
Chapter 2

Empirical Models in Finance

2.1 Introduction

Predicting the distribution of returns of financial assets is a task of primary impor-
tance for identifying desirable investments, performing optimal asset allocation within
a portfolio, as well as measuring and managing portfolio risk. Optimal asset manage-
ment depends on the statistical properties of returns at different frequencies. Portfolio
allocation , i.e., the choice of optimal weights to be attributed to the different (finan-
cial) assets in a portfolio, is typically based on a long-horizon perspective, while the
measurement of risk of a given portfolio takes typically a rather short-horizon per-
spective. This means that a long-run investor decides the optimal portfolio allocation
on the basis of the (joint) distribution of the returns of the relevant (i.e., from some
pertinent asset menu from which to choose) financial assets at low frequency. How-
ever, the monitoring of the daily risk of a portfolio normally depends on the statistical
properties of the distribution of returns at high frequencies.

As the distribution of future returns is not observable, the implementation of the
theory of finance requires the estimation of the distribution of future expected returns.
This distribution is derived by using the available data to build a model and then
by simulating the model to build artificial observations from which a model-based
distribution of future returns is derived.

This project, in its characteristically applied nature, is designed to illustrate the
statistical techniques to perform the analysis of time series of financial assets and
returns at different frequencies and their utilization to build models for asset man-
agement and performance evaluation, portfolio allocation, and financial risk manage-
ment.

The relevant concepts will be introduced and their application will be discussed
by using a set of programs written using R, a free software environment for statistical
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computing and graphics, specifically designed for each chapter. Draft codes for the
solutions of the exercises, which are designed to allow the reader to understand how
the different econometric techniques could be put to work, are made available on the
book webpage. The main emphasis will be given to the application of econometric
techniques, readers interested in the statistical properties of the estimation and the
simulation of econometric techniques applied here should refer to appropriate text-
books. All empirical applications will be based on publicly available databases of US
data. Note that there are three relevant dimensions of the data on financial returns:
time series, cross-section and the horizon at which returns are defined. In general,
we shall define rit,t+k as the returns realized by holding between time t and time
t + k, the asset i. So the t index captures the time-series dimension, the i index the
cross-sectional dimension, and the k index the horizon dimension.

2.2 The distribution of future returns in finance.

To illustrate the relevance of the distribution of future returns in finance we consider
the problem of the optimal choice at time t of the weights to be given to n risky
assets in building an optimal portfolio between time t and time t + k. We shall
consider two alternative approaches to choosing weights: Standard Portfolio Theory
and Risk Parity Portfolios. In these applications estimates of the first two moments
of the distribution of future returns are necessary for the practical implementation of
optimal portfolios.

2.2.1 Standard Portfolio Theory

Let’s denote with r the random vector of linear total returns from time t to time t+k
from a given menu of N risky assets for the interval [t, t + k], r ∼ D (μ,Σ), w is the
vector of weights given to the N risky assets in the portfolio and e is a (Nx1) column
vector of ones.

Given a degree of risk aversion λ, a standard mean-variance description of this
allocation problem is the following:

max
w

(1−w′e) rf +w′μ− 1

2
λ(w′Σw)

where E[r] = (1−w′e) rf +w′μ =rf +w′(μ−rfe) and V ar[w′r] = w′ΣwFirst-order
conditions (FOCs) are necessary and sufficient and define the following system of N
linear equations in N unknowns, the portfolio weights w ∈RN :

(μ−rfe)−λΣw = 0.



2.2. THE DISTRIBUTION OF FUTURE RETURNS IN FINANCE. 47

Solving the FOCs yields:

ŵ =
1

λ
Σ−1

(
μ−rfe) ,

which makes clear that optimal weights depend on preferences and the first two
moments of the distribution of future returns.

Consider now the special case in which ŵ′e = 1, that is no investment in the
risk-free asset is allowed. The optimal portfolio in this case is the famous tangency
portfolio which depends exclusively on the first two moments of the distribution of
future returns:

e′ŵ =
1

λ
e′Σ−1

(
μ−rfe) = 1 =⇒ λ = e′Σ−1

(
μ−rfe)

ŵT =
Σ−1

(
μ−rfe)

e′Σ−1 (μ−rfe) ,

Similarly, when the target is to find the minimum variance portfolio , we have: In
case the target is to find the minimum variance portfolio:

min
w

(w′Σw)

subject to
w′e = 1

the solution will be:

w =
Σ−1e
e′Σ−1e

In this case, only the second moment of the distribution of returns matters.

