) Let C = Rm and let π̃ : C → R be a nonzero 
pricing rule. The following statements are equivalent:

7 Chateauneuf, Kast, and Lapied [8] proved their representation result also in an infinite-dimensional setting.
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(i) π̃ satisfies Comonotonic Additivity, Subadditivity, and Monotonicity;
(ii) there exist a concave nonadditive risk neutral probability ν and a riskless rate r > −1 such 

that

π̃(x) = 1

1 + r

∫
Ω

xdν = 1

1 + r
max

μ∈core(ν)
Eμx for all x ∈ C (3)

where the integral in (3) is a Choquet integral.

Comonotonic Additivity is a difficult property to test since it requires a contingent claim 
representation for the asset considered and, more importantly, it requires to verify additivity of 
the pricing rule over a large class of assets’ pairs. At the same time, despite being difficult to test, 
Comonotonic Additivity is a property that characterizes Choquet integrals (see Schmeidler [42]) 
and that we also exploit in our proofs. From a mathematical point of view, the result of [8] rests on 
Schmeidler [42] representation result for monotone and comonotonic additive functionals. On the 
other hand, our result hinges on a different representation result (Greco [21] and Theorem 2).

Theorem 1. Let C = Rm and let π̃ : C → R be a pricing rule such that π̃ = 0. The following 
statements are equivalent:

(i) π̃ satisfies PCP, Cash Invariance, and Monotonicity;
(ii) π̃ is monotone, translation invariant, and constant modular;

(iii) there exist a nonadditive risk neutral probability ν and a riskless rate r > −1 such that

π̃ (x) = 1

1 + r

∫
Ω

xdν for all x ∈ C (4)

where the integral in (4) is a Choquet integral.

Moreover,

1. r and ν are unique.
2. If ν is balanced, then π̃(x) ≥ −π̃ (−x) for all x ∈ C, that is, there are positive bid–ask 

spreads.
3. ν is a (additive) risk neutral probability if and only if π̃ is linear (no frictions).

Proof. (i) implies (ii). Since Cash Invariance coincides with π̃ being translation invariant, we 
only need to show that π̃ is constant modular. Consider x ∈ C and k ≥ 0. First note that

cx,k + kxrf = (x − kxrf )+ + kxrf = x ∨ k

and

−px,k + kxrf = −(kxrf − x)+ + kxrf = x ∧ k.

Since π̃ satisfies PCP and Cash Invariance, this implies that

π̃ (x ∨ k) + π̃(x ∧ k) = π̃(cx,k + kxrf ) + π̃(−px,k + kxrf )

= π̃(cx,k) + π̃(−px,k) + 2kπ̃(xrf )

= π̃(x) − kπ̃(xrf ) + 2kπ̃(xrf ) = π̃(x) + kπ̃(xrf ).
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Since x and k were arbitrarily chosen, π̃(x ∨ k) + π̃(x ∧ k) = π̃ (x) + kπ̃(xrf ) for all x ∈ C

and all k ≥ 0. Since π̃ satisfies Cash Invariance, the previous equality holds for all x ∈ C and all 
k ∈R, proving constant modularity.

(ii) implies (iii). It follows from the representation result of Greco [21] (see Theorem 2).

(iii) implies (i). By Schmeidler [42], Choquet integrals computed with a nonadditive proba-
bility are monotone and comonotonic additive functionals. Since π̃ is a positive multiple of a 
Choquet integral, it is monotone, comonotonic additive, and such that

π̃(kxrf ) = kπ̃(xrf ) ∀k ∈ R. (5)

It is also immediate to see that x and kxrf are comonotonic for all x ∈ C and k ∈R. At the same 
time, by Marinacci and Montrucchio [33, Lemma 4.6], cx,k and −px,k are comonotonic for all 
x ∈ C and k ≥ 0. By (2) and since π̃ is comonotonic additive, it follows that for each x ∈ C

and k ∈R

π̃(x + kxrf ) = π̃(x) + π̃(kxrf ) = π̃(x) + kπ̃(xrf ),

and for each x ∈ C and k ≥ 0

π̃(cx,k) + π̃ (−px,k) = π̃(cx,k − px,k) = π̃ (x − kxrf ) = π̃ (x) − kπ̃(xrf ),

proving the implication.

Assume equivalently one among (i), (ii), and (iii).

1. Consider r1, r2 > −1 and two nonadditive probabilities ν1, ν2 : P(Ω) → [0, 1] such that 
(r1, ν1) and (r2, ν2) represent π̃ as in (4). It follows that 1

1+r1
= π(xrf ) = 1

1+r2
, proving that 

r1 = r2 = r . At the same time, for each E ⊆ {1, . . . , m}, define by 1E the Arrow–Debreu security 
corresponding to the event E. We can conclude that 1

1+r
ν1(E) = π̃(1E) = 1

1+r
ν2(E), proving 

that ν1 = ν2.

2. Define ν̄ : P(Ω) → [0, 1] by ν̄(E) = 1 − ν(Ec) for all E ⊆ Ω . By (iii) and [33, Proposi-
tion 4.12], −π̃(−x) = 1

1+r

∫
Ω

xdν̄ for all x ∈ C. Since ν is balanced, it is immediate to verify 
that ν ≥ μ ≥ ν̄ for some probability μ. By definition of Choquet integral, this implies that

π̃(x) = 1

1 + r

∫
Ω

xdν ≥ 1

1 + r

∫
Ω

xdμ ≥ 1

1 + r

∫
Ω

xdν̄ = −π̃(−x) ∀x ∈ C.

3. It is a consequence of the Representation Theorem of Section 2.2. �
Given Theorem 1, a natural question regards the kind of violations of linearity (frictions) that 

are allowed by Choquet pricing rules. As mentioned above, Choquet pricing rules are additive 
on comonotonic assets, that is,

π̃(x + y) = π̃(x) + π̃(y)

whenever x and y are comonotonic. In order to interpret this mathematical condition, it is useful 
to recall two things: the definition of derivative security and an equivalent characterization of 
comonotonicity. Given an asset x, a derivative on x is a contingent claim whose payoff is a 
function of x (see, e.g., Follmer and Schied [16, p. 18]). At the same time, two vectors x and 
y are comonotonic if and only if there exist two increasing functions ϕ1, ϕ2 : R → R and a 
vector z ∈ Rm such that xi = ϕ1(zi) and yi = ϕ2(zi) for all i ∈ {1, . . . , m} (see, e.g., Denneberg 
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[13, Proposition 4.5]). In other words, whenever x and y are two derivatives written on the same 
underlying asset z and their payoffs are an increasing function of the underlying asset, then a 
Choquet pricing rule is additive and frictions are not allowed. For example, this is the case of 
a long position on a call cz,k and a short position on the put pz,k , like in the PCP. Similarly, a 
call cz,k and a discount certificate dz,k with cap k are two derivatives on z whose payoffs are 
increasing with the payoff of z (see also Section 2.4.2). On the other hand, if x and y are two 
derivatives on the same underlying asset z but their payoffs are not an increasing function of the 
underlying asset, then a Choquet pricing rule is typically not additive, thus allowing for frictions. 
For example, this is the case of a call cx,k and a butterfly spread on x. Finally, if ν is balanced 
the ask price π̃(x) is (typically, strictly) greater than the bid price −π̃(−x).

A surprising aspect of our result is that it is enough to verify the absence of frictions on a 
subset of strategies involving a particular and simple class of derivatives (options) to characterize 
Choquet pricing rules. We conclude with a remark.

Remark 1. Chateauneuf, Kast, and Lapied [8] argue that Choquet pricing can account for viola-
tions of the PCP. The PCP version they consider is the following one:

π̃ (px,k) = π̃ (cx,k) + π̃(−x) + kπ̃(xrf ).

This condition is different from ours since, under transaction costs, we have that, typically, 
−π̃(px,k) = π̃(−px,k) and −π̃(x) = π̃(−x). Incidentally, note also that cx,k and −x are in 
general not comonotonic, thus, as argued in [8], Choquet pricing does not imply this version of 
the PCP.

