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Abstract

We conduct a disaggregated empirical analysis of civil conflict at the subnational level

in Africa over 1997-2011 using a new gridded dataset. We construct an original measure of

agriculture-relevant weather shocks exploiting within-year variation in weather and in crop

growing season, and spatial variation in crop cover. Temporal and spatial spillovers in conflict

are addressed through spatial econometric techniques. Negative shocks occurring during the

growing season of local crops affect conflict incidence persistently, and local conflict spills

over to neighboring cells. We use our estimates to trace the dynamic response to shocks and

predict how future warming may affect violence.
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1 Introduction

A vivid debate has emerged in recent years on the consequences that global warming and the in-

creased frequency of extreme weather events have on aggregate scenarios. There is concern that

the adverse impact of climatic changes may be more strongly felt in poorer and more politically

unstable countries, such as those in Sub-Saharan Africa, where the majority of the population is

dependent on rainfed agriculture. The correlation between vulnerability to weather shocks and

propensity to conflict has spurred a growing amount of research trying to establish a causal link.

This literature has traditionally employed cross-country panel data on precipitation and temper-

ature to estimate how they affect the occurrence of civil war, defined based on predetermined

thresholds in casualties.

In this paper we attempt to take a step further in understanding the relationship between climate

and conflict by taking the analysis to a different scale. We conduct a geographically disaggregated

analysis taking as units of observation 110 × 110 km subnational “cells,” and we estimate the

incidence of conflict as a function of weather shocks and a number of other covariates both in the

cell and in neighboring areas, plus a “lag” in space and time of the endogenous variable.

Our approach contributes to the literature in two main directions. The first and most important

is methodological. We construct a cell/year panel with a rich set of geo-referenced covariates. We

model spatial and temporal dependence thorough state-of-the-art spatial econometrics techniques

that have seldom been applied in economics. In particular, our model includes spatially and tempo-

rally autoregressive terms to account for the fact that conflict may be persistent over time, and that

both the covariates and the presence of conflict may be correlated across space. This poses a num-

ber of challenges for estimation and constitutes an original contribution to the empirical conflict
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literature. This approach allows us to produce two novel sets of results. The first is the assessment

of how persistent the effects are in space and time: persistence implies that even temporary shocks

may have long-lasting effects on political instability. The second is the ability to better detect con-

flict spillovers across locations compared to the existing cross-country literature (e.g., Buhaug &

Gleditsch, 2008).

A second contribution of our paper is that we look at climate indexed within the year. Because

the main hypothesized (but not yet proven) channel linking weather shocks to conflict operates

through shocks to agricultural incomes, we attempt to isolate the component of climate variability

that is relevant for agriculture. Instead of using yearly averages, we measure climatic conditions

during the growing season, which is when crops are most sensitive to unfavorable conditions. This

is a data-intensive process that involves both within-year variation in the timing of shocks and

spatial variation in crop cover.

An additional contribution relates to the climate indicator we employ. Most of the conflict liter-

ature has focused on precipitation or temperature.1 We instead use a drought index, the Standard-

ized Precipitation-Evapotranspiration Index (SPEI), that considers the joint effects of precipitation,

potential evaporation, and temperature. This accounts for the fact that the impact of rainfall on the

growing cycle of a plant depends on the extent to which water can be retained by the soil.

Our methodology and results can be summarized as follows. We assemble a panel dataset

1Recent exceptions include Hsiang, Meng, and Cane (2011), who employ El Niño-Southern

Oscillation (ENSO); Couttenier & Soubeyran (2014), who employ the Palmer Drought Severity

Index (PDSI); and Almer, Laurent-Lucchetti, and Oechslin (2017), who employ the Standardized

Precipitation-Evapotranspiration Index (SPEI) as we do.
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covering about 2,700 cells in 46 African countries from 1997 to 2011. We combine data from the

Armed Conflict Location and Event Dataset (ACLED) with an original measure of growing season

SPEI. Using maximum likelihood we estimate the probability that a cell experiences at least one

conflict event during the year as a function of contemporaneous and lagged SPEI and spatial and

temporal lags of conflict. In our benchmark specification this is conditional on cell fixed effects

and country-specific year fixed effects, so that we identify changes in conflict propensity relative

to a cell’s historic mean and country-specific trends. We find that:

(i) There is a significant local-level relationship between agriculture-relevant shocks and con-

flict. According to our most conservative specification, a one standard deviation shock to SPEI

during the growing season is associated with a 1.3 percentage point increase in conflict likelihood

in the subsequent year, relative to the cell’s historic mean. This is roughly 8 percent of the uncon-

ditional mean of the dependent variable. As a reference, a shock of such magnitude corresponds

to the cell experiencing SPEI below its long-term mean by one standard deviation throughout four

growing season months in a given year.

(ii) Conflict exhibits high persistence in time and space. When a cell experiences conflict, the

cell itself has a 12 percentage point higher probability of experiencing it the following year, and

each of its neighboring cells has a 2.3 percentage point higher probability of experiencing it during

the same year.

(iii) Climate outside the growing season has no effect on conflict. This suggests that the mech-

anism operates through low agricultural yields.

(iv) Conflict spillovers are particularly pronounced across countries. For conflicts at the border,

spillovers appear stronger across ethnicities.

(v) Among the channels through which our effect may operate, the “opportunity cost” one
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seems most consistent with our data, as indicated by significant effects of weather shocks on rebel

recruitment. We also find that ethnic cleavages and low state capacity exacerbate the impacts of

weather shocks.

Before proceeding, two caveats are in order. The first is that by focusing on the role of local

shocks our paper has little to say about long-term institutional causes of conflict. This does not

reflect a judgment on the relative importance of the two sets of causes; it is a consequence of the

scale at which we conduct our analysis. The second caveat relates to the extent to which our results

can speak to the effects of climate change. The main indicator we use is based on the deviation of

weather from its historical average and can to some extent capture global trends. At the same time,

our analysis holds constant economic and political variables that endogenously evolve over the

long run: we should thus refrain from extrapolating the results too far into the future or to contexts

with ample possibilities for adaptation.

With these caveats in mind, we use cell-level projections of future temperature and precipitation

in 2016 through 2050 to construct a SPEI forecast. We predict that negative SPEI shocks during

the growing season will become 5.4 times more pronounced over the next 35 years. Based on

our estimates, this implies that the marginal contribution of future SPEI shocks to conflict in an

average cell and year during 2016 through 2050 is 1.2 percentage points, or about 7 percent of the

unconditional mean.

Our work is related to three strands of literature. The first is the literature on climate and violent

conflict (e.g., Miguel, Satyanath, and Foley, 2004; Ciccone, 2013). We conduct the analysis at a

more disaggregated level, and we isolate the component of weather variation that occurs during

the growing season. Also, differently from the above authors, who adopt an instrumental variables

strategy, we estimate a reduced-form relationship - there is no reliable data that captures yearly
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variation in income or GDP in rural areas at the level of disaggregation that we employ.2 Other

authors have expanded the cross-country coverage (Couttenier & Soubeyran, 2014) or investigated

the link between conflict and global warming (Burke et al., 2009; Buhaug, 2010; Hsiang et al.,

2013). We share with this literature the acknowledgment that temperature is crucial, and indeed

our SPEI measure combines data on temperature with data on precipitation. Our focus on within-

country variation is shared by recent studies linking weather shocks to insurgency and protests,

including Dell (2012), Vanden Eynde (2017), Jia (2014), and Madestam et al. (2013). O’Loughlin

et al. (2012) also share the “grid” approach with us.3

A second strand of literature focuses on climate and development. Recent studies have investi-

gated the impact of climate on economic growth (Dell, Jones, & Olken, 2012), mortality (Burgess

et al., 2013; Kudamatsu, Persson & Strömberg, 2017), health (Maccini & Yang, 2009) and political

institutions (Brückner & Ciccone, 2011).

