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Abstract
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1 Introduction

Bond prices are drifting: they are non-stationary.1 In turn, when the stochastic trend has

been removed from yields, cyclical (i.e., stationary) components naturally emerge. What

are the drivers of the stochastic trend in yields? And to what extent term premium can

be identified with the movements in the cyclical components of yields? Indeed, the cycles

in yields could be related to term premium within a no-arbitrage framework (Bauer and

Rudebusch, 2020), and/or to expectation errors (about the short-term rate) in a behavioral

model where the hypothesis of Full Information Rational Expectations (FIRE) does not hold

(Piazzesi et al., 2015; Cieslak, 2018). In this paper, we propose a novel and simple modeling

approach which is explicit about the drivers of the trend in yields, and that permits to test the

importance of deviations from rational expectations (in the form of diagnostic expectations)

for the cyclical components of yields.

The fact that bond prices are drifting has important implications for modeling monetary

policy, the term structure of interest rates and holding period excess bond returns.2 However,

these implications have been so far overlooked since both standard factor models for the term

structure and (empirical models built on) monetary policy rules are designed for stationary

variables. Only recently, the non-stationarity of bond yields has been acknowledged (Kozicki

1Bond prices have been drifting in the last forty years because their secular drivers have been drifting.
As we shall see later, we find that demographics, productivity, and long-term inflation expectations jointly
capture the stochastic trend in yields.

2The relevance of investigating the drift in the term structure of yields is not restricted to Treasury
bonds. For example, Farhi and Gourio (2018) propose a macro-finance neoclassical growth model to
account for drifting real rates and stable return to private capital. van Binsbergen (2020) finds that
accounting for secular trends in interest rates is fundamental for assessing long duration dividend risk.
Campbell and Sigalov (2020) derive a model of reaching for yield and show that agents take more risk
when the real interest rate declines while the risk premium remains constant. Also, see a general dis-
cussion on the importance of drifting prices for long-term investing at https://www.nber.org/lecture/

long-term-investing-nonstationary-world.
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and Tinsley, 2001) and modeled (Bauer and Rudebusch, 2020).3 We show that a simple

monetary policy rule with an equilibrium rate driven by productivity, demographics factor,

and long-term inflation expectations goes a long way in capturing the stochastic trend in

yields. Despite not imposing no-arbitrage restrictions, our cyclical components are highly

correlated with the term premia estimates provided by Bauer and Rudebusch (2020). One

interpretation of this finding is that no-arbitrage restrictions are empirically of second order

importance. More aggressively, we find that deviations from rational expectations can be

an important driver for the fluctuations in the cyclical component of yields. When we test

for the role of Diagnostic Expectations (overreaction of agents to deviations of the monetary

policy rate from its trend), we find that on average 17% of the fluctuations in yield cycles

can indeed be attributed to this mechanism for bonds with maturity from 2 to 10 years.

However, the importance of diagnostic expectations declines with the maturity of the bond,

leaving a potential important role to term premia. At a minimum, however, we strongly

reject any evidence of non-stationary term premia.

More specifically, we start by showing that the drift in monetary policy rates can be

successfully modeled by fluctuations in productivity, demographics and long-term inflation

expectations. Indeed, our monetary policy rule tracks well the evolution of the short-term

rate both in- and out-of-sample. Importantly, by being explicit about the non-stationary

drivers of rates, our model is purposely transparent and simple (i.e., not involving any

filtering). Furthermore, through the lens of our modeling approach, monetary inertia could

be heavily overestimated if the drivers of the drifting equilibrium policy rates are not included

in the monetary reaction function.

3An important literature (most notably, Cieslak and Povala (2015) and Jørgensen (2018)) has documented
the importance of slow-moving component in yields for bond return predictability; however, these papers
work within a stationary environment, and do not address how to model non-stationary yields.
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Then, we derive the implications of our monetary policy rule specification for the entire

term structure of Treasury bond yields. Our approach decomposes bond yield at each ma-

turity into a drifting component, the average expected sequence of monetary policy rates

over the life of the bond, and a residual cyclical component (namely, the deviation of yields

from their drift). We show that our framework with drifting bond prices implies a battery

of mis-specification tests such as parametric restrictions on yields and their drift that are

analogous to the restriction between prices and dividends in the Campbell and Shiller (1988)

present-value model. E.g., when the (non-stationary) drivers of the monetary policy rates

have been correctly specified, deviations of bond prices from their estimated drift should be

stationary with a co-integrating vector of (1, −1), and generate the cyclical components of

yields. In the data, our proposed model passes all these (mis-specification) tests. Specifically,

we show that deviations of bond prices from their drift are indeed cyclical.

Having analyzed the statistical properties of our model, and having confirmed it is is

well-behaved, we turn to the economic interpretation of the cyclical components. In partic-

ular, the presence of Diagnostic Expectations on the monetary policy rate is a statistically

significant driver of its fluctuations. Interestingly, the cycle components also comove strongly

with state-of-the-art term premium estimates like the one proposed by Bauer and Rudebusch

(2020). This is interesting since our framework does not impose no-arbitrage. Thus, our ev-

idence suggests that a sizable fraction of what is deemed risk premium may instead reflect

temporary deviations from rational expectations.

Finally, we show that a framework with drifting bond prices implies the presence of bond

predictability. Specifically, we formally show that (stationary) deviations of bond prices from

their drift should predict excess bond returns. Empirically, our model generates large R2 of

about 30% (10%) when it is used to predict the one-year (one-quarter) ahead excess returns
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on bond with maturities ranging from 2 to 10 years.

To sum up, our paper proposes a general framework that reconciles, in a parsimonious

way, drifting bond prices with stationary and predictable holding period returns; through

our model we detect a significant role of temporary deviations from the FIRE hypothesis in

determining the cyclical properties of yields at all maturities.

Related Literature. Our evidence that bond prices are drifting is in line with several

papers documenting a slow-moving component common to the entire term structure (see,

for example, Balduzzi et al., 1998 and Fama, 2006).

Stationarity of returns and non-stationarity of prices is common to many asset classes.

In the equity space, standard factor models focus on returns and leave prices undetermined.

In a related paper focusing on stock prices, Favero et al. (2020) show that modeling the

drift in stock prices leads to an equilibrium correction term in a model relating returns to

factors; however, this term is invariably omitted in standard factor model of stock prices.

Interestingly, in the fixed income space, standard factor models concentrate on bond prices

rather than on holding period returns but ignore their drifts. The evidence in this paper

shows that a stationary (factors) framework cannot be adopted for yields-to-maturity. In

this regard, our analysis supports the literature that models Treasury yields using shifting

endpoints (Kozicki and Tinsley, 2001), vector autoregressive models (VAR) with common

trends (Negro et al., 2017), and slow-moving averages of inflation (Cieslak and Povala, 2015)

and consumption (Jørgensen, 2018).

Standard ATSMs for bond yields assume stationarity, thus ruling out (by design) the

drift in bond prices. Hence, our evidence is in line with Bauer and Rudebusch (2020) who

propose a term structure model for interest rates with four state variables, one of which

being an (unobserved) stochastic trend common across Treasury yields. Importantly, none
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of the above cited papers explores the implications of drifting equilibrium rates for monetary

policy, Treasury yields, and bond returns predictability within a cohesive framework.4

Finally, our paper fits into the literature that studies the role played by (shifts in) the

monetary conduct in determining the dynamics of bond yields. Berardi et al. (2020) show

that the stance of monetary policy—as proxied by the difference between the natural rate

of interest and the current level of short term rate—contains valuable information for bond

predictability. Ang et al. (2011) show that the evolution of the Fed’s response to inflation

affect long-term yields. Similarly to Ang et al. (2011), we propose to model monetary

policy and the term structure of interest rates jointly. However, our modeling of the policy

rule with a drifting equilibrium rate is different from their model with time-varying policy

coefficients. In turn, our approach has implications for interest rates comovement and bond

returns predictability induced by deviations of bond prices from their drift. These testable

implications are unique to our framework and not shared by Ang et al. (2011).

2 Modeling Monetary Policy

Monetary policy rates are drifting. This fact is overlooked in standard specification of the

monetary policy rules.

Monetary policy rules specify the dynamics of the short-term rate, y
(1)
t . The following

specification is general and encompasses most of the rules that have been proposed in the

4Also, in our framework stationarity of bond returns naturally co-exists with non-stationary bond prices.
Bond returns are predicted by the stationary deviations of bond prices from their drift. Interestingly Bauer
and Rudebusch (2020) note that, even when no-arbitrage is imposed, the loading of returns on the unobserved
common stochastic trend is an order of magnitude smaller than the loading of prices. They also report that
predictive regressions of yields on de-trended yields and trend proxies lead to coefficients on the trend that
are not significantly different from zero.
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literature:

y
(1)
t = y∗t + β′Xt + u

(1)
t (1)

u
(1)
t = ρu

(1)
t−1 + ε

(1)
t ,

where y∗t is the equilibrium monetary policy rate,5 Xt is a vector of stationary monetary

policy drivers, and ρ is a parameter usually interpreted as monetary policy persistence.

Arguably, the most famous special case of this specification is the Taylor (1993) rule. In this

case, the vector Xt is composed of the output gap and the percentage deviation of inflation

from its target. Furthermore, the Taylor (1993) rule assumes a constant equilibrium policy

rate and, thus, provides a natural benchmark for our analysis.