2.4. Some extensions

2.4.1. The subadditive case
One contribution of our paper is to characterize among sublinear pricing rules the ones that 

are Choquet pricing rules.
One way in which nonlinear price functionals and pricing rules can arise, even in complete 

markets and without short-sale constraints, is through the existence of different prices for selling 
and buying primary assets (see [26,31,27]). In other words, if there exist positive bid–ask spreads 
in the market of primary assets, then the NF assumption fails to hold. In fact, if for each primary 
asset i ∈ {1, . . . , n} there exists a (ask) price, pa

i , for immediately buying asset i, which is greater 
than the (bid) price, pb

i , for immediately selling asset i, it follows that p : P → R is such that

p(η) =
n∑

i=1

η+
i pa

i −
n∑

i=1

η−
i pb

i ∀η ∈Rn. (6)

It is then immediate to see that p is a genuine sublinear price functional, that is, p(λη) = λp(η)

for all η ∈ P and all λ ≥ 0 and p(η1 + η2) ≤ p(η1) +p(η2) for all η1, η2 ∈ P . At the same time, 
under the Law of One Price, the associated pricing rule satisfies the same properties, that is, π̃p

is well defined, positively homogeneous, and subadditive.
Starting from the paper of Jouini and Kallal [26], transaction costs and frictions have been 

modeled by imposing sublinearity of the pricing rule. Positive homogeneity is a property shared 
also by Choquet integrals, while subadditivity is not automatically satisfied. Under Monotonicity, 
a sublinear pricing rule takes the following characterization:
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π̃(x) = 1

1 + r
max
μ∈R

Eμx ∀x ∈ C

where R is a closed and convex set of risk neutral probabilities. An important example of sublin-
ear pricing rules are Choquet pricing rules generated by a concave nonadditive probability ν. In 
that case, we have that R coincides with the core of ν. Our paper shows that these latter rules are 
characterized, among the pricing rules considered by Jouini and Kallal [26] and Luttmer [32], 
as the ones that further satisfy the PCP. In the case of sublinear pricing, we can also weaken the 
Cash Invariance and Monotonicity assumptions, thus improving on [8, Theorem 1.1]. In fact, we 
can consider these weaker assumptions:

No Frictions on the Risk-Free Asset For each k ∈R, π̃(kxrf ) = kπ̃(xrf ).
Negativity If x ≤ 0, then π̃(x) ≤ 0.

Corollary 1. Let C = Rm and let π̃ : C → R be such that π̃ = 0. The following statements are 
equivalent:

(i) π̃ satisfies PCP, No Frictions on the Risk-Free Asset, Negativity, and Subadditivity;
(ii) π̃ satisfies PCP, Cash Invariance, Monotonicity, and Subadditivity;

(iii) π̃ is monotone, translation invariant, constant modular, and subadditive;
(iv) there exist a concave nonadditive risk neutral probability ν and a riskless rate r > −1 such 

that

π̃(x) = 1

1 + r

∫
Ω

xdν = 1

1 + r
max

μ∈core(ν)
Eμx for all x ∈ C.

Moreover, r and ν are unique.

Proof. (i) implies (ii). We only need to show that π̃ also satisfies Monotonicity and Cash In-
variance. If x, y ∈ C are such that y ≥ x, then 0 ≥ x − y. Since π̃ satisfies Subadditivity and 
Negativity, it follows that

π̃(x) = π̃
(
y + (x − y)

) ≤ π̃(y) + π̃(x − y) ≤ π̃(y),

proving that π̃ satisfies Monotonicity. Similarly, by Subadditivity and No Frictions on the Risk-
Free Asset, we have that

π̃(x + kxrf ) ≤ π̃(x) + π̃(kxrf ) = π̃ (x) + kπ̃(xrf ) ∀x ∈ C, ∀k ∈R. (7)

By (7), we also have that

π̃(x) = π̃
(
(x + kxrf ) − kxrf

) ≤ π̃(x + kxrf ) − kπ̃(xrf ) ∀x ∈ C, ∀k ∈R. (8)

The inequalities in (7) and (8) imply Cash Invariance.

(ii) implies (iii), (iii) implies (iv), (iv) implies (i), and uniqueness of the representation. These 
implications follow from Theorem 1 with the only caveat that a Choquet integral is subadditive 
if and only if ν is concave (see Schmeidler [42, Proposition 3] and Marinacci and Montrucchio 
[33, Proposition 4.12]). �
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2.4.2. Discount certificates and call options
An important class of derivatives are discount certificates (see [16]). A discount certificate on 

a claim x with cap k ≥ 0 is a contingent claim that in state ωi pays xi if xi ≤ k and k if xi > k. 
We will denote this derivative security by dx,k . It is immediate to see that for each x ∈ C and 
k ≥ 0

cx,k + dx,k = x. (9)

When π̃ is linear, this latter equality delivers the following relation:

π̃ (cx,k) + π̃ (dx,k) = π̃(x). (10)

We term this condition DCP (Discount Certificate–Call Parity).

DCP π̃ satisfies (10) for all x ∈ C and all k ≥ 0.

Proposition 1. Let C = Rm and let π̃ : C → R be a pricing rule. The following statements are 
equivalent:

(i) π̃ satisfies PCP, Cash Invariance, and Monotonicity;
(ii) π̃ satisfies DCP, Cash Invariance, and Monotonicity.

Proof. We just need to show that PCP is equivalent to DCP for a pricing rule π̃ that satisfies 
Cash Invariance and Monotonicity. Before starting, note that dx,k = kxrf − px,k for all x ∈ C

and k ≥ 0.
(i) implies (ii). Consider x ∈ C and k ≥ 0. Since π̃ satisfies PCP and Cash Invariance, it 

follows that

π̃ (x) = π̃(cx,k) + π̃ (−px,k) + kπ̃(xrf ) = π̃ (cx,k) + π̃(kxrf − px,k)

= π̃(cx,k) + π̃ (dx,k),

proving the statement.
(ii) implies (i). Consider x ∈ C and k ≥ 0. Since π̃ satisfies DCP and Cash Invariance, it 

follows that

π̃ (x) = π̃(cx,k) + π̃ (dx,k) = π̃ (cx,k) + π̃(kxrf − px,k)

= π̃(cx,k) + π̃ (−px,k) + kπ̃(xrf ),

proving the statement. �
In light of Theorem 1 and Proposition 1, in order to characterize a pricing rule π̃ as a Choquet 

pricing rule, we can drop PCP and replace it with DCP. Also in this case we provide conditions 
for Choquet pricing that can be empirically tested (see Jarrow and O’Hara [25]). We conclude 
with two remarks:

Remark 2. Chateauneuf, Kast, and Lapied [8] argue that Choquet pricing can account for viola-
tions of the DCP when dividends are taken into account. Nevertheless, if π̃ can be represented 
as a discounted Choquet integral and dividends are not taken into account, it is immediate to see 
that (10) must hold since cx,k and dx,k are comonotonic for all x ∈ C and all k ≥ 0.



742 S. Cerreia-Vioglio et al. / Journal of Economic Theory 157 (2015) 730–762
Remark 3. In the literature, in order to consider transaction costs, often the space of marketed 
portfolios has been considered to be just a convex cone (see, e.g., Luttmer [32]). For example, 
this is the case if short-sale constraints are assumed. In such a case, we would have that P =Rn+
and, given the Arrow–Debreu tableau G, the space of marketed contingent claims would be the 
convex cone C+ = {Gη : η ∈ Rn+}. In this case, we could still provide the equivalence between 
points (i) and (iii) of Theorem 1 given three caveats: (a) xrf ∈ C+ ⊆ Rm+, (b) for each x ∈ C+
and k ≥ 0 we must have that cx,k, dx,k ∈ C+, and (c) the PCP condition is replaced with the DCP 
condition.

Appendix A. Nonlinear integration

A.1. Choquet integral

In this paper, Choquet integrals play a fundamental role. Consider a measurable space (S, Σ). 
Subsets of S are understood to be in Σ even where not stated explicitly. Given a set function 
ν : Σ → R, we will say that ν is:

(i) a nonadditive probability if ν(∅) = 0, ν(S) = 1, and ν(A) ≤ ν(B) provided A ⊆ B;
(ii) concave if ν(A ∪ B) + ν(A ∩ B) ≤ ν(A) + ν(B) for all A and B;

(iii) continuous if limn→∞ ν(An) = ν(A) whenever either An ↓ A or An ↑ A;
(iv) a probability if it is a nonadditive probability such that ν(A ∪ B) = ν(A) + ν(B) for all A

and B which are pairwise disjoint;
(v) a probability measure if it is a probability such that limn ν(An) = 0 whenever An ↓ ∅;

(vi) balanced if ν is a nonadditive probability and there exists a probability μ such that

μ(B) ≤ ν(B) ∀B ∈ Σ.

We denote by �(S) the set of all probabilities on Σ . Given a nonadditive probability ν, we 
define

core(ν) = {
μ ∈ �(S) : μ ≤ ν

}
.

