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We evaluate predictive regressions that explicitly consider the time-variation of

coefficients in a comprehensive Bayesian framework. For monthly returns of the S&P

500 index, we demonstrate statistical as well as economic evidence of out-of-sample

predictability: relative to an investor using the historic mean, an investor using our

methodology could have earned consistently positive utility gains (between 1.8% and

5.8% per year over different time periods). We also find that predictive models with

constant coefficients are dominated by models with time-varying coefficients. Finally,

we show a strong link between out-of-sample predictability and the business cycle.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The issue of predicting equity returns is one of the
most widely discussed topics in financial economics (see
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Campbell, 2008 for a recent survey article). In-sample,
numerous studies find evidence of predictability (see, for
example, Stambaugh, 1999; Ang and Bekaert, 2007;
Lettau and Van Nieuwerburgh, 2008; Pastor and
Stambaugh, 2009). Out-of-sample, however, little consen-
sus exists on the fundamental questions of whether
predictability exists and which variables have the best
predictive performance (see, for example, Goyal and
Welch, 2008; Campbell and Thompson, 2008; Cooper
and Gulen, 2006; Rapach, Strauss, and Zhou, 2010). Given
the conflicting points of view in the literature, Spiegel
(2008) asks whether academics can ‘‘produce an empirical

model that allows for economic changes over time that is

also capable of determining the ‘right’ parameter values in

time to help investors?’’ This is precisely the question that
we address in this paper.

The literature agrees that parameter instability (i.e.,
time-variation in coefficients) represents a major chal-
lenge and that it might influence many of the results in
the literature. There are several reasons coefficients might
vary over time, e.g., due to changes in regulatory condi-
tions, in market sentiments, in monetary policies, in the
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2 Note that there is an extensive literature (see Jostova and Philipov,

2005 for a recent paper) that focuses on models with dynamic (i.e., time-

varying) beta, which is to some extent related to our work. However,

these papers condition stock market betas on observables, while we

allow for time-varying coefficients when regressing an equity market

index on a set of predictive variables. Another stream of literature that is

to a lesser extent related to our paper is the one focusing on portfolio

selection under uncertainty. Kandel and Stambaugh (1996), Barberis

(2000), and Xia (2001) explicitly take into account parameter uncer-

tainty and evaluate the influence of return predictability on portfolio

selection using Bayesian methods. MacKinlay and Pastor (2000), Pastor
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institutional framework, or in macroeconomic interrela-
tions. For example, Barsky (1989) documents time-vary-
ing stock-bond correlations, Dimson, Marsh, and Staunton
(2002) present empirical evidence on time-varying corre-
lations between various economic variables, McQueen
and Roley (1993) and Boyd, Hu, and Jagannathan (2005)
find that the incorporation of news into stock prices varies
with the business cycle, and Veldkamp (2005) and Van
Nieuwerburgh and Veldkamp (2006), among others,
relate learning asymmetries and the flow of information
to the business cycle. Bossaerts and Hillion (1999) state
that ‘‘The poor external validity of the prediction models
that formal model selection criteria chose indicates model
nonstationarity: the parameters of the best prediction
model change over time’’. Similarly, Cremers (2002)
claims in his conclusion that his model is limited by the
assumption of parameter stability. Ang and Bekaert
(2007) test for time-variation in coefficients by splitting
their entire sample into different subperiods. They clearly
show the time-varying pattern of coefficients and find, for
example, that the coefficient for the dividend yield is
twice as large if estimated from a sample that excludes
the 1990s as it is if estimated from the entire sample.

The literature, however, is inconclusive about the true
degree of time-variation in coefficients, and, despite the
agreement on the issue, there is lack of systematic
evidence. We identify the following important questions
that have not been addressed in the literature and that we
address in this paper: What degree of time-variation is
supported by the data? How important is the issue of
parameter instability (e.g., relative to the issue of choos-
ing the right predictive variables)? By how much do
current results (e.g., on out-of-sample predictability and
the importance of individual predictive variables) change
once parameter instability is taken into account?

We analyze these questions by estimating predictive
regressions for Standard and Poor’s S&P 500 returns that
explicitly allow for time-variation of regression coeffi-
cients. For this purpose we apply a Bayesian econometric
method (see, for example, Avramov, 2002; Cremers, 2002;
Pastor, 2000; Wachter and Warusawitharana, 2011;
Johannes, Korteweg, and Polson, 2011) that enables us
to model time-varying coefficients that follow a random
walk. The random-walk assumption is, obviously, unat-
tractive from a theoretical point of view. Empirically,
however, it is common and frequently outperforms more
general models with autocorrelated coefficient dynamics
(see, for example, Meese and Rogoff, 1983a,b).1 The two
dimensions of model uncertainty – the choice of predic-
tors and the degree of coefficients’ time-variation – are
addressed in a consistent manner within a Bayesian
model averaging approach (see Raftery, Madigan, and
Hoeting, 1997 for technical details and Avramov, 2002
and Cremers, 2002 for applications to return prediction).

There is a stream of literature that addresses the issue
of parameter instability by estimating regime-switching
1 In Appendix A.3 we verify for our specific application that models

with random-walk coefficients perform significantly better than models

with autocorrelated coefficients.
models and by searching for structural breaks in the
predictive relation between equity returns and explana-
tory variables. Pastor and Stambaugh (2001) and Kim,
Morley, and Nelson (2005) use Bayesian econometrics to
identify structural breaks in equity premiums. Both
papers report that they identify empirical evidence of
the existence of structural breaks. They differ quite con-
siderably, however, in the timing of the breaks. Viceira
(1997) is to our knowledge the first to search for struc-
tural changes in predictive relations, but does not find
evidence of structural breaks in the relation between the
dividend yield and equity returns. Paye and Timmermann
(2006), in contrast, identify several structural breaks in
the coefficients of state variables such as the lagged
dividend yield or the term spread. All of these studies
focus on in-sample predictability and ignore the question
of whether an investor would have been able to detect
these regime shifts in real-time (i.e., out-of-sample).
Lettau and Van Nieuwerburgh (2008) represent a notable
exception as they also perform out-of-sample tests. They
conclude that regime-shifting models perform very poorly
out-of-sample because of unreliable estimates of the
timing of breaks and of the size of the shift.

We differ from these papers because we do not
assume, ex ante, that the time-variation in coefficients
follows a step function. In contrast, the methodology
proposed in this paper allows for gradual changes of
coefficients. The methodology is also simple and parsi-
monious enough to enable us to evaluate out-of-sample
predictability for a comprehensive set of predictive vari-
ables. We define out-of-sample in a strict sense; i.e., all
results reported and discussed in this paper are based on
predictions that an investor could calculate and use in
real-time (without knowing the full sample). As shown in
our empirical analysis, models with gradually varying
coefficients are strongly supported by the data.2

Methodologically, the paper closest to our study is
Johannes, Korteweg, and Polson (2011) who in some
specifications allow for drifting regression coefficients.
There are, however, important conceptual differences.
For example, our focus is on evaluating whether time-
varying coefficients improve the predictive power of a
standard set of 13 predictive variables; i.e., in a multi-
variate setup. Johannes, Korteweg, and Polson (2011), in
contrast, focus on the issue of stochastic volatility and
(2000), and Pastor and Stambaugh (2000) model the impact of prior

mispricing uncertainty in asset pricing models on portfolio choice.

Pettenuzzo and Timmermann (2011) address the issue of model

instability (i.e., structural breaks in predictive relations) and show that

it can have a larger impact on optimal asset allocation than other

sources of risk such as uncertainty in parameter estimation.
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only consider models with a single predictive variable
(i.e., payout measures). Despite these methodological
differences, we arrive at the same main result, namely,
that out-of-sample predictability exists.

Using monthly returns of the S&P 500 from May 1937
to December 2002, we compare the predictive out-of-
sample performance (using statistical and economic mea-
sures) of models with time-varying coefficients to two
benchmark models: (i) regressions with constant coeffi-
cients and (ii) the unconditional mean of past returns that
constitutes the no-predictability benchmark.3 Our most
important result is that we find strong and consistent
empirical support for models with time-varying coeffi-
cients. These models significantly outperform the two
benchmark models across different time periods as far
as prediction accuracy is concerned. This gain in predic-
tion accuracy is also important in economic terms result-
ing in consistent utility gains between 1.8% and 5.8% per
year for different time periods, relative to an investor
using the historic mean. In comparison, investors using
the predictions of models with constant coefficients
realize a utility gain of 0.2% only in one subperiod (i.e.,
1965 to 2002) and utility losses between �1.9% and
�5.8% in all other periods. The findings of other research-
ers put these results in further perspective: following the
same approach to calculating utility gains and comparable
data sets, Rapach, Strauss, and Zhou (2010) find utility
gains in the order of 0.5–1.5%, and Campbell and
Thompson (2008) report maximum utility gains of 0.3%.

Most interestingly, we find a strong relation between
out-of-sample predictability and the business cycle.
Although we find evidence of predictability during reces-
sions as well as during expansions (in contrast to Henkel,
Martin, and Nardari, 2011 who do not find any evidence
of in-sample predictability during expansions), the evi-
dence is much stronger during recessions. In general,
models with time-varying coefficients generate return
predictions that are consistent with business-cycle-
related patterns implied by asset pricing theory (e.g.,
Campbell and Cochrane, 1999; Menzly, Santos, and
Veronesi, 2004). On average, predicted equity risk pre-
miums increase during a recession (and peak around the
trough). During expansions, predicted risk premiums
decrease and reach their lowest levels around the peak
of the business cycle. Finally, an investor who relies on
these predictions times the market very well, reducing
her exposure around the peak of the business cycle and
moving back into the market before the trough.

In the next step we analyze the models with time-
varying coefficients in more detail to get a better
understanding of the sources of their outperformance.
3 The benchmark models with constant coefficients used in the

paper are equal to ordinary least squares (OLS) regressions with an

extending window. We are aware that, in the literature, regressions with

constant coefficients use rolling windows and thus mimic time-varying

coefficients in an ad hoc way. The methodology proposed in this paper,

in contrast, accounts for time-varying coefficients in a systematic and

statistically consistent way. In Appendix A.3 we report results from

rolling-window regressions. These results show that our proposed

methodology also clearly dominates rolling-window OLS regressions.
Specifically, we decompose prediction uncertainty into
four components, (i) the observational variance (i.e., the
variance assigned to the random disturbance term in the
predictive relation), (ii) the estimation uncertainty in
coefficients, (iii) the model uncertainty with respect to
the choice of predictive variables (see Avramov, 2002;
Cremers, 2002), and (iv) the model uncertainty with
respect to the time-variation in coefficients. Empirically,
we find that the first two sources are most important, as
expected. The two dimensions of model uncertainty are,
however, non-negligible, especially when the stock
market is under stress (e.g., during the oil price shock in
the 1970s).

Finally, we investigate the importance of individual
predictive variables within the models with time-varying
coefficients. We find that the relative valuation of high-
and low-beta stocks (i.e., the cross-sectional premium)
plays a dominant role among our set of predictive vari-
ables. We also find that the dividend yield receives
considerable empirical support. Even more importantly,
we show that, in the case of the dividend yield, our model
with time-varying coefficients is able to learn the struc-
tural break due to the initiation of Rule 10b-18 by the US
Securities and Exchange Commission (SEC) in November
1982 (this rule enabled firms to legally buy back shares
under certain circumstances, see Grullon and Michaely,
2002 for details)—in contrast to constant coefficients or
even regime-switching models (see Goyal and Welch,
2008; Lettau and Van Nieuwerburgh, 2008). Thus, while
previous studies report a steady decline of the importance
of the dividend yield as a predictive variable during the
1980s and 1990s, we show an increase.

The paper is structured as follows. Section 2 presents
the empirical methodology. Section 3 describes the vari-
ables used in the empirical study. Section 4 reports
empirical results and discusses their implications.
Section 5 concludes.