2We have experimented with nighttime luminosity as a proxy for income, finding a negative and

significant effect of climate shocks on luminosity. However, we prefer not to rely on luminosity as

we are mostly interested in rural incomes, which are poorly proxied by nighttime lights.

3Our geographic resolution and the conflict data sources are similar to O’Loughlin et al. (2012).

However, our approach departs in several respects: (i) we disaggregate climate indicators by local

growing season, defined based on the local main crop; O’Loughlin et al. conduct the analysis

at the monthly level and control for growing season, which is defined ex post based on climatic

characteristics; (ii) we employ cell and country × year fixed effects; (iii) we address spatial and

temporal autocorrelation through spatial econometric techniques; (iv) we rely on satellite and not

on station data; and (v) our geographic coverage is the entire African continent.
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The third strand of literature related to our work is that on the determinants of civil conflict.4

Recent papers by Bazzi & Blattman (2014) and by Berman & Couttenier (2015) explore the role

of external economic shocks on conflict. While we share with these authors the interest in local

variation in economic shocks, we focus on internal climatic shocks as opposed to external income

shocks. This difference becomes relevant when we think of policy implications to mitigate the role

of shocks (e.g., weather-indexed insurance).

The remainder of the paper is organized as follows. In section 2 we present our conceptual

framework and econometric methodology. In section 3 we discuss our data and provide descriptive

statistics. In section 4 we present our main results and in section 5 we examine mechanisms and

heterogeneous effects. Section 6 contains robustness checks, and section 7 concludes.

2 Conceptual framework and methodology

2.1 Conceptual framework

The literature on the effects of economic shocks on conflict has traditionally stressed two channels

(e.g., Collier & Hoeffler, 1998). On one hand, there is an “opportunity cost” effect: a negative

shock to the local economy decreases the returns from labor market participation relative to fight-

ing, making it more attractive to join a rebellion. On the other hand, the same negative shock

implies that the size of the “pie” to be appropriated is lower, thus reducing the incentives to fight.

The net effect is thus ambiguous, depending on, among other things, whether the shock occurs to

4For a comprehensive review, see Blattman & Miguel (2010). Among more recent contribu-

tions, Berman et al. (2017) share with us the disaggregated level of analysis but focus on mineral

extraction.

6



a labor-intensive or capital-intensive sector. In our case, because African agriculture is typically

labor intensive, based on Dal Bó & Dal Bó (2011) the opportunity cost effect would be predicted to

prevail: negative agricultural shocks should lead to more conflict. Economic shocks may also have

an additional effect, namely worsening the extent of poverty and exacerbating existing inequalities,

thus fueling conflict in response to “grievances.”

Fearon & Laitin (2003) propose different channels, stressing the role of state capacity and

infrastructure. Economic shocks may reduce a government’s tax base, weakening its ability to fight

rebellion and leading to more conflict. Moreover, if shocks affect the quality of infrastructure (e.g.,

roads), an increase in conflict may be the result of logistical difficulties in repressing insurgents.

The way in which we construct our climate shock variable, namely focusing on weather during

the agricultural growing season, allows us to isolate effects that are specific to agricultural yields

and opportunity cost: if other channels were involved, we would expect to find an effect of weather

throughout the year. As for tax revenues, our benchmark specification includes the interaction of

country and year dummies, which capture aggregate shocks to state revenues. In section 5 we

propose a discussion of competing mechanisms in light of our results.

2.2 Empirical strategy

We construct a dataset that has the structure of a raster grid: the units of observation are subna-

tional “cells” of 1 degree of latitude × 1 degree of longitude (approximately 110 km). As for the

resolution of the grid, theory is of limited help in selecting it a priori: the degree of localization of

agricultural shocks and the spatial extent of conflict spillovers are ultimately empirical objects. We

validate our choice of 1 degree resolution by conducting the analysis at higher and lower spatial

scales (see section 6.1).
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Our analysis is at the cell/year level. Our main dependent variable is ANY EVENT, a binary

indicator for whether the cell has experienced a conflict-related episode in a given year. This

variable is coded based on the ACLED dataset, discussed in section 3.1 below. We estimate three

models: the first contains only exogenous regressors specific to the cell; the second includes a

“spatial lag” of the exogenous regressors; the third (preferred) model also includes lags of the

endogenous variable in time and space.

We focus on conflict incidence as opposed to onset or termination for two reasons. First, our

specification with spatial and temporal lags of the dependent variable requires a balanced panel.

Onset and termination regressions imply the loss of a large number of observations, and the result-

ing balanced sample would be small and hardly representative. Second, we are interested in how

conflict in a cell spills over to neighbors and how such effects persist over time, something that is

more naturally assessed with incidence. Nevertheless, in section 5.5 we discuss results for onset

and termination. We now turn to the empirical specifications of the three models we estimate.

Model I

Consider a panel of N cells and T years. Denote with C a generic climate indicator (e.g.,

precipitation) and with GS C the climate indicator measured in the cell-specific growing season.

Let X be a vector of time-invariant controls (e.g., terrain characteristics) and γ and µ denote year

and country fixed effects, respectively. Model I takes the form:

ANY EVENTc,i,t = α +
2∑

k=0

β1kCc,t−k +
2∑

k=0

β2kGS Cc,t−k + δXc + γt + µiτ + εc,i,t (1)

where c denotes the cell, i the country, and t the year, and τ is a linear time trend.5 We fit a linear

5For defining country fixed effects each cell is assigned to one country. Cells shared among

more than one country are assigned to the country that has the largest share of the cell’s territory.
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probability model and estimate (1) via OLS, as it can be easily integrated with spatial econometrics

techniques.

Most empirical work on conflict assumes that observations are independent across space. We

instead estimate Model I following the procedure of Hsiang (2010) to adjust standard errors for

both spatial and serial correlation.6 This is appropriate in cases in which spatial correlation is

present in the error term (“spatial error model”) but it does not model spatial dependence in the

process itself. However, we expect spatial correlation both in the covariates - e.g., weather - and in

conflict, through direct cross-cell spillovers.

Model II

To control for spatial correlation in the covariates, we include spatial lags of the variables of

interest. The structure of spatial dependence is defined by a symmetric weighting matrix W , and

the spatial lag of a variable is obtained by multiplying the matrix W by the vector of observations.

Let Ct and GS Ct be N -dimensional vectors of climate observations in year t, and let X be the

matrix of cell-level controls. We estimate the following spatial Durbin model (Anselin, 1988):

ANY EVENTc,i,t = α +
2∑

k=0

β1kCc,t−k +
2∑

k=0

β2kGS Cc,t−k + δXc + µiτ+

+
2∑

k=0

θ1kW · Ct−k +
2∑

k=0

θ2kW ·GS Ct−k + λW ·X +W · µτ + γt + εc,i,t

(2)

Our benchmark W is a binary contiguity matrix in which a weight of 1 is assigned to cells sur-

A “shared” dummy is included among the controls.

6Hsiang (2010) extends to panel data the correction originally proposed by Conley (1999) for

the cross-section. We are thankful to Nicolas Berman, Mathieu Couttenier, Dominic Rohner, and

Mathias Thoenig for sharing the amended version of the code in Hsiang (2010).
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rounding the cell of interest - within a 180 km distance cutoff - and a weight of 0 to other cells.

This implies that we effectively consider as neighbors the eight bordering cells. In section 6.1 we

conduct a sensitivity analysis to different spatial matrices. For ease of interpretation we do not

row-standardize W , so the coefficients on the spatial lags, θ1k, θ2k, and λ, should be interpreted as

the effect of a marginal change in a given variable in one of the neighbors.

We estimate (2) by OLS, with standard errors corrected à la Hsiang (2010).