It is well known that a concave nonadditive probability is such that

ν(B) = max
μ∈core(ν)

μ(B) ∀B ∈ Σ

and a nonadditive probability ν is balanced if and only if core(ν) = ∅. Given a bounded and 
Σ -measurable function f : S → R, the Choquet integral of f with respect to a nonadditive 
probability ν is defined as the quantity

∫
S

f dν =
∫
S

f (s)dν(s) =
∞∫

0

ν(f > t)dt +
0∫

−∞

[
ν(f > t) − ν(S)

]
dt

where the integrals on the right hand side are Riemann integrals and (f > t) = {s ∈ S : f (s) > t}
for all t ∈ R. If ν is additive, the Choquet integral reduces to the standard additive integral. The 
Choquet integral defines a functional on the space of bounded, real valued, and Σ -measurable 
functions: B(S, Σ). It is well known that when ν is concave∫

S

f (s)dν(s) = max
μ∈core(ν)

∫
S

f (s)dμ(s).
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A.2. A representation result

Consider a nonempty set S. We define by B(S) the set of all bounded and real valued functions 
on S. By L we denote a Stone vector lattice contained in B(S), that is, L is a Riesz subspace 
of B(S) which further contains all constant functions. L is endowed with the pointwise order. 
Object of our study is a functional I : L → R. We say that:

(i) I is monotone if and only if I (f ) ≥ I (g) provided f ≥ g;
(ii) I is translation invariant if and only if I (f + k1S) = I (f ) + kI (1S) for all f ∈ L and all 

k ∈ R;
(iii) I is constant modular if and only if I (f ∨k1S) + I (f ∧k1S) = I (f ) +kI (1S) for all f ∈ L

and all k ∈ R;
(iv) I is subadditive if and only if I (f + g) ≤ I (f ) + I (g) for all f, g ∈ L;
(v) I is (bounded) pointwise continuous at 0 if and only if limn I (fn) = 0 whenever

{fn}n∈N ⊆ L is uniformly bounded and fn −→ 0 pointwise;
(vi) I is comonotonic additive if and only if I (f + g) = I (f ) + I (g) whenever f, g ∈ L are 

such that[
f (s) − f

(
s′)][g(s) − g

(
s′)] ≥ 0 ∀s, s′ ∈ S.

We denote by σ(L) the smallest σ -algebra on S which makes measurable all the functions 
contained in L. Given a monotone I : L → R such that I (1) = I (1S) > 0, we define ν∗, ν∗ :
σ(L) → [0, 1] by

ν∗(A) = sup{I (f ) : L � f ≤ 1A}
I (1)

and ν∗(A) = inf{I (f ) : L � f ≥ 1A}
I (1)

∀A ∈ σ(L).

The following representation result is essentially due to Greco [21].8 Given our domain of 
integration L, the original paper of Greco only requires I to be monotone, to satisfy (13), and to 
be such that

I (0) = 0 and I (f ) = lim
n

I

(
f ∨ 1

n
− 1

n

)
∀f ∈ L. (11)

Basically, we replace (13) with constant modularity and (11) with translation invariance. Trans-
lation invariance allows us to consider as domain of integration the entire space L, since Greco’s 
representation result was only proved for positive (but potentially unbounded) functions f ≥ 0. 
The proofs of (i) implies (ii) and of point 2 come from the techniques of [21]. The proof of (ii) 
implies (i) is different and relies on Schmeidler’s representation result.

Theorem 2. Let L be a Stone vector lattice and I : L → R such that I = 0. The following 
statements are equivalent:

(i) I is monotone, translation invariant, and constant modular;
(ii) there exist a nonadditive probability ν : σ(L) → [0, 1] and a number δ ∈ (0, ∞) such that

I (f ) = δ

∫
S

f dν ∀f ∈ L. (12)

8 As suggested by the associate editor, we provide a proof for completeness.
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Moreover,

1. δ is unique.
2. Each nonadditive probability ν : σ(L) → [0, 1] that satisfies ν∗ ≤ ν ≤ ν∗ represents I as 

in (12).
3. I is subadditive if and only if ν∗ is concave.
4. I is subadditive and pointwise continuous at 0 if and only if there exists a concave and 

continuous nonadditive probability ν satisfying (12).
5. If ν is continuous and concave, then ν is unique among the nonadditive probabilities satis-

fying (12) and with such properties.

Proof. Assume (i). Define Ī : L → R by Ī (f ) = I (f )/I (1) for all f ∈ L. Since I (1) > 0, it 
is immediate to see that Ī is monotone, translation invariant, and constant modular. Since Ī is 
translation invariant and monotone, Ī is supnorm continuous. For brevity, we denote by k both 
the real number and k1S , that is, the constant function taking value k on S. Fix f ∈ L and k ∈R. 
Since f + k = (f ∨ k) + (f ∧ k), we have that f − (f ∧ k) = (f ∨ k) − k. Since Ī is translation 
invariant and constant modular, this implies that

Ī (f ∧ k) + Ī
(
f − (f ∧ k)

) = Ī (f ∧ k) + Ī
(
(f ∨ k) − k

)
= Ī (f ∧ k) + Ī (f ∨ k) − kĪ (1)

= Ī (f ) + kĪ (1) − kĪ (1) = Ī (f ).

Since f ∈ L and k ∈R were arbitrarily chosen, we can conclude that

Ī (f ) = Ī (f ∧ k) + Ī
(
f − (f ∧ k)

) ∀f ∈ L, ∀k ∈R. (13)

(i) implies (ii) and 2. Since [(f ∧ a) − (f ∧ c)] ∧ (b − c) = (f ∧ b) − (f ∧ c) if a > b > c in R, 
if we replace f with (f ∧ a) − (f ∧ c) and k with (b − c) in (13), we obtain

Ī
(
(f ∧ a) − (f ∧ c)

) = Ī
(
(f ∧ b) − (f ∧ c)

) + Ī
(
(f ∧ a) − (f ∧ b)

)
. (14)

By definition of ν∗ and ν∗ and since pointwise comparison yields

(a − b)1(f >a) ≤ (f ∧ a) − (f ∧ b) ≤ (a − b)1(f >b), (15)

we have that

ν∗(f > a) ≤ Ī

(
(f ∧ a) − (f ∧ b)

a − b

)
≤ ν∗(f > b). (16)

While, if a − b = b − c, then (15) implies

(f ∧ a) − (f ∧ b) ≤ (a − b)1(f >b) = (b − c)1(f >b) ≤ (f ∧ b) − (f ∧ c). (17)

Let ε > 0. For each f ≥ 0 in L, since f is bounded, there exists M ∈N such that Mε ≥ f . Since 
f ≥ 0 and f = f ∧ nε for all n ≥ M , we have that

f = (f ∧ ε) + [−(f ∧ ε) + (f ∧ 2ε)
] + [−(f ∧ 2ε) + (f ∧ 3ε)

]
+ . . . + [−(

f ∧ (M − 1)ε
) + (f ∧ Mε)

]

= (f ∧ ε) +
∞∑[(

f ∧ (n + 1)ε
) − (f ∧ nε)

] =
∞∑[

(f ∧ nε) − (
f ∧ (n − 1)ε

)]
.

n=1 n=1
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By (15), this implies that

f − (f ∧ ε) =
∞∑

n=1

[(
f ∧ (n + 1)ε

) − (f ∧ nε)
] ≤

∞∑
n=1

ε1(f >nε)

≤
∞∑

n=1

[
(f ∧ nε) − (

f ∧ (n − 1)ε
)] = f. (18)

In terms of the functional Ī , we have that

∞∑
n=1

Ī
(
(f ∧ nε) − (

f ∧ (n − 1)ε
)) =

M∑
n=1

Ī
(
(f ∧ nε) − (

f ∧ (n − 1)ε
))

and, by (14),

Ī (f ) = Ī
([f ∧ Mε] − [f ∧ 0ε])

= Ī
([f ∧ Mε] − [

f ∧ (M − 1)ε
]) + Ī

([
f ∧ (M − 1)ε

] − [f ∧ 0ε]) = . . .

For all n ∈N, we set f ε
n = (f ∧ nε) − (f ∧ (n − 1)ε). By (18) and (14), we obtain that

Ī (f ) =
∞∑

n=1

Ī
(
f ε

n

) = Ī (f ∧ ε) +
∞∑

n=1

Ī
(
f ε

n+1

)
and

Ī
(
f − (f ∧ ε)

) = Ī (f ) − Ī (f ∧ ε) =
∞∑

n=1

Ī
(
f ε

n+1

)
. (19)

Before proceeding, we prove an ancillary claim.

Claim. If L � g ≥ 0, then Ī (2g) = 2Ī (g).