2. Prediction models with time-varying coefficients

Like the vast majority of papers on return prediction
(see, for example, Pesaran and Timmermann, 1995;
Bossaerts and Hillion, 1999; Avramov, 2002; Cremers,
2002; Goyal and Welch, 2008; Ang and Bekaert, 2007),
we assume a linear relation between predictive variables
(chosen from a set of k candidate variables, including a
constant) and the dependent variable, i.e., the excess
return r of some asset. However, while these papers
assume that the unobservable regression coefficients y
are constant over time, we model the coefficients in our
dynamic linear models to be time-varying (see Section
2.1). An important contribution of our paper is to evaluate
whether the data support time-varying coefficients or
whether they confirm the constant-coefficient paradigm.
For each degree of time-variation of coefficients, we
estimate the 2k

�1 dynamic linear models that result from
all possible combinations of predictive variables. Then, we
use a Bayesian model selection criterion to assign poster-
ior probability weights across individual models that
differ in the selected variables and degree of time-varia-
tion (similar to Avramov, 2002; Cremers, 2002). Finally,
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we use these posterior probabilities to determine an
average prediction model (see Section 2.2).

The goal of this econometric approach is to provide a
flexible prediction framework that explicitly accounts for
the different sources of uncertainty: uncertainty in the
choice of predictive variables, uncertainty in the estima-
tion of coefficients, uncertainty in the degree of time-
variation of the regression coefficients, and the general
disturbance term. In Section 2.1 we focus on outlining the
characteristics of an individual dynamic linear prediction
model (i.e., for a given choice of predictive variables), and
in Section 2.2 we discuss the Bayesian model selection
approach.
2.1. Dynamic linear models

In this section we introduce dynamic linear models
(according to West and Harrison, 1997) that explicitly
allow for a time-varying nature of the linear relation
between the asset return rtþ1 over the interval ðt,tþ1�
and the vector Xt of realizations of the explanatory
variables observed at time t. We are performing an out-
of-sample analysis, in which out-of-sample is to be inter-
preted in a strict sense; i.e., for predicting the return at
time tþ1, we use only information that is available at or
before time t.

Observable variables have a subscript that indicates
the time at which they are known. When speaking about
beliefs regarding parameters, like the regression coeffi-
cients and the variance V, we state the information set on
which these beliefs are conditioned.

More specifically, we estimate models of the form

rtþ1 ¼ X0tytþvtþ1, v�Nð0,VÞ ðobservation equationÞ,

ð1Þ

yt ¼ yt�1þot , o�Nð0,WtÞ ðsystem equationÞ: ð2Þ

The vector yt consists of unobservable, time-varying
regression coefficients, and the observational disturbance
v is assumed to be normally distributed with mean zero
and constant but unknown variance V.4 In what follows
we call V the observational variance. The concept of the
predictive regression expressed in Eq. (1), i.e., that time-t

observable variables predict time-tþ1 returns, is not
necessarily in contradiction to the efficient markets
hypothesis. Time-variation of expected returns can arise
in efficient markets, e.g., as a consequence of time-varia-
tion in risk aversion, see Campbell and Cochrane (1999),
or of the presence of long-run consumption risk as in
Bansal and Yaron (2004). While Eq. (2) states that these
coefficients are exposed to random shocks o that are
jointly normal (with mean zero and variance matrix Wt),
we do not assume systematic movements in y, i.e., we
consider changes in y as unpredictable.5
4 See Johannes, Korteweg, and Polson (2011) for a Bayesian frame-

work with stochastic volatility.
5 See Primiceri (2005) and Cogley and Sargent (2005) for a similar

model specification with an application to monetary policy and Brown,

Song, and McGillivray (1997) for an application to house prices.
We are aware that Eq. (2) implies that coefficients follow
a random walk and that theoretically, they might drift to
arbitrarily high or low values, hence causing returns – with-
out regularly updating the system equation to new observa-
tions – to be non-stationary. To avoid this undesirable
property, one must impose some structure on the system
equation. Our investigations, however, show that any devia-
tion from the assumption of no predictability in the shocks
on coefficients reduces the predictive power of our regression
system. In Appendix A.3, we extend Eq. (2) to allow for
autocorrelation in the coefficients and then perform a horse
race within our predictability framework that shows that
random-walk coefficients significantly outperform autocor-
related coefficients with respect to all analyzed statistics. We
argue that the superior predictive performance of the parsi-
monious model stems from avoiding estimation errors while
allowing to calibrate coefficients to observed data.

We share this finding with a series of empirical studies
on predictability. For example, the literature on exchange
rate prediction relies extensively on random-walk models
although the assumption of non-stationary exchange
rates is theoretically unfounded. Meese and Rogoff
(1983a,b) find that random-walk models outperform
more sophisticated models such as structural models in
predicting exchange rates. They started a large literature
that, until today, has unsuccessfully tried to find predic-
tive models that outperform random-walk models (see,
for example, Kilian and Taylor, 2003 for a more recent
paper). In the literature on equity return predictability,
random-walk assumptions are also common. When mod-
eling predictors, Ferreira and Santa-Clara (2011), for
example, assume that the dividend-price ratio follows a
random walk in their predictive setup (see also Campbell,
2008). Similar to our argument above, they find that the
main advantage of this assumption is a substantial reduc-
tion in estimation error as fewer parameters have to be
estimated.

Given that we perform the estimation on a monthly
basis, this high frequency of observations drives the
dynamics of the estimated coefficients and, thus, miti-
gates any concerns about the random-walk assumption.
Such concerns, in contrast, might become more important
when updating at a lower frequency. But as the variance
in coefficients gradually increases over time, the estima-
tion procedure becomes more responsive to incoming
observations (see Eqs. (18) and (19) in Appendix A.1),
avoiding unbounded drifts of estimated coefficients even
in this case.

If the system variance matrix Wt equals zero, the
regression coefficients yt are constant over time. Thus,
our model nests the specification of constant regression
coefficients. If Wt increases, the intrinsic variability of the
regression coefficients yt increases the flexibility of the
model. At the same time, however, the out-of-sample
prediction variance increases and, consequently, reduces
the precision of the prediction. The specific structure we
impose on Wt and how we estimate the magnitude of
time-variation of the underlying coefficients will be
explained below.

Let Dt ¼ ½rt ,rt�1, . . . ,Xt ,Xt�1, . . . ,Priorst ¼ 0� denote the
information set available at time t. This information set
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contains all returns, all corresponding realizations of the
predictive variables up to time t, and our initial time-zero
choice of priors regarding y and V. In Appendix A.1 we will
describe in detail how, at some arbitrary time tþ1, the
observation of a new return realization leads to an update
of the estimated system coefficients and the estimated
observational variance. The essential result is that using a
normally distributed prior for the system coefficients y0

and an inverse-gamma distributed prior for the observa-
tional variance V leads to a fully conjugate Bayesian
analysis, which ensures that prior and posterior distribu-
tions come from the same family of distributions. For the
time t¼0 specification of the prior information, we use a
natural conjugate g-prior specification (see, e.g., Zellner,
1986; this type of prior was, for example, also used in the
study by Cremers, 2002)

V9D0 � IG½12 ,1
2S0�, ð3Þ

y09D0, V �N½0,gS0ðX
0XÞ�1

�, ð4Þ

where

S0 ¼
1

N�1
r0ðI�XðX0XÞ�1X0Þr: ð5Þ

This is a diffuse prior centered around the null-hypothesis
of no-predictability and where g serves as the scaling
factor that determines the confidence assigned to the
null-hypothesis of no-predictability. Thus, the prior for
the coefficient vector y09D0 is centered around zero, and
the covariances among coefficients are multiples of the
OLS estimate of the variance in coefficients.6

The forecast of the time tþ1 return rtþ1 (i.e., the
predictive density) can be found by integrating the con-
ditional density of rtþ1 over the range of y and V. It is a
Student-t-distribution, as illustrated by Eq. (11) in
Appendix A.1.

To keep the model tractable, we need to give some
structure to the system variance matrix Wt. Eqs. (1) and
(2) show that an increase in the system variance nega-
tively affects the precision of the coefficients’ estimates
yt9Dt (see Appendix A.1 for the analysis, especially Eq.
(10)). In periods of low system variance, the estimation
error of the coefficient vector y tends toward zero as the
sample size increases. In times of high system variance,
the estimate of y loses precision. Hence, the estimation
error in determining y is positively related to the under-
lying system variance. A simple way to capture this
relation is to assume that Wt is proportional to the
variance/covariance matrix of y9Dt . More precisely, the
scaling factor is assumed to be ð1�dÞ=d with 0odir1.
6 For the paper’s main results the g-prior is derived from the entire

sample. As is shown in Eq. (4), the g-prior multiplies the variance/

covariance structure of y by a large scalar. This makes the prior

essentially uninformative which means that initially, the estimation

procedure is highly responsive to the observations and adapts quickly to

the empirical patterns. This is a very common procedure in Bayesian

econometrics (see, for example, Zellner, 1986; Koop, Poirier, and Tobias,

2007) and does not invalidate our claim that results are out-of-sample.

In Appendix A.3 we show results in which we derive the OLS estimate

from a specific burn-in period of 60 months in the beginning of our

sample period. The results are basically unaffected by this choice of

prior.
West and Harrison (1997) call d a discount factor and,
consequently, this model setup a discount factor approach.

A choice of d equal to one corresponds to Wt¼0, i.e., to
the assumption that the regression coefficients are con-
stant over time, similar to the models evaluated in the
vast majority of studies on equity return prediction.
Choosing a discount factor do1 explicitly assumes varia-
bility of the underlying regression parameters. As a
consequence, the prediction of one particular dynamic
linear model depends not only on the choice of the
predictive variables but also on the choice of d. Both
these choices represent model uncertainty, which we
address in a Bayesian model averaging framework.

2.2. Bayesian model selection

The empirical literature on asset price dynamics shows
that there is considerable uncertainty about which factors
contain significant information for predicting asset
returns. This means that even if we restrict our attention
to simple linear models as specified in (1) and (2), there is
a high degree of model uncertainty due to the ex ante
choice of the set of predictive variables Xt used as
regressors. Agreeing on k candidate regressors (including
the constant) alone implies 2k

�1 different possible linear
regression models. The presumed variability in the regres-
sion coefficients yt (characterized by the choice of the
discount factor d) represents another a priori specification
choice. We consider values on a grid d 2 fd1,d2, . . . ,ddg

where 0odir1 and d captures the number of discrete
values of d considered. Since the Bayesian updating
approach integrates (sums) over the range of the discount
factor d, the specific choice of the set of d s is not critically
influencing the result as long as the relevant range of time
variability is adequately covered. Considering a number of
d different discrete values of d leads to a total of d � ð2k

�1Þ
possible dynamic linear models.7

The arbitrary choice of one particular model from this
substantial pool of possible models is always debatable.
Bayesian model selection (see Avramov, 2002; Cremers,
2002) offers a systematic approach to this problem that
tests the reliability of all d � ð2k

�1Þ models against the
observed data (see Appendix A.2 for details). Starting from
an uninformed prior that gives equal weight to each
individual model, it assigns posterior probabilities to each
model. However, the determination of the universe of
possible models together with the assumption of the prior
probability leaves some room for discretion. We take a
large number of candidate predictive variables and dif-
ferent values of d into account. Further, we perform
robustness checks with respect to different assumptions
about the prior.

The posterior probability of each of the d � ð2k
�1Þ

models is updated month by month according to Bayes
7 We assume the same degree of time-variation for all coefficients

included in a specific model. The proposed framework would be flexible

enough to allow for variable-specific degrees of time-variation. Given

the lack of theoretical predictions for the level of time-variation of

individual variables and the enormous number of degrees of freedom,

we have to make this simplifying assumption.



Table 1
Summary statistics.

This table shows summary statistics for our set of predictive variables.

The sample period is May 1937 to December 2002 and includes 788

monthly observations.