With a constant equilibrium rate, the typical estimate of ρ is often close to one. This

is to be expected since, if monetary policy rates are drifting, any attempt to model them

only by means of stationary factors such as the output and inflation gaps naturally leads to

a (close to) unit root process for ut. What it is commonly interpreted as a monetary policy

smoothing parameter can very well measure the mis-specification generated by modeling a

drifting variable as mean reverting around a constant. Furthermore, if (1) ρ is high but

smaller than one, and (2) only stationary factors are employed in the policy rule, then long-

term forecast of monetary policy rates with a Taylor rule will inevitably (slowly) converge

to the sample mean over the estimation period.6

Interest rates are sometimes modeled in first-difference which removes the stochastic trend

5The “natural” level of real interest rates is often referred to as the “natural”, “equilibrium” or “neutral”
real rate of interest. Interestingly, the possibility of a non-stationary equilibrium rate is rarely entertained
in the traditional literature. See Giammarioli and Valla (2004) and Kiley (2015) for a review of the various
concepts and estimation methods adopted in the literature.

6Rudebusch (2002) highlights the contradiction between apparent high-persistence and low-predictability
of policy rates.
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in policy rate at the cost of leaving the equilibrium level of the policy rate undetermined (e.g.,

Orphanides, 2003). The model in first-difference is a special case of our general specification

when ρ = 1. Specifying the monetary policy rule in first-difference comes with benefits

and costs.7 The benefit of making the rule independent from the challenging estimation

of the level of the equilibrium rate has to be traded-off against the cost of accepting that

any monetary policy shock (i.e., any deviation from the rule) has a permanent effect on

policy rates. Indeterminacy is a major concern for long-term forecasting, because as the

unconditional distribution of policy rates is not defined, the long-run policy rate is also left

undetermined.

We propose a “cointegrating” approach to drifting policy rates, where the stationarity

of residuals of the monetary policy reaction function is taken as an indication of a valid

specification for y∗t . Equivalently, a valid specification for the equilibrium rate requires that

y∗t is the stochastic trend that drives drifting policy rates.8

In particular, we propose to model drifting policy rates as follows:9

y
(1)
t = y∗t + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t (2)

y∗t = γ1MYt + γ2∆x
pot
t + γ3π

∗
t

u
(1)
t = ρ1u

(1)
t−1 + ε

(1)
t

where y
(1)
t is the one-period (three-month) yield, y∗t is the equilibrium nominal rate, πt is the

percentage annual log change in Personal Consumption Expenditures (PCE), π∗t is the Fed

7Cochrane (2007) provides a thorough discussion on the effects of specifying a model in level vs. first-
difference to compute long-term yield-curve decomposition.

8Our approach is in line with, e.g., Woodford (2001) who observed that the optimal policy response to
real disturbances requires including a time-varying real rate in monetary policy rules.

9We consider a forward-looking version of the policy rule as, for example, in Clarida et al. (2000).
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perceived target rate (PTR), and xt is the output gap (log percentage difference between

real GDP and potential GDP). The drivers of the equilibrium real rate are the age structure

of population and potential output growth.10 We obtain the nominal equilibrium rate by

adding the central bank inflation target π∗t . Appendix A provides details on the data source.

Following Geanakoplos et al. (2004) and Favero et al. (2016), the age structure of the

population is described by the ratio of middle-aged (40-49) to young (20-29) population in

the U.S. (labelled as MY ). Potential output growth is the percentage annual log change in

potential output.

MYt, ∆xpott , and π∗t are non-stationary (i.e., their mean changes over time) and they

represent the drivers of the drifting equilibrium rate in our cointegrated specification.)11,12

Finally, in all our tests, we always compare the results from our baseline (drifting) model

to the results of a restricted model that, inspired by the large body of literature on the

classical Taylor (1993) rule, does not model the drift in monetary policy:13

y
(1)
t = y∗ + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t (3)

u
(1)
t = ρ1u

(1)
t−1 + ε

(1)
t .

10See Lunsford and West (2019) for a comprehensive work on the drivers of the U.S. real equilibrium rate.
11Our specification is compatible with yields being non-stationary or yields appearing non-stationary

from the perspective of a model that does not include regime-shifts. What matters for the validity of our
specification is that the deviations of actual rates from equilibrium rates are stationary.

12We test MYt, ∆xpott and π∗t for the presence of unit roots. In our sample, the p-values from the Phillips
and Perron (1988) unit root test for the three variables are respectively 0.95, 0.13, and 0.69; thus, we cannot
reject the null of the series being integrated of order 1.

13We deviate in two respects from a standard empirical Taylor rule. First, the model in (3) is forward-
looking. Second, we specify the inflation gap as deviations of inflation from a time-varying inflation target
(π∗t ) rather than from a constant inflation target (e.g., 2%). These two modifications ease the comparison
with the model featuring drifting equilibrium rates. Considering a standard empirical Taylor rule would not
affect our conclusions.
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2.1 Empirical Results

Panel A of Figure 1 displays the realized nominal short-term rate, the fitted rates from our

cointegrated monetary rule (c.f. Equation (2)), and the fitted monetary policy rates from a

version of our model which restricts the equilibrium rate to be constant (c.f. Equation (3)).

Panel B plots the monetary policy residuals implied by our proposed monetary policy rule

and its restricted version. Table 1 reports the estimation results for these two rules.14

Figure 1–Panel A shows that our monetary rule with a drifting equilibrium rate tracks well

the short-term rate movements throughout the sample. Indeed, the R2 for the cointegrated

specification is about 95% whereas that of a model with constant equilibrium rate is just

11% (c.f. Table 1).15,16 Figure 1–Panel B shows that the residuals implied by our drifting

monetary policy rule are mean reverting. On the other hand, the residuals from a rule with

constant equilibrium rates display a close-to-unit root behavior. This is confirmed in Table 1:

the residuals from the rule with drifting (constant) equilibrium rates have an autoregressive

coefficient equal to 0.67 (0.95).

14Our estimate of the loading on π∗t is in line with parameter values reported in Bauer and Rudebusch
(2020, Table 1) despite the difference in the maturity of the bond analyzed (their Table 1 analyzes the 10-year
bond, whereas we focus on the 3-month Treasury bill).

15Furthermore, a regression of the three-month yield on the fitted values implied by the two monetary
rules (dotted and dashed lines in Figure 1–Panel A) delivers an estimate of zero on the rule with constant
equilibrium rates (3), and a statistically significant estimate not different from one on the drifting rule (2).

16Positing the following cointegration framework where the equilibrium real rate r∗t is estimated first, i.e.,

y
(1)
t = α1r

∗
t + α2π

∗
t + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t

r∗t = γ1MYt + γ2∆xpott

u
(1)
t = ρu

(1)
t−1 + ε

(1)
t

leaves our conclusions unaltered. See Appendix Figure B.1.
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Figure 1: Actual vs Fitted Short-Term Rate. Panel (a) shows actual three-month yield
and fitted values for our (cointegrated) model with drifting equilibrium rates (c.f. equation (2); see green
dashed line) as well as for a model that restricts the equilibrium rate to be constant (c.f. equation (3); see
brown dotted line). Panel (b) shows the differences between actual three-months yield and the fitted values.
Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Figure 2 displays the forecasts implied by the two monetary rules. The rule with constant

equilibrium rates generates forecasts that converge fast to the unconditional mean. On the

other hand, the drifting monetary policy rule tracks well the future evolution of the short

rate for each of the three out-of-sample periods considered in the figure. Appendix Figure

B.2 confirms that allowing for inertia in the restricted rule would not alter our conclusion.

Finally, we observe that an accurate modeling of the trend alleviates concerns related to

the zero lower bound: the fitted short rate in Figure 1(a) falls below zero only for a very

short period of time, and the forecasts in Figure 2 never hit the bound.
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Table 1: Short-term rate models with and without drifting equilibrium rate

This table reports the estimates for our (cointegrated) model with drifting equilibrium rates (c.f. equation
(2); see column (2)) as well as estimates for a model that restricts the equilibrium rate to be constant (c.f.
equation (3); see column (1)). We estimate the two rules by instrumental variables, where the instruments
are lags of inflation gap and output gap. The last row reports OLS estimates for the monetary policy
residuals’ persistence. Values in parenthesis are GMM standard errors that correct for autocorrelation in
the residuals. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Three-Month Yield

(1) (2)

MY −2.652∗∗∗

(0.726)

∆xpott 0.932∗∗∗

(0.317)

π∗t 1.656∗∗∗

(0.177)

Et(πt+1 − π∗t+1) 0.721 0.709∗∗∗

(0.519) (0.244)

Et(xt+1) 0.086 0.389∗∗∗

(0.481) (0.137)

Constant 4.656∗∗∗

(1.036)

Observations 160 160
Adjusted R2 0.036 0.950

ρ 0.949∗∗∗ 0.673∗∗∗

(0.022) (0.110)
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Figure 2: Short-Term Rate Forecasts. This figure shows actual three-month yield and predicted
rates implied by our (cointegrated) model with drifting equilibrium rates (c.f. equation (2); green dashed
line) and by a model that restricts the equilibrium rate to be constant (c.f. Equation (3); brown dotted
line). The forecast of the drifting rule exploits the exogeneity of the demographic variable (MY ) and of
potential output (∆xpot). In particular, the rule is estimated until 1995, 2000, and 2005 in the top, mid, and
bottom panels, respectively. We then use the coefficients estimates, the projections of MY and ∆xpot (see
also Appendix A), and the forecast of inflation and output gap from a VAR(1) as in equations (9) and (10).
π∗ is modeled as a random walk. Dotted vertical lines represent the end of in-sample estimation period.
Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.
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3 Modeling a Drifting Term Structure