Proof of the Claim. Consider g ≥ 0 in L and m, n ∈N. Note that (17) implies that

(2g)21−m

n+1 =
[

2g ∧ n + 1

2m−1

]
−

[
2g ∧ n

2m−1

]
= 2

(
g ∧ n + 1

2m
− g ∧ n

2m

)

≤
(

g ∧ n + 1

2m
− g ∧ n

2m

)
+

(
g ∧ n

2m
− g ∧ n − 1

2m

)

=
(

g ∧ n + 1

2m

)
−

(
g ∧ n − 1

2m

)
. (20)

Now, by (14), (19), and (20) and since Ī is monotone, we have that

Ī

(
2g − 2g ∧ 1

2m−1

)
=

∞∑
n=1

Ī
(
(2g)21−m

n+1

) ≤
∞∑

n=1

Ī

(
g ∧ n + 1

2m
− g ∧ n − 1

2m

)

=
∞∑

n=1

[
Ī

(
g ∧ n + 1

2m
− g ∧ n

2m

)
+ Ī

(
g ∧ n

2m
− g ∧ n − 1

2m

)]

=
∞∑

Ī
(
g2−m

n+1

) +
∞∑

Ī
(
g2−m

n

) = Ī

(
g −

(
g ∧ 1

2m

))
+ Ī (g).
n=1 n=1
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By passing to the limit, we obtain Ī (2g) ≤ 2Ī (g). Finally,9 Ī (2g) ≥ 2Ī (g) follows from

Ī (2g) =
∞∑

n=1

Ī
(
(2g)21−m

n

) =
∞∑

n=1

Ī

([
2g ∧ 2n

2m

]
−

[
2g ∧ 2n − 2

2m

])

=
∞∑

n=1

[
Ī

([
2g ∧ 2n

2m

]
−

[
2g ∧ 2n − 1

2m

])

+ Ī

([
2g ∧ 2n − 1

2m

]
−

[
2g ∧ 2n − 2

2m

])]

≥
∞∑

n=1

[
Ī

((
g ∧ n + 1

2m

)
−

(
g ∧ n

2m

))
+ Ī

((
g ∧ n + 1

2m

)
−

(
g ∧ n

2m

))]

= 2Ī

(
g −

(
g ∧ 1

2m

))
,

and by passing to the limit, proving the claim. �
By the Claim and induction, Ī (2mg) = 2mĪ (g) for all m ∈ N. Now choose any f ≥ 0 in L

and use both (18), with δ = 2−m instead of ε, and (16) to show that
∞∑

n=1

f δ
n+1

δ
≤

∞∑
n=1

1(f >nδ) ≤
∞∑

n=1

f δ
n

δ
and

∞∑
n=1

Ī

(
f δ

n+1

δ

)
≤

∞∑
n=1

ν∗(f > nδ) ≤
∞∑

n=1

ν∗(f > nδ) ≤
∞∑

n=1

Ī

(
f δ

n

δ

)

but now (19) and δ−1-homogeneity imply

1

δ
Ī
(
f − (f ∧ δ)

) = 1

δ

∞∑
n=1

Ī
(
f δ

n+1

) ≤
∞∑

n=1

ν∗(f > nδ) ≤
∞∑

n=1

ν∗(f > nδ) ≤ 1

δ

∞∑
n=1

Ī
(
f δ

n

)

= 1

δ
Ī (f ),

that is, Ī (f − (f ∧ 2−m)) ≤ 2−m
∑∞

n=1 ν∗(f > n2−m) ≤ 2−m
∑∞

n=1 ν∗(f > n2−m) ≤ Ī (f ). 
Since t �→ ν∗(f > t) and t �→ ν∗(f > t) are decreasing and eventually null on [0, ∞), then 
they are Riemann integrable. By passing to the limit, we can conclude that

Ī (f ) =
∞∫

0

ν(f > t)dt

for all nonadditive probabilities ν such that ν∗ ≤ ν ≤ ν∗. It follows that for each f ∈ L such 
that f ≥ 0, Ī (f ) = ∫

S
f dν. Since both Ī and the Choquet integral are translation invariant, 

Ī (f ) = ∫
S
f dν for all f ∈ L. If we now define δ = I (1), then we have that I = δĪ , proving the 

implication and point 2.

9 Replacing (20) with the analogous [2g ∧ 2n−1
2m ] − [2g ∧ 2n−2

2m ] ≥ [2g ∧ 2n
2m ] − [2g ∧ 2n−1

2m ] ≥ [2g ∧ 2n+1
2m ] −

[2g ∧ 2n
m ] = 2(g ∧ ( n

m + 1
m+1 ) −g ∧ n

m ) ≥ (g ∧ n+1
m −g ∧ ( n

m + 1
m+1 )) + (g ∧ ( n

m + 1
m+1 ) −g ∧ n

m ) = g2−m
.
2 2 2 2 2 2 2 2 2 2 n+1
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(ii) implies (i). Define Ī : L → R by

Ī (f ) =
∫
S

f dν ∀f ∈ L.

By [42] and [33, Proposition 4.8] and since I = δĪ , it is immediate to see that I is monotone 
and comonotonic additive. By [33, Proposition 4.11], it follows that I is translation invariant. 
Consider f ∈ L and k ∈ R. By [33, Lemma 4.6], f ∧ k1S and f ∨ k1S are comonotonic. Since 
I is comonotonic additive and translation invariant, it follows that I is constant modular.

1. By (12), we have that I (1S) = δ yielding the uniqueness of δ.

3. Assume that I is further subadditive. Define I ∗ : B(σ(L)) → R by I ∗(f ) = inf{I (g) : L �
g ≥ f } for all f ∈ B(σ(L)). Define J : B(σ(L)) → R by J (f ) = δ

∫
S
f dν∗ for all f ∈ B(σ(L)). 

It is routine to prove that I ∗ and J are monotone, translation invariant, constant modular, and 
such that I ∗(f ) = I (f ) = J (f ) for all f ∈ L. By the main statement, it follows that there exist
η : σ(L) → [0, 1] and δ′ > 0 such that

I ∗(f ) = δ′
∫
S

f dη ∀f ∈ B
(
σ(L)

)
.

By [33, Theorem 4.6] and since I is subadditive, I∗ is subadditive implying that η is concave. 
It is immediate to see that δ = δ′. By construction, we have that I ∗ ≥ J . These latter two facts 
prove that η ≥ ν∗. On the other hand, by point 2, we have that η ≤ ν∗. We can conclude that 
ν∗ = η. The opposite implication follows from [33, Theorem 4.6].

4 and 5. Both points follow from [7, Theorem 22]. �
Appendix B. The general case

B.1. A generalized market model

We consider a market and we model it as a vector space M . Each element x in M is interpreted 
as a financial asset or a portfolio. Given a set of weights {λi}li=1 ⊆ R and a set {xi}li=1 ⊆ M , we 
interpret

l∑
i=1

λixi

as the portfolio constructed by buying/selling xi using the quantities |λi |, with an interpretation 
of buying if λi is positive and of selling if λi is negative. The goal of this section is to study a 
real valued price functional π defined over the market M when all tradings take place at time 0
and then the value of each asset is revealed at time 1. We remove the hypothesis that there exists 
an agreed state space Ω or, in other words, we do not necessarily represent the market as a space 
of random variables/contingent claims. Instead, we consider a set of evaluations maps V . That is, 
the value of each asset x at time 1 is determined by an evaluation map v ∈ V . We make three 
assumptions on V :

1. Each v ∈ V is a linear mapping from M to R.
2. For each x ∈ M the interval [infv∈V v(x), supv∈V v(x)] is bounded.
3. If x, y ∈ M , then v(x) = v(y) for all v ∈ V implies that x = y.
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Given an element x ∈ M and an element v ∈ V , v(x) is the value that asset x will take at 
period 1 under the evaluation map v. From a practical point of view, assumption 1 is justified 
in the following way: given a portfolio x = ∑l

i=1 λixi and a brokerage account, at the end of 
a trading day the value of x, v(x), is typically approximated by 

∑l
i=1 λiv(xi). In other words, 

the portfolio is marked to market. This does not mean that if the portfolio x had to be sold the 
realized proceedings would be 

∑l
i=1 λiv(xi) but it provides an estimate for a future and uncertain 

evaluation. From a theoretical point of view, the linearity assumption contained in 1 is in line with 
Debreu [10] and the fact that the market is modeled to have just two periods. Condition 2 implies 
that, at time 1, the value of each asset will be in a bounded range. Condition 3 imposes that there 
are no redundancies. In fact, there do not exist two securities which are not equal but, in terms of 
their value at time 1, are indistinguishable.10

Given the set of evaluations V , we endow this set with the σ -algebra generated by the class of 
the following subsets:({

v ∈ V : v(x) > t
})

x∈M,t∈R.

We denote this σ -algebra by B. This class of subsets is not unusual in finance and the σ -algebra 
generated by it is natural in mathematics. In fact, given x ∈ M and t ∈ R, if there exists z ∈ M

such that

v(z) = 1{w∈V :w(x)>t}(v) ∀v ∈ V,

then, following Nachman [34], z is a simple call option on x with exercise price t . On the other 
hand, if V is endowed with a natural topology that makes it compact, in some important case, 
B turns out to be the Baire σ -algebra.

Definition 1. Given a vector space M and a set of functions V on M , we will say that (M, V) is 
a market if and only if V satisfies Conditions 1–3.