Predictive

variable

Mean Standard Minimum Maximum Median

deviation

dy �3.295 0.422 �4.525 �2.406 �3.291

ep �2.650 0.402 �3.839 �1.775 �2.674

dpayr �0.650 0.197 �1.183 0.063 �0.624

T. Dangl, M. Halling / Journal of Financial Economics 106 (2012) 157–181162
rule; i.e., based on the realized likelihood of the model’s
return prediction. Appendix A.2 provides more details on
the Bayesian model averaging approach. The overall
average model’s predictive density is then the posterior-
probability weighted average predictive density of all d �

ð2k
�1Þ models in our universe. The beauty of this

approach is its flexibility. If we want to analyze, for
example, the empirical support for models including a
specific predictive variable or having a certain degree of
time-variation, we simply average across all models with
this specific characteristic.
svar 0.002 0.004 0.000 0.071 0.001

csp 0.000 0.002 �0.004 0.008 �0.000

bmr 0.614 0.237 0.121 1.207 0.617

ntis 0.018 0.015 �0.031 0.054 0.020

tbl 0.042 0.032 0.000 0.163 0.039

lty 0.057 0.030 0.018 0.148 0.056

ltr 0.005 0.024 �0.084 0.152 0.003

dfy 0.010 0.005 0.003 0.032 0.008

dfr 0.000 0.011 �0.051 0.070 0.000

inf 0.003 0.005 �0.014 0.057 0.003
3. Empirical study design

3.1. Data description

We calibrate and test the proposed methodology using
monthly total excess returns of the S&P 500 index from May
1937 to December 2002.8 The choice of equity returns and
explanatory variables is guided by previous academic studies
and by the goal of ensuring the comparability of our results
with these studies. In particular, we want to relate our results
to those reported in Goyal and Welch (2008) and, thus, reuse
their data set in our study.9 For the sake of brevity, we
include only a short description of the predictive variables
here (see Goyal and Welch, 2008 for a more extensive
discussion of the data set and the data sources):
�

spe

for

fram

tim

lon

for

ext
Dividends: Dividend yield (dy) is the difference
between the log of dividends on the S&P 500 index
and the log of one-month-lagged prices.

�
 Earnings: Earnings-to-price ratio (ep) is the difference

between the log of earnings and the log of prices.
Dividend-payout ratio (dpayr) is the difference
between the log of dividends and the log of earnings.

�
 Variance: As a measure of stock variance (svar) the

sum of squared daily returns on the S&P 500 is used.

�
 Cross-sectional premium: Cross-sectional beta pre-

mium (csp) quantifies the relative valuation of high-
and low-beta stocks according to Polk, Thompson, and
Vuolteenaho (2006).

�
 Book value: Book-to-market ratio (bmr) is the ratio of

book value at the end of the previous year (for the
months January and February, the book value is
additionally lagged by one year) divided by the end-
of-month market value, both taken from the Dow
Jones Industrial Average.

�
 Net issuing activity: Net equity expansion (ntis) is the

ratio of twelve-month moving sums of net issues by
NYSE listed stocks to the total market capitalization of
NYSE stocks.
8 The sample period is driven by concerns of data availability;

cifically, the cross-sectional beta premium variable is only available

this specific time period. In Appendix A.3 we extend our predictive

ework such that variables can enter or drop from the data set at any

e and reevaluate the predictive performance of our models for the

ger time period of January 1927 to December 2008 (see the Appendix

some empirical results). None of our main results is affected by this

ension of the sample period.
9 We particularly thank Amit Goyal for providing their data set.
�

con

for
T-bills: T-bill rate (tbl) is the secondary market rate of
three-month US treasury bills.

�
 Long-term yield: Long-term government bond yields

(lty) and Long-term government bond returns (ltr) are
the yields and returns of long-term US Treasury bonds,
respectively.

�
 Corporate credit: Default return spread (dfr) is the

difference between returns on long-term corporate
bonds and returns on long-term government bonds.
Default yield spread (dfy) is the difference between
BAA-rated and AAA-rated corporate bond yields.

�
 Inflation (inf) is the Consumer Price Index (all urban

consumers) from the Bureau of Labor Statistics, lagged
by one additional month.

From the data set of Goyal and Welch (2008), we
exclude the predictive variables ‘‘investment to capital
ratio’’, ‘‘percent equity issuing’’, and ‘‘consumption,
wealth, income ratio’’, since they are not available at a
monthly frequency. ‘‘Dividend-to-price ratio’’ is excluded
from our multivariate study since it is almost perfectly
correlated to dy. The ‘‘term spread’’ is also excluded for
collinearity reasons since it is the difference between the
variables lty and tbl. Furthermore, we consider a constant
term in our predictive models. Table 1 provides summary
statistics of the data used.
3.2. Parameter and prior choices

The approach outlined in Section 2 requires the choice
of appropriate priors and the selection of adequate values
of d. For the actual implementation, we perform the
estimation procedure for a g-prior with g¼50.10 The
second choice is the range of d to be covered in the
Bayesian model averaging (BMA) when integrating over
the degree of variability in y, thereby determining an
10 We repeat the analysis using a g-prior of ten. Finding our

clusions unchanged after this robustness check, we omit the results

the sake of brevity.
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empirical estimate of d. We choose d 2 ½0:96,1:00� and
evaluate different levels of granularity.11 The lower
boundary of the relevant range for d is derived from the
following considerations. As described in Section 2.1, the
effect of d strictly lower than 1.00 corresponds to an
increase in the variance of the coefficient vector by a
factor of 1=d per month. If we ignore other determinants
of this variance, the total effect of d equal to 0.98 will be a
50% increase within 20 months. For d equal to 0.96, a 50%
increase in variance will be reached twice as fast, in
approximately ten months. The latter case describes a
world in which coefficients are extremely unstable and,
thus, we select it as the lower boundary.

As far as prior probabilities of individual models and
model families are concerned, we start out with an
uninformed prior giving equal weight to each individual
model (i.e., 1=ðd � ð2k

�1ÞÞ with d as the number of sup-
porting points in the range of d) and each individual
d-value (i.e., 1=d) at the beginning of the estimation
horizon. Therefore, every model and every model family
has the same chance to turn out to be important.12

4. Results

In the result section, we first concentrate on determin-
ing whether there is evidence of out-of-sample predict-
ability and whether including models with time-varying
coefficients improves predictability. In addition to statis-
tical tests, we investigate if simple trading strategies
would have been able to exploit the observed degree of
out-of-sample predictability. Further, we evaluate the
relation between predictability and the business cycle to
get a better understanding of the sources of predictability.
After documenting that time-varying coefficients signifi-
cantly improve prediction quality, we investigate the
characteristics of these models in more detail. Finally,
we illustrate how our models with time-varying coeffi-
cients adjust using a case study that examines the
dividend yield as a predictive variable before and after
release of Rule 10b-18 in November 1982.

4.1. Out-of-sample predictability

To test for out-of-sample predictability, we analyze the
differences in mean squared prediction errors (MSPE)
between the no-predictability benchmark and a predic-
tive model. The no-predictability benchmark is the
unconditional model that neglects the predictive power
of any of the 13 predictive variables and takes the
11 Specifically, we conduct our estimation with two choices of

granularity in d, d 2 f0:96,0:98,1:00g and d 2 f0:96,0:97,0:98,0:99,1:00g.

The increase in supporting points for the BMA integration over d does

not change our results notably.
12 To perform a robustness check, we take an even more conserva-

tive and skeptical point of view with respect to the existence of

predictability. For this reason we attribute a larger prior probability

amounting to 50% to the no-predictability benchmark; i.e., the model

consisting only of a non-time-varying constant. The remaining models

receive equal prior probability amounting to 0:5 � 1=ðd � ð2k
�1Þ�1Þ. Our

results are robust to this change of prior information. The authors will

provide detailed results for this specific case upon request.
historical long-term average equity premium as the best
prediction for the following month’s premium. This no-
predictability benchmark model is thus nested in our
universe of predictive regressions and corresponds to
the model that includes only the constant as a predictor
and assumes that the coefficient of the constant does not
vary over time. We find broad support – over different
subsamples, using statistical and economic measures – for
the conclusions that predictive regressions with time-
varying coefficients predict market returns significantly
better than the unconditional mean and that they perform
significantly better than regressions with constant coeffi-
cients. More specifically, we consider the following dif-
ferent predictive models in this analysis:
�
 BMA-Model incl. (excl.) TVar-Coeff.: This model repre-
sents the Bayesian model average across all individual
models including (excluding) models with time-vary-
ing coefficients.

�
 Univariate Models incl. (excl.) TVar-Coeff.: These models

consider only one predictive variable at a time. In the
cases in which we include time-varying coefficients,
we still use Bayesian model averaging to average
across models with different assumptions of the
degree of time-variation of the coefficient.

�
 MOST-Model incl. (excl.) TVar-Coeff.: The MOST-Models

represent the individual models that receive most
posterior probability – among all individual models
including (excluding) models with time-varying coef-
ficients – at the end of the month before the evaluation
period starts. Then we keep this model specification
(the variable selection and degree of time-variation of
the coefficients) constant during the evaluation period,
but we update the coefficient estimates.

�
 MEDIAN-Model incl. (excl.) TVar-Coeff.: The MEDIAN-

Model is determined in the following way. At the end
of the month before the evaluation period starts, we
identify all predictive variables that receive more than
50% posterior probability in the BMA-Model incl. TVar-
Coeff. (the 50%-threshold is basically an ad hoc way to
determine variables that show decent predictive per-
formance). Then we focus on the model that includes
these predictive variables. The MEDIAN-Model incl.

(excl.) TVar-Coeff. is the model that includes these
predictive variables and has time-varying (constant)
coefficients.
The motivation to look at univariate models, the MOST-
Model, and the MEDIAN-Model is to differentiate the
effect of repeated updating of dynamic coefficients within
a model from the effect of the BMA that shifts weights
between models depending on historical performance. In
contrast to the BMA-Models, MOST and MEDIAN models
fix a certain selection of variables. Any performance
differences we find for these models between the versions
including and excluding time-varying coefficients can,
thus, be unambiguously related to the influence of time-
varying coefficients.

In this section we distinguish four different sample
periods: 1947þ , 1965þ , 1976þ , and 1988þ . These sample
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periods only affect the selection of predictions that are
analyzed in a specific statistical test or economic evaluation.
They do not affect the estimation of the models; i.e.,
predictive models are still updated monthly. This choice of
sample periods is mainly driven by the issues of compar-
ability to other studies (especially, Goyal and Welch, 2008;
Rapach, Strauss, and Zhou, 2010). Furthermore, a common
result of recent studies is that the evidence of out-of-sample
predictability is largely driven by a few exceptional return
observations. For this reason, two of the subperiods start
immediately after periods of distress, the oil price shock of
1975 and the stock market crash in 1987.
4.1.1. Statistical evaluation

For each predictive model, Table 2 reports differences
in mean squared prediction errors relative to the no-
predictability benchmark. Furthermore, we report
p-values of tests that the reported differences in MSPEs
are significantly larger than zero (i.e., implying that the
predictive model predicts more accurately than the
benchmark) and that unreported differences in MSPEs
between models including and excluding time-varying
coefficients are significantly larger than zero (last col-
umn). We properly account for the fact that these tests
compare models that are nested and, therefore, correct
the statistics (the differences in MSPEs) according to Clark
and West (2006).

We start with the analysis of the BMA-Model (BMA-

Model incl. (excl.) TVar-Coeff.). Only if time-varying coeffi-
cients are considered, the resulting BMA-Model outper-
forms the no-predictability benchmark significantly in all
subsamples (the BMA-Model with constant coefficients
succeeds only in the ‘‘1947þ ’’ period).13 Furthermore, the
BMA-Model including time-varying coefficients consis-
tently and significantly improves the performance relative
to the BMA-Model excluding time-varying coefficients
(with p-values of 1% or lower across all sample periods).

Next, we focus on the 13 univariate models nested in
the universe of models we consider. We find a significant
improvement in prediction accuracy after including time-
varying coefficients in many cases. Univariate models
with time-varying coefficients significantly (at a 10%
significance level) outperform the ones with only constant
coefficients in 28 out of 52 (i.e., 13 univariate models
times four time periods) cases across all subperiods.
Furthermore, in only two out of 52 cases the model with
constant coefficients tends to predict more accurately
(indicated by a p-value that exceeds 50% in the last
column of each table). Relative to the no-predictability
benchmark, however, few univariate models perform
consistently well. In the case of models excluding time-
13 The results we find for differences in MSPEs are confirmed when

we look at the Bayes Factors, which represent alternative Bayesian

statistics. For the entire data sample from 1937 to 2003, for example, the

weight of the no-predictability benchmark within the BMA-Model

including time-varying coefficients drops from its naive prior by a factor

of 10�6. This result compares well to Cremers (2002). Appendix A.3

presents and discusses the time-series dynamics of the Bayes Factor over

our sample period. Even more detailed results are available from the

authors upon request.
varying coefficients, not a single univariate model out-
performs the no-predictability benchmark significantly
across all sample periods (hence, our results perfectly
support the findings of Goyal and Welch, 2008). If coeffi-
cients are also modeled dynamically, we find one variable
that consistently beats the historic average in a univariate
framework, namely csp.