2.2.2 Risk Parity Portfolios

An alternative approach to building a portfolio is to choose weights in such a way
that the contribution of each asset to the volatility of the portfolio is the same (risk
parity). To determine optimal weights in this scenario, decompose the total variance
of a portfolio in the sum of the contributions of each asset to the total portfolio
variance:

V ar[w′r] =
N∑
i=1

wiCov (ri,w
′r)

w′Σw =
N∑
i=1

wi(Σw)i
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the risk contribution of each asset to total risk can then be written as follows:

RRCi =
wi(Σw)i
w′Σw

Risk Parity Portfolios are constructed by choosing weights so that:

RRCi =
1

N

Figure 1 illustrates the difference between an equally weighted portfolio and a risk
parity portfolio:

 
Figure 2.1. Portfolio allocation in Equal Weights Port-
folios(EWP) and Risk Parity Portfolios(RPP)

Weights in the risk parity portfolio are fully determined by the variance-covariance
matrix of the joint distribution of future returns.

2.3 Predicting returns: The Econometric Mod-

elling Process

Econometrics uses the ”past available data” to predict the future distribution of re-
turns. In practice, the information contained in past data is used to build a model that
describes the behaviour of returns; a model relates different returns and predictors by
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using some functional form and some unknown parameters that norm the interaction
among relevant variables. The data are used to estimate the unknown parameters,
using the general principle of minimizing the distance between the value predicted
by the model for the variables of interest and those observed. After the unknown
parameters have been estimated, model can be simulated to generate predictions for
some moments or the entire distribution of returns. Ex-post comparison of model
predictions and realized observation helps model validation. After validation, model
simulation can be used for forecasting the distribution of returns for asset alloca-
tion and risk measurement. To sum up the Econometric Modelling Process involves
several steps:

• Data collection and transformation

• Graphical and descriptive data analysis

• Model Specification

• Model Estimation

• Model Validation

• Model Simulation

• Use of the output of simulation for asset allocation and risk measurement

2.3.1 The Challenges of Financial Econometrics

In general, financial data are not generated by experiments, what is available to the
econometrician are observational data, which are given. To investigate the effect of
a medicine an investigator can take a set of patients and attribute them randomly
to a ”treatment” group and a ”control” group. The medicine is then administered
to the members of the treatment group while a ”placebo” is given to the control
group members. The effect of the medicine can then be measured by the difference
in the average health of the members of the two groups after the administration of
the treatment.

If a researcher is interested in assessing the importance of monetary policy to
predict stock market returns, the only available data are those on monetary policy
indicators and the stock market returns which are given and not generated by a
controlled experiments.

Special issues arise in routinely in financial data that are different in special days
(say, for example, the days of the FOMC meetings), that are affected by seasonality,
trends and cycles. Moreover, rare-events affect financial returns and rare events are,
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by definition, not regularly observed. As Taleb (2012) forcefully stresses in his book
Antifragile, absence of evidence in a given sample of data cannot be taken as evidence
of absence.

Econometricians face questions of different natures: sometimes the interest lies in
non-causal predictive modeling which can be handled by analyzing conditional expec-
tations, while this is not sufficient to understand causation to which end correlation
and conditional expectations are little informative. One issue is to evaluate if the
monetary policy stance helps to predict stock market returns, which is very differ-
ent from establishing a causation from monetary policy to the stock market, as the
evidence of correlation between monetary policy and the stock market might very
well reflect the response of monetary policy to stock market fluctuations taken as an
indicator of (present and future) economic activity. In the specification of models for
financial data, it is crucial that the econometrician uses the same information that
is available to agents operating in the market, i.e. that models are not affected by
the so-called ”look-ahead bias”. To this end, the sample of available data is usually
split into two subsamples: a training sample and a test sample. The training sample
is used to get the model ready for simulation and forecasting, i.e. to estimate the
unknown parameters, while the test sample is used for model evaluation,simulation
and forecasting.

2.4 Empirical Modelling of Asset Prices

There has been a remarkable evolution in the understanding and empirical modelling
of asset prices and financial returns from the 1960s onwards. The view from the
sixties was based on the Constant Expected Returns (CER) model and the CAPM,
when a simple econometric model serves the purpose of modelling returns at all
horizons and a one-factor model determines the cross-section of asset returns. Several
empirical failures of this view have led to the development of Time-Varying Expected
Returns (TVER) model where predictability becomes a factor and heterogeneity in
predictability is introduced according to the horizon of returns.

2.4.1 The view from the 1960s: Efficient Markets and CER

The history of empirical finance starts with the “efficient market hypothesis”Fama
(1970). This view, that dominated the field in the 1960s and 1970s, can be summa-
rized as follows (see also the discussion in Cochrane (1999)) :

• expected returns are constant and normally independently distributed;
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• the CAPM is a good measure of risk and thus a good explanation of why some
stocks earn higher average returns than others;

• excess returns are close to being unpredictable: any predictability is a statistical
artefact or cannot be exploited after transaction costs are taken into account;

• the volatility of returns is constant.