Model III

Part of the observed spatial correlation in conflict is due to the fact that conflict determinants

are correlated; part is due to direct contagion. Disentangling these two effects is, in general,

difficult. Models allowing for spatial dependence in the dependent variable are known as spatial

autoregressive models and are estimated with maximum likelihood or GMM techniques. A further

complication arises in our context, since in addition to spatial autocorrelation we expect the process

of conflict to be autocorrelated in time. We thus estimate Model III:

ANY EVENTc,i,t = φANY EVENTc,i,t−1 + ρW · ANY EVENT t+

+ αc +
2∑

k=0

β1kCc,t−k +
2∑

k=0

β2kGS Cc,t−k + µit+

+
2∑

k=0

θ1kW · Ct−k +
2∑

k=0

θ2kW ·GS Ct−k +W · µt + εc,i,t

(3)

where µit denote country × year fixed effects and αc cell fixed effects. We also explore different

sets of fixed effects and trends. The model in (3) is a dynamic, spatially autoregressive Durbin

model that we estimate by maximum likelihood following Parent & LeSage (2012) and Yu, de

Jong, and Lee (2008), clustering standard errors by cell. The likelihood is derived in the Online

Appendix, Section C.

Drawing inferences on the impact of local climate shocks on conflict, accounting for spatial
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spillovers, presents challenges comparable to the estimation of peer effects. As discussed in Gib-

bons, Overman, and Patacchini (2015), disentangling contextual effects (in our case, local weather

shocks that are clustered in space) from direct spillovers (in our case, conflict contagion) requires

imposing some structure on the spatial dependence in the process. Such structure is embedded in

the spatial matrix. Intuitively, the MLE estimator exploits climate shocks occurring beyond 180 km

(among the “second-degree neighbors”) as a source of variation in conflict incidence in the imme-

diate neighbors (within 180 km). This is similar in spirit to an instrumental variables approach such

that shocks occurring among second-degree neighbors instrument for conflict occurring among the

immediate neighbors. We discuss an instrumental variable version of our estimates in section 4.1.

Our implicit identifying assumption is thus that rainfall beyond 180 km is not affecting conflict in

the own cell, other than by inducing more local conflict that then spills over in space. While this is

by definition not testable, in section 6.1 we discuss robustness to various distance cutoffs.

The estimation of spatially and temporally autoregressive terms is an innovation of our paper

and is particularly relevant when the data are highly disaggregated, and hence highly spatially cor-

related. Ignoring the term W · Y can lead to omitted variable bias: all of the observed spatial

clustering in conflict would be attributed to conflict determinants that happen to be clustered spa-

tially, and the contemporaneous impact of climate shocks would tend to be overestimated.7 On the

other hand, if one included W · Y but estimated the model via OLS, estimates would suffer from

simultaneity bias in the opposite direction, overestimating spillover effects and underestimating

7An alternative way to frame this is to note that Models I and II are the reduced form ver-

sion of Model III: the coefficients of climate variables capture the equilibrium effect of local and

neighboring shocks, gross of direct conflict spillovers that they may have induced.
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the local impact of shocks.

3 Data

3.1 Sources and dataset construction

We bring together high-frequency, geo-referenced data from a variety of sources and construct a

dataset covering 46 African countries over the period 1997 through 2011. Details on countries and

sources can be found in the Online Appendix, section A.

Conflict data

Data on conflict come from the PRIO/ Uppsala ACLED dataset, covering 1997 through 2011.

ACLED codes the latitude, longitude, and date of a wide range of conflict-related events, includ-

ing battles and activities involving rebels, such as recruitment or the establishment of headquarters.

Event data are derived from reports from war zones, humanitarian agencies, and research publica-

tions. While there may be selection in reporting, it is unclear that such bias would be systemati-

cally correlated with our measure of cell-specific growing season weather shocks. We also explore

robustness to using the alternative Uppsala Conflict Data Program Georeferenced Event Dataset

(UPCDP-GED), which follows a different coding strategy (see Online Appendix, section A).

Climate data

Our main climate indicator is the Standardized Precipitation-Evapotranspiration Index (SPEI),

developed by Vicente-Serrano et al. (2010). While most of the conflict literature has focused on

precipitation, the impact of rainfall on the growing cycle of a plant depends also on the ability of

the soil to retain water. This is captured by “potential evapotranspiration,” which in turn depends

on temperature, latitude, sunshine exposure, and wind speed. SPEI reflects this and has been found

to generally outperform other indexes in predicting crop yields (Vicente-Serrano et al., 2012).
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The climate inputs we employ to compute SPEI are drawn from a high-quality re-analysis

dataset (ECMWF ERA-Interim), which relies on weather stations, satellites, and sondes. SPEI

is expressed in units of standard deviation from the cell’s historical average and thus has mean 0

by construction in the historical sample (1979-2011 in our case). Sections A and B of the Online

Appendix include further details on the inputs and computation of SPEI.

Crop calendars and crop-specific climate shocks

Our analysis exploits periods within the year during which climatic conditions affect agricul-

tural production the most. We identify the main crop, by harvested area, cultivated in each cell as

of the year 2000, drawing on Monfreda, Ramankutty, and Foley (2008). We then retrieve its cell-

specific growing season, based primarily on the MIRCA 2000 crop calendars dataset (Portmann,

Siebert, & Döll, 2010). We then match our monthly climate data with the calendars of the crops

cultivated in each cell, thus creating cell-specific measures of “relevant” climatic conditions.

Our key climate indicator, denoted as SPEI Growing Season, is computed by averaging monthly

SPEI over the growing season months of a cell’s main crop in a given year. Higher values of this

variable correspond to more favorable conditions for local agriculture. For the sensitivity analysis

in Table A10, we consider alternative functional forms and widely used indicators such as rainfall

and temperature.

Other data

We complement our dataset with a number of cell-level characteristics related to geography,

infrastructure, and ethnic fractionalization that we employ as control variables or sources of het-

erogeneity. These variables are described in the Online Appendix, section A, and summary statis-

tics are reported in Appendix Table A1. Section D in the Appendix also discusses cross-sectional

estimates relating cell-level characteristics to conflict propensity.
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3.2 Descriptive statistics

Table 1 reports descriptive statistics. The average cell in our sample has experienced conflict

episodes for 17 percent of the years, which means 2.5 years. The mean of SPEI in our sample

is −0.11, indicating that weather conditions throughout 1997-2011 have been less favorable to

agriculture compared to the 1979-2011 historical sample over which SPEI is computed.

In Figure 1 we map our key variables, to get a sense of their within-country variation. Figure

1A shows conflict prevalence, reporting the fraction of years during 1997 through 2011 in which

each cell experienced at least one conflict event. Conflict appears to be clustered in space, and

in particular in the Great Lakes region and in West Africa. Figure 1B plots average SPEI (for

comparison, Appendix Figure A1 plots average rainfall). Although SPEI appears to be spatially

correlated, it displays more local variation than rainfall. Appendix Figure A3 maps the distribution

of crops, showing that a wide range of crops are cultivated in our sample, which gives us significant

variation in climate across cells and months thanks to variation in the growing season of different

crops.

4 Empirical results

Our dependent variable is ANY EVENT t, a dummy equal to 1 if the cell experienced at least one

conflict event during year t. As discussed in section 2.2, we consider three models: a non-spatial,

static model (Model I), a non-autoregressive spatial static model (Model II), and a spatial autore-

gressive dynamic model (Model III). All specifications include the following cell-level controls:

elevation, roughness, area, presence of roads, distance to river, shared cell, border, presence of

minerals, and ethno-linguistic fractionalization (ELF). Models II and III also include the spatial

lags of controls and of the relevant fixed effects (these coefficients are not reported for ease of
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exposition).

4.1 Benchmark estimates

Table 2 contains our main results. The regressor of interest is SPEI Growing Season, defined as

the average level of SPEI during the main crop’s growing season. Higher values of this variable

correspond to higher “effective” rainfall. We also control for standalone SPEI, which in this spec-

ification captures the impact of SPEI in months outside the growing season of the main crop. The

first and second temporal lag are included for all climate indicators.