Finally, we further confirm the evidence that time-
varying coefficients improve prediction accuracy for indi-
vidual models by looking at the MOST and MEDIAN-
Model. In both cases, the consideration of time-varying
coefficients results in a significant performance enhance-
ment across all sample periods.14 In the case of these two
models, the performance relative to the no-predictability
benchmark also increases significantly once time-varying
coefficients are considered. Except for the MEDIAN-Model
in the 1988þ subsample (p-value of 0.16), they beat the
historic mean consistently. Therefore, these models seem
to represent quite reasonable alternatives to the BMA-
Model. Note, however, that this is not at all the case if
coefficients are restricted to be constant.

From these results we conclude that the inclusion of
time-varying coefficients dramatically improves the out-
of-sample predictability—across all model specifications
and across all subperiods. If time-varying coefficients are
considered, the overall best performing model is the
BMA-Model, as it shows the clearest performance advan-
tage relative to the no-predictability mean. It is followed
by the MOST-Model and the univariate model based on
csp, which also show consistent, strong, out-of-sample
predictive performance.
4.1.2. Economic evaluation

So far, we have shown that, statistically speaking,
models with time-varying coefficients represent a signifi-
cant improvement. In a further step, we test whether the
identified levels of out-of-sample predictability of
monthly S&P 500 returns are sufficient such that an
investor might rationally use the predicted return (and
its estimated variance) for portfolio optimization (see
Kandel and Stambaugh, 1996; Campbell and Thompson,
2008). To test for economic evidence that a trading
strategy could have exploited this degree of out-of-sam-
ple predictability in a profitable way, we follow Campbell
and Thompson (2008) and Rapach, Strauss, and Zhou
(2010) and consider an investor with a single-period
horizon and mean-variance preferences.

We analyze the gain in realized utility of an investor
who uses any of the predictive models in comparison to
the no-predictability benchmark. We determine monthly
realized mean-variance utility where we use daily S&P
500 returns within a month to estimate the monthly
variance. The utility function is EðRpÞ�ðg=2ÞVarðRpÞ, where
Rp is the portfolio return and g¼ 3. Average realized
utility gains and significance levels are inferred from
these time-series.
14 In the case of the MOST-Model, the model with highest posterior

probability in December 1946 is a model with constant coefficients;

thus, there is no p-value for the comparison.



Table 2
Statistical evaluation.

This table summarizes the differences in MSPEs (multiplied by 100) between the no-predictability benchmark and a predictive model. It also provides the p-

values of one-sided tests that the difference is larger than zero. The last column reports the p-values of one-sided tests that use the corresponding model with

constant coefficients as benchmark. Given that we compare prediction quality with respect to a nested model, we apply the definitions of Clark and West (2006)

for the statistics of the differences of MSPEs. We distinguish four different evaluation periods: 1947þ , 1965þ , 1976þ , and 1988þ .

Sample period: 1947þ

Predictive model Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp

Diff. in MSPE p-Value Diff. in MSPE p-Value p-Value

BMA-Model 0.0192 0.00 0.0046 0.08 0.00

ep 0.0055 0.02 0.0026 0.04 0.12

svar 0.0004 0.41 �0.0005 0.95 0.30

bmr 0.0031 0.21 0.0031 0.14 0.05

tbl 0.0055 0.02 0.0033 0.08 0.01

ltr 0.0050 0.01 0.0018 0.14 0.01

dfy 0.0035 0.02 �0.0001 0.64 0.02

inf 0.0027 0.09 0.0009 0.16 0.18

dy 0.0044 0.01 0.0036 0.02 0.08

dpayr 0.0027 0.17 �0.0001 0.54 0.12

csp 0.0094 0.01 0.0052 0.02 0.01

ntis 0.0043 0.01 0.0020 0.10 0.04

lty 0.0035 0.08 0.0025 0.13 0.06

dfr 0.0008 0.16 �0.0005 0.81 0.02

MOST-Model 0.0054 0.10 0.0054 0.10 .

MEDIAN-Model 0.0220 0.00 0.0028 0.22 0.00

Sample period: 1965þ

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp

Diff. in MSPE p-Value Diff. in MSPE p-Value p-Value

BMA-Model 0.0261 0.00 0.0039 0.11 0.00

ep 0.0067 0.04 0.0023 0.11 0.07

svar 0.0007 0.39 �0.0007 0.94 0.29

bmr 0.0018 0.37 0.0013 0.35 0.09

tbl 0.0063 0.05 0.0047 0.08 0.11

ltr 0.0056 0.02 0.0036 0.06 0.14

dfy 0.0048 0.02 �0.0003 0.79 0.02

inf 0.0029 0.15 0.0008 0.24 0.19

dy 0.0046 0.03 0.0038 0.05 0.18

dpayr 0.0041 0.16 0.0004 0.38 0.17

csp 0.0106 0.03 0.0048 0.03 0.08

ntis 0.0049 0.03 0.0031 0.07 0.18

lty 0.0044 0.12 0.0035 0.15 0.13

dfr 0.0008 0.23 �0.0003 0.65 0.08

MOST-Model 0.0141 0.06 0.0015 0.35 0.00

MEDIAN-Model 0.0018 0.02 0.0003 0.47 0.00

Sample period: 1976þ

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp

Diff. in MSPE p-Value Diff. in MSPE p-Value p-Value

BMA-Model 0.0304 0.00 0.0038 0.18 0.00

ep 0.0018 0.21 0.0017 0.22 0.08

svar �0.0007 0.87 �0.0008 0.91 0.28

bmr �0.0006 0.61 �0.0005 0.56 0.02

tbl 0.0015 0.31 0.0013 0.35 0.04

ltr 0.0030 0.16 0.0030 0.16 0.49

dfy 0.0027 0.10 �0.0000 0.54 0.10

inf �0.0003 0.61 �0.0002 0.57 0.66

dy 0.0018 0.26 0.0016 0.30 0.02

dpayr �0.0001 0.52 �0.0002 0.58 0.31
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Table 2 (continued )

Sample period: 1976þ

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp

csp 0.0097 0.04 0.0031 0.16 0.05

ntis 0.0039 0.07 0.0037 0.08 0.22

lty 0.0005 0.43 0.0005 0.43 0.11

dfr 0.0002 0.41 �0.0003 0.71 0.08

MOST-Model 0.0252 0.00 �0.0012 0.60 0.00

MEDIAN-Model 0.0307 0.00 �0.0004 0.54 0.00

Sample period: 1988þ

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp

Diff. in MSPE p-Value Diff. in MSPE p-Value p-Value

BMA-Model 0.0210 0.08 �0.0012 0.60 0.01

ep 0.0036 0.12 0.0036 0.13 0.05

svar �0.0006 0.76 �0.0007 0.76 0.30

bmr 0.0009 0.39 �0.0006 0.57 0.06

tbl �0.0012 0.85 �0.0016 0.89 0.09

ltr 0.0008 0.37 0.0008 0.37 0.34

dfy 0.0006 0.27 �0.0003 0.80 0.19

inf �0.0005 0.70 �0.0006 0.71 0.42

dy 0.0013 0.38 0.0007 0.44 0.01

dpayr �0.0018 0.92 �0.0019 0.92 0.06

csp 0.0148 0.05 0.0029 0.18 0.05

ntis 0.0003 0.46 0.0002 0.47 0.21

lty �0.0007 0.81 �0.0008 0.82 0.08

dfr �0.0014 0.94 �0.0010 0.91 0.97

MOST-Model 0.0280 0.06 0.0004 0.48 0.00

MEDIAN-Model 0.0134 0.16 0.0062 0.18 0.01
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Table 3 summarizes these results for the same set of
predictive models and sample periods. These utility gains
very convincingly confirm and even strengthen our pre-
vious results. Overall, the BMA-Model and the MEDIAN-
Model show best performance, i.e., consistently positive
and large utility gains, if time-varying coefficients are
included. These utility gains are statistically significant
during all evaluation periods except the 1988þ period.
The differences, however, between the models including
time-varying coefficients and the ones excluding time-
varying coefficients are statistically significant during all
periods (also for the MOST-Model).

Regarding univariate models, the inclusion of time-
varying coefficients improves the performance of each
individual model across all subperiods although not all of
these improvements are statistically significant. The only
exceptions are the univariate model based on dfr in
subperiod 1988þ and the one based on inf in subperiod
1976þ . However, only csp generates positive utility gains
consistently across all subperiods (only the one during the
1965þ period is significant).
4.2. Return predictability and the business cycle

In the previous section we have documented statistically
significant and economically important levels of predictabil-
ity for models with time-varying coefficients. In this section
we aim to analyze the sources of predictability in more detail.
In particular, we relate predictability to the business cycle.

4.2.1. Financial returns and the real economy

From a theoretical point of view, Campbell and Cochrane
(1999) provide a foundation for the link between time-
varying expected rates of returns and the business cycle.
Simply speaking, the argument is as follows (see also
Cochrane, 2007): investors have a slow-moving external
habit; if the economy slides into a recession, the risk of
falling short of the minimum level of consumption increases
and investors become more risk-averse; thus, the risk pre-
mium of equity has to go up during a recession. The time-
variation in risk premium is, therefore, linked to the time-
variation in investors’ risk aversion.

In this section, we are going to link these theoretical
predictions to the empirical results of our models. Speci-
fically, we expect the estimated risk premium to behave
according to the dynamics implied by the Campbell and
Cochrane (1999) model: it should increase during the
recession and be larger at the end of the recession than at
the end of the expansion. In such a framework, predict-
ability would arise if our predictive models are able to
anticipate the business cycle (see Henkel, Martin, and
Nardari, 2011; Rapach, Strauss, and Zhou, 2010 for initial
empirical support).

Models with dynamic coefficients should outperform
models with constant coefficients (as we showed for the



Table 3
Economic evaluation.

We assume an investor with a single-period horizon, mean–variance preferences, and a relative risk aversion equal to 3.0. Further, we limit the share

invested into the S&P 500 to be between 0% and 150%. The table shows utility gains p.a. (monthly utility changes are annualized) of an investor using any

of the predictive models relative to an investor following the no-predictability benchmark. Significance tests are based on the monthly time-series of

realized utility gains where daily index returns within a month are used to estimate the monthly return variance. We distinguish four different

evaluation periods: 1947þ , 1965þ , 1976þ , and 1988þ . nnn, nn, and n indicate standard significance levels of the utility gain relative to the

no-predictability benchmark. Bold utility gains in columns 3–5 indicate that the models including time-varying coefficients perform significantly better

than the models excluding time-varying coefficients at least at the 10% level.

Predictive model Models incl. TVar-Coeff. Models excl. TVar-Coeff.