The entire term structure is drifting.17 Models that parsimoniously describe the term struc-

ture by projecting rates on a set of factors and by modeling the dynamics of the factors

with a VAR will be inevitably confronted with the problem generated by the presence of

unit roots in the VAR. Highly persistent VAR generate imprecise forecasts at long-horizons

(e.g., Giannone et al., 2019). This feature can explain mixed results from the forecasting

performance of affine term structure models (see, for example, Duffee, 2002; Sarno et al.,

2016). Remarkably, this problem has not been fully acknowledged until very recently (see

Bauer and Rudebusch (2020), Cieslak and Povala (2015), Favero et al. (2016)). We use the

drift in monetary policy rates to model the drift in the entire term structure:

y
(n)
t = y

(n),∗
t + δ0 + u

(n)
t (4)

u
(n)
t = ρnu

(n)
t−1 + ε

(n)
t

y
(n),∗
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i]

Yields at all maturities are decomposed into a trend, y
(n),∗
t , and a cyclical component, δ0 +

u
(n)
t . The trend is the average of expected monetary policy rates over the duration of the

bond, while the cyclical component is the stationary residuals from the (1,−1) cointegrating

relationship between yields and their drift. We consider as valid any model of the term

structure that delivers cointegration between y
(n)
t and y

(n),∗
t with a (1,−1) cointegrating

vector and, therefore, a stationary u
(n)
t , i.e., | ρn |< 1.

17This fact is consistent with and supported by a large literature documenting a slow-moving component
common to the entire term structure (e.g., Balduzzi et al., 1998; Fama, 2006; Cieslak and Povala, 2015;
Bauer and Rudebusch, 2020).
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3.1 No-Arbitrage versus Diagnostic Expectations

We do not impose any restrictions on the stationary cyclical component. Next, we justify

this choice.

Under the Rational Expectations-No Arbitrage (RE-NA) approach the cyclical compo-

nent would be identified with the term premium of the n-period bond. Consistently with our

approach, Dai and Singleton (2002) argues that it is not plausible to consider the risk pre-

mium as a non-mean reverting component. However, a stationary u
(n)
t does not necessarily

provide support for the RE-NA framework. In fact, a stationary u
(n)
t is also consistent with,

e.g., temporary deviations from Rational Expectations generated within a Diagnostic Ex-

pectations framework (see Gennaioli and Shleifer, 2018) where long rates over-react relative

to change in expectations about short rates. Following Bordalo et al. (2018) and d’Arienzo

(2020), diagnostic expectations about policy rates can be represented as follows:

ED
[
y
(1)
t+i | It

]
= E

[
y
(1)
t+i | It

]
+ θ

(
E
[
y
(1)
t+i | It

]
− E

[
y∗t+i | It

])
. (5)

Diagnostic expectations, ED
[
y
(1)
t+i | It

]
, differ from rational expectations, E

[
y
(1)
t+i | It

]
, by a

shift in the direction of the information received at time t on deviations of monetary policy

from its (stochastic) trend. Under the diagnostic expectations hypothesis agents over-react

to the stationary deviations of monetary policy from its trend.

Interestingly, if agents use Diagnostic Expectations, the correct specification for the drift

in yields would be given by:

y
(n),∗
t =

(
1

n

) n−1∑
i=0

ED
t [y

(1)
t+i]
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In this case, Equation (4) can then be re-written as:

y
(n)
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i] + δ0 +

(
1

n

) n−1∑
i=0

(
ED

t [y
(1)
t+i]− Et[y

(1)
t+i]
)

︸ ︷︷ ︸
u
(n)
t

(6)

Thus, the (stationary) component u
(n)
t can in principle be explained by the over-reaction

induced by diagnostic expectation: i.e., u
(n)
t can be justified also if term premia are constant

or even absent.

Consistently with these different interpretations of the stationary component of yields,

we do not impose NA restrictions when estimating our model. Thus, our estimation strategy

runs the cost of losing efficiency if NA holds to gain consistency in the case NA is violated. At

the same time, the flexibility of our approach will permit to quantify the relative importance

of diagnostic expectations relative to explanations based on rational term premiums.

Our full term structure model is specified as follows:

y
(1)
t = y∗t + β1Et(πt+1 − π∗t+1) + β2Et(xt+1) + u

(1)
t (7)

y∗t = γ1MYt + γ2∆x
pot
t + γ3π

∗
t

u
(1)
t = ρ1u

(1)
t−1 + ε

(1)
t

y
(n)
t = y

(n),∗
t + δ0 + u

(n)
t (8)

u
(n)
t = ρnu

(n)
t−1 + ε

(n)
t

y
(n),∗
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i]

(πt − π∗t ) = θ1,1
(
πt−1 − π∗t−1

)
+ θ1,2xt−1 + θ1,3

(
y
(1)
t−1 − y∗t−1

)
+ v1,t (9)

xt = θ2,1
(
πt−1 − π∗t−1

)
+ θ2,2xt−1 + θ2,3

(
y
(1)
t−1 − y∗t−1

)
+ v2,t (10)
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where we assume Cov(v1,t, u
(1)
t ) = Cov(v2,t, u

(1)
t ) = 0.

Projections of the equilibrium policy rates depend on productivity and demographics,

which we take as exogenous. The U.S. Census Bureau and the U.S. Congressional Budget

Office provide ready-to-use projections respectively for MY and potential output. Equations

(9) and (10) are used to compute the projections of inflation and output gaps. The dynamics

of these two stationary variables depend on their own lags and on a third stationary variable:

the deviation of the short-term rate from its trend. This cycle in monetary policy enters

the dynamics of output and inflation gaps with a one-quarter lag; this is consistent with the

delay with which monetary policy affects these variable in our specification of the forward

looking policy rule (7).

3.2 Empirical Results

3.2.1 Misspecification test for term structure models

The validity of a model with drifting monetary policy rates and bond prices can be assessed by

checking the existence of cointegrating relationships with parameters (1,−1) between y
(n)
t and

y
(n),∗
t (see Equation (8)). Thus, in this section we investigate the strength of the cointegrating

relationship, the (1,−1) parametric restriction, and the behavior of the residuals for our

baseline model (see Equations (7)–(10)) as well as for its restricted version where the drift

in monetary policy is assumed away (i.e., y∗t = y∗).

Figure 3 reports the results for the (strength of the) cointegration relationship for five

maturities ranging from 2- (n = 8 quarters) to 10-years (n = 40 quarters). The left panel is

for the restricted model whereas the right panel is for our model with drifting equilibrium

policy rates.

Our model provides overwhelming evidence to reject the null hypothesis of absence of

16



2y 3y 5y 7y 10y

Te
st

 S
ta

tis
tic

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

(a) Model with constant equilibrium rate.
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(b) Model with drifting equilibrium rate.

Figure 3: Engle and Granger (1987) Cointegration Test.: This figure shows results for the Engle

and Granger (1987) cointegration test for the residuals from regressing y
(n)
t on y

(n),∗
t for different maturities.

Panel (a) reports test statistics for a model that restricts the equilibrium rate to be constant (c.f. equation
(3)). Panel (b) reports test statistics for our (cointegrated) model with drifting equilibrium rates (c.f.
equations (7)–(10)). The null hypothesis is absence of cointegration. The dashed red line is the critical value
at 5% level of significance as suggested by MacKinnon (2010). Quarterly observations. The sample period
is 1980:Q1 to 2019:Q4.

cointegrating relation between y
(n)
t and y

(n),∗
t for all the considered maturities.

Furthermore, Appendix Table B.1 confirms that, within our framework with drifting

policy rates, the parametric restriction (1,−1) on the cointegrating relationship between

yields and their drift is supported in the data for every maturities ranging from 2- to 10-

years.

In all, our choice of the drivers for the equilibrium rate y∗t provides also an accurate

description of the stochastic trend underlying interest rates.
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3.2.2 The dynamics of cyclical yields components

Next we study the behavior of the residual u
(n)
t . Specifically, Figure 4 shows the decompo-

sition of the 10-year yield y
(40)
t into y

(40),∗
t and δ0 + u

(40)
t , as per equation (8). As before,

the left panel refers to the restricted model whereas the right panel refers to our benchmark

model with drifting equilibrium policy rates. It is obvious that the two models have opposite

implications: the residuals (dotted line) follow a random walk under the classical model with

constant equilibrium rates, but are stationary in our model with drifting rates.18,19

%
 p

.a
.

1980 1990 2000 2010 2020

0
5

10
15 Ten−Year Yield

yt
(40),*

δ0 + ut
(40)

(a) Model with constant equilibrium rates.

%
 p

.a
.

1980 1990 2000 2010 2020

0
5

10
15 Ten−Year Yield

yt
(40),*

δ0 + ut
(40)

(b) Model with drifting equilibrium rates.

Figure 4: Decomposing long-term rates. Panel (a) shows the decomposition of the ten-year
yield implied by a model which assumes away drifting monetary policy rates (i.e., y∗t = y∗). Panel (b) shows
the decomposition of the ten-year yield implied by our model with drifting equilibrium rates (see equations
(7)–(10)). Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

18Replacing, in the restricted model, the perceived target rate π∗t with a fixed target rate at 2%, leaves
our conclusion unchanged: the 10-year residual is close to a random walk with an AR(1) coefficient of 0.98.