Column 1 shows that the contemporaneous effects of SPEI inside and outside the growing sea-

son essentially offset one another. However, high values of SPEI Growing Season reduce conflict

likelihood in the following year and the year after that, whereas lagged SPEI outside of the grow-

ing season has no significant impact. When we introduce the spatial lag of our climate variables

(column 2), standalone SPEI becomes insignificant also contemporaneously and only the first lag

of SPEI Growing Season remains negative and significant. This is consistent with the idea that

conditions during the growing season are those which matter the most for agriculture. The fact

that conflict responds with a one-year lag parallels the temporal persistence highlighted in cross-

country studies (e.g., Ciccone, 2013). If this variable affects conflict through rural incomes, it could

plausibly take one full agricultural season for these seasonal weather patterns to translate into an

economic shock. The coefficients on the spatial lags of the SPEI variables are generally small and

do not display a consistent pattern, suggesting that the direct effects of weather shocks are strictly

local. We nevertheless include the spatial lags of the regressors in all of our specifications, in order

to correctly estimate the coefficient on W · Y .

In column 3 we introduce our full spatially and temporally autoregressive model. The coeffi-
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cient of the first lag of SPEI Growing Season in the own cell maintains its negative sign, magnitude,

and significance level. A one standard deviation increase in this variable is associated with a 1.5

percentage point reduction in conflict likelihood in the subsequent year, relative to the cell’s long-

term mean. This is roughly 9 percent of the unconditional mean of the dependent variable.

Conflict spillovers are significant both in time and space. Conflict in a cell in a given year is

associated with a 33 percentage point higher probability of conflict the following year. Contempo-

raneous conflict in one of the neighbors induces a 4 percentage point increase in the probability of

conflict in the cell itself. Given that the average cell in our sample has 7.4 neighbors, this means

that conflict in all of the neighbors induces a 30 percentage point increase in the probability of

conflict in the average cell.

As discussed in section 2.2, we estimate Model III by maximum likelihood using spatial econo-

metric techniques. As a validation exercise, in Appendix Table A4 we propose two instrumental

variables versions of Model III. In column 4 of Table A4 we instrument for conflict in the imme-

diate neighbors using conflict in the second-order neighbors, an approach similar to those used in

time series to address autocorrelation in the dependent variable. In column 7 our instrument is

the growing season SPEI of second-order neighbors –an approach similar to that of Bramoullé,

Djebbari, and Fortin (2009). In both cases we instrument lagged conflict in the own cell using the

second lag of conflict, following the time series literature. Both approaches yield estimates that are

comparable, in sign and significance, to those found in Table 2.

Next, we explore robustness to different types of fixed effects. Column 3 includes year fixed

effects and a country-specific linear time trend, column 4 includes country × year fixed effects,

and column 5 includes cell and country × year fixed effects. The coefficient on SPEI Growing

Seasont−1 is remarkably stable in sign and magnitude.
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As expected, temporal spillovers are greatly attenuated once we include cell fixed effects, as

some of the persistence is attributed to unobserved cell-level long-run characteristics. Nevertheless,

relative to a cell’s historical conflict propensity, conflict in a given year increases the likelihood of

conflict in the subsequent year by 12 percentage points. Spatial spillovers are mildly attenuated

once we focus on within-cell conflict variation, possibly because being part of a persistent conflict

cluster is one of the time-invariant characteristics picked up by the cell fixed effects. According to

column 5 estimates, when a cell experiences conflict each of its neighbors faces a 2.3 percentage

point increased conflict likelihood. In the subsequent analysis we adopt the conservative specifica-

tion of column 5 as our benchmark.

4.2 Impact magnitude and projections

In Model III, the impact of a covariate X on Y in a given cell is not entirely captured by the

estimated regression coefficient of that covariate. For instance, the coefficient −0.037 from column

5 of Table 2 should be interpreted as the direct impact of SPEI Growing Season on next period’s

conflict in the own cell. However, a shock in the own cell also affects conflict in neighboring cells,

which in turn affect conflict in the own cell through the spatial lag term. As a result, current conflict

in the own cell may be amplified. Moreover, the effects of a one-time shock will persist in time,

and these impacts will further propagate in space.

To quantify the total effects of a one-time shock we conduct an exercise similar in spirit to

the evaluation of an impulse response. We consider Model III and start by setting all explanatory

variables and prior conflict to 0; we then provide a hypothetical cell with a one-time negative shock

to SPEI Growing Season equal to minus one standard deviation; finally, we use the estimates

in Table 2, column 5, to track the marginal impact of this shock on the dependent variable in
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subsequent periods, leaving all other covariates at 0, in the own as well as the neighboring cells. In

Figure 2 we report the results of this exercise.

Figure 2a plots the marginal impacts of the one-time decrease in SPEI Growing Season on con-

flict incidence in the five subsequent periods. The solid line refers to the own cell, the dashed to

the average neighbor. At t = 0 the shock occurs. Conflict in the own cell does not react immedi-

ately: the point estimate of the contemporaneous response is slightly negative but insignificant; the

neighbor’s response is more precisely estimated and is a modest conflict increase, which will feed

back in the own cell’s response through the term W ·Y . In the first period after the shock, although

no additional shocks occur, conflict in the own cell increases by a total of 1.3 percentage points,

close to the point estimate of the first lag of SPEI Growing Season (Table 2, column 5) rescaled to

the standard deviation of the covariate. After period 3 the marginal effects start fading away. The

response of neighbors in Figure 2a roughly mirrors that of the own cell at a much smaller scale,

but appears to be more persistent in time.

Figure 2b reports the results of the same exercise, but focusing on space instead of time. For

time periods 0, 1, 2, and 4 we map on a grid the marginal impacts of the shock on different cells,

representing larger impacts with darker shades. The cell that receives the one-time shock is at the

center of the grid and is marked by an x. The definition of neighbors allows only the eight adjacent

cells to be directly affected by cell x through their spatial lag terms. However, conflict induced

by the one-time shock to cell x does propagate to cells beyond those immediately adjacent, due to

spillovers from their own adjacent cells.

The above exercises are also useful to assess the bias from ignoring spillovers. We make this

assessment in two ways. First, we have directly compared estimates from Model I with those

of Model II and Model III when commenting Table 2. Second, the values in Figure 2a can be

18



compared to the coefficients of Model I. Taken together, these results suggest that neglecting spatial

spillovers leads to lower estimated impacts of lagged SPEI on conflict.

While in Figure 2 we employ a one-time, artificial shock, the same method can be used to

feed into the process actual projected shocks. We repeat the above procedure feeding into the

process forecast values of SPEI Growing Season for 2016 through 2050, to get a sense of how

climate change will affect conflict likelihood, all else being equal and under the assumption that

the responsiveness of conflict to SPEI remains constant in the future.