1947þ 1965þ 1976þ 1988þ 1947þ 1965þ 1976þ 1988þ

BMA-Model 2.57n 5.75nnn 4.82nnn 1.76 �1.97 0.16 �1.87 �5.79

ep �0.61 1.07 �1.36 �1.77 �1.60 �0.22 �1.40 �1.79

svar �0.77 0.35 �1.67 �2.95 �1.69 �0.46 �1.80 �2.97

bmr �1.74 �0.71 �3.67 �3.27 �3.13 �2.07 �3.83 �6.41

tbl �0.55 0.63 �2.72 �4.04 �1.47 0.14 �3.30 �4.66

ltr 0.38 1.60 �0.73 �2.80 �0.96 1.14 �0.82 �2.89

dfy 0.01 1.36 �1.01 �2.27 �1.46 �0.46 �1.67 �3.12

inf �0.23 0.74 �2.05 �3.13 �0.75 0.51 �1.98 �3.14

dy �0.77 0.74 �2.27 �4.84 �1.47 0.38 �2.43 �5.08

dpayr �0.82 0.36 �2.47 �4.56 �1.81 �0.26 �2.58 �4.72

csp 0.88 2.90n 1.22 2.94 �1.11 1.20 �1.71 �1.98

ntis �0.13 1.16 �1.13 �3.15 �1.66 �0.05 �1.34 �3.22

lty �1.03 0.37 �2.79 �3.82 �1.33 0.31 �2.84 �3.88

dfr �0.82 0.51 �1.38 �3.69 �1.87 �0.46 �1.69 �3.41

MOST-Model �2.30 3.55n 4.24nn 2.93 �2.30 �2.44 �4.06 �4.36

MEDIAN-Model 2.68n 4.04nn 4.92nn 2.26 �2.87 �3.06 �3.97 �3.31
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entire sample in the previous section) if the relations
between individual predictive variables and the risk
premium depend on the business cycle, as well. This link
between the business cycle and the time-variation in
coefficients can be motivated by different economic
theories. Veldkamp (2005) and Van Nieuwerburgh and
Veldkamp (2006), among others, relate learning asymme-
tries caused by a varying rate of information flow to the
business cycle. In these models, the information content
of economic signals varies across the business cycle.
Chakley and Lee (1998) offer a different mechanism to
cause the asymmetries in learning by claiming that during
recessions, the fraction of noise traders increases.
McQueen and Roley (1993) and Boyd, Hu, and
Jagannathan (2005) find empirical evidence for these
asymmetric learning patterns, as the incorporation of
news into stock prices varies with the business cycle. It
is exactly this variation in learning and in the information
flow that we try to capture with our time-varying
coefficients.

4.2.2. Predictive performance across business cycles

We use the National Bureau of Economic Research
(NBER) dates of peaks and troughs to identify recessions
and expansions ex post; i.e., this information is not used
at any time during the estimation of the predictive
models. It is currently not our goal to predict business
cycles. The idea of this analysis is to see how closely the
level of predictability and the dominance of models with
time-varying coefficients are related to the business cycle.

Table 4 summarizes our main two statistics – differ-
ences in mean squared prediction errors (Diff. MSPE) and
utility gains – across models for different periods related
to the business cycle. Consistent with other recent papers
(Henkel, Martin, and Nardari, 2011; Rapach, Strauss, and
Zhou, 2010), we find significantly stronger evidence for
predictability during recessions than during expansions
(third row of Table 4) using both measures. The only
exception, as it is not significantly different from zero, is
the difference in MSPEs for models excluding time-vary-
ing coefficients. It is interesting to highlight that utility
gains relative to the no-predictability benchmark are
huge during recessions. This is primarily because the
no-predictability benchmark is overly optimistic about
the monthly equity premium and thus suffers from severe
losses during recessions. Another important result is that
the dominance of models with time-varying coefficients
prevails during both recessions and expansions (see the
last two columns of Table 4). Finally, we also find
statistically significant levels of out-of-sample predict-
ability during expansions, but only for models including
time-varying coefficients, albeit at a much smaller scale.
This result is in contrast to the findings of Henkel, Martin,
and Nardari (2011), who conclude that there is even no
in-sample predictability during expansions using their
predictive variables and econometric technique.

In the next step we look more closely at economic
turning points; i.e., peaks and troughs of the business
cycle. For this purpose, we split the business cycle into
four periods of three months each: (i) late expansion:
three months before a peak, (ii) early recession: three
months after a peak, (iii) late recession: three months
before a trough and (iv) early expansion: three months
after a trough. The last four rows of Table 4 report the
results for these subperiods. The BMA-Model incl. TVar-
Coeff. outperforms the no-predictability benchmark



-0
.0

2
-0

.0
1

0.
00

0.
01

0.
02

-3 -2 -1 0 +1 +2 +3
Peak

-0
.0

2
-0

.0
1

0.
00

0.
01

0.
02

-3 -2 -1 0 +1 +2 +3
Trough

Predicted equity premium

0.
00

0.
20

0.
40

0.
60

-3 -2 -1 0 +1 +2 +3
Peak

0.
00

0.
20

0.
40

0.
60

-3 -2 -1 0 +1 +2 +3
Trough

Portfolio weights of market

Fig. 1. Equity premium predictions and portfolio weights around peaks and troughs. The two graphs in the first row show the predicted monthly equity

premium using BMA-Model incl. TVar-Coeff. (solid line) and BMA-Model excl. TVar-Coeff. (long dashed line). The two graphs in the second row show the

portfolio weights of a mean–variance optimizing investor who uses forecasts from BMA-Model incl. TVar-Coeff. (solid line), uses forecasts from BMA-

Model excl. TVar-Coeff. (long dashed line), or does not believe in predictability and uses the historic mean and standard deviation (short dashed line).

Each graph shows averages across the 11 recessions of our sample period of 1937–2002.

Table 4
Business cycle analysis.

This table summarizes our main statistics across recessions (123 monthly observations) and expansions (665 monthly observations) and across four

business cycle (BC) periods (33 monthly observations per period): late expansion: 3 months prior to peak, early recession: 3 months after peak, late

recession: 3 months before trough, early expansion: 3 months after trough. The statistics include differences in mean squared prediction errors relative to

the no-predictability benchmark (Diff. MSPE) and utility gains relative to an investor using the unconditional mean return (Util. gain). nnn, nn, and n

indicate standard significance levels. Significance tests are relative to the no-predictability benchmark except for the columns labeled ‘‘Model

comparison’’ (in this case, the significance tests are across Models incl. TVar-Coeff. and Models excl. TVar-Coeff.) and the row labeled ‘‘ Diff.’’ (in this case,

the test is between recessions and expansions). Significance tests for differences between values of specific statistics across individual stages of the

business cycle are discussed and reported in the text.

Time period Models incl. TVar-Coeff. Models excl. TVar-Coeff. Model comparison

Diff. MSPE Util. gain Diff. MSPE Util. gain Diff. MSPE Util. gain

Rec. 0.0600nnn 24.967nnn 0.0168nn 9.378n 0.0478nnn 15.589nnn

Exp. 0.0121nn 1.622 0.0052 �1.990 0.0152nnn 3.613nn

Diff. �0.0479nnn
�23.345nnn

� .0116 �11.369nn

Late exp. 0.0327nnn 16.597n 0.0148 3.841 0.0184n 12.756

Early rec. 0.1156nnn 47.849nnn 0.0707nnn 30.543nn 0.0401nn 17.306nn

Late rec. 0.0490nn 6.421 �0.0092 �6.810 0.0752nnn 13.230

Early exp. 0.0075 �2.273 �0.0039 �8.321n 0.0266nnn 6.048
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significantly for all stages except Early expansion; i.e.,
shortly after the trough. Even the BMA-Model excl. TVar-
Coeff. shows predictability around the peak of the busi-
ness cycle. A closer look at the utility gains relative to an
investor using the no-predictability benchmark reveals
that the naive investor performs relatively well towards
the end of a recession and early in an expansion, because
of the nearly constant and high weight in the risky asset.
These utility gains, however, do not offset the huge losses
such an investor suffers from during the beginning of a
recession.

Fig. 1 shows the predicted equity premium (first row)
and the equity market weight of a mean-variance opti-
mizing investor (second row) across peaks and troughs. It
shows that the predictions from the BMA-Model incl.
TVar-Coeff. fit the theoretical pattern implied by
Campbell and Cochrane (1999): towards the end of the
recession the predicted risk premium increases and peaks
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in late recession, potentially reflecting the fact that
investors become more risk-averse during a recession.
During expansion, predicted risk premiums decrease
again; hence, the difference between the expected risk
premiums in late expansion and in late recession is
statistically significant. In contrast, the predictions from
BMA-Model excl. TVar-Coeff. do not match this pattern at
all. In this case, the expected risk premium stays at a
relatively constant, positive, but low level during the
entire recession. We conclude that these predictions are,
thus, less economically meaningful.

As far as portfolio weights (see Eq. (10) in Campbell
and Thompson, 2008) are concerned (second row of
illustrations in Fig. 1), we find that the asset allocation
strategy of an investor relying on the BMA-Model incl.
TVar-Coeff. seems to time the market very well. On
average, the investor withdraws from the market quickly
at the beginning of a recession (the drop in portfolio
weight is statistically significant), and then moves back in
(even more than before) towards the end of it. In contrast,
an investor using predictions from the BMA-Model excl.
TVar-Coeff. pulls out of the market after a peak but
completely fails to move into the market again towards
the end of the recession.

Our model is consistent with the implications of asset
pricing models that use time-varying risk aversion to
generate time-varying risk premiums (e.g., see Campbell
and Cochrane, 1999). This agreement between our
empirical predictions and asset pricing theory suggests
the notion that time-varying risk aversion along the
business cycle is related to the existence of out-of-sample
predictability. Thus, we conclude that predictability
reflects business cycle risk rather than market ineffi-
ciency. Therefore, it is also not surprising that predict-
ability is not driven away over time. This view is
somewhat supported by the literature on fund manager
skills that finds that fund managers perform statistically
and economically better during recessions than during
expansions (see, for example, Kacperczyk, Van
Nieuwerburgh, and Veldkamp, 2011). Thus, we conjecture
that fund managers actively exploit the higher levels of
market return predictability during recessions, but they
are not able to eliminate it because of the risks involved.

4.2.3. Return predictions and macrovariables

To shed more light on this relation between return
predictability and the business cycle, we compare the
time-series of our predictions to three macrovariables:
the consumption-wealth ratio (cay) of Lettau and
Ludvigson (2001), the wealth–consumption ratio of Van
Nieuwerburgh, Lustig, and Verdelhan (2010), and quar-
terly gross domestic product (GDP) growth rates.15

We observe interesting time-series patterns in Fig. 2.
In the case of cay and predictions from the BMA-Model
incl. TVar-Coeff., there are periods, in which the two series
15 All data are quarterly. Data of cay are from Martin Lettau’s web

page. Data of the wealth–consumption ratio of Van Nieuwerburgh,

Lustig, and Verdelhan (2010) are from Stijn van Nieuwerburgh’s web

page. We use the quarterly log wealth–consumption ratio, wc, in our

analysis. GDP growth rates are obtained from Datastream.
move in the same direction (e.g., in the late 1960s, early
1970s, and late 1980s), and periods, in which they move
in opposite directions (e.g., in the late 1950s and early
1990s). In the case of predictions from the BMA-Model
excl. TVar-Coeff., the graph reveals several periods with
pronounced inverse dynamics (especially during the
1970s and in the early 1990s).

If we calculate time-series correlations between these
data series, we find a slightly negative but insignificant
correlation between predictions from the BMA-Model
incl. TVar-Coeff. and cay. In contrast, we find a signifi-
cantly negative correlation of �0.42 between predictions
from the BMA-Model excl. TVar-Coeff. and cay. Given that
Lettau and Ludvigson (2001) argue that cay is positively
related to expected future returns, this substantial, nega-
tive correlation is surprising but consistent with the poor
predictive performance of models with constant
coefficients.

The time-series of wc shows quite different dynamics
than cay, which is not surprising given the low correlation
of 0.16 between these time-series as reported in Van
Nieuwerburgh, Lustig, and Verdelhan (2010). The wealth–
consumption ratio wc slowly decreases over time, reaches
its minimum in the early 1980s, and then steadily
increases during the remainder of the sample period.
Predictions from the BMA-Model incl. TVar-Coeff. show
a somewhat related general pattern albeit much noisier;
predictions from the BMA-Model excl. TVar-Coeff., how-
ever, tend to follow the opposite pattern with high
predicted returns during the late 1970s and early 1980s.

These observations are also confirmed if we look at the
time-series correlations: we find a significantly positive
correlation in the case of predictions from the BMA-Model
incl. TVar-Coeff. (0.22) and a significantly negative corre-
lation in the case of predictions from the BMA-Model excl.
TVar-Coeff. (�0.19). Similar to the case of cay, this
negative correlation of predictions of models with con-
stant coefficients is counter-intuitive (Van Nieuwerburgh,
Lustig, and Verdelhan, 2010 find a positive correlation of
12% between total wealth returns and the value-weighted
Center for Research in Security Prices (CRSP) stock
return).