19Wright (2011) argue for term premiums to decline internationally over the sample 1990–2007. Bauer et al.
(2014) and Wright (2014) discuss the extent to which small-sample bias in maximum likelihood estimates
of affine term structure models alters the conclusions about term premia and its (a)cyclical properties. Our
evidence is complementary: we do not focus on statistical biases but we stress the importance of modeling
the economic determinants of equilibrium rates. Furthermore, our framework is flexible and allows, without
imposing, to interpret the (stationary) deviations of bond prices from their drifts as term premia.
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Importantly, Figure 5 shows that our estimated deviations of bond prices from their

drifts comove strongly with state-of-the-art term premium estimates like the one proposed

by Bauer and Rudebusch (2020).
%

 p
.a

.

1980 1990 2000 2010

−
1

0
1

2
3

4
5

Term premium (OSE) Bauer and Rudebusch (2020)

δ0 + ut
(40)

Figure 5: Cyclical component from model with drifting equilbrium rates vs. term
premium estimate: This figure shows the term premium component for a 10-year Treasury bond
estimated following the methodology (OSE, observed shifting endpoint) proposed by Bauer and Rudebusch

(2020) together with deviations of the 10-year bond yields from their drift, δ0 + u
(40)
t , implied by our

(cointegrated) model with drifting equilibrium rates (c.f., equations (7)–(10)). Quarterly observations. The
sample period is 1980:Q1 to 2018:Q1.

Two conclusions can be drawn from this analysis. First, this result is reminiscent of

Joslin et al. (2013) who find that the estimated joint distribution within a macro-finance

term structure model with NA is nearly identical to the estimate from an economic-model-

free factor vector-autoregression. The evidence in Figure 5 suggests that this conclusion is

likely to hold true also in models that accommodate a drifting term structure.

Second, and more aggressively, the similarity between our cyclical component and term
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premiums estimates, together with the fact that our framework does not impose no-arbitrage,

hints to the possibility that a non-trivial fraction of what is deemed to be risk premium is

a mere reflection of temporary deviations from rational expectations. Motivated by this

evidence, next we develop a formal test to quantify the relative contribution of rational term

premium and of deviations from rational expectations to the cyclical components of yields.

3.3 Testing Diagnostic Expectations

We use our flexible framework to assess the role played by diagnostic expectations in ex-

plaining the stationary component of yields.

Suppose agents use diagnostic expectations for the short rate and the risk premium is

constant. We have:

y
(n)
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i] + δ0 +

(
1

n

) n−1∑
i=0

(
ED

t [y
(1)
t+i]− Et[y

(1)
t+i]
)

︸ ︷︷ ︸
u
(n)
t

(11)

=

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i] + δ0 +

(
1

n

)
θ
n−1∑
i=0

(
E
[
y
(1)
t+i | It

]
− E

[
y∗t+i | It

])
(12)

where in the second row we exploit the expression for Diagnostic Expectations in equation

(5): ED
[
y
(1)
t+i | It

]
− E

[
y
(1)
t+i | It

]
= θ

(
E
[
y
(1)
t+i | It

]
− E

[
y∗t+i | It

])
.

Given that the cyclical component of monetary policy rates is stationary with zero mean,

we can write (
y
(1)
t+1 − y∗t+1

)
= φ

(
y
(1)
t − y∗t

)
+ vt+1, (13)

where | φ |< 1. Using the dynamics for
(
y
(1)
t − y∗t

)
to compute the expectations in equation
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(12), we derive the following expression for u
(n)
t :

u
(n)
t =

(
1

n

) n−1∑
i=0

(
ED

t [y
(1)
t+i]− Et[y

(1)
t+i]
)

=

(
1

n

)
θ

1− φn

1− φ

(
y
(1)
t − y∗t

)
(14)

We observe that deviations from rational expectations depend on the parameter θ and on

the persistence of the deviations of monetary policy rates from the trend. The stationarity

of
(
y
(1)
t − y∗t

)
implies that, for large n (i.e., at long horizons), diagnostic expectations for

the monetary policy rates will converge towards rational expectations.20 More importantly,

the significance of Diagnostic Expectations can be tested by projecting u
(n)
t on

(
y
(1)
t − y∗t

)
.

Table 2 displays the results for such test.

Table 2: Testing Diagnostic Expectations

This table reports OLS estimates for the regression u
(n)
t = β

(
y
(1)
t − y∗t

)
+εt, where u

(n)
t is the deviation of a

bond with maturity n-period from its drift (see Equation (8)) and
(
y
(1)
t − y∗t

)
is the difference between the

observed short-term rate and the estimated drifting equilibrium rate at time t. θ is calculated as implied by
Equation (14). Values in parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard
errors with automatic bandwidth selection procedure as described in Newey and West (1994). Quarterly
observations. The sample period is 1980:Q1 to 2019:Q4.

u
(8)
t u

(12)
t u

(20)
t u

(28)
t u

(40)
t

(1) (2) (3) (4) (5)(
y
(1)
t − y∗t

)
0.379∗∗∗ 0.337∗∗∗ 0.248∗∗∗ 0.189∗∗∗ 0.141∗∗

(0.058) (0.059) (0.064) (0.065) (0.068)

Observations 160 160 160 160 160
R2 0.331 0.257 0.140 0.080 0.043

Implied θ 0.42 0.41 0.37 0.34 0.32

20Maxted (2019) considers a case in which convergence of DE to RE is not realized as the underlying
process is non-stationary.
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We find that diagnostic expectations explain between 4% and 33% of the variability in the

cyclical components of yields. In line with our discussion of equation (14), the importance of

diagnostic expectations decreases with the maturity of the bond. Remarkably, our estimates

of the parameter θ are in line with previous values reported in the literature (e.g., Bordalo

et al., 2020; d’Arienzo, 2020).

The empirical relevance of overreaction has been recently documented by Cieslak (2018)

for the short end of the curve. Similarly, Piazzesi et al. (2015) provide evidence that realized

survey (interest rates) forecast errors as well as forecast differences relative to VAR-based

measure may be responsible for the time-variation in bond premia from statistical models.

We have shown that these explanations may be important even in a model that accommo-

dates a drifting term structure. However, the contribution of overeaction decreases at long

maturities; this is consistent with deviations of monetary policy rates from the equilibrium

rate being fast mean-reverting.

3.4 Trend-cycle yield decomposition: implications for hidden fac-

tors

Our evidence also contributes to the debate on the presence of hidden factors.

We start by reviewing the concept of hidden factors (Duffee, 2011). For yields of any

maturity we can write

y
(n)
t =

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i]︸ ︷︷ ︸

y
(n),∗
t

+δ0 + u
(n)
t (15)

A factor ft is hidden if its effect on y
(n),∗
t and δ0 +u

(n)
t exactly compensate so that the overall

effect of ft on y
(n)
t is zero. Note that factors are taken as stationary variables. However,
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we have shown that—because of the drift in interest rates—both non-stationary variables

(drivers) and stationary variables (factors) are needed to model properly the term structure

of Treasury yields. Therefore, it is natural to ask what are the implications for hidden factors

of a yield model with drifting prices.

To answer this question, we exploit our model with drifting equilibrium rate (see Equa-

tions (7)–(10)), and we re-write equation (15) as follows:

y
(n)
t =

(
1

n

) n−1∑
i=0

Et[y
∗
t+i] (16)

+

(
1

n

) n−1∑
i=0

Et[y
(1)
t+i − y∗t+i] + δ0 + u

(n)
t (17)

In words, long-term interest rates depend on three components: a trend component that

reflects exclusively the drift in short-term rates (see (16)), and two cyclical components

(see (17)). The first cyclical component,
(
1
n

) n−1∑
i=0

Et[y
(1)
t+i − y∗t+i], is related to fluctuations of

short-term rates around their time-varying mean; the second cyclical component, δ0+u
(n)
t , is

related to term premia and possibly deviations from rational expectations (c.f. Section 3.3).

We extend the definition of Duffee (2011), and say that a factor is hidden when its impact

on these two cyclical components is equal but with opposite sign. Thus, we can test if a

factor is hidden by running the following regression:

(
y
(n)
t −

(
1

n

) n−1∑
i=0

Et[y
∗
t+i]

)
= α + βft + ε

(n)
t (18)

and check for β = 0 (i.e., ft is hidden).

Few comments are in order. First, according to our definition, the determinants of the

trend component in monetary policy are - by construction – hidden by the yield curve. This
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is because productivity, demographics, and inflation trends do not affect yields directly but

only trough the drift in monetary policy rates, giving rise to a coefficient β = 0 in (18). This

is consistent with Bauer et al. (2014) who argued that “the trend component [in interest

rates] is unspanned by yields.”21 Second, and more important, a test of hidden factor can

be constructed only once the drift and cyclical components of yields at all maturities are

identified so that the impact of factors on these two components can also be identified and

estimated.

Next we investigate the hidden nature of the cyclical components of deviation of inflation

from its long-run target (πt − π∗t ), the output gap xt, and the monetary policy shocks u
(1)
t .

We report the results in Table 3.22 Panel A shows that deviation of inflation from its long-

run target are by and large hidden by the yield curve. On the other hand, we observe in

Panel B that the effect of xt is strongly significant for maturities ranging from 2 to 5 years.