The first step involves computing projections of future SPEI shocks. We draw on cell-level

precipitation and temperature projections obtained from a variety of climate models and under a

range of emissions scenarios, all belonging to the World Climate Research Programme’s Coupled

Model Intercomparison Project phase 5 (CMIP5). Our benchmark model is FGOALS-g2, under a

RCP 2.6 emissions scenario - a conservative one that assumes a peak in greenhouse gas emissions

between 2010 and 2020 followed by a decline throughout the rest of the 21st century. A description

of our sources and forecasting methodology is provided in the Online Appendix, sections A and

B. The average of SPEI Growing Season (which is −0.025 in our 1997-2011 sample) becomes

−0.135 in the 2016-2050 projected sample, indicating that the average cell experiences shortages

of rainfall relative to its historic mean. Average projected values of SPEI Growing Season over

2016 through 2050 are reported in Figure A4. Next, we obtain for each cell and year the marginal

change in conflict incidence induced by SPEI Growing Season shocks, according to Model III

(Table 2, column 5). This marginal change reflects current and past shocks, among neighbors and

in the own cell, due to the mechanisms discussed in Figure 2. Figure A5 maps these marginal

changes in each cell, averaged over 2016 through 2050. The pattern clearly overlaps with that in

Figure A4.
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In an average year, conflict increases by 1.2 percentage points relative to a cell’s historic mean

(approximately a 7 percent increase) due to SPEI shocks. Note that this reflects averages over cells

that experience negative shocks and also cells that experience positive ones. The peak marginal in-

crease in conflict is over 4 percentage points, or about 23 percent of the 1997-2012 average conflict

incidence. As a comparison, Burke et al. (2009) predict an increase in conflict incidence between

43% and 56% by 2030, though the larger magnitude may depend on the fact that they include

country and not cell fixed effects. In Appendix Table A5 we perform a sensitivity analysis of these

results to different climate models and emissions scenarios, as recommended by Burke, Hsiang,

and Miguel (2015). Our estimates are remarkably stable. We must however be cautious in taking

these estimates literally, as they do not account for crop mix adaptation (Costinot, Donaldson, &

Smith, 2016), and we hold constant a number of socioeconomic and political variables that may

evolve endogenously over the long run.

5 Mechanisms and heterogeneous effects

Our benchmark estimates indicate that favorable weather during the growing season decreases the

likelihood of conflict, while outside the growing season it does not. This is consistent with an

“opportunity cost” mechanism related to local agricultural incomes and rules out direct effects

through channels such as violence due to extremely hot weather. It also rules out a predation

mechanism, by which cells experiencing agricultural booms would be more likely to experience

conflict. In this section we further explore competing mechanisms using multiple approaches.

5.1 Channels

In Table 3 we examine heterogeneous effects in the impact of cell-level weather conditions. We

revisit our benchmark specification (Table 2, column 5), augmenting it with interactions between
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SPEI Growing Season and cell-level characteristics capturing alternative channels. Spatial lags

of the SPEI regressors are included in all specifications, but not reported in the table for brevity.

The first channel relates to the logistics of warfare: precipitation might affect conflict directly by

causing floods and hindering the movement of troops. Given that this should not be systematically

correlated with the timing of the growing season, our benchmark estimates do not lend support to

this interpretation. However, to further investigate this hypothesis, in column 1 we interact growing

season weather with a proxy for road infrastructure in the cell: the presence of at least one road of

primary use. The coefficient on the first lag of this interaction is negative and significant at the 10%

level. This could indicate that seasonal weather interacts with the logistics of troop movements,

but could also reflect the greater strategic importance of locations near a major road.

The second channel relates to state capacity. Fearon & Laitin (2003) argue that civil conflict is

more prevalent in countries with poor state capacity, which have limited resources for counterin-

surgency or for redistribution. This explanation emphasizes state capacity at the national level,

whose fluctuations are captured in our specification by country × year dummies. Nevertheless,

local dimensions of state capacity may be correlated with cell-level weather. In column 2 we inter-

act our weather variables with the tax-to-GDP ratio, drawn from Cagé and Gadenne (2014). The

coefficient on the interaction with SPEI Growing Seasont−1 is positive and significant, suggesting

that the local effects of weather on conflict are attenuated in countries with better state capacity.

The third mechanism is related to grievances: weather shocks might exacerbate (perceived)

inequalities between groups. Democracy and civil liberties should be associated with a lower risk

of grievance-induced conflict, as they provide room for requesting redistribution peacefully. In

column 3 we interact our weather variables with the Polity IV combined polity score (Marshall,
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Jaggers, & Gurr), and do not find significant effects.8 Finally, we turn to ethnic cleavages as a

potential source of grievances. In column 4 we consider the number of discriminated groups in

a cell as a proxy for latent ethnic conflict. This is drawn from the GeoEPR-ETH dataset (see

Online Appendix, section A). We consider groups classified as “subjected to active, intentional,

and targeted discrimination, with the intent of excluding them from both regional and national

power” at the beginning of our sample. The interaction with the first lag of SPEI Growing Season is

negative and significant, suggesting that preexisting grievances are more likely to turn into violent

conflict following an agricultural shock. We pursue this idea further by considering ethnicities

that are partitioned across country borders and that may advance secessionist demands or seek

military assistance from coethnics across the border (Michalopoulos and Papaioannou, 2016). We

construct an indicator for whether a cell contains a border that cuts through an ethnic homeland

(“Partition” in column 5) and interact it with SPEI Growing Season. Homelands are defined based

on the GREG dataset (see Online Appendix, section A). We do not find significant effects, although

the interaction with SPEI Growing Seasont−1 has the expected negative sign and is quite large in

magnitude.

5.2 Heterogeneous spatial spillovers

In this section we investigate heterogeneous effects in spatial persistence, which can be informa-

tive of conflict spillover channels. The literature has proposed a number of mechanisms (see, e.g.,

Buhaug and Gleditsch, 2008). First, conflict may disrupt the local economy, reducing the op-

portunity cost of fighting in neighboring areas. It may also induce an inflow of arms or attract

8This index, measured at the country-year level, ranges from −10 (strongly autocratic) to +10

(strongly democratic).
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mercenaries who move across the territory. Finally, rebellion may induce emulation. Additional

mechanisms are specific to cross-country spillovers (e.g. Gleditsch, 2007). Refugee flows across

countries may induce tensions leading to conflict; arms trading may be particularly pronounced

near the border; irredentist demands may involve territory across two nations.

To shed light on the pass-through of conflict across cells, we vary the definition of what consti-

tutes a neighbor and estimate specifications analogous to our benchmark but differing in the spatial

weighting matrix used to define W · Y . The results are reported in Table 4. Each column reports

the coefficient on W · Y from a different regression, with the column header indicating how W is

defined in that specification.9

In columns 1 and 2 we investigate whether spillovers are stronger across national borders. We

consider two sets of neighbors: adjacent cells that belong (column 1) or not (column 2) to the same

country. We detect positive spillovers in both cases, stronger when considering neighbors from a

different country.

We next examine spillovers across ethnicities and country boundaries.10 Coethnics residing

across the border can provide rebels with resources and protection (Bosker and de Ree, 2014).

Columns 3 and 4 consider the role of coethnics alone: we consider as neighbors adjacent cells

that share (column 3) or do not share (column 4) the same main group.11 The size of the spillover

9We continue to employ our benchmark weighting matrix when defining spatial lags in the

covariates, so as to make the specifications comparable across columns.

10For a network analysis of rebel behavior that incorporates rainfall patterns in ethnic homelands,

see König et al. (2017).

11We rank ethnic groups based on their share of the territory according to the GREG dataset.
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effect is comparable across the two sets of neighbors. Interesting differences emerge, however,

when we consider the interaction of ethnicity and borders. Within the same country, spillovers

are not differential across ethnic homelands (column 5 versus column 6); cross-country spillovers

are instead more pronounced across ethnic boundaries (column 7 versus column 8). These find-

ings could reflect differences in the nature of conflicts occurring in the interior of a country versus

in bordering areas. For example, conflicts occurring near boundaries may be separatist in nature

and may spill over to areas occupied by different ethnic groups. They may also be more likely to

generate refugee flows that fuel interethnic tensions. On the other hand, conflicts occurring in the

interior are likely to have (non-separatist) objectives and follow a different diffusion process. Be-

sides direct conflict spillovers, our data present an additional source of spatial dependence: spatial

decay in the effects of agricultural shocks . The coefficients of the spatial lags of SPEI Growing

Season are generally small, indicating that the direct effects of local shocks dissipate rapidly in

space. However, this could also result from heterogeneous effects across neighbors operating in

opposite directions. We explore this in the Appendix, section E. Appendix Table A6 shows that

only shocks occurring among coethnic neighbors and among neighbors cultivating the same main

crop increase conflict in the own cell. This provides suggestive evidence that coinsurance within

the ethnic group may not be effective in the presence of uniform crop patterns across space.