Finally, in the case of GDP-growth, the visual inspec-
tion of the graph does not yield any obvious insights.
Correlations are positive but insignificant for predictions
from the BMA-Model incl. TVar-Coeff. (0.07) and signifi-
cantly negative for predictions from the BMA-Model excl.
TVar-Coeff. (�0.13). If we zoom into business cycle
recessions, we find that correlations between GDP-growth
and predictions from the BMA-Model incl. TVar-Coeff.
increase substantially to 0.18. This is consistent with our
previous result that, on average, predicted expected
returns increase during recessions as does GDP-growth.

To conclude, the time-series comparison of return
predictions to a selection of macrovariables shows rea-
sonable patterns for predictions from the BMA-Model
incl. TVar-Coeff. Predictions from the BMA-Model excl.
TVar-Coeff., in contrast, show correlations with macro-
variables that are at odds with existing results regard-
ing the link between these macrovariables and future
expected returns.
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Quarterly return predictions are calculated as compounded monthly predictions.
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4.3. Characterization of the BMA-model

The previous section described empirical results that
confirm that the BMA-Model including time-varying
coefficients performs consistently well at predicting mar-
ket returns. Given that this model is a fairly sophisticated
combination of many individual models, we want to shed
some more light on it and evaluate its characteristics in
more detail.

4.3.1. Variance decomposition and the degree

of time-variation

As a first step, we perform a variance decomposition.
Since the Bayesian model averaging approach keeps track
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of all possible sources of uncertainty regarding the pre-
diction, we can decompose the prediction variance of the
return into four parts:
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Eq. (6) can be deduced by decomposing the variance of
the random variable r step by step into expected in-
sample variances and inter-sample variances.16

The individual terms of (6) can be interpreted in a very
intuitive way. The first term is the expected observational
variance (St9Mj,di is the time-t estimate of the observa-
tional variance V in (1) conditional on model Mj and time-
variation coefficient di). The second term states the
expected variance from errors in the estimation of the
coefficient vector. We will refer to it as estimation
uncertainty. Both the third and the fourth term character-
ize model uncertainty. The third term measures model
uncertainty with respect to variable selection, and the
fourth term measures model uncertainty with respect to
the time variability of the regression coefficients.

In Fig. 3, we plot the relative weights of these compo-
nents of prediction variance over time. Panel A shows
these components as a fraction of total variance. The
dominant source of uncertainty is observational variance.
This is not surprising, since over short prediction hori-
zons, random fluctuations are expected to dominate the
uncertainty in the predicted trend component.

Therefore, Panel B masks out observational variance
and focuses only on the other three components. In most
periods, the estimation uncertainty in coefficients cap-
tures more than half of the remaining variance. This fits
well with findings documented in Pastor and Stambaugh
(1999). Interestingly, they find the same relation for cost
of capital estimations on the firm level, while the results
presented here are for cost of capital on the market level.
In periods of stress, model uncertainty peaks (e.g., in a
couple of periods in the 1970s due to oil price shocks, and
around 1990 due to the Iraq-Kuwait war). Uncertainty
about the correct degree of time-variation (d) is, in
general, relatively low except for individual periods (e.g.,
in the mid-1950s, in the end of the 1980s, and in the
beginning of the 1990s).
16 Starting with the decomposition with respect to different values of d,

we can write VarðrÞ ¼ EdðVarðr9dÞÞþVardðEðr9dÞÞ, where Ed and Vard denote

the expected value and the variance with respect to d. The term EdðVarðr9dÞÞ
represents the first three terms in Eq. (6). The term VardðEðr9dÞÞ is the last

term in (6). In a second step, the term EdðVarðr9dÞÞ can be further

decomposed into Varðr9dÞ ¼ EMðVarðr9M,dÞÞþVarMðEðr9M,dÞÞ, which splits

term three of Eq. (6) from the remainder. The final variance decomposition

as shown in (6) follows from simple rearrangements.
Fig. 3 shows that there is little uncertainty about the
degree of time-variation, but it does not reveal the
empirically estimated degree of time-variation. Given
the results discussed before, we expect to find that
models with time-varying coefficients play an important
role within the BMA-Model. To address this question, we
plot the total posterior probability of all models for each
value of d considered (see Fig. 4).

Fig. 4 draws an unambiguous picture. Models with
moderately time-varying coefficients (i.e., d¼ 0:98) con-
sistently accumulate more than 80% of posterior prob-
ability. Constant-coefficient models (i.e., d¼ 1:0) perform
well over the first 15 years but lose support from the data
in and after 1955. Note that the cumulative posterior
probability of constant-coefficient models basically drops
to zero and stays there from 1974 onwards. In contrast,
very dynamic models with d¼ 0:96 play no role during
the 1950s and 1960s but receive considerable support
over some later time periods: especially notable is the
short blip following the stock market crash in October
1987. Given the dominance of the models with d¼ 0:98 in
Fig. 4, it is not surprising that we find little uncertainty
about the degree of time-variation in Fig. 3.

Similarly, Fig. 5 shows the posterior-probability
weighted average value of d; i.e., the estimated degree
of time-variation in coefficients across time. We see that
the degree of time-variation itself changes over time:
periods with relatively stable estimates of d (e.g., from the
mid-1950s to the mid-1970s) alternate with periods
showing sharp changes, mostly steep drops. These sharp
drops in average d (i.e., increases in the estimated varia-
bility of the regression coefficients) can in many cases be
associated with crises like the oil price shock of the mid-
1970s or the stock market crash of 1987. A potential
future research question is to more precisely relate the
dynamics of the estimated degree of time-variation to the
economic cycle or other economic events (see Henkel,
Martin, and Nardari, 2011 for evidence that parameter
instability is related to cyclical economic conditions).
4.3.2. Analysis of individual coefficients and models

Another interesting analysis is to characterize the top
performing models. Pesaran and Timmermann (1995) and
Bossaerts and Hillion (1999), for example, select top
performing models according to various statistical mea-
sures for their prediction analysis and report a large
amount of variability among these top models. For this
purpose, we focus on the Top-10 individual models within
the BMA-Model excluding time-varying coefficients as
well as within the BMA-Model including time-varying
coefficients. Fig. 6 shows how much posterior probability
the Top-10 models receive over time. In the case of the
BMA-Model excluding time-varying coefficients, the pos-
terior probability assigned to the Top-10 models does not
account for more than 7% at the end of the sample period
and never exceeds 16%. In contrast, the posterior
probability assigned to the Top-10 models of the BMA-
Model including time-varying coefficients increases to
more than 80% over the sample period. Consequently, in
the case of the BMA-Model excluding time-varying
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coefficients, the Top-10 individual models are less distinct
from other individual models.

This is a potentially important insight, as it provides an
explanation for the erratic behavior of the best models
reported in the literature to date. Pesaran and
Timmermann (1995) and Bossaerts and Hillion (1999),
among others, report that their individual top models
changed considerably over time. They admit that their
analysis suffers from variability in the top models’ speci-
fications. Our analysis documents precisely this behavior
– many different model specifications with similar poster-
ior probabilities – for models assuming constant coeffi-
cients. However, we show that this ‘‘stationarity issue’’
can be largely resolved by allowing coefficients to vary
over time.

In the next step, we evaluate the importance of
individual predictive variables in the BMA-Models. For
each variable, we use the sum of posterior probabilities of
all models that include this variable as our measure of
importance. This measure is the natural choice in a
Bayesian framework and allows us to evaluate ex post
how much support individual variables receive from the
data. The limitation of this measure is, however, that it
does not directly analyze the predictive power of indivi-
dual variables.

Table 5 evaluates this measure of importance at four
points in time (December 1964, December 1975, Decem-
ber 1987, and January 2003) and shows a few interesting
results. First, the dividend yield, the cross-sectional pre-
mium, and the book-to-market ratio consistently receive
the highest posterior probabilities. These variables receive
weights that are larger than 50% (i.e., the unconditional
prior value) across all four points in time (in most cases,
their posterior probability exceeds 90%). Second, in con-
trast to the previous result, we find that no single variable
consistently exceeds the prior of 50% if we limit our
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analysis to the BMA-Model excluding time-varying coeffi-
cients. The cross-sectional premium performs best and
falls short only of the unconditional prior in December
1975 with a value of 49%. Together, these results further
emphasize the previous observation that the assumption
of constant coefficients results in instability of models,
i.e., in instability of the assessment of importance of
predictive variables.

Putting this section’s results together, we conclude
that the BMA-Model including time-varying coefficients is
more successful in identifying important variables and
models (i.e., combinations of variables) than the BMA-
Model excluding time-varying coefficients. We think that
a possible explanation for this observation is that models
with constant coefficients flip between individual vari-
ables or models to compensate for the lack of variation in
the coefficients.
4.4. Case study: the dividend yield as a predictive variable

In this section, we perform a case study. We focus on
the dividend yield as a predictive variable and analyze
how its predictive performance changed due to release of
Rule 10b-18 by the SEC in November 1982. We do this
case study for two important reasons: (i) to discuss the
adaptation of dynamic linear models to changes in the
economic relations (in this case to changes in the reg-
ulatory framework) and (ii) to compare the performance
of dynamic linear models to regime-switching models.
Rule 10b-18 facilitated share repurchases under certain
circumstances (see Grullon and Michaely, 2002 for details
on Rule 10b-18). As a consequence of this change in
regulation, individual firms’ dividend and payout policies
adjusted, resulting in a significant reduction in aggregate
dividend yield combined with an apparent change in the
information content of dividend payments (see
Boudoukh, Michaely, Richardson, and Roberts, 2007 for
empirical evidence).

Lettau and Van Nieuwerburgh (2008) provide strong
in-sample evidence for regime shifts in the long-term
mean of the dividend-price ratio. Allowing for one regime
shift in the mean dividend yield, their in-sample analysis
dates the shift to the year 1991. If two shifts are allowed,
these shifts are dated to the years 1954 and 1994. The
authors fail, however, to link these dates to specific
economic events causing these regime shifts. While most
regime-shifting models concentrate only on ex post pre-
dictability and in-sample detection of shifts, Lettau and
Van Nieuwerburgh (2008) also explicitly analyze the out-
of-sample properties of their regime-shifting model. They
find poor predictive quality that is dominated by their no-
predictability benchmark. This is so because of non-
reliable real-time results in (i) dating regime shifts and
more severely (ii) the estimation of the size of the shift in
the steady state. That is, they find that regime-shifting
models have considerable difficulty in learning out-of-
sample whether a shift has occurred recently.



Table 5
Importance of individual variables.

This table measures the sum of posterior probabilities across all models that include a specific explanatory variable at four points in time. Columns 2–5

cover all models, and columns 6–9 focus on models with constant coefficients. See Section 3.1 for the definition of the variables and their abbreviations.

Predictive variable Models incl. TVar-Coeff. Models excl. TVar-Coeff.

1964.12 1975.12 1987.12 2003.1 1964.12 1975.12 1987.12 2003.1

dy 0.94 0.80 0.93 0.91 0.72 0.40 0.31 0.25

ep 0.25 0.16 0.46 0.77 0.29 0.30 0.27 0.25

dpayr 0.38 0.21 0.58 0.78 0.32 0.45 0.46 0.22

svar 0.17 0.07 0.01 0.01 0.22 0.22 0.44 0.25

csp 0.99 1.00 1.00 1.00 0.71 0.49 0.55 0.89

bmr 1.00 1.00 1.00 1.00 0.98 0.96 0.96 0.39

ntis 0.25 0.08 0.13 0.40 0.35 0.31 0.83 0.69

tbl 0.37 0.26 0.95 0.71 0.38 0.34 0.44 0.37

lty 0.41 0.70 0.08 0.37 0.39 0.39 0.27 0.41

ltr 0.27 0.21 0.19 0.12 0.30 0.50 0.59 0.63

dfy 0.12 0.06 0.01 0.18 0.39 0.50 0.32 0.21

dfr 0.06 0.02 0.13 0.03 0.21 0.16 0.43 0.28

inf 0.31 0.19 0.07 0.03 0.49 0.71 0.47 0.33
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Fig. 7. The dividend yield as a predictive variable. This figure reports the

sum of posterior probabilities of all models including the dividend yield

as a predictive variable for two groups of models: (1) the BMA-Model

incl. TVar-Coeff. and (2) the BMA-Model excl. TVar-Coeff.
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How, in contrast, does our methodology perform in
detecting and learning this regulatory change in real-
time? The BMA-Model including time-varying coefficients
does very well in handling the regime shift. Fig. 7 shows
the dividend yield’s importance over time, measured as
the sum of the posterior probabilities assigned to indivi-
dual predictive models including the dividend yield. Two
different models are compared: the BMA-Model including
time-varying coefficients and the BMA-Model excluding
time-varying coefficients. The vertical line in the graph
indicates the date of the release of Rule 10b-18.