Example 1. In Section 2, we represented the market of tradable assets as the vector space of all 
portfolios P . Each vector η ∈ P represented the portfolio where each primary asset i is held in 
quantity ηi . In such a case, the price functional we considered was called p. In this case, M = P

and π = p. At the same time, given the Arrow–Debreu tableau, the set of evaluations V is the set 
of m linear functionals induced by the rows of G, that is, for each i = 1, . . . , m

vi(η) =
n∑

j=1

gij ηj ∀η ∈ P.

Conditions 1 and 2 are then satisfied by construction and the finite dimensionality of P . On the 
other hand, Condition 3 is satisfied whenever it is imposed that the columns of G are linearly 
independent, that is, there are not redundant securities.

Example 2. In Section 2, we also represented the market as the space of contingent claims C. 
The price functional (pricing rule) we considered was called π̃ . In this case, M = C and π = π̃ . 

10 We could dispense with Condition 3 by declaring two elements x and y in M equivalent, x ∼ y, if and only if 
v(x) = v(y) for all v ∈ V . Given this equivalence relation, we could then take the quotient M/ ∼. This mathematical 
step would be reasonable from a financial point of view since evaluating an asset x should be based just on the future 
evaluations of x itself and nothing else.
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At the same time, given the state space Ω , the set of evaluations V is identified with the set of 
Dirac measures {δωi

}mi=1 and the linear functionals induced by each of these measures, that is, 
for each i = 1, . . . , m

vi(x) = xi ∀x ∈ C.

Conditions 1, 2, and 3 are then satisfied by construction.

B.2. Put–Call Parity and nonlinear pricing

Given a market (M, V) and an asset/portfolio x ∈ M , notice that x defines a function over V , 
that is,

v �→ v(x) v ∈ V .

One way in which the market could form a price for x, π(x), could be by discounting and 
averaging the possible evaluations of x at time 1 under a measure of likelihood ν : B → [0, 1]
and a risk-free rate r ∈ (−1, ∞). This is what happens in a market with no frictions and no 
arbitrages. In such a case, ν is additive. This reasoning could be extended to the nonadditive 
case where the integrals are going to be defined using the concept of Choquet integration. In 
particular, we could have that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M. (21)

Our purpose is to characterize a price functional π : M → R like the one in (21) when minimal 
assumptions of no arbitrage are made and market frictions are also taken into account.

When modeling a market, the existence of a risk-free asset is often assumed. Such an asset 
has the fundamental feature of having a constant value at time 1. In particular, this value is 
independent of what might happen between time 0 and time 1. Therefore, in our context, we will 
define the risk-free asset in the following way:

Definition 2. An asset xrf in M is risk free if and only if

v(xrf ) = 1 ∀v ∈ V .

Another important type of financial assets are options: call and put. Those are derivative con-
tracts since their value at time 1 is strictly related to the value of the underlying asset x. Those are 
securities that give the right to trade an asset x at time 1 at a fixed strike price k. The call option 
gives the right to buy while the put option the right to sell. The value at time 1 of a call option 
cx,k on x with strike price k depends on the value of x at time 1. For each valuation v ∈ V , it is 
v(x) − k if v(x) ≥ k and 0 otherwise. The value at time 1 of a put option px,k on x with strike 
price k depends on the value of x at time 1. For each valuation v ∈ V , it is k − v(x) if v(x) ≤ k

and 0 otherwise. Formally, we have that:

Definition 3. Let x be an asset in M . Then,

(i) cx,k is a call option on x with strike price k if and only if

v(cx,k) = (
v(x) − k

)+ ∀v ∈ V .
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(ii) px,k is a put option on x with strike price k if and only if

v(px,k) = (
k − v(x)

)+ ∀v ∈ V .

In Propositions 2, 3, and 4, we study the mathematical implications on M of the assumption 
that either all call options or all put options are traded. Given an asset x and a strike price k, 
if M allows tradings on xrf , cx,k , and px,k , then an important relationship connects x, xrf , cx,k , 
and px,k :

Proposition 2. Let (M, V) be a market that contains the risk-free asset and let x ∈ M and k ∈R. 
If cx,k and px,k belong to M , then

cx,k − px,k = x − kxrf . (22)

Proof. Consider x ∈ M and k ∈ R. Assume that cx,k and px,k belong to M . Consider z =
cx,k − px,k ∈ M . Since xrf ∈ M , it follows that

v(z) = v(cx,k) − v(px,k) = (
v(x) − k

)+ − (
k − v(x)

)+

= (
v(x − kxrf )

)+ − (
v(kxrf − x)

)+

= max
{
v(x − kxrf ),0

} − max
{
v(kxrf − x),0

}
= v(x − kxrf ) ∀v ∈ V .

Since V satisfies Condition 3, we have that cx,k −px,k = z = x−kxrf , proving the statement. �
In other words, the portfolio obtained by buying a call option on asset x with strike price k

and selling a put option on the same asset x with strike price k is equal to the portfolio obtained 
by buying a unit of asset x and selling k units of the risk-free asset.

Proposition 3. Let (M, V) be a market that contains the risk-free asset. The following statements 
are equivalent:

(i) M contains all call options;
(ii) M contains all call options with nonnegative strike price;

(iii) M contains all put options with nonnegative strike price;
(iv) M contains all put options.

Proof. (i) implies (ii) and (iv) implies (iii). It is trivial.

(ii) implies (iv). Consider x ∈ M and k ∈ R. Since M contains the risk-free asset and all call 
options with k ≥ 0, it follows that ckxrf −x,0 ∈ M . This implies that

v(ckxrf −x,0) = (
v(kxrf − x) − 0

)+ = (
k − v(x)

)+ ∀v ∈ V,

that is, px,k = ckxrf −x,0 ∈ M .

(iii) implies (i). Consider x ∈ M and k ∈ R. Since M contains the risk-free asset and all put 
options with k ≥ 0, it follows that pkxrf −x,0 ∈ M . This implies that

v(pkxrf −x,0) = (
0 − v(kxrf − x)

)+ = (
v(x) − k

)+ ∀v ∈ V,

that is, cx,k = pkx −x,0 ∈ M . �

rf
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It is immediate to see that the set of evaluations V induces a partial order on M . In fact, it is 
reasonable to declare x at least as good as y if and only if the value of x at time 1 is greater than 
the value of y at time 1, irrespective of the evaluation function v chosen in V .

Definition 4. Let (M, V) be a market. We say that x is at least as good as y if and only if

v(x) ≥ v(y) ∀v ∈ V .

In this case, we write x ≥V y.

Given a market (M, V), differently from Brown and Ross [6], we do not assume that M is a 
vector lattice. On the contrary, by defining the primitive notions of call and put options, in the 
following proposition, we prove that a market (M, V), which contains the risk-free asset and all 
call options with nonnegative strike price, is a vector lattice with respect to ≥V . Given x ∈ M , 
we define x̂ : V → R as x̂(v) = v(x) for all v ∈ V .

Proposition 4. Let (M, V) be a market. The following statements are true:

1. If M contains the risk-free asset xrf , then xrf is an order unit for (M, ≥V).
2. If M contains the risk-free asset xrf and all call options with k ≥ 0, then (M, ≥V ) is a Riesz 

space with unit. In particular, this implies that

cx,k + kxrf = x ∨ kxrf and cx,k = (x − kxrf ) ∨ 0 ∀x ∈ M, ∀k ∈ R

and

kxrf − px,k = x ∧ kxrf and px,k = (kxrf − x) ∨ 0 ∀x ∈ M, ∀k ∈R.

3. If M contains the risk-free asset xrf and all put options with k ≥ 0, then (M, ≥V ) is a Riesz 
space with unit.

4. If M contains the risk-free asset xrf and all call (resp., put) options with k ≥ 0, then

L = {
f ∈RV : f = x̂ for some x ∈ M

}
is a Stone vector lattice.

5. If M contains the risk-free asset xrf and all call (resp., put) options with k ≥ 0, then the map 
T : M → L, defined by

x �→ x̂,

is a lattice isomorphism.

Proof. We define 〈·, ·〉 : V × M → R by 〈v, x〉 = v(x) for all v ∈ V and for all x ∈ M . Given an 
element x ∈ M , observe that x̂(v) = 〈v, x〉 for all v ∈ V . Since V satisfies Condition 2, we have 
that L ⊆ B(V). Given a market (M, V), we study the ordered space (M, ≥V). In such a context, 
given two elements x and y in M , we define, if they exist, the elements

x ∧ y = inf{x, y} and x ∨ y = sup{x, y}.