Fama (1970) clearly stated:

“... For data on common stocks, tests of ‘fair game’ (and random walk)
properties seem to go well when conditional expected returns are esti-
mated as the average return for the sample of data at hand. Apparently,
the variation in common stock returns about their expected values is so
large relative to any changes in expected values that the latter can be
safely ignored...”

Time-Series Implications

In practice, the traditional view can be recast in terms of the simplest possible spec-
ification for the predictive models for returns, i.e., the constant expected returns
model:

rit,t+1 = μi + σiεit εit ∼ NID (0, 1)

Cov (εit, εjs) =

{
σij t = s
0 t �= s

.

Note that the absence of predictability of excess returns is not a a consequence of
market efficiency per se but it instead results from a joint hypothesis: market efficiency
plus some assumptions on the process generating returns (i.e., the Contant Expected
Returns model).

Returns at different horizons

In this world, the horizon n does not matter for the prediction of returns because
once μi and σi are estimated, expected returns at all horizons and the variance of
returns at all horizon are derived deterministically.

E(rit,t+n) = E(
n∑

k=1

rit+k,t+k−1) =
n∑

k=1

E(rit+k,t+k−1) = nμ
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V ar(rit,t+n) = V ar(
n∑

i=1

rit+k,t+k−1) =
n∑

i=1

V ar(rit+k,t+k−1) = nσ2

As a consequence of these properties of the data, weights in an optimal multi-horizon
portfolio coincide with weights in a single period horizon portfolio:

ŵT =
Σ−1

(
μ−rfe)

e′Σ−1 (μ−rfe) ,

=
Σ−1(nn−1)

(
μ−rfe)

e′Σ−1(nn−1) (μ−rfe)

The Cross-Section of Returns

The CER view allows for cross-sectional heterogeneity of returns, but such cross-
sectional heterogeneity is related to a single factor, the market factor, and the CAPM
determines all the cross-sectional variation in μi. The statistical model that determines
all returns rit and the market return rmt ,can be described as follows:

(
rit − rrft

)
= μi + βium,t + ui,t(

rmt − rrft

)
= μm + um,t(

ui,t

um,t

)
∼ n.i.d.

[(
0
0

)
,

(
σii σim

σim σmm

)]

where rrft is the return on the risk-free asset. σim = 0 is a crucial assumption
for the valid estimation of the CAPM betas, and that assumption that risk-adjusted
excess returns are zero (usually known as zero alpha assumption) requires that μi =
βiμm.

The Volatility of Returns

The volatility of returns is constant in the CER model which therefore is not capable
of explaining time-varying volatility in the markets and the presence of alternating
periods of high and low volatility.
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Implications for Asset Allocation

When the data are generated by CER optimal asset allocation can be achieved by
utility maximization that uses as inputs the historical moments of the distribution
of returns, optimal portfolio weights are constant through the investment horizon.
The optimal portfolio is always a combination between the market portfolio and the
risk-free asset. The risk associated to any given asset or portfolio of assets is constant
over time. Think of measuring the risk of a portfolio with its Value-at-Risk (VaR).
The VaR is the percentage loss obtained with a probability at most of α percent:

Pr (Rp < −V aRα) = α.

where Rp are the returns on the portfolio. If the distribution of returns is normal,
then α-percent V aRα is obtained as follows (assume α ∈ (0, 1)):

Pr (Rp < −V aRα) = α⇐⇒ Pr

(
Rp − μp

σp

< −V aRα + μp

σp

)
= α

⇐⇒ Φ

(
−V aRα + μp

σp

)
= α,

where Φ (·) is the cumulative density of a standard normal. At this point, defining
Φ−1 (·) as the inverse CDF function of a standard normal, we have that

−V aRα + μp

σp

= Φ−1 (α)⇐⇒ V aRα = −μp − σpΦ
−1 (α) .

and, given that μp and σp are constant over time, V aRα is also constant over-
time. Consider the case of a researcher interested in the one per cent value at risk.
Because Φ−1 (0.01) = −2.33 under the normal distribution, we can easily obtain VaR
if we have available estimates of the first and second moments of the distribution of
portfolio returns :

V̂ aR0.01 = −μ̂p − 2.33σ̂p

2.5 Empirical Challenges to the traditional model

Over time the traditional view has been empirically challenged on many grounds. In
particular, it has been observed that

• The tenet that expected returns are constant is not compatible with the ob-
served volatility of stock prices. Stock prices in fact are ”too volatile” to be
determined only by expected dividends Shiller (1981);
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• there is evidence of returns predictability that increases with the horizon at
which returns are defined.

• There are anomalies that make returns predictable on the occasion of special
events.