The BMA-Model including time-varying coefficients
views the dividend yield as a consistently important
variable. In a reaction to the structural change caused by
the release of Rule 10b-18, the BMA-Model including
time-varying coefficients increases the overall weight of
the dividend yield. This reaction is immediate and sug-
gests that the information content of dividend payments
increased, although overall dividend payments declined.
This is so because (i) the dynamic linear models adapt
their coefficients to the new situation and (ii) due to
Bayesian learning, models with good out-of-sample per-
formance receive (step by step) higher weights.

In contrast, models with constant coefficients (BMA-
Model excluding time-varying coefficients) cannot prop-
erly handle the update in the regulatory framework that
obviously changed the predictive impact of the dividend
yield on equity returns. Since constant-coefficient models
are, by definition, only slowly adapting estimated sensi-
tivities, the only possible reaction to bad calibration is
that the BMA procedure weights down models that
include the dividend yield as a predictor (the importance
of the dividend yield as a predictor drops by 19.9% in
March 1983). This pattern can also explain the results
reported in Goyal and Welch (2008) and Ang and Bekaert
(2007), who detect instability of prediction models using
the dividend yield.

To conclude, this small case study shows that our
framework with time-varying coefficients can quickly
learn – in real-time – changes in economic relations, even
if these changes are discrete jumps such as the release of
Rule 10b-18. In contrast, regime-switching models that
focus exclusively on the dividend yield as a predictor
seem to perform much worse out-of-sample (see, for
example, Lettau and Van Nieuwerburgh, 2008). We inter-
pret this case-study evidence as supportive of our choice
of econometric technique, especially considering that the
goal of our study is to evaluate out-of-sample predict-
ability of a comprehensive set of 13 predictive variables
rather than only the dividend yield.

5. Conclusion

Although the literature on equity return prediction is
growing quickly, it is still quite inconclusive about two
fundamental questions: Does out-of-sample predictability
exist, and what are the important predictive variables?
The literature agrees, however, that parameter instability
represents a major challenge in this area. Most papers
address it using rolling-window regressions and/or by
performing subperiod investigations. Both approaches are
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ad hoc, non-systematic, and unhelpful in understanding
the true degree of parameter instability. In contrast, we
propose a systematic way to take time-variation of
coefficients into account.

Coming back to the fundamental questions in return
prediction, we find large, significant, and consistent
improvements in the accuracy of out-of-sample predic-
tions if models with time-varying coefficients are consid-
ered. These gains in prediction accuracy also result in
considerable economic profits for an investor who uses
the predictions of our framework with time-varying
coefficients. Such an investor outperforms both an inves-
tor who uses constant-coefficient models and an investor
who uses the unconditional mean and variance.

Furthermore, we find that predictability is closely
related to the business cycle. Our empirical methodology
predicts, on average, a decreasing (increasing) equity risk
premium during expansions (recessions)—broadly con-
sistent with asset pricing theory (e.g., Campbell and
Cochrane, 1999). In this theory, the driving force behind
this pattern is time-varying risk aversion. Thus, we view
our study’s results as consistent with a story, in which
time-varying risk aversion is responsible (at least partly)
for out-of-sample predictability of equity returns.

In contrast to the existing literature, we do not find
that predictability exists exclusively during recessions.
We also show evidence for out-of-sample predictability
during expansions—on a smaller scale and only if time-
varying coefficients are taken into consideration. We also
analyze the potential sources of this outperformance and
find that it is directly related to the inclusion of time-
varying coefficients: models with constant coefficients
receive basically no support from the data. Further, even
if we abstract from the issue of variable selection, we find
significant gains in prediction performance for individual
models (e.g., univariate models) including time-varying
coefficients.

Finally, we show that our simple way of modeling
time-variation in coefficients – namely, as a random walk
– can quickly learn changes in the underlying relations,
such as changes in the regulatory environment in the case
of the dividend yield. While the simplifying assumption of
random-walk coefficients is theoretically unappealing, it
seems to be empirically important, as we find that models
with autocorrelated coefficients are outperformed by
models using random-walk coefficients. One possible
explanation of this result is that the random-walk
assumption reduces estimation errors by not imposing a
special autocorrelation structure on the coefficients’
dynamics. Another possible explanation is that we impli-
citly favor the random-walk assumption in our setup by
forcing the same autocorrelation structure on all coeffi-
cients within a model.

While we are confident that our paper provides several
contributions to the literature on equity return prediction,
it also raises new questions. Most importantly, it raises a
question about the economic forces that cause time-
varying predictive relations. In this respect, we would
need both more theoretical and more empirical research.
In a broader context, our results have important implica-
tions for the portfolio optimization and asset allocation
literature. Our findings imply that predictive relations
vary considerably over time. Thus, predictions of the
equity premium beyond a monthly horizon become more
uncertain relative to monthly predictions (see Pastor
and Stambaugh, 2012). How investors should optimally
account for this information in their long-term asset
allocation decisions is an interesting question for future
research.

Appendix A

A.1. The mathematics of dynamic linear models

From the specification of the dynamic linear model in
Eqs. (1) and (2) in Section 2.1, we develop the recurrence
for updating the belief about the system coefficients and
the observational variance in response to observing a new
return realization (see West and Harrison, 1997). Given a
normally distributed prior for the system coefficients y0

and an inverse-gamma distributed prior for the observa-
tional variance V, this can be done in a fully conjugate
Bayesian analysis ensuring that prior and posterior dis-
tributions come from the same family of distributions. As
a time t¼0-prior we use the natural conjugate g-prior
specification stated in Eqs. (3)–(5).

Suppose at some arbitrary time t we have already
observed the current return rt. Hence, we are able to form
a posterior belief about the values of the unobservable
coefficients yt�19Dt and of the observational variance
V9Dt . These posteriors are again jointly normally/
inverse-gamma distributed of the form

V9Dt � IG
nt

2
,
ntSt

2

� �
, ð7Þ

yt�19Dt ,V �N½mt ,VCn

t �, ð8Þ

where St is the mean of the time-t estimate of the
observational variance V, and nt is the associated number
of degrees-of-freedom. The vector mt denotes the point
estimate of the vector of coefficients yt�1 conditional on
Dt and V. Cn

t is the estimated, conditional covariance
matrix of yt�1 normalized by the observational variance.
This assumption implies that after integrating out V, the
posteriors of the coefficients are multivariate t-distribu-
ted given by

yt�19Dt � Tnt ½mt ,StC
n

t �: ð9Þ

When iteratively updating the estimates, we must
remember that due to varying regression coefficients,
the posterior distribution of yt�19Dt does not automati-
cally become the prior distribution of yt9Dt . According to
Eq. (2), the underlying regression coefficients are exposed
to Gaussian shocks, which increase the variance but
preserve the mean of the estimate,

yt9Dt � Tnt ½mt ,StC
n

t þWt�: ð10Þ

As mentioned in Section 2.1, we can find the predictive
density of the time tþ1 return rtþ1 by integrating the
conditional density of rtþ1 over the range of y and V. Let
jðx;m,s2Þ denote the density of a (possibly multivariate)
normal distribution evaluated at x and igðV ; a,bÞ the
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density of a IG½a,b� distributed variable evaluated at V. The
predictive density is then

f ðrtþ19DtÞ ¼

Z 1
0

Z
y
jðrt;X

0
ty,VÞjðy;mt ,VCn

t þWtÞ dy
� �

�ig
nt

2
,
ntSt

2

� �
dV

¼

Z 1
0

jðrt;X
0
tmt ,X

0
tðVCn

t þWtÞXtþVÞ

�ig
nt

2
,
ntSt

2

� �
dV ¼ tnt ðrtþ1; r̂ tþ1,Qtþ1Þ, ð11Þ

where tðrtþ1; r̂ tþ1,Qtþ1Þ is the density of a t-distribution
with nt degrees-of-freedom, mean r̂ tþ1, variance Qtþ1,
evaluated at rtþ1. The mean of the predictive distribution
of rtþ1 is given by

r̂ tþ1 ¼ X0tmt , ð12Þ

since the prior of the regression coefficients is centered at
mt. The total unconditional variance of the predictive
distribution is given by

Qtþ1 ¼ X0tRtXtþSt , ð13Þ

Rt ¼ StC
n

t þWt , ð14Þ

where Rt denotes the unconditional variance of the time t-
prior of the coefficient vector yt . The first term in (13)
characterizes the variance coming from uncertainty in the
estimation of yt; the second term St is the estimate of the
variance of the error term in the observation equation.

After the time tþ1 return rtþ1 is observed, the priors
about yt and V are updated using Eqs. (15)–(20).

etþ1 ¼ rtþ1�r̂ tþ1 ðerror in predictionÞ: ð15Þ

The prediction error is the essential signal conditioning
learning. Whenever etþ1 equals zero, the observed return
equals the forecast, and thus, there is no updating in the
coefficients

ntþ1 ¼ ntþ1 ðdegrees-of-freedomÞ, ð16Þ

Stþ1 ¼ Stþ
St

nt

e2
tþ1

Qtþ1
�1

 !

ðestimator of observational varianceÞ: ð17Þ

Since the total variance of the forecast is given by Qtþ1,
we have Eðe2

tþ1Þ ¼Qtþ1. If the error in prediction coin-
cides with its expectation (i.e., e2

tþ1 ¼Qtþ1), the estimate
of the observational variance is unchanged (i.e., Stþ1 ¼ St).
A prediction error below the expected error leads to a
reduction in the estimated observational variance, and
vice versa. The adaptive vector

Atþ1 ¼
RtXt

Qtþ1
ðadaptive vectorÞ, ð18Þ

measures the information content of the current observa-
tion in relation to the precision of the estimated regres-
sion coefficient and therefore characterizes the extent to
which the posterior of yt reacts to the new observation.
The point estimate m and the covariance matrix Cn are
updated as follows:

mtþ1 ¼mtþAtþ1etþ1

ðestimator for expected coefficient vectorÞ, ð19Þ
Cn

tþ1 ¼
1

St
ðRt�Atþ1A0tþ1Qtþ1Þ

ðestimator for variance of coeff : vectorÞ: ð20Þ

The discount factor approach that we use to give
structure to Wt assumes that the variance matrix Wt of
the error term ot is proportional to the estimation
variance StC

n

t of the coefficient vector yt9Dt . More pre-
cisely, it is assumed that

Wt ¼
1�d
d

StC
n

t , d 2 fd1,d2, . . . ,ddg, 0odir1, ð21Þ

and thus, the expression for the variance of the forecasted
coefficient vector simplifies to

Rt ¼ StC
n

t þ
1�d
d

StC
n

t ¼
1

d
StC

n

t , ð22Þ

which ensures analytical tractability of the model. This
assumption implies that periods of high estimation error
in the coefficients coincide with periods of high variability
in coefficients. The nested family of models with constant
regression coefficients corresponds to a specification of
d¼ 1. Reducing d below the value of 1 introduces time-
variation to the set of regression coefficients. The choice
of d is, in addition to the selection of the set of predictive
variables, a further dimension of model uncertainty that is
treated in the Bayesian model averaging framework pre-
sented in Section 2.2.
A.2. Bayesian model selection

Let Mi denote a certain choice of predictive variables
from the k candidates, and dj a certain selection from the
set fd1,d2, . . . ,ddg. Certainly, these choices crucially influ-
ence the predictive density of the forecasts of the indivi-
dual models; thus, we rewrite the point estimate of rtþ1 as

r̂
j
tþ1,i ¼ Eðrtþ19Mi,dj,DtÞ ¼ X0tmt9Mi,dj,Dt : ð23Þ

When giving prior weights to the individual models,
we start out with the diffuse conditional prior
PðMi9dj,D0Þ ¼ 1=ð2k

�1Þ 8i. We use Bayes’s rule to obtain
the posterior probabilities

PðMi9dj,DtÞ ¼
f ðrt9Mi,dj,Dt�1ÞPðMi9dj,Dt�1Þ

f ðrt9dj,Dt�1Þ
, ð24Þ

where

f ðrt9dj,Dt�1Þ ¼
X

M

f ðrt9Mi,dj,Dt�1ÞPðMi,dj,Dt�1Þ: ð25Þ

The crucial part is the conditional density

f ðrt9Mi,dj,Dt�1Þ �
1ffiffiffiffiffiffiffiffi
Qj

t,i

q tnt�1

rt�r̂
j
t,iffiffiffiffiffiffiffiffi

Qj
t,i

q
0
B@

1
CA, ð26Þ

where tnt�1
is the density of a Student-t-distribution and

r̂
j
t,i and Qj

t,i are the respective point estimates and var-
iance of the predictive distribution of model Mi and given
d¼ dj; see Eq. (11). The time tþ1 return prediction of the



Table 6
Statistical evaluation.