5.3 Different types of conflict events

We next turn to a disaggregation of conflict events into four types, based on the ACLED classi-

fication. The dummy BATTLE equals 1 when a cell/year has experienced a battle of any kind,

regardless of whether control of the contested location changes. The dummy CIVILIAN captures

violence against civilians, defined in ACLED as instances where “any armed group attacks un-

24



armed civilians within a larger conflict.” This is the type of event most closely related to possible

predation motives. Riots and protests (dummy RIOT) are instances in which “a group is involved in

a public meeting against a government institution.” ACLED also codes non-violent rebel activities,

such as the establishment of a base or headquarters and recruitment drives.12 These are particularly

interesting to test theories that stress the opportunity cost of fighting, and we aggregate them in the

binary variable REBEL. Summary statistics in Table 1 indicate that the average frequency of these

events in the cell/years in our sample is .10 for battles, .10 for violence against civilians, .06 for

riots, and .03 for rebel recruitment.

In Table 5 we examine the effects of climate on different types of events.13 The coefficients of

the temporal autoregressive terms are in the 0.07− 0.14 range. Battles and rebel recruitment have

the highest degree of temporal persistence, whereas riots appear less persistent in time, possibly

due to the intermittent nature of these episodes. The coefficients on the spatial autoregressive terms

range from 0.004 for riots to 0.02 for battles and violence against civilians, suggesting that more

violent episodes are more likely to spill over in space. The coefficients on own climate shocks

point in the same direction as in the aggregate results, with the first lag of SPEI Growing Season

associated with lower incidence of conflict events (albeit insignificant for riots). The effect sizes are

largest for rebel recruitment, followed by violence against civilians: for a one standard deviation

shock to SPEI Growing Season, the standardized point estimates are 24 percent and 17 percent of

12In the ACLED codebook, these correspond to events of type 4 (“headquarters or base estab-

lished”) or 5 (“non-violent activity,” which includes recruitment drives, incursions, and rallies).

13The Appendix also reports cross-sectional estimates for the impact of cell-level geographic

covariates on different types of conflict events (section D and Table A3).
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the mean of the dependent variable. This points toward theories based on the opportunity cost of

rebel recruitment.

5.4 Different conflict actors

We next exploit the breakdown of conflict by type of actor. For each event, ACLED reports the

identity of the perpetrator and the victim and classifies them as government, rebel force, or civil-

ians. By investigating which actors initiate conflict or are attacked following a SPEI shock, we

can shed more light on mechanisms. We focus on three sets of actors: the government, politically

violent actors (rebels, political militias, ethnic militias), and non-organized actors (a category in

which we pool civilians, rioters, and protesters).14

About 32 percent of the events are initiated by the government, 21 percent by rebels, and 27

percent by political militias. Rioters, protesters, and civilians are the most common victims (38

percent of events), followed by rebels (23 percent). We start by disaggregating our dependent

variable by perpetrator-victim pairs. For example, we can construct a dummy equal to 1 if a cell

experienced at least one event involving the government as perpetrator and a rebel force as victim.

For each actor-pair we estimate our benchmark specification (Table 2, column 5) and focus on the

coefficient of SPEI Growing Seasont−1. We report these coefficients in Table 6. Each cell in the

matrix shows the coefficient from a different regression, corresponding to a different perpetrator-

victim pair. Rows correspond to perpetrators and columns to victims. A number of interesting

14As per ACLED, rebel groups are violent actors with a stated political agenda for national

power. Political militias are actors with a political purpose who do not seek the removal of a

national power. Ethnic militias are violent groups who claim to operate on behalf of a larger

identity community (Raleigh & Dowd, 2016).
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patterns arise. The main perpetrators of attacks induced by SPEI shocks are political militias

and rioters attacking mostly the government and rebel forces. This supports the opportunity cost

interpretation, but is also compatible with a state capacity effect. Rioters, protesters, and civilians

are also victimized, consistent with our finding that SPEI shocks lead to violence against civilians.

Of the non-government victims, ethnic and political militias seem unaffected by SPEI shocks,

possibly because their recruiting strategies may be more identity-based.

5.5 Conflict onset and termination

Our analysis so far has focused on conflict incidence. We now briefly discuss the results for conflict

onset and termination, which we report in Appendix Table A7. Conflict onset is a binary indicator

that takes value 0 in years of peace and 1 in the first year in which a cell experiences conflict,

and is missing in subsequent conflict years. Conflict termination equals 0 in years of conflict and

1 in the first year with no conflict after a spell of conflict, and is missing in subsequent peace

years.15 In Table A7 we present estimates of Model II for onset and termination. As explained in

section 2.2, we cannot estimate Model III with these dependent variables because the estimation of

autoregressive Durbin models requires a balanced panel. Table A7 should thus be taken cautiously,

as Model II does not account for direct conflict spillovers.

Our explanatory variable of interest, SPEI Growing Seasont−1, is significantly correlated with

the onset of conflict broadly defined (column 1) and especially the onset of battles (column 2),

violence against civilians (column 3), and non-violent rebel activities (column 5). Relative to the

15Since the majority of cell/years in the sample experiences no conflict events, conflict termina-

tion is non-missing in a very small sample. This prevents us from disaggregating by type of event

when analyzing conflict termination.
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mean of the dependent variable, the impacts are largest for rebel activities, followed by violence

against civilians, mirroring our findings for conflict incidence. This suggests that agriculture-

relevant shocks might be especially important as local triggers of new conflict spells, particularly

through the opportunity cost channel. The effect is negative but insignificant for conflict termina-

tion (column 6).

6 Robustness

In this section we explore the sensitivity of our estimates to different grid resolutions, different

choices of spatial weighting matrix, and alternative climate indicators.

6.1 Sensitivity to spatial resolution and distance

Just as in time series the structure of temporal dependence is assumed by the researcher and is

not estimated, so is the structure of spatial dependence implied by the choice of grid resolution

and spatial weighting matrix. In Appendix Table A8 we present our benchmark specification

(Table 2, column 5) estimated on gridded datasets of different spatial scales.16 In column 1 we

consider a higher-resolution 0.5× 0.5-degree grid, placed in such a way that four 0.5-degree cells

are contained in one of our benchmark 1-degree cells. In columns 2 to 5 we consider a lower-

resolution 2× 2 grid, obtained aggregating four of our 1×1 original cells in a single “macro-cell.”

This coarser grid can be constructed in four different ways, depending on where such “macro-cells”

are centered; hence we report estimates obtained with each of these four grids.17 The 1-degree grid

16This exercise addresses the Modifiable Areal Unit Problem (MAUP) that commonly arises

with spatial data (Heywood, Cornelius, & Carver, 1998).

17When estimating our specification for the 0.5- and the 2-degree grids, we employ binary con-

tiguity matrices with cutoffs of 90 and 390 km respectively, so that each cell’s neighborhood is
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we used throughout the paper appears to provide more precise estimates than those obtained with

higher or lower resolutions, validating our choice. The effects of SPEI may not be captured at very

high resolutions because a drought in a limited area may not have enough of an impact on local

incomes when there is smoothing across agricultural markets; at the same time, the effects may be

washed out at lower resolutions because fixed effects at the macro-cell level may absorb too much

of the variation.