Finally, in Panel C, we find strong evidence against monetary policy shocks being hidden.23

Since the seminal contribution of Joslin et al. (2014), a vast literature has thought of

output (gap) and inflation (gap) as unspanned factors. A contribution of our analysis is to

point to the importance of decomposing yields into trend and cycle before evaluating the

(hidden) nature of (non-stationary) drivers and (stationary) factors. In fact, the question on

the nature of spanned or unspanned of factors can be properly answered only after modeling

21The term
(
1
n

) n−1∑
i=0

Et[y
∗
t+i] depends on the maturity n. However, the correlation across maturities ranging

from 1- to 10-years is very high at 99.5%. Therefore, this term effectively captures the stochastic trend
common across yields and cannot be inferred from the cross-section of interest rates.

22We run simple regressions since the output gap and the deviation of inflation from its long-run target
display a mild positive correlation of 20%. On the other hand monetary policy shocks are orthogonal by
construction to (πt − π∗t ) and xt so the coefficient on ut is identical in simple and multiple regressions.

23Interestingly, the cyclical component of yields, u
(n)
t , has a long-run unit coefficient on the deviations of

monetary policy rates from equilibrium rates, i.e. u
(1)
t (see Appendix Figure B.3). So no cancellation can

occur, confirming further that monetary policy shocks cannot be hidden.
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of the drift in the term structure with non-stationary drivers.

Table B.2 in the Appendix shows the empirical importance of de-trending yields before

testing for hidden factors. When yields are not properly detrended, cyclical factors are

(wrongly) labelled as hidden on the basis the projections of drifting yields on them.

Table 3: Hidden Factor Test for Detrended Yields

This table reports OLS estimates for the regression ỹ
(n)
t = α + βft + ε

(n)
t , where ỹ

(n)
t ≡(

y
(n)
t −

(
1
n

) n−1∑
i=0

Et[y
∗
t+i]

)
is the cyclical component of an yield with maturity n as defined in Equation

(17) and ft are different factors to be tested. Panel A reports results for the deviation of inflation from
its long-run target (πt − π∗t ). Panel B reports results for the output gap xt. Panel C reports results for

the monetary policy shocks u
(1)
t . Values in parenthesis are heteroskedasticity and autocorrelation consis-

tent (HAC) standard errors with automatic bandwidth selection procedure as described in Newey and West
(1994). Constants are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Panel A: The inflation gap.

ỹ
(8)
t ỹ

(12)
t ỹ

(20)
t ỹ

(28)
t ỹ

(40)
t

(1) (2) (3) (4) (5)

(πt − π∗t ) 0.626∗∗ 0.498 0.287 0.155 0.050
(0.273) (0.314) (0.398) (0.422) (0.455)

Observations 159 159 159 159 159
R2 0.117 0.077 0.029 0.009 0.001

Panel B: The Output Gap.

ỹ
(8)
t ỹ

(12)
t ỹ

(20)
t ỹ

(28)
t ỹ

(40)
t

(1) (2) (3) (4) (5)

xt 0.875∗∗ 0.853∗∗ 0.768∗∗ 0.693∗ 0.600
(0.374) (0.380) (0.357) (0.358) (0.404)

Observations 159 159 159 159 159
R2 0.248 0.246 0.222 0.191 0.148

Panel C: The Monetary Policy Shocks.

ỹ
(8)
t ỹ

(12)
t ỹ

(20)
t ỹ

(28)
t ỹ

(40)
t

(1) (2) (3) (4) (5)

u
(1)
t 0.723∗∗∗ 0.673∗∗∗ 0.563∗∗∗ 0.489∗∗∗ 0.428∗∗∗

(0.111) (0.111) (0.111) (0.116) (0.118)

Observations 159 159 159 159 159
R2 0.453 0.408 0.318 0.254 0.201
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4 Predicting Holding Period Excess Returns

Predictability of interest rates on the basis of the cointegration between y
(n)
t and y

(n),∗
t ,

also implies predictability of holding period excess returns on the basis of the stationary

deviations of bond yields from their drift.

To see this, write the expected excess returns obtained by holding for one period the

n-period bond as:

Et(rx
(n)
t+1) = y

(n)
t n− (n− 1)Et(y

(n−1)
t+1 )− y(1)t

= y
(n)
t − (n− 1)

(
Et(y

(n−1)
t+1 )− y(n)t

)
− y(1)t

= y
(n)
t − y

(1)
t − (n− 1)

(
Et(y

(n−1)
t+1 )− y(n−1)t

)
− (n− 1)

(
y
(n−1)
t − y(n)t

)
, (19)

where y
(n)
t −y

(1)
t is the slope of the term structure,

(
y
(n−1)
t − y(n)t

)
is known as the roll-down,

and
(
Et(y

(n−1)
t+1 )− y(n−1)t

)
is the expected change in prices of the (n − 1)-maturity bond.

Since the seminal contributions by Fama and Bliss (1987) and Campbell and Shiller (1991),

the slope of the term structure has played a central role for forecasting bond returns. Indeed,

it is common to assume away any predictability arising from
(
Et(y

(n−1)
t+1 )− y(n−1)t

)
, since the

level of the term structure is deemed to be close to unforecastable (see, e.g., Duffee, 2013).

Our proposed “cointegrated” specification of the monetary policy rule and the term

structure suggests otherwise. Using Equation (8) and the autoregressive dynamics of the

residual, one can express the expected price changes as

Et(y
(n−1)
t+1 )− y(n−1)t = Et

(
y
(n−1),∗
t+1 − y(n−1),∗t

)
+
(
ρ(n−1) − 1

) (
y
(n−1)
t − y(n−1),∗t − δ0

)
︸ ︷︷ ︸

u
(n−1)
t

. (20)
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Therefore, in our model, persistent but stationary deviations of bond prices from their drift,

u
(n−1)
t , show up as a natural predictor of excess bond returns.24 This term has gone un-

recognized since standard models start off with stationary factor (within our framework,

this is equivalent to assume a constant equilibrium rate). In turn, this leads to a close-to-

unit-root residual (c.f., Figure 4(a)), or ρ(n−1) − 1 ≈ 0 (and the level being a random walk

Et(y
(n−1)
t+1 ) = y

(n−1)
t ).25

We start the evaluation of the predictive performance of our model with a drifting equi-

librium rate by running the following regression:

rx
(n)
t+4 = α + βEt(rx

(n)
t+4) + εt , (21)

where rx
(n)
t+4 is the realized one-year holding period excess return of a bond with maturity n-

quarters. We denote with Et(rx
(n)
t+4) the expected excess return implied by our specification

that allows for stationary deviations of bond prices from their drifts.26 We compare our

specification to the classical model with a constant equilibrium rate.27 Table 4 displays the

results for the model with constant equilibrium rate in Panel A, and the results for our

model with drifting bond prices in Panel B. We consider maturities ranging from 2 (n = 8

24More precisely, u
(n−1)
t should forecast the price change component in bond returns. However, empirically

the correlation between rx
(n)
t+4 and the price change term, −

(
y
(n−4)
t+4 − y(n−4)t

)
, is high at 93%, 95%, 97%,

98%, and 99% for n = 8, 12, 20, 28, 40 quarters, respectively.
25Cieslak and Povala (2015) and Jørgensen (2018) predict bond returns using a de-trended (term structure)

level factor. Using their proposed persistence-based Wold decomposition, Ortu et al. (2020) extract a cyclical
component from the level of the yield curve and show that it contains information about future excess bond
returns. To our knowledge, we are the first to show that a cyclical component of the level of the term
structure emerges as a natural predictor within a cointegrated framework of bond prices.

26We exploit equations (7)–(10) together with the exogeneity of demographics and potential output to

construct the expected change in constant-maturity yield
(
Et(y

(n−1)
t+1 )− y(n−1t

)
in equation (19).

27To make our results comparable to a large literature (e.g., Cochrane and Piazzesi, 2005; Cieslak and
Povala, 2015) we focus on one-year excess returns. However, our conclusions are identical when we use
one-quarter holding period returns.
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quarters) to 10 years (n = 40 quarters). The regression of realized excess returns on the

expected returns implied by our (cointegrated) model with drifting equilibrium rates delivers

statistically significant estimates and coefficients of determination that are greater than 30%

at all maturities.28 On the other hand, a classical model with constant equilibrium rates

leads to a coefficient not significantly different from zero and to small explanatory power.

We also highlight that the model with constant equilibrium rates performs worse than a

(reduced-form) model based just on the slope. This is easily explained. The realized returns

rx
(n)
t+4 on the left hand side of (21) are stationary whereas the expected returns Et(rx

(n)
t+4)

from the model with constant equilibrium rate is non-stationary since it inherits the drift

from the residual component u
(n)
t (c.f. Figure 4).

4.1 Dissecting Predictive Regressions

To further dissect the unique contribution coming from our cointegrated approach, Table

5 shows that the expected change in the (n − 1)-maturity bond prices drives away the

predictability of the slope (column (1)), and that deviations of bond prices from their drift,

u
(n−1)
t , are the most important driver of such predictability (c.f. columns (3) and (4)). Also,

the loading on the cyclical component u
(n−1)
t is negative as predicted by our framework: if

0 < ρ(n−1) < 1, then next period returns are negative in times when bond prices are higher

than those implied by their drift.