This table summarizes the differences in MSPEs (multiplied by 100) between the no-predictability benchmark and a predictive model. It also provides

the p-values of one-sided tests that the difference is larger than zero. Given that we compare prediction quality with respect to a nested model, we apply

the definitions of Clark and West (2006) for the statistics of the differences of MSPEs.

Predictive model 1947þ 1965þ 1976þ 1988þ Expansions Recessions

DMSPE p-Value DMSPE p-Value DMSPE p-Value DMSPE p-Value DMSPE p-Value DMSPE p-Value

G¼1.0 0.018 0.00 0.023 0.00 0.030 0.00 0.030 0.01 0.013 0.24 0.045 0.04

G¼0.99 0.003 0.11 0.003 0.14 0.002 0.20 0.002 0.20 �0.007 0.70 0.010 0.14

G¼0.98 0.002 0.18 0.003 0.13 0.002 0.19 0.003 0.17 �0.000 0.51 0.011 0.13

G¼0.97 0.000 0.30 0.003 0.19 0.002 0.27 0.002 0.27 0.008 0.33 0.010 0.17

G¼0.96 0.000 0.32 0.003 0.19 0.002 0.22 0.003 0.21 0.004 0.39 0.011 0.17

Rolling OLS �0.051 0.99 �0.054 0.99 �0.049 0.98 �0.067 0.99 �0.140 1.00 �0.062 0.87

Months 744 528 396 252 799 136

17 Given the restricted number of observations we have available,

the full estimation of a general autoregressive model for y in our

Bayesian framework is empirically not feasible. This problem of limited

empirical data availability is also discussed in Kilian and Taylor (2003)

for the case of exchange rate predictions. They conclude that ‘‘Our

analysis suggests that this difficulty of beating the random-walk model

in real time need not reflect an inherent shortcoming of forecasting

models based on economic fundamentals. Instead, we showed that this

stylized empirical fact appears to be a natural consequence of the small

time span of data available for empirical work’’.
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average model for a given d¼ dj then equals

r̂
j
tþ1 ¼

X2k
�1

i ¼ 1

PðMi9dj,DtÞr̂
j
tþ1,i: ð27Þ

Since a particular choice of d cannot be done on an ad
hoc basis, we also perform Bayesian model averaging over
different values of d. If we consider d candidates for d, we
assign a prior probability of 1=d to each d value. The time-
t posterior probability of a certain d is then

Pðdj9Dt ,Þ ¼
f ðrt9dj,Dt�1ÞPðdj9Dt�1ÞP
df ðrt9d,Dt�1ÞPðd9Dt�1Þ

: ð28Þ

Note that this posterior probability is going to be of key
importance in our empirical analysis, as it indicates which
assumptions on time-variation are supported by the data.

The total posterior of a certain model configuration
(i.e., variable choice and choice of d) is then given by

PðMi,dj9DtÞ ¼ PðMi9dj,DtÞPðdj9DtÞ, ð29Þ

and the unconditional average prediction of the average
model is

r̂ tþ1 ¼
Xd

j ¼ 1

Pðdj9DtÞr̂
j
tþ1: ð30Þ

A.3. Empirical robustness tests

In this subsection of the Appendix we evaluate the
robustness of our main results on predictability along
several dimensions. First, we change the way in which we
determine the uninformative prior for the coefficient
vector y09D0. While our main results are based on full-
sample OLS estimates of the variance in coefficients, the
results discussed in this section use an explicit burn-in
period of 60 months. Second, we want to exploit the
available time-series dimension to a larger extent. The
sample period used to derive our main results is based on
the period of time, for which we observe all explanatory
variables, namely May 1937 to December 2002. But
except for one variable, csp (i.e., the cross-sectional pre-
mium), all data are available for a much longer time
period, namely January 1927 to December 2008. To
extend our sample period, we change the predictive
technology such that it allows variables to enter and exit
the sample at arbitrary points in time. Third, we also
provide information about the Bayes Factor (i.e., the
performance measure underlying our BMA approach) of
the average model with constant coefficients relative to
the full BMA model. Fourth, we report results from roll-
ing-window OLS regressions, in which we consider a
kitchen-sink specification that includes all predictive
variables (following Goyal and Welch, 2008, we use a
rolling-window size of 60 months).

Fifth, the last and potentially the most important
robustness test is to relax the random-walk assumption
for time-varying coefficients (see Eq. (2), i.e., the system
equation of our model, that specifies that coefficients
follow a random walk, i.e., yt ¼ yt�1þot). This assumption
is not completely consistent with asset pricing theory,
since without regularly linking the model to empirical
data, expected asset returns are not stationary. One way
to adapt the model to address the stationarity issue is to
formulate the system equation as an autoregressive
process. To keep the model tractable, we introduce auto-
regression to the system equation in the following simple
form:

yt ¼ GIyt�1þot , ð31Þ

where I is the identity matrix and 0oGr1 is a scalar.17 If
G equals 1.0, Eq. (31) equals Eq. (2), hence, our main
model is a boundary case of the more general version
presented here. To get an assessment of the importance of
the stationarity issue, we measure the predictive perfor-
mance of models with autoregressive dynamics in y
relative to the random-walk specification (G¼1.0) accord-
ing to their MSPE-statistics (we use G ¼ 0.99, 0.98, 0.97,



Table 7
Economic evaluation.

We assume an investor with a single-period horizon, mean–variance preferences, and a relative risk aversion equal to 3.0. Further, we limit the share

invested into the S&P 500 to be between 0% and 150%. The table shows utility gains p.a. of an investor using any of the predictive models relative to an

investor following the no-predictability benchmark. Significance tests are based on the monthly time-series of realized utility gains where daily index

returns within a month are used to estimate the monthly return variance. nnn, nn, and n indicate standard significance levels of the utility gain relative to

the no-predictability benchmark.

Predictive model 1947þ 1965þ 1976þ 1988þ Expansions Recessions

G¼1.0 4.57nnn 7.31nnn 8.23nnn 6.99nn 1.87 17.11nnn

G¼0.99 �0.84 1.50 0.15 0.94 �3.13 14.12nnn

G¼0.98 �1.53 1.15 �0.29 0.84 �3.99 14.18nnn

G¼0.97 �1.85 1.18 �0.22 1.02 �3.62 13.75nn

G¼0.96 �2.01 1.25 �0.11 1.20 �3.78 13.74nn

Rolling OLS 4.25nnn 6.89nnn 5.87nnn 3.97n
�2.44 22.18nnn
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Fig. 8. Equity premium predictions around peaks and troughs. The two graphs in the first row show the predicted monthly equity premium using the BMA-

Model incl. TVar-Coeff. with G¼1 (solid line), the realized returns (long dashed line), and the no-predictability benchmark (short dashed line). The two graphs in

the second row show the predicted monthly equity premium using the BMA-Model incl. TVar-Coeff. with G¼0.99 (solid line), the realized returns (long dashed

line), and the no-predictability benchmark (short dashed line). Each graph shows averages across the 11 recessions of our sample period from 1937 to 2002.
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and 0.96). The goal is to check if any individual parameter
choice of G performs better than our current choice of
random-walk coefficients.

Table 6 (similar to Table 2) reports the prediction
accuracy of BMA-Models incorporating these extensions/
robustness checks. For simplicity, we ignore univariate
models, as we did not find any evidence of predictability
in our main results. The most important implication of
these results is that in the horse race between random
walk coefficients and mean-reverting coefficients, the
random-walk hypothesis works by far best from an
empirical point of view. p-Values of out-of-sample pre-
dictability tests are always lowest for the BMA-Model
with random-walk coefficients; any evidence of predict-
ability actually disappears across nearly all subsamples if
coefficients are modeled to be mean-reverting.

Further, comparing the results of Tables 2 and 6 shows
that the extensions to model an explicit burn-in phase in
the beginning and to increase our sample period do not
alter any of our main results: we still find that models
with time-varying coefficients work well and that there is
evidence of out-of-sample predictability. As far as simple
rolling-window OLS predictions are concerned, we con-
firm the existing evidence of no-predictability.

Table 7 (similar to Table 3) reports utility gains of
investors using any of these prediction technologies.
Again, we find that only dynamic linear models with
random-walk coefficients generate significantly positive
utility gains among the models with time-varying coeffi-
cients. Interestingly, the rolling-window regressions work
well in terms of utility gains18—though, not as well as our
suggested predictive model with time-varying, random-
18 This tension between statistical evidence of predictability and

economic gains in the case of rolling-window regressions is consistent

with Goyal and Welch (2008). Goyal and Welch (2008) attribute it to

characteristics of the evaluated sample period: ‘‘Put differently, some

strategy certainty equivalence (CEV) gains are due to the fact that the

risky equity investment was a better choice than the risk-free rate in our

data’’.
walk coefficients. Furthermore, our results are basically
unaffected by the burn-in phase and the extended sample
period.

Another important result of this study is that equity
premiums predicted via models with time-varying coeffi-
cients seem to be economically reasonable. Fig. 8 (similar
to Fig. 1) shows the dynamics of the prediction over the
business cycle. In the case of G¼1, i.e., random-walk
coefficients (the two graphs in the top row), we find a
similar pattern to Fig. 1 (around the peak of the business
cycle, predicted returns decrease and increase again
around the trough of the business cycle); i.e., these
dynamics are robust to the extensions implemented in
this section. Comparing these figures to the two figures in
the bottom row clearly shows that the dynamics of
G¼0.99 (i.e., a small degree of autoregression in the
coefficients) are quite different and do not show the
same, economically intuitive, pattern. In the latter case,
predictive returns become very smooth and hardly show
any reaction to the business cycle. Overall, this compar-
ison illustrates nicely that random-walk coefficients are
required to match the patterns of realized returns over
the business cycle.

Finally, while we concentrate on evaluation criteria
that are standard in the equity premium literature in the
main text of the paper, we also look at the Bayesian
performance statistic, on which our model selection
approach is built, namely, the Bayes Factor, in this section.
The idea is to illustrate that our previous conclusions still
hold and are not driven by our choice of evaluation
criteria.

Fig. 9 shows the appropriate Bayes Factor of the BMA-

Model excl. TVar-Coeff. relative to the BMA-Model incl.

TVar-Coeff. on a log scale. The Bayes Factor at a certain
point in time is the ratio of the relative posterior weights
to the relative prior weights of the compared models.
Thus, on the log scale, a value of zero corresponds to equal
marginal support of both types of models during the
current time interval; positive values are in support of
models with constant coefficients and negative values are
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in support of models with time-varying coefficients. The
picture confirms our overall conclusion: models with
time-varying coefficients receive much more support
from the data. Models with constant coefficients only
receive somewhat more support for a small time period
around 1970. The dominance of models with time-vary-
ing coefficients grows especially towards the end of our
sample. Also, note the sudden jump back up to zero in
2004. This jump occurs because the variable csp drops
from the sample. Obviously, this variable is a key pre-
dictive variable and also a variable that drives the out-
performance of models with time-varying coefficients.
We leave it for further research to understand this
regularity in more detail.
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