In Appendix Table A9 we turn to the choice of spatial weighting matrix. The latter is partic-

ularly relevant as the exclusion restriction on which our MLE estimates are based is that shocks

occurring in second-order neighbors do not directly affect conflict in the own cell. The most pop-

ular choices in the literature are binary contiguity matrices, that we consider in columns 1 to 3,

and matrices based on the inverse geographic distance, which we examine in columns 4 to 6. In

columns 1 to 3 we estimate our model using binary contiguity matrices with different distance cut-

offs: 290, 450 and 600 km.18 When we increase the radius of our distance matrix, the coefficient

on SPEI Growing Seasont−1 becomes increasingly smaller and eventually loses significance. The

temporal autoregressive coefficient is very stable around the value of .12 and is significant at the 1

percent level in all specifications. On the other hand, as expected, the choice of weighting matrix

does affect the spatial autoregressive coefficient (the coefficient on W · Y ), which decreases in

magnitude as we increase the distance cutoff. This is intuitive: as we add neighbors farther away

from the cell, the impact of the average neighbor is driven down. These patterns are confirmed in

formed by the eight adjacent cells at both resolutions.

18With distance cutoffs of 290, 450, and 600 km the average number of neighbors for each cell

is respectively 18, 44, and 81.
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columns 4, 5, and 7, in which we employ an inverse distance-based weighting matrix.

6.2 Other climate indicators

In Appendix Table A10 we turn to other potential climate indicators and functional forms, in-

cluding stand-alone SPEI averaged over the entire year (column 1), a measure of drought spells

(column 2), nonlinear effects of SPEI Growing Season (column 3), and an extended version of this

variable that includes the three main crops instead of just the main one (column 4). Details are

provided in the Online Appendix, section E. Results obtained with SPEI-based indicators are qual-

itatively consistent with our benchmark, although only the first lag of our main variable of interest

remains significant in column 3. The coefficients on plain measures of rainfall and temperature,

averaged over the growing season, have the expected signs but are mostly insignificant.

The contrast with the existing literature, which finds significant effects of rainfall and temper-

ature, may be rationalized by observing that our specification with both spatial and temporal lags

of the dependent variable absorbs a lot of the variation in conflict, which is already reduced by the

inclusion of cell fixed effects. The richness of SPEI, which embeds information on precipitation

and temperature but also on latitude, month of the year, number of sunlight hours, etc., allows us

to obtain more precise estimates when we use our benchmark variable.

6.3 Alternative data sources and specifications

In Appendix Table A11 we explore robustness to the choice of conflict dataset by reestimating

Table 2 employing the UPCDP-GED dataset, described in the Online Appendix, section A. The

qualitative patterns are similar to those obtained with ACLED, although the coefficient on SPEI

Growing Seasont−1 becomes smaller and insignificant as we add autoregressive terms, arguably

30



because GED data features less variation in the dependent variable.19 In terms of magnitudes,

according to Model III estimates in columns 3 to 5, the impact of a one standard deviation increase

in SPEI Growing Season reduces GED-based conflict incidence in the following year by 5% to 7%

of the mean of the dependent variable, in line with our ACLED-based estimates.

In Appendix Table A12 we consider different temporal lag structures and find that the signifi-

cance of the first lag is consistent across specifications. As a placebo, in column 3 we also include

a specification with four lags and four leads in SPEI Growing Season. Reassuringly, we find leads

not to be significant conflict predictors.

7 Conclusions

In this paper we conduct a spatially disaggregated analysis of the determinants of conflict in Africa

over the period 1997 through 2011. We exploit within-year variation in the timing of weather

shocks and in the growing season of different crops, as well as spatial variation in crop cover, to

construct an original measure of weather that is relevant for agricultural production. We find that

improved weather during the growing season of the main crops cultivated in the cell significantly

reduces conflict incidence. We use state-of-the-art spatial econometric techniques to test for the

presence of temporal and spatial spillovers in conflict, and we find both to be sizable and highly

significant. These results indicate that caution should be exercised when interpreting results of

studies that do not incorporate spatial dynamics. Finally, we use our estimates to predict potential

future conflict scenarios induced by climate change, under the assumption that the responsiveness

of conflict to weather shocks remains constant in the next decades. Using a variety of models

19Another potential explanation is that GED records only events involving casualties, within

conflicts that involve at least 25 battle-related deaths per year, whereas ACLED also codes low-

intensity conflict episodes.
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and emissions scenarios, we predict that shocks occurring during the growing season, as per the

definition of our main explanatory variable, should become 5.4 times more pronounced during

the next 35 years. This in turn leads to an increase in average conflict incidence of 7 percent.

Our findings indicate that the correlates of civil conflict have a strong local dimension and that

the likelihood of conflict is not constant in time or in space, even within the same country. This

suggests that policy interventions, be they in the form of monitoring, prevention, or peacekeeping

efforts, should be targeted in space and time. Our results may be especially relevant when assessing

appropriate policy responses to global warming scenarios. Given the link we trace between shocks

affecting agricultural yields and conflict risk, policies aimed at mitigating the effects of climate

change on agriculture may be particularly desirable. These include the development of drought-

resistant crop varieties, investments in irrigation, and schemes to improve soil water retention.

On the other hand, complementary measures to reduce the adverse impacts on incomes, such

as weather-indexed crop insurance, also constitute a valuable policy option. Finally, given the

increasing availability of high-resolution data (e.g., gridded datasets) and the growing number of

research contributions that employ these data to address important development questions, we hope

our study can provide a number of insights and methodological indications that are useful for future

work.
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No. Obs. Mean Std. Dev.

ANY EVENT 35042 0.170 0.376
BATTLE 35042 0.097 0.295
CIVILIAN 35042 0.099 0.299
RIOT 35042 0.056 0.231
REBEL 35042 0.030 0.170

SPEI 35042 -0.114 0.571
SPEI Growing Season 35042 -0.025 0.365

Table 1: Summary Statistics

Notes: Each observation is a cell/year.
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(1) (2) (3) (4) (5)
Model I

 OLS
Model II

OLS
Model III 

MLE
Model III 

MLE
Model III 

MLE
Y t-1 0.333*** 0.342*** 0.121***

(0.00759) (0.00769) (0.00849)
W·Y 0.0449*** 0.0291*** 0.0229***

(0.00116) (0.00127) (0.00150)
SPEI 0.0334*** 0.0150 0.00458 0.00216 -0.00491

(0.00690) (0.0144) (0.0127) (0.0131) (0.0132)
SPEI, t-1 0.00112 0.0199 0.0107 0.0252* 0.0148

(0.00698) (0.0141) (0.0136) (0.0142) (0.0130)
SPEI, t-2 0.00883 0.00659 -0.00190 -0.00990 -0.0145

(0.00701) (0.0151) (0.0132) (0.0138) (0.0126)
SPEI  Growing Season -0.0329*** -0.00217 0.00122 0.00430 0.0207

(0.0121) (0.0149) (0.0135) (0.0136) (0.0129)
SPEI  Growing Season, t-1 -0.0300** -0.0399*** -0.0400*** -0.0498*** -0.0367***

(0.0118) (0.0148) (0.0153) (0.0152) (0.0139)
SPEI  Growing Season, t-2 -0.0335*** -0.0238 -0.0145 -0.00523 -0.00925

(0.0121) (0.0156) (0.0144) (0.0146) (0.0140)
W·SPEI 0.00379 0.00187 0.00202 5.88e-06

(0.00234) (0.00194) (0.00222) (0.00220)
W·SPEI, t-1 -0.00287 -0.00235 -0.00376 -0.00451**

(0.00230) (0.00210) (0.00239) (0.00219)
W·SPEI, t-2 0.00101 0.00139 0.00453** 0.00329

(0.00201) (0.00228) (0.00211)
W·SPEI Growing Season -0.00284 -0.00427* -0.00420*

(0.00226) (0.00252) (0.00248)
W·SPEI Growing Season, t-1 0.00464* 0.00621** 0.00648**

(0.00279) (0.00250) (0.00267) (0.00257)
W·SPEI Growing Season, t-2 -0.00260 5.54e-05 -0.00167 0.000522