Step 1. ≥V is a partial order relation.
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Proof of the Step. First, note that for each x ∈ M

〈v, x〉 ≥ 〈v, x〉 ∀v ∈ V,

that is, x ≥V x, thus ≥V is reflexive. Similarly, consider x, y, z ∈ M and assume that x ≥V y and 
y ≥V z. It follows that

〈v, x〉 ≥ 〈v, y〉 ≥ 〈v, z〉 ∀v ∈ V,

that is, x ≥V z, thus, ≥V satisfies transitivity. Finally, since V satisfies Condition 3, it follows 
that ≥V is antisymmetric and so it is a partial order. �
Step 2. ≥V is such that for each x, y ∈ M

x ≥V y ⇒ x + z ≥V y + z ∀z ∈ M

and

x ≥V y ⇒ λx ≥V λy ∀λ ≥ 0.

Proof of the Step. Consider x, y, z ∈ M and assume that x ≥V y. It follows that for each v ∈ V

〈v, x〉 ≥ 〈v, y〉 ⇒ 〈v, x〉 + 〈v, z〉 ≥ 〈v, y〉 + 〈v, z〉 ⇒ 〈v, x + z〉 ≥ 〈v, y + z〉,
that is, x + z ≥V y + z. Similarly, consider x, y ∈ M , λ ≥ 0, and assume that x ≥V y. It follows 
that

〈v, x〉 ≥ 〈v, y〉 ∀v ∈ V ⇒ λ〈v, x〉 ≥ λ〈v, y〉 ∀v ∈ V
⇒ 〈v,λx〉 ≥ 〈v,λy〉 ∀v ∈ V,

that is, λx ≥V λy, proving the statement. �
Step 3. If M contains the risk-free asset xrf , then xrf is an order unit for (M, ≥V).

Proof of the Step. Consider x ∈ M . Since V satisfies Condition 2, we have that there exists λ ∈R
such that supv∈V |〈v, x〉| ≤ λ < ∞. If xrf is the risk-free asset, then this implies that

〈v,λxrf 〉 ≥ 〈v, x〉 ≥ 〈v,−λxrf 〉 ∀v ∈ V,

that is, λxrf ≥V x ≥V −λxrf , proving that xrf is an order unit. �
Step 4. If M contains the risk-free asset xrf and all call options with k ≥ 0, then (M, ≥V ) is a 
Riesz space with unit. In particular, this implies that

cx,k + kxrf = x ∨ kxrf and cx,k = (x − kxrf ) ∨ 0 ∀x ∈ M,∀k ∈ R

and

kxrf − px,k = x ∧ kxrf and px,k = (kxrf − x) ∨ 0 ∀x ∈ M,∀k ∈ R.

Proof of the Step. Consider x, y ∈ M and cx−y,0. Define z = x − cx−y,0. We have that

ẑ(v) = 〈v, z〉 = 〈v, x〉 − 〈v, cx−y,0〉 = 〈v, x〉 − (〈v, x − y〉)+ = 〈v, x〉 − (〈v, x〉 − 〈v, y〉)+

= x̂(v) − (
x̂(v) − ŷ(v)

)+ = x̂(v) ∧ ŷ(v) = (x̂ ∧ ŷ)(v) ≤ x̂(v), ŷ(v) ∀v ∈ V .

The second equality follows by definition of z and the linearity of each v in V . The third equality 
follows by the definition of cx−y,0. The fourth equality follows by the linearity of each v in V . 
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The fifth equality follows by definition of x̂ and ŷ. The sixth equality follows from a well known 
lattice equality (see [2, Theorem 1.7]).

We can conclude that x, y ≥V z. Next, assume that w ∈ M is such that x, y ≥V w. By defini-
tion of ≥V and the previous part, it follows that

x̂(v), ŷ(v) ≥ ŵ(v) ∀v ∈ V ⇒ 〈v, z〉 = (x̂ ∧ ŷ)(v) ≥ ŵ(v) = 〈v,w〉 ∀v ∈ V .

This implies that z ≥V w, that is, z is the greatest lower bound for x and y and z = x ∧ y. By 
Steps 1, 2, and 3, (M, ≥V ) is an ordered vector space with unit. This fact matched with the 
previous one implies that (M, ≥V) is a Riesz space with unit. Next, consider x ∈ M and k ∈ R. 
It is immediate to check that cx,k = cx−kxrf ,0. It follows that

cx,k + kxrf = cx−kxrf ,0 + kxrf = (x − x ∧ kxrf ) + kxrf

= x + kxrf − x ∧ kxrf = x ∨ kxrf ,

where the first equality is trivial, the second one follows from the previous part of the proof, that 
is, cx−y,0 = x − x ∧ y, the third follows from a simple rearrangement, and the fourth one is a 
well known lattice equality (see [1, Theorem 8.6]). On the other hand, from above we have that 
cx,k = x ∨ kxrf − kxrf = (x − kxrf ) ∨ 0. A similar argument delivers the equalities

kxrf − px,k = x ∧ kxrf and px,k = (kxrf − x) ∨ 0 ∀x ∈ M, ∀k ∈R. �
Step 5. If M contains the risk-free asset xrf and all put options with k ≥ 0, then (M, ≥V ) is a 
Riesz space with unit.

Proof of the Step. By Proposition 3, M contains all call options with k ≥ 0. By Step 4, the 
statement follows. �
Step 6. The map T : M → L, defined by

x �→ x̂,

is a bijective linear operator. In particular, L is a vector space and if M contains the risk-free 
asset xrf , then L contains the constant functions.

Proof of the Step. By construction, the map T is surjective. On the other hand, if we have that 
T (x1) = T (x2), then it follows that

〈v, x1〉 = x̂1(v) = x̂2(v) = 〈v, x2〉 ∀v ∈ V . (23)

Since V satisfies Condition 3, (23) implies that x1 = x2, proving that T is injective. Next, given 
x, y ∈ M and λ, μ ∈R, we have that

T (λx + μy)(v) = 〈v,λx + μy〉 = λ〈v, x〉 + μ〈v, y〉 = λT (x)(v) + μT (y)(v) ∀v ∈ V,

that is, T (λx + μy) = λT (x) + μT (y), proving that T is linear. Since M is a vector space and 
T is linear and bijective, L is a vector space. At the same time, if xrf is the risk-free asset and 
xrf ∈ M , then 1V = T (xrf ) ∈ L. Since L is a vector space, it follows that L contains all constant 
functions. �
Step 7. If M contains the risk-free asset xrf and all call (resp., put) options with k ≥ 0, then L is 
a Stone vector lattice.
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Proof of the Step. By Step 6, we have that L is a vector space which contains all the constant 
functions. We are left to prove that it is closed under finite pointwise suprema or, equivalently, 
infima. Let us consider two elements f, g ∈ L. By definition, there exist x, y ∈ M such that 
f = T (x) and g = T (y). By the proof of Step 4 (resp., Step 5), we have that z = x − cx−y,0
(resp., z = x − py−x,0) is such that

f ∧ g = T (x) ∧ T (y) = x̂ ∧ ŷ = ẑ = T (z) ∈ L,

proving the statement. �
Step 8. If M satisfies the hypotheses of 5, then the map T is a lattice isomorphism.

Proof of the Step. By Step 6, we have that T is a bijective linear operator. We are left to show 
that T preserves the lattice operations. Consider x, y ∈ M . By the proof of Step 4, we have that 
x ∧ y = x − cx−y,0 ∈ M and

T (x ∧ y) = T (x) ∧ T (y),

proving the statement. �
Step 3 proves Statement 1. Step 4 proves Statement 2. Step 5 proves Statement 3. Step 7 

proves Statement 4. Step 8 proves Statement 5. �
In the next few definitions, we introduce some properties for a price functional π :

Definition 5. Let (M, V) be a market that contains the risk-free asset. The price functional π :
M →R is said to be cash invariant if and only if

π(x + λxrf ) = π(x) + λπ(xrf ) ∀x ∈ M, ∀λ ∈ R. (24)

The above assumption is equivalent to state that there are no frictions in the market when it 
comes to trading the risk-free asset. In particular, we have that the market of the risk-free asset is 
frictionless and π(λxrf ) = λπ(xrf ) for all λ in R.

Definition 6. Let (M, V) be a market that contains the risk-free asset and all possible call options 
with k ≥ 0. The price functional π : M → R is said to satisfy the Put–Call Parity if and only if

π(cx,k) + π(−px,k) = π(x) − kπ(xrf ) ∀x ∈ M, ∀k ∈ R+.

In other words, the two equivalent trading strategies contained in (22) must have the same 
price.

Definition 7. Let (M, V) be a market. The price functional π : M → R is said to be monotone if 
and only if

x ≥V y ⇒ π(x) ≥ π(y).