In the Appendix, we show that the relevance of such cyclical component for forecasting

excess returns is not restricted to any specific maturity or holding period. Table B.3 reports

results for the predictive regressions when we use bonds with maturities ranging from 2- to

7-years. Also, Table B.4 confirms that stationary deviations of bond prices from their drift

28The constant is not statistically significant for bond with maturities n = 8, 12, 20 quarters.
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Table 4: Predictive Regressions across Different Maturities

This table reports OLS estimates for the regression rx
(n)
t+4 = α+ βEt(rx

(n)
t+4) + εt where rx

(n)
t+4 is the realized

one-year holding period excess return of a bond with maturity n-period and Et(rx
(n)
t+4) is the expected

excess return implied by our specifications. Panel A reports results for the classical model with a constant
equilibrium rate. Panel B reports results for our model with drifiting equilibrium rates. Values in parenthesis
are conservative standard errors from reverse regressions computed as in Hodrick (1992). Constant estimates
are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

Panel A: Model with constant equilibrium rate.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5)

Et(rx
(8)
t+4) 0.146∗∗

(0.069)

Et(rx
(12)
t+4 ) 0.107

(0.078)

Et(rx
(20)
t+4 ) 0.077

(0.077)

Et(rx
(28)
t+4 ) 0.067

(0.075)

Et(rx
(40)
t+4 ) 0.065

(0.075)

Observations 156 156 156 156 156
R2 0.107 0.062 0.035 0.029 0.028

Panel B: Model with drifting equilibrium rate.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5)

Et(rx
(8)
t+4) 0.808∗∗∗

(0.150)

Et(rx
(12)
t+4 ) 0.788∗∗∗

(0.165)

Et(rx
(20)
t+4 ) 0.682∗∗∗

(0.159)

Et(rx
(28)
t+4 ) 0.698∗∗∗

(0.162)

Et(rx
(40)
t+4 ) 0.614∗∗∗

(0.155)

Observations 156 156 156 156 156
R2 0.360 0.362 0.329 0.360 0.319
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predict quarterly holding period bond returns (i.e., non-overlapping returns). Overall, this

evidence suggests that the adjustment of bond prices towards their drift is a key economic

mechanism for understanding bond returns predictability.

Finally, Appendix Table C.1 shows that the US cyclical component u
(n)
t predict UK and

Canadian bond returns, even after controlling for the local slope of the term structure.29

This finding resonates with the evidence in Dahlquist and Hasseltoft (2013). Despite this

similarity, Dahlquist and Hasseltoft (2013) attributes the international comovement in bond

returns to a global (admittedly, mostly US) bond risk premium; on the other hand, we have

not imposed no-arbitrage restrictions so that our cyclical component is also compatible with

investors overreacting to deviations of policy rates from its trend leading to overestimation

of future short rates (and lower bond returns).30

4.2 The Information Content of Yield Cycles

Several bond returns predictors have been proposed in the literature since the seminal papers

by Fama and Bliss (1987) and Campbell and Shiller (1991). It is then natural to ask to what

extent the yield cycles u
(n)
t capture new information not already conveyed by other variables.

Specifically, we compare the predictive power of our yield cycles to two well known return-

predicting factors that are both constructed from the yield curve:31 (1) the Cochrane and

29In the spirit of our model, we employ the local slope of the term structure as a proxy for the deviations of
non-US yields from their drifts. Controlling for the local cyclical component does not change our conclusion.
However, it is worth to emphasize that the lack of an exogenous potential output series, ∆xpott , and of a
perceived target inflation rate, π∗t , may be responsible for the poor performance of the local cycle in Canada
and UK. Further investigation on this topic is on our agenda for future research.

30Our findings are also consistent with the idea that the Fed is the leader among central banks in setting
monetary policy (Brusa, Savor and Wilson, 2019). See also One Policy to Rule Them All: Why Central

Bank Divergence Is So Slow (Wall Street Journal, 2016) for a recent discussion on the topic.
31Several papers have found that the state of the economy also conveys information about future bond

returns. E.g., Cooper and Priestley (2008) propose the output gap, whereas Ludvigson and Ng (2009) propose
to extract information from a large set of macrofinancial variables. Related, Bansal and Shaliastovich (2013)

30

https://www.wsj.com/articles/one-policy-to-rule-them-all-why-central-bank-divergence-is-so-slow-1471855945
https://www.wsj.com/articles/one-policy-to-rule-them-all-why-central-bank-divergence-is-so-slow-1471855945


Table 5: Dissecting Predictive Regressions

This table reports OLS estimates for the regression rx
(40)
t+4 = α+β′Xt+εt where rx

(40)
t+4 is the realized one-year

holding period excess return of a bond with maturity 10-year and Xt contains different return predictors.
Column (1) exploits equation (19) reported here for reader’s convenience:

Et(rx
(40)
t+4 ) = y

(40)
t − y(4)t − (40− 4)

(
Et(y

(40−4)
t+4 )− y(40−4)t

)
− (40− 4)

(
y
(40−4)
t − y(40)t

)
.

Column (2) shows that the slope is a significant predictor of excess bond returns when considered in isolation.
Columns (3) and (4) exploit the decomposition of expected price changes per equation (20) reported here
for reader’s convenience:

Et(y
(40−4)
t+4 )− y(40−4)t = Et

(
y
(40−4),∗
t+4 − y(40−4),∗t

)
+
(
ρ(40−4) − 1

)
u
(40−4)
t .

In columns (3) and (4) we neglect the roll-down term which empirically is found to be insignificant. Values
in parenthesis are conservative standard errors from reverse regressions computed as in Hodrick (1992).
Constant estimates are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

rx
(40)
t+4

(1) (2) (3) (4)

y
(40)
t − y(4)t 3.257 2.320 1.139 1.010

(1.995) (1.548) (1.933) (1.390)

−(40− 4)
(
Et(y

(36)
t+4 )− y(36)t

)
0.538∗∗∗

(0.151)

−(40− 4)(y
(36)
t − y(40)t ) −4.359

(3.871)

−(40− 4)
(
Et(y

(36),∗
t+4 )− y(36),∗t

)
0.204

(2.071)

−(40− 4) u
(36)
t −0.607∗∗∗ −0.615∗∗∗

(0.182) (0.160)

Adjusted R2 0.341 0.060 0.317 0.321
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Piazzesi (2005, CP) factor which is based on a linear combination of forward rates; (2) the

Cieslak and Povala (2015, CPo) factor which relies on information contained in yields that

have been detrended using a long-term moving average of inflation.32

Rather than using a specific cycle for each maturity n we construct a common yield cycle

using a procedure akin to Cochrane and Piazzesi (2005). Specifically, we run regressions of

the average (across maturity) excess return on all cycles,

1

9

10∑
n=2

rx
(n)
t+4 = γ0 + γ1u

(1)
t + . . .+ γ40u

(40)
t + εt+1.

Our yield-based cycle factor is given by ũt = γ̂ ′ut.

Table 6 shows the results. In Panel A we investigate the predictive content of our cycle

relative to the CP factor, whereas in Panel B we compare it to the CPo factor. The odd

columns confirm that both CP and CPo forecasts excess returns of all bonds. Importantly,

Panel A shows that our yield cycle drives away the CP factor, and delivers R2 that are about

tree times those obtained by the CP regressions. Panel B tells a similar story. Despite the

large R2 obtained by the CPo factor, our yield cycle continues to be a significant predictor of

bond returns at all maturities ranging from 2- to 10-years. In fact, comparing the R2 from

the multiple regression in Panel A to those in Panel B, we see that replacing CP with CPo

does not alter the predictive content of our yield-based cycle.

document that real growth and inflation uncertainties predict, respectively, lower and higher bond risk
premia, and propose a long-run risk type model for rationalizing this finding. Since our yield cycles are
obtained by removing the stochastic trend (due to the equilibrium rate) in interest rates, we restrict our
attention only to yield-based predicting factors.

32To construct the CP and CPo factors we follow the procedure described in the original papers. E.g., to
construct the CP factors we use only one- through five-year zero coupon bond prices and estimate the loadings
by running a regression of the equally-weighted average (across maturity) excess return on the forward
rates. To construct the CPo factor instead we employ duration standardized returns. To be consistent with
the overall empirical analysis, unlike in the original papers, both factors are constructed using quarterly
observations.
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Table 6: Predictive Regressions: Horse race against other bond predictors

This table reports OLS estimates for the regression rx
(n)
t+4 = α+ β1Ft + β2ũt + εt where rx

(n)
t+4 is the realized

one-year holding period excess return of a bond with maturity n-period, Ft is the Cochrane and Piazzesi
(2005) factor (CPt) in Panel A and the Cieslak and Povala (2015) factor (CPot) in Panel B, and ũt is the
single-return forecasting factor implied by our model with drifting equilbrium rates. The Cochrane-Piazzesi
factor is constructed as in Cochrane and Piazzesi (2005) using quarterly zero-coupon Treasury yields from
Gürkaynak et al. (2007) with maturities from 1 to 5 years. The Cieslak-Povala factor is constructed as
in Cieslak and Povala (2015) using quarterly zero-coupon Treasury yields from Gürkaynak et al. (2007)
with maturities from 1 to 10 years. ũt is the fitted value from regressing the average one-year holding-period

excess returns on a n-periods Treasury bond for n = 4, 8, . . . , 40 on our cyclical components u
(n)
t n = 1, . . . , 40

(see Eq. (20)). Values in parenthesis are conservative standard errors from reverse regressions computed as
in Hodrick (1992). Constant estimates are not tabulated. Quarterly observations. The sample period is
1980:Q1 to 2019:Q4.