(0.00288) (0.00234) (0.00261) (0.00260)
Observations 35,042 35,042 35,042 35,042 35,042
Controls X X X X
Year FE X X X
Country-specific time trend X X X
Country x Year FE X X
Cell FE X

Table 2: Conflict incidence and climate, panel
Dependent variable (Y)=1 if conflict event in year t (ANY EVENT)

Notes: Each observation is a cell/year. Standard errors in parenthesis. Columns 1 and 2 
corrected for spatial and serial correlation following Hsiang (2010). Columns 3 through 5 
corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1. W = binary 
contiguity matrix, cutoff 180 km.
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Table 3: Channels of Impact

(1) (2) (3) (4) (5)

Variable Z is: Roads Tax to GDP ratio Polity Score Number of              
Discriminated Groups Partition

Y t-1 0.121*** 0.0209 0.121*** 0.121*** 0.121***
(0.00850) (0.0192) (0.00848) (0.00849) (0.00849)

W·Y 0.0228*** 0.0108*** 0.0228*** 0.0227*** 0.0227***
(0.00150) (0.00349) (0.00150) (0.00151) (0.00150)

SPEI  Growing Season 0.0150 0.0774 0.0202 0.0239* 0.0197
(0.0137) (0.0612) (0.0128) (0.0135) (0.0129)

SPEI  Growing Season, t-1 -0.0264* -0.176*** -0.0372*** -0.0297** -0.0339**
(0.0149) (0.0634) (0.0138) (0.0146) (0.0140)

SPEI  Growing Season, t-2 -0.0165 -0.0357 -0.00942 -0.0102 -0.0117
(0.0151) (0.0704) (0.0140) (0.0143) (0.0140)

SPEI Growing Season × Z 0.0133 -0.00258 -0.00141 -0.00431 0.00902
(0.0135) (0.00349) (0.00196) (0.00526) (0.0174)

SPEI Growing Season, t-1  × Z -0.0244* 0.00906** -0.000115 -0.00943** -0.0254
(0.0133) (0.00371) (0.00213) (0.00448) (0.0167)

SPEI Growing Season, t-2  × Z 0.0180 0.00269 -0.00119 0.00175 0.0141
(0.0141) (0.00420) (0.00210) (0.00540) (0.0165)

Observations 35,042 6,822 35,042 35,042 35,042
W· SPEI variables X X X X X
Country x Year FE X X X X X
Cell FE X X X X X
Notes: Each observation is a cell/year. Estimation by MLE. Standard errors in parenthesis corrected for clustering at the cell level.  *** 

p<0.01, ** p<0.05, * p<0.1. W = binary contiguity matrix, cutoff 180 km.

Dependent variable (Y)=1 if conflict event in year t (ANY EVENT)
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Table 4: Heterogeneous Conflict Spillovers, Panel
Dependent variable (Y)=1 if conflict event in year t (ANY EVENT)

(1) (2) (3) (4) (5) (6) (7) (8)

Same Main 
Group

Different 
Main Group

Same Main 
Group

Different 
Main Group

W·Y 0.0217*** 0.0308*** 0.0222*** 0.0248*** 0.0217*** 0.0219*** 0.0275*** 0.0340***
(0.00168) (0.00372) (0.00186) (0.00281) (0.00199) (0.00339) (0.00561) (0.00475)

Observations 35,042 35,042 35,042 35,042 35,042 35,042 35,042 35,042
Country x Year FE X X X X X X X X
Cell FE X X X X X X X X
Notes: Each observation is a cell/year. Estimation by MLE. Standard errors in parenthesis corrected for clustering at the cell level.  

*** p<0.01, ** p<0.05, * p<0.1. 

Different country

Neighbors included in W Same 
Country

Different 
Country

Same                
Main 
Group

Different 
Main  
Group

Same country
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Dependent variable: Battle Civilian Riot Rebel
(1) (2) (3) (4)

Y t-1 0.131*** 0.109*** 0.0705*** 0.138***
(0.0106) (0.0101) (0.0119) (0.0165)

W·Y 0.0233*** 0.0236*** 0.00438** 0.0104***
(0.00174) (0.00177) (0.00200) (0.00230)

SPEI 0.00620 -0.0190* -0.00502 -0.0133**
(0.0108) (0.0109) (0.00876) (0.00672)

SPEI, t-1 -0.000270 0.0134 0.0180* 0.0127*
(0.0107) (0.0106) (0.00927) (0.00707)

SPEI, t-2 0.00154 -0.000397 -0.0149 -0.0107
(0.0103) (0.0101) (0.00930) (0.00653)

SPEI  Growing Season 0.0133 0.0230** 0.0180** 0.0108
(0.0109) (0.0113) (0.00903) (0.00738)

SPEI  Growing Season, t-1 -0.0289** -0.0454*** -0.0148 -0.0193**
(0.0116) (0.0120) (0.00972) (0.00783)

SPEI  Growing Season, t-2 -0.0203* -0.00800 0.0198** 0.00979
(0.0122) (0.0109) (0.00928) (0.00764)

W·SPEI -0.00227 0.00292 0.000648 0.00156
(0.00179) (0.00179) (0.00139) (0.00108)

W·SPEI, t-1 -0.00211 -0.00334* -0.00169 -0.00216*
(0.00187) (0.00174) (0.00150) (0.00113)

W·SPEI,  t-2 -0.000699 0.000674 0.00319** 0.00177*
(0.00181) (0.00171) (0.00146) (0.00107)

W·SPEI Growing Season -0.000539 -0.000973
(0.00152) (0.00130)

W·SPEI Growing Season, t-1 0.00127 0.00252*
(0.00166) (0.00138)

W·SPEI Growing Season, t-2 0.00446** 0.00171 -0.00444*** -0.00249*
(0.00224) (0.00199) (0.00159) (0.00135)

Observations 35,042 35,042 35,042 35,042
Country x Year FE X X X X
Cell FE X X X X

Table 5: Different Types of Conflict Events, Panel

Notes: Each observation is a cell/year. Estimation by MLE. Standard errors in parenthesis 

corrected for clustering at the cell level.  *** p<0.01, ** p<0.05, * p<0.1. W = binary 

contiguity matrix, cutoff 180 km.
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Government Rebel force Political militia Ethnic militia Rioters, protesters, 
and civilians

Government -0.0185** -0.0221** -0.00625 -0.00428 -0.0267***
Rebel force -0.0102 -0.0134* -0.00365 -0.00276 -0.0144**
Political militia -0.0274*** -0.0259*** -0.00626 -0.00352 -0.0300***
Ethnic militia -0.0127** -0.00456 -0.00600 -0.00634 -0.00914
Rioters, protesters, and civilians -0.0236*** -0.0127* -0.0127* -0.00246 -0.0175**

Notes: Each observation is a cell/year. Estimation by MLE. Standard errors in parenthesis corrected for clustering at the cell level.  *** 

p<0.01, ** p<0.05, * p<0.1. W = binary contiguity matrix, cutoff 180 km.

Table 6: Perpetrators and Victims, Panel
Dependent variable (Y)=1 if conflict event in year t (ANY EVENT)

Coefficients of SPEI Growing Season, t-1
ACTOR 2 (Victim)

A
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Figure 1A:  

Fraction of years with at least one conflict event (1997-2011) 

 

 

 

 

 

 

 
Figure 1B: 

Average SPEI, 1997-2011 
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Figure 2a: 

Dynamic impact of a one-time SPEI Growing Season shock on conflict incidence 

Figure 2b: 

Spatial impact of a one-time SPEI Growing Season shock on conflict incidence 

X 

X X 

X 


	geoconflict_main_jun2017_v17_formatted
	Tables_main_July2017_V7_formatted
	Table 1 Summary Stats
	Table 2 Benchmark
	Table 3 Channels
	Table 4 Heterog spillovers
	Table 5 events breakdown
	Table 6 actors

	geoconflict_main_figures_jul2017_v6