This latter condition on π is simply a generalization of a no arbitrage condition. In fact, if the 
price functional is cash invariant, then π(0) = 0 and the previous condition implies that π(x) ≥ 0
whenever x ≥V 0.
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Example 3. In Section 2, we represented the market of tradable assets as the vector space of 
all portfolios P and also as the vector space of all tradable contingent claims C. In the first 
case, Example 1, we have that V is the set of linear evaluations induced by the rows of the 
Arrow–Debreu tableau G. It follows that a portfolio ηrf corresponds to the risk-free asset if and 
only if Gηrf is the constant vector with each component equal to 1. Similarly, given a portfolio η, 
a call (resp., a put) option on η with strike price k is the portfolio cη,k (resp., pη,k) such that

Gcη,k = (Gη − kGηrf )+ = max{Gη − kGηrf ,0}(
resp., Gpη,k = (kGηrf − Gη)+ = max{kGηrf − Gη,0}).

Finally, a discount certificate on a portfolio η with cap k ≥ 0 is the portfolio dη,k such that

Gdη,k = min{Gη, kGηrf }.
Moreover, we have that ≥V is equal to ≥G. Along the same lines, we have that cη,k (resp., pη,k) 
is the positive part, with respect to ≥G, of the vector η − kηrf (resp., kηrf − η). On the other 
hand, dη,k is the minimum, with respect to ≥G, between η and kηrf . The price functional p
satisfies PCP if and only if

p(cη,k) + p(−pη,k) = p(η) − kp(ηrf ) ∀η ∈ P, ∀k ≥ 0. (25)

Similarly, p is cash invariant if and only if

p(η + kηrf ) = p(η) + kp(ηrf ) ∀η ∈ P, ∀k ∈ R. (26)

Finally, p satisfies DCP if and only if

p(cη,k) + p(dη,k) = p(η) ∀η ∈ P, ∀k ≥ 0. (27)

In the second case, Example 2, we have that V is the set of linear functionals induced by the Dirac 
measures on Ω . In this case, we have that a contingent claim xrf corresponds to the risk-free 
asset if and only if it is the constant vector with each component equal to 1. Similarly, given a 
contingent claim x, a call (resp., a put) on x with strike price k is the portfolio cx,k (resp., px,k) 
such that

cx,k = (x − kxrf )+
(
resp., px,k = (kxrf − x)+

)
.

Moreover, we have that ≥V coincides with the usual pointwise order.

Proposition 5. Let (M, V) be a market that contains the risk-free asset and all call options with 
k ≥ 0 and let π : M → R be a cash invariant price functional. The following conditions are 
equivalent:

(i) π(cx,k) + π(−px,k) = π(x) − kπ(xrf ) for all x ∈ M and all k ∈ R+;
(ii) π(x ∨ kxrf ) + π(x ∧ kxrf ) = π(x) + kπ(xrf ) for all x ∈ M and all k ∈ R+;

(iii) π(x ∨ kxrf ) + π(x ∧ kxrf ) = π(x) + kπ(xrf ) for all x ∈ M and all k ∈ R.

Proof. (i) implies (iii). Consider x ∈ M and k ∈ R. By Proposition 4 point 2, we have that

cx,k + kxrf = x ∨ kxrf and kxrf − px,k = x ∧ kxrf .

Since π is cash invariant, cx,k = cx−kxrf ,0, and px,k = px−kxrf ,0, we have the following chain of 
implications
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π(cx−kxrf ,0) + π(−px−kxrf ,0) = π(x − kxrf )

�⇒
π(cx,k) + π(−px,k) = π(x) − kπ(xrf )

�⇒
π(cx,k) + kπ(xrf ) + π(−px,k) + kπ(xrf ) = π(x) + kπ(xrf )

�⇒
π(cx,k + kxrf ) + π(kxrf − px,k) = π(x) + kπ(xrf )

�⇒
π(x ∨ kxrf ) + π(x ∧ kxrf ) = π(x) + kπ(xrf ),

proving the statement.

(iii) implies (ii). It is trivial.

(ii) implies (i). Consider x ∈ M and k ∈ R+. By Proposition 4 point 2, M is a Riesz space 
with unit. This implies that

x ∨ kxrf − kxrf = (x − kxrf ) ∨ 0 = cx,k and

x ∧ kxrf − kxrf = (x − kxrf ) ∧ 0 = −px,k.

Since π is cash invariant, we have the following chain of implications

π(x ∨ kxrf ) + π(x ∧ kxrf ) = π(x) + kπ(xrf )

�⇒
π(x ∨ kxrf ) − kπ(xrf ) + π(x ∧ kxrf ) − kπ(xrf ) = π(x) − kπ(xrf )

�⇒
π(x ∨ kxrf − kxrf ) + π(x ∧ kxrf − kxrf ) = π(x) − kπ(xrf )

�⇒
π(cx,k) + π(−px,k) = π(x) − kπ(xrf ),

proving the statement. �
Before stating the main result, we need to introduce two new objects: ν�, ν� : B → [0, 1], 

defined by

ν�(A) = sup{π(x) : x̂ ≤V 1A}
π(xrf )

and ν�(A) = inf{π(x) : x̂ ≥V 1A}
π(xrf )

,

where π(xrf ) is assumed to be different from zero.

Theorem 3. Let (M, V) be a market that contains the risk-free asset and all call options with 
k ≥ 0 and let π : M →R be a nonzero price functional. The following statements are equivalent:

(i) π is monotone, cash invariant, and satisfies the Put–Call Parity;



S. Cerreia-Vioglio et al. / Journal of Economic Theory 157 (2015) 730–762 757
(ii) there exist a nonadditive probability ν : B → [0, 1] and a risk-free rate r > −1 such that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M. (28)

Moreover,

1. r is unique.
2. Each nonadditive probability ν : B → [0, 1] that satisfies ν� ≤ ν ≤ ν� represents π as in (28).
3. If B(V, B) = {x̂ : x ∈ M}, then ν is unique.
4. If ν is balanced, then π(x) ≥ −π(−x) for all x ∈ M , that is, there are positive bid–ask 

spreads.

Proof. Before starting, observe that σ(L) = B.
(i) implies (ii). Define I : L → R by I = π ◦ T −1. Since T is a lattice isomorphism such that 

T (xrf ) = 1V and π = 0, it follows that I is well defined, monotone, translation invariant, and 
such that I = 0. Since π satisfies the Put–Call Parity and by Proposition 5, we have that

π(x ∧ kxrf ) + π(x ∨ kxrf ) = π(x) + kπ(xrf ) ∀x ∈ M, ∀k ∈R. (29)

Since T is a lattice isomorphism and T (xrf ) = 1V , this implies that I is constant modular. 
By Theorem 2 and since L is a Stone vector lattice, we have that there exist δ > 0 and a nonad-
ditive probability ν : B → [0, 1] such that

I (f ) = δ

∫
V

f (v)dν(v) ∀f ∈ L.

Define r = 1/δ − 1 > −1. Since π = I ◦ T , we have that

π(x) = I
(
T (x)

) = 1

1 + r

∫
V

〈v, x〉dν(v) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M,

proving the statement.

(ii) implies (i). Consider r > −1 and a nonadditive probability ν : B → [0, 1] such that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M.

Define I : L →R by

I (f ) = δ

∫
V

f (v)dν(v) ∀f ∈ L (30)

where δ = 1/(1 + r). By Theorem 2, we have that I is monotone, translation invariant, and 
constant modular. It is immediate to see that π = I ◦ T . Since T is a lattice isomorphism and 
T (xrf ) = 1V , it follows that π is monotone, cash invariant, and it satisfies (29). By Proposition 5, 
it follows that π also satisfies the Put–Call Parity.
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1. Consider r1, r2 > −1 and ν1, ν2 : B → [0, 1] such that

π(x) = 1

1 + ri

∫
V

v(x)dνi(v) ∀x ∈ M, ∀ i ∈ {1,2}.

It follows that 1
1+r1

= π(xrf ) = 1
1+r2

, proving that r1 = r2 and so the statement.

2. Consider a nonadditive probability ν : B → [0, 1] such that ν� ≤ ν ≤ ν�. Define 
I = π ◦ T −1. It follows that ν� = ν∗ and ν� = ν∗. This implies that ν∗ ≤ ν ≤ ν∗. By Theorem 2, 
we have that I (f ) = I (1V ) 

∫
V f dν for all f ∈ L. Since π = I ◦ T , the statement follows.

3. Assume that B(V, B) = {x̂ : x ∈ M}. It follows that for each A ∈ B there exists xA ∈ M

such that v(x) = 1A(v) for all v ∈ V . Consider (r1, ν1) and (r2, ν2) representing π as in (28). By 
point 1, we have that r1 = r2 and

1

1 + r1
ν1(A) = π(xA) = 1

1 + r2
ν2(A) ∀A ∈ B.

This implies that ν1 = ν2, proving the statement.

4. Consider (r, ν) representing π as in (28). Define ν̄ : B → [0, 1] by

ν̄(A) = ν(V) − ν
(
Ac

) ∀A ∈ B.