Panel A: Cochrane-Piazzesi (2005).

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CPt 0.434∗∗∗ 0.104 0.821∗∗∗ 0.168 1.554∗∗∗ 0.340 2.272∗∗∗ 0.589 3.307∗∗∗ 1.069
(0.139) (0.148) (0.305) (0.331) (0.580) (0.633) (0.810) (0.887) (1.141) (1.263)

ũt 0.219∗∗∗ 0.434∗∗∗ 0.807∗∗∗ 1.118∗∗∗ 1.488∗∗∗

(0.035) (0.079) (0.164) (0.240) (0.344)

Observations 156 156 156 156 156 156 156 156 156 156
Adjusted R2 0.130 0.390 0.132 0.421 0.145 0.451 0.159 0.459 0.174 0.446

Panel B: Cieslak-Povala (2015).

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CPot 1.366∗∗∗ 0.428 2.720∗∗∗ 0.959 5.230∗∗∗ 2.177 7.544∗∗∗ 3.535 10.650∗∗∗ 5.700∗

(0.247) (0.366) (0.516) (0.800) (1.011) (1.572) (1.467) (2.259) (2.119) (3.224)

ũt 0.184∗∗∗ 0.346∗∗∗ 0.599∗∗ 0.787∗∗ 0.972∗∗

(0.050) (0.118) (0.240) (0.344) (0.478)

Observations 156 156 156 156 156 156 156 156 156 156
Adjusted R2 0.305 0.396 0.342 0.433 0.389 0.472 0.413 0.487 0.424 0.480

33



4.3 Out-Of-Sample Predictability

As a final robustness test we consider out-of-sample predictability as measured by R2
OOS

computed as follows:

R2
OOS = 1−

T∑
t=1

(
rx

(n)
t+4 − r̂x

(n)
t+4

)2
T∑
t=1

(
rx

(n)
t+4 − r̄x

(n)
t+4

)2
where r̂x

(n)
t+4 is the fitted value from our predictive regression estimated through period t− 1

and r̄x
(n)
t+4 is the historical average return estimated thorough period t − 1. If the R2

OOS is

positive, then the predictive regression has lower average mean squared prediction error than

the historical average return. This is always the case for all regressions reported in Table 7.

Table 7: Out-Of-Sample Tests

This table reports R2
OOS for the predictive regression rx

(n)
t+4 = α+β′ũt+εt where rx

(n)
t+4 is the realized one-year

holding period excess return of a bond with maturity n-period and ũt is the single-return forecasting factor
implied by our model with drifting equilbrium rates. ũt is the fitted value from regressing the average one-year
holding-period excess returns on a n-periods Treasury bond for n = 4, 8, . . . , 40 on our cyclical components

u
(n)
t n = 1, . . . , 40 (see Eq. (20)). We use a rolling window for estimating the predictive regressions. The

R2
OOS is computed as in Campbell and Thompson (2008); p-values for R2

OOS are computed as in Clark and
West (2007). In Panel A the out-of-sample period starts in 1990; in Panel B the out-of-sample period starts
in 2000. Quarterly observations.

Panel A: Out-of-sample period: 1990-2019.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5)

R2
OOS 20.9∗∗∗ 27.18∗∗∗ 31.63∗∗∗ 31.65∗∗∗ 27.29∗∗∗

Panel B: Out-of-sample period: 2000-2019.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5)

R2
OOS 0.99∗∗∗ 3.38∗∗∗ 10.23∗∗∗ 14.26∗∗∗ 13.65∗∗∗
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5 Conclusions

This paper proposed a general framework to model a common drift in bond prices, and

studied its implications for monetary policy, interest rates and bond returns predictability.

First, we have shown that there is a drift in monetary policy rates which can be success-

fully modeled by fluctuations in productivity, demographics and long-term inflation expec-

tations. This produces monetary policy residuals that are substantially less persistent than

those implied by standard policy rules. Thus, through the lens of our modeling approach,

monetary inertia is just the manifestation of omitted factors in the estimated rule.

The drift in bond prices is then described by the average of expected monetary policy

(drifting) rates over the residual life of the bond. Appropriate modeling of the drift in mon-

etary policy must deliver stationary deviation of yields to maturity from their drift. These

stationary deviations of bond prices from their drift could be explained by the presence of

term premia in a no-arbitrage framework or by temporary deviations from rational expec-

tations in a behavioral framework. When the deviations of bond prices from their drift are

interpreted as term premia, our finding implies that models that mispecify (or, worse, do

not model) the drift in monetary policy and in bond prices will fail to generate stationary

term premia.

Our empirical evidence shows that deviations from rational expectations in the form of

Diagnostic Expectations (DE) can account for up to 30% of the yield cycle variability at 2-

and 3-year maturities. However, the importance of DE decreases at longer maturities leaving

an important role for term premia.

Finally, we have shown that persistent but stationary deviations of US Treasury bond

prices from their drift predict excess returns in- and out-of-sample, as well as outside the US.

Next period returns from holding long-term bonds are negative in times when bond prices
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are higher than those implied by their drift. Once again this predictability could be related

either to predictable term premia or to the reversion of temporary overreaction about future

monetary policy. Future research should investigate the origins of bond price deviations from

their drift and of the associated returns predictability documented in this paper.
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Appendix

A Data

We employ quarterly data in our empirical analysis; thus, we proxy for the 1-period bond
yields using the end-of-quarter 3-month Treasury bill rates from the Federal Reserve’s H.15
release. Our sample period starts with Paul Volckers appointment as Fed chairman, because
of evidence that monetary and macroeconomic dynamics changed at that time (e.g., Gertler
et al., 1999).

Zero-coupon Treasury yields with 1- to 10-year maturities are from Gürkaynak et al.
(2007).

The Federal Reserve’s perceived target rate (PTR) for inflation is a survey-based measure
of long-run inflation expectations; PTR is used in the Fed’s FRB/US model and available
at https://www.federalreserve.gov/econres/us-models-package.htm.

MY is available until 2050 and is hand-collected from various past Census reports avail-
able at https://www.census.gov/data.html. Potential output is available until 2030 and
can be downloaded at https://fred.stlouisfed.org/series/GDPPOT. See also Figure
A.1.
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Figure A.1: Demographics and Potential Output Growth. This figure shows the dy-
namics for the ratio of middle-aged (40-49) to young (20-29) population, MY , and for potential output
growth, ∆xpott . MY is available until 2050 and is hand-collected from various past Census reports available
at https://www.census.gov/data.html. Potential output is available until 2030 and can be downloaded at
https://fred.stlouisfed.org/series/GDPPOT. Dotted vertical lines denote the end of our sample, i.e.,
2019:Q4. Quarterly observations.
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B Additional Results

Table B.1: Testing Parametric Restriction on the Cointegrating Relationship
between Yields and Drifting Equilibrium Rates

This table reports OLS estimates for the regression y
(n)
t = α+ βy

(n),∗
t + εt, where y

(n)
t is the observed yield

at time t of a bond with maturity n-period and y
(n),∗
t =

(
1
n

) n−1∑
i=0

E[y
(1)
t+i | It]. Values in parethesis are 95%

confidence interval. Costant estimates are not tabulated. Quarterly observations. The sample period is
1980:Q1 to 2019:Q4.

y
(8)
t y

(12)
t y

(20)
t y

(28)
t y

(40)
t

(1) (2) (3) (4) (5)

y
(8),∗
t 1.077∗∗∗

(0.940, 1.214)

y
(12),∗
t 1.056∗∗∗

(0.913, 1.199)

y
(20),∗
t 1.013∗∗∗

(0.855, 1.171)

y
(28),∗
t 0.985∗∗∗

(0.815, 1.155)

y
(40),∗
t 0.962∗∗∗

(0.766, 1.158)

Observations 160 160 160 160 160
R2 0.921 0.913 0.903 0.894 0.882
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Table B.2: Hidden Factor Regression for Yields

This table reports OLS estimates for the regression y
(n)
t = α + βft + ε

(n)
t , where y

(n)
t is the yield with

maturity n and ft are different factors to be tested. Panel A reports results for the deviation of inflation
from its long-run target (πt − π∗t ). Panel B reports results for the output gap xt. Panel C reports results for

the monetary policy shocks u
(1)
t . Values in parenthesis are heteroskedasticity and autocorrelation consistent

(HAC) standard errors with automatic bandwidth selection procedure as described in Newey and West
(1994). Constant estimates are not tabulated. Quarterly observations. The sample period is 1980:Q1 to
2019:Q4.