Assume that ν is balanced. It follows that there exists μ ∈ �(V) such that μ(A) ≤ ν(A) for all 
A ∈ B. This implies that ν̄(A) ≤ μ(A) for all A ∈ B. By [33, Proposition 4.12], if we define I as 
in (30), then

−I (−f ) = 1

1 + r

∫
V

f (v)dν̄(v) ∀f ∈ L.

By the definition of Choquet integral and since ν̄ ≤ μ ≤ ν, it follows that −I (−f ) ≤
1

1+r

∫
V f (v)dμ(v) ≤ I (f ) for all f ∈ L. Since π = I ◦ T and T is linear, we have that

−π(−x) = −I
(−T (x)

) ≤ I
(
T (x)

) = π(x) ∀x ∈ M,

proving the statement. �
When (M, V) is as in Example 2, Theorem 3 naturally yields the equivalence of points (i) and 

(iii) in Theorem 1. On the other hand, when (M, V) is as in Example 1, Theorem 3 yields the 
generalization of the Fundamental Theorem of Finance once it is applied to the price functional 
p and three facts are noticed:

(a) p has a representation as in (28) where V is the set of rows of the Arrow–Debreu tableau G;
(b) thus, p satisfies monotonicity, translation invariance, and constant modularity with respect 

to ≥G;
(c) by monotonicity with respect to ≥G, the Law of One Price holds. Since T , defined as in 

Section 2, is a lattice isomorphism, it follows that π̃p = p ◦ T −1. It also follows that π̃p

satisfies monotonicity, translation invariance, and constant modularity with respect to the 
usual order ≥.



S. Cerreia-Vioglio et al. / Journal of Economic Theory 157 (2015) 730–762 759
B.3. The subadditive case

One way in which the literature introduced transaction costs in pricing has been by considering 
subadditive price functionals and pricing rules (see Jouini and Kallal [26] and Luttmer [32]).

Definition 8. Let (M, V) be a market. The price functional π : M → R is said to be subadditive 
if and only if

π(x + y) ≤ π(x) + π(y) ∀x, y ∈ M.

If π is cash invariant, this assumption is particularly important since it implies the existence 
of positive bid–ask spreads. In fact, we have that π(x) + π(−x) ≥ π(0) = 0 for all x ∈ M . In 
this context, the assumptions of cash invariance and monotonicity, contained in Definition 5 and 
Definition 7, can be weakened to be the following notion of linearity and positivity:

Definition 9. Let (M, V) be a market. The price functional π : M → R is said to be normalized 
if and only if

π(kxrf ) = kπ(xrf ) ∀k ∈ R.

Definition 10. Let (M, V) be a market. The price functional π : M → R is said to be negative if 
and only if

0 ≥V x ⇒ 0 ≥ π(x).

Corollary 2. Let (M, V) be a market that contains the risk-free asset and all call options with 
k ≥ 0 and let π : M → R be a nonzero price functional. The following statements are equivalent:

(i) π is negative, normalized, subadditive, and satisfies the Put–Call Parity;
(ii) π is monotone, cash invariant, subadditive, and satisfies the Put–Call Parity;

(iii) there exist a concave nonadditive probability ν : B → [0, 1] and a risk-free rate r > −1
such that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M.

Moreover, r is unique and ν can be chosen to be ν�.

Proof. (i) implies (ii). We only need to show that π is monotone and cash invariant. If x, y ∈ M

are such that y ≥V x, then 0 ≥V x − y. Since π is subadditive and negative, it follows that

π(x) = π
(
y + (x − y)

) ≤ π(y) + π(x − y) ≤ π(y),

proving that π is monotone. Similarly, since π is subadditive and normalized, we have that

π(x + kxrf ) ≤ π(x) + π(kxrf ) = π(x) + kπ(xrf ) ∀x ∈ M, ∀k ∈ R. (31)

By (31), we also have that

π(x) = π
(
(x + kxrf ) − kxrf

) ≤ π(x + kxrf ) − kπ(xrf ) ∀x ∈ M, ∀k ∈ R. (32)

The inequalities in (31) and (32) imply that π is cash invariant.
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(ii) implies (iii). Define I : L → R by I = π ◦ T −1. By the same argument contained in the 
proof of Theorem 3, we have that I is well defined, monotone, translation invariant, constant 
modular, and such that I = 0. Since π is subadditive and T is a lattice isomorphism, we have 
that I is also subadditive. By Theorem 2 and since L is a Stone vector lattice, we have that there 
exists δ > 0 such that

I (f ) = δ

∫
V

f (v)dν∗(v) ∀f ∈ L.

By Theorem 2 and since I is subadditive, we have that ν∗ = ν� is concave. Define r = 1/δ − 1. 
Since π = I ◦ T , we have that

π(x) = 1

1 + r

∫
V

〈v, x〉dν∗(v) = 1

1 + r

∫
V

v(x)dν�(v) ∀x ∈ M,

proving the statement.

(iii) implies (i). Consider r > −1 and a concave nonadditive probability ν : B → [0, 1] such 
that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M.

Define I : L → R as in (30) where δ = 1/(1 + r). By Theorem 2, we have that I is monotone, 
translation invariant, and constant modular. Since ν is concave and by [33, Theorem 4.6], I is 
also subadditive. It is immediate to see that π = I ◦ T . Since T is a lattice isomorphism and 
T (xrf ) = 1V , it follows that π is monotone, cash invariant, subadditive, and it satisfies (29). 
By Proposition 5, it follows that π also satisfies the Put–Call Parity. Since π(0) = 0 and π is 
monotone, it follows that π is negative. Since π is cash invariant, it follows that π is normalized.

Uniqueness of r > −1 follows from Theorem 3 and the fact that ν can be chosen to be ν�

follows from the previous part of the proof. �
Our last result allows us to discuss uniqueness of the nonadditive probability ν also when the 

market does not span the entire space of all contingent claims, that is, {x̂ : x ∈ M} = B(V, B). In 
order to do so, we need to introduce a notion of continuity for the price functional π .11

Definition 11. Let (M, V) be a market. The price functional π : M → R is said to be continuous 
if and only if for each sequence {xn}n∈N ⊆ M we have that

lim
n

v(xn) = 0 ∀v ∈ V ⇒ lim
n

π(xn) = 0,

provided there exists l ∈ R such that |v(xn)| ≤ l for all v ∈ V and for all n ∈N.

Corollary 3. Let (M, V) be a market that contains the risk-free asset and all call options with 
k ≥ 0 and let π : M →R be a nonzero price functional. The following statements are equivalent:

(i) π is negative, normalized, subadditive, continuous, and satisfies the Put–Call Parity;

11 In reading Definition 11, notice that continuity is required with respect to the bounded weak convergence induced 
by V .
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(ii) there exist a continuous and concave nonadditive probability ν : B → [0, 1] and a risk-free 
rate r > −1 such that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M.

Moreover, r and ν are unique.

Proof. Before starting the proof, we introduce a third point:
(iii) π is monotone, cash invariant, subadditive, continuous, and satisfies the Put–Call Parity.

(i) implies (iii). The statement follows by the same arguments used in the proof of Corollary 2.

(iii) implies (ii). Define I : L → R by I = π ◦ T −1. By the same argument contained in the 
proof of Corollary 2, we have that I is well defined, monotone, translation invariant, constant 
modular, subadditive, and such that I = 0. Since π is continuous and T is a lattice isomorphism, 
we have that I is also pointwise continuous at 0. By Theorem 2 and since L is a Stone vector 
lattice, we have that there exist a continuous and concave nonadditive probability ν : B → [0, 1]
and δ > 0 such that

I (f ) = δ

∫
V

f (v)dν(v) ∀f ∈ L.

Define r = 1/δ − 1. Since π = I ◦ T , we have that

π(x) = 1

1 + r

∫
V

〈v, x〉dν(v) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M,

proving the statement.

(ii) implies (i). Consider r > −1 and a continuous and concave nonadditive probability ν :
B → [0, 1] such that

π(x) = 1

1 + r

∫
V

v(x)dν(v) ∀x ∈ M.

Define I : L →R as in (30) where δ = 1/(1 + r). By Theorem 2 and [33, Theorem 4.6], we have 
that I is monotone, translation invariant, constant modular, subadditive, and pointwise continu-
ous at 0. It is immediate to see that π = I ◦T . Since T is a lattice isomorphism and T (xrf ) = 1V , 
it follows that π is monotone, cash invariant, subadditive, continuous, and it satisfies (29). By 
Proposition 5, it follows that π also satisfies the PCP. Since π(0) = 0 and π is monotone, it fol-
lows that π is negative. Since π is cash invariant, it follows that π is normalized.

Uniqueness of r > −1 and ν follows from Theorem 2. �
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