Panel A: The inflation gap.

y
(8)
t y

(12)
t y

(20)
t y

(28)
t y

(40)
t

(1) (2) (3) (4) (5)

(πt − π∗t ) 0.364 0.205 0.022 −0.057 −0.091
(1.524) (1.603) (1.546) (1.438) (1.426)

Observations 159 159 159 159 159
R2 0.005 0.002 0.000 0.000 0.000

Panel B: The Output Gap.

y
(8)
t y

(12)
t y

(20)
t y

(28)
t y

(40)
t

(1) (2) (3) (4) (5)

xt 0.063 −0.082 −0.313 −0.468 −0.608
(2.552) (2.629) (2.538) (2.350) (2.008)

Observations 159 159 159 159 159
R2 0.000 0.000 0.004 0.011 0.020

Panel C: The Monetary Policy Shocks.

y
(8)
t y

(12)
t y

(20)
t y

(28)
t y

(40)
t

(1) (2) (3) (4) (5)

u
(1)
t 0.990∗∗ 0.921∗ 0.810∗ 0.733 0.655

(0.476) (0.472) (0.459) (0.446) (0.432)

Observations 159 159 159 159 159
R2 0.104 0.094 0.080 0.071 0.062
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Table B.3: Predictive Regressions (across different maturities): Slope versus
Cyclical Component

This table reports OLS estimates for the regression rx
(n)
t+4 = α+ β1(y

(n)
t − y(4)t ) + β2(−(n− 4) u

(n−4)
t ) + εt,

where rx
(n)
t+4 is the realized one-year holding period excess return of a bond with maturity n-period, y

(n)
t −y

(4)
t

is the slope for a n-period bond, and (−(n− 4) u
(n−4)
t ) is the deviation of a n-period maturity yield from its

drift. Values in parenthesis are conservative standard errors from reverse regressions computed as in Hodrick
(1992). Constant estimates are not tabulated. Quarterly observations. The sample period is 1980:Q1 to
2019:Q4.

rx
(8)
t+4 rx

(12)
t+4 rx

(20)
t+4 rx

(28)
t+4

(1) (2) (3) (4) (5) (6) (7) (8)

y
(8)
t − y

(4)
t 1.613∗∗∗

(0.540)

−(8− 4) u
(4)
t −0.930∗∗∗ −0.851∗∗∗

(0.219) (0.217)

y
(12)
t − y(4)t 1.637∗∗

(0.765)

−(12− 4) u
(8)
t −0.792∗∗∗ −0.759∗∗∗

(0.199) (0.199)

y
(20)
t − y(4)t 1.563

(0.994)

−(20− 4) u
(16)
t −0.726∗∗∗ −0.744∗∗∗

(0.178) (0.179)

y
(28)
t − y(4)t 1.356

(1.145)

−(28− 4) u
(24)
t −0.682∗∗∗ −0.720∗∗∗

(0.168) (0.171)

Observations 156 156 156 156 156 156 156 156
Adjusted R2 0.323 0.243 0.339 0.270 0.361 0.313 0.357 0.331
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Table B.4: Predictive Regressions (quarterly holding period returns): Slope
versus Cyclical component

This table reports OLS estimates for the regression rx
(n)
t+1 = α+β1(y

(n)
t −y

(1)
t )+β2(−(n−1) u

(n−1)
t )+εt, where

rx
(n)
t+1 is the realized one-quarter holding period excess return of a bond with maturity n-period, y

(n)
t − y(1)t

is the slope for a n-period bond, and (−(n − 1) u
(n−1)
t ) is the deviation of a n-period maturity yield from

its drift. Values in parenthesis are heteroskedasticity and autocorrelation consistent (HAC) standard errors
with automatic bandwidth selection procedure as described in Newey and West (1994). Constant estimates
are not tabulated. Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.

rx
(8)
t+1 rx

(12)
t+1 rx

(20)
t+1 rx

(28)
t+1 rx

(40)
t+1

(1) (2) (3) (4) (5)

y
(8)
t − y

(1)
t −0.151∗

(0.084)

−(8− 1) u
(7)
t −0.146∗∗∗

(0.036)

y
(12)
t − y(1)t −0.103

(0.154)

−(12− 1) u
(11)
t −0.183∗∗∗

(0.043)

y
(20)
t − y(1)t −0.026

(0.213)

−(20− 1) u
(19)
t −0.183∗∗∗

(0.046)

y
(28)
t − y(1)t 0.025

(0.251)

−(28− 1) u
(27)
t −0.172∗∗∗

(0.045)

y
(40)
t − y(1)t 0.062

(0.307)

−(40− 1) u
(39)
t −0.153∗∗∗

(0.044)

Observations 159 159 159 159 159
R2 0.140 0.130 0.116 0.108 0.093
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Figure B.1: Actual vs Fitted Short-Term Rate: Additional Results. This figure shows
actual three-months yield and fitted values for our baseline (cointegrated) model with drifting equilibrium
rates (c.f. equation (2); green dashed line), and for a cointegrated rule with r∗ (brown dotted line). The
estimated cointegrated policy rule with r∗ has the following coefficients (HAC standard errors in parenthesis):

y
(1)
t = 0.667

(0.092)

∗∗∗ r∗t + 1.449
(0.068)

∗∗∗ π∗t + 0.822
(0.173)

∗∗∗ Et(πt+1 − π∗t+1) + 0.318
(0.083)

∗∗∗ Et(xt+1), R2 = 94.3%
.

We denote r∗ as the equilibrium real rate. We get an estimate for the equilibrium real rate by re-

gressing the real rate rt = y
(1)
t − Et(πt+4) on MY and potential output growth. We use as Et(πt+4) the

expected one-year ahead inflation from the Survey of Professional Forecasters (SPF). The estimates for r∗ are:

r∗t = −4.040
(1.397)

∗∗∗ MYt + 1.812
(0.309)

∗∗∗ ∆xpott , R2 = 68% .

Quarterly observations. The sample period is 1980:Q1 to 2019:Q4.
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Figure B.2: Short-Term Rate Forecasts: Additional Results. This figure shows
actual three-months yield and predicted rates implied by equation (2) in case of the policy rule with
constant equilibrium rate and inertia (brown dotted line) or our baseline (cointegrated) model with drifting
equilibrium rates (green dashed line). The estimated empirical Taylor rule with inertia has the following
coefficients (HAC standard errors in parenthesis):

y
(1)
t = 0.310

(0.108)

∗∗∗ + 0.935
(0.015)

∗∗∗ y
(1)
t−1 − 0.034

(0.140)
Et(πt+1 − π∗t+1) + 0.070

(0.028)

∗∗ Et(xt+1), R2 = 92.7%.

Dotted vertical lines represent the end of in-sample estimation period. Quarterly observations. The
sample period is 1980:Q1 to 2019:Q4.
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Figure B.3: Long-Run Loadings of Short-Term Cycle. This figure shows the long-run

coefficients for the regression u
(n)
t = φ1u

(n)
t−1 + φ2u

(1)
t + εt, where u

(n)
t and u

(1)
t are defined respectively in

equation (7) and (8). Long-run coefficients are computed as φ2/(1 − φ1). The 95% confidence interval is
calculated via the delta method. For the 10-year Treasury bond, the estimated regression is (HAC standard
errors in parenthesis):

u
(40)
t = 0.784

(0.045)

∗∗∗ u
(40)
t−1 + 0.205

(0.049)

∗∗∗ u
(1)
t , R2 = 78.2% .

Results are robust to including inflation gap and output gap. Quarterly observations. The sample
period is 1980:Q1 to 2019:Q4.
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C International Evidence

Table C.1: Predictive Regressions (across different maturities): Slope versus
Cyclical Component

This table reports OLS estimates for the regression rx
(n)
t+4 = α+ β1(y

(n)
t − y(4)t ) + β2(−(n− 4) u

(n−4)
t ) + εt,

where rx
(n)
t+4 is the realized one-year holding period excess return of a bond with maturity n-period, y

(n)
t −y

(4)
t

is the slope for a n-period bond, and (−(n− 4) u
(n−4)
t ) is the deviation of a n-period maturity yield from its

drift. Values in parenthesis are conservative standard errors from reverse regressions computed as in Hodrick
(1992). Constant estimates are not tabulated. Quarterly observations. For UK, zero-coupon bonds data are
from the Bank of England (https://www.bankofengland.co.uk/statistics/yield-curves); the sample
period is 1980:Q1 to 2019:Q4. For Canada, zero-coupon bonds data are from the Bank of Canada (https:
//www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/); the sample period is 1986:Q1 to
2019:Q4.

Panel A: UK.

rx
(12)
t+4 rx

(20)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5) (6)

y
(12)
t − y(4)t 1.159∗

(0.603)

−(12− 4) u
(8)
t −0.309∗∗ −0.327∗∗

(0.150) (0.149)

y
(20)
t − y(4)t 1.544∗

(0.883)

−(20− 4) u
(16)
t −0.321∗∗ −0.327∗∗

(0.150) (0.150)

y
(40)
t − y(4)t 1.979

(1.312)

−(40− 4) u
(36)
t −0.286∗∗ −0.287∗∗

(0.131) (0.131)

Observations 156 156 156 156 156 156
Adjusted R2 0.124 0.069 0.150 0.081 0.160 0.089

Panel B: Canada.

rx
(12)
t+4 rx

(20)
t+4 rx

(40)
t+4

(1) (2) (3) (4) (5) (6)

y
(12)
t − y(4)t 1.079

(0.784)

−(12− 4) u
(8)
t −0.421∗∗ −0.450∗∗∗

(0.165) (0.159)

y
(20)
t − y(4)t 1.384

(1.054)

−(20− 4) u
(16)
t −0.397∗∗ −0.428∗∗∗

(0.158) (0.151)

y
(40)
t − y(4)t 1.906

(1.649)

−(40− 4) u
(36)
t −0.325∗∗ −0.385∗∗∗

(0.135) (0.119)

Observations 132 132 132 132 132 132
Adjusted R2 0.208 0.152 0.253 0.189 0.263 0.202
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