• The CAPM is rejected when looking at the cross-section of returns and multi-
factor models are needed to explain the cross-sectional variability of returns

• high-frequency returns are non-normal and heteroscedastic, therefore risk is not
constant over time and there is predictability of risk at high-frequency

2.5.1 The time-series evidence

Practitioners implementing portfolio allocation based on the CER model experienced
rather soon a number of problems that made evident the limitations of this model,
but it was the work of Robert Shiller and co-authors that led the profession to go
beyond the CER model. The basic empirical evidence against the CER model was
the excessive volatility of asset prices and returns which is clearly illustrated in Shiller
(1981).

We shall illustrate the excess volatility evidence by considering a simple model of
stock market returns: the Dynamic Dividend Growth (DDG) model. As we shall dis-
cuss in detail in one of the next chapters, total returns to a stock i can be satisfactorily
approximated as follows:

rst+1 = κ+ ρ (pt+1 − dt+1) + Δdt+1 − (pt − dt)

where Pt is the stock price at time t and Dt is the dividend paid at time t, pt =
ln(Pt), dt = ln(Dt), κ is a constant and ρ = P/D

1+P/D
, P/D is the average price to divi-

dend ratio. In practice ρ can be interpreted as a discount parameter(0 < ρ < 1) . By
forward recursive substitution one obtains:

(pt − dt) =
κ

1− ρ
+

m

Σ
j=1

ρj−1 (Δdt+j)−
m

Σ
j=1

ρj−1
(
rst+j

)
+ ρm (pt+m+1 − dt+m+1)

which shows that the (pt − dt) measures the value of a very long-term investment
strategy (buy and hold). This value, in the absence of bubbles, is equal to the stream
of future dividend growth discounted at the appropriate rate, which reflects the risk-
free rate plus risk premium required to hold risky assets.

By introducing uncertainty, we have:
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(pt − dt) =
κ

1− ρ
+

m

Σ
j=1

ρj−1Et (Δdt+j)−
m

Σ
j=1

Etρ
j−1 (rst+j

)
+ ρmEt (pt+m+1 − dt+m+1)

Two considerations are relevant here. First, note that under the CER and no
bubbles the price-dividend ratio should reflect only expected dividend growth. The
empirical evidence is strongly against this prediction (see the Campbell and Shiller
(1987) ). Stock prices are too volatile to be determined only by expected dividends.
Campbell-Shiller(1987) illustrate the point by comparing the observed price-dividend
ratio and a counterfactual price-dividend ratio which is obtained by assuming constant
future expected returns and by using a Vector Autoregressive Model to predict future
dividend-growth: The volatility in the price-dividend ratio is much higher than that
predicted by the CER model.

Second, once the hypothesis of CER is rejected, the DDG model has interesting
implications for the predictability of returns at different horizons. If we decompose
future variables into their expected component and the unexpected one (an error
term) we can write the relationship between the dividend yield and the returns one
period ahead and over the long-horizon as follows:

rst+1 = κ+ ρEt (pt+1 − dt+1) + EtΔdt+1 − (pt − dt) + ρupd
t+1 + uΔd

t+1
m∑
j=1

ρj−1rst+j =
κ

1− ρ
+

m∑
j=1

ρj−1Et (Δdt+j)− (pt − dt) + ρmEt (pt+m − dt+m) +

ρmupd
t+m +

m∑
j=1

ρj−1uΔd
t+j

These two expressions illustrate that when the price dividends ratio is a noisy
process, such noise dominates the variance of one-period returns and the statistical
relation between the price-dividend ratio and one period returns is weak. However,
as the horizon over which returns are defined gets longer, noise tends to be dampened
and the predictability of returns given the price-dividend ratio increases.

The DDG model predicts a tighter relation between aggregate stock market re-
turns and the price-dividend ratio as the horizon at which returns are defined in-
creases. The first evidence of the increasing explanatory power of the dividend yield
as the investment horizon increases is reported in Table (1). Here we report the
slopes, the adjusted R2, as well as the adjusted t-stats as in Valkanov (2003), of the
following predictive regression

rt:t+k = αk + βk log (Dt/Pt) + σεt+k εt+k ∼ N(0, 1)
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where rt:t+k the aggregate US stock market returns from t to t+k, Dt the aggregate
dividend, Pt the index, εt+k an idiosyncratic error component and σ its corresponding
risk.

Table 2.1. The Predictive Power of the Dividend-Yield

This table reports the OLS estimates of the aggregate US stock market returns on the value-weighted dividend-price
ratio. The sample is monthly and goes from 1946:01 to 2012:12. The first column reports the forecasting horizon.
The second column reports the slope coefficients while the third the adjusted t-stats, i.e. t/

√
T as in Valkanov

(2003). The last column reports the adjusted R2.

Horizon k β̂ t/
√
T R2

1 0.726 0.092 0.007

4 3.369 0.187 0.032

8 7.105 0.269 0.066

16 15.96 0.412 0.144

24 23.59 0.523 0.214

60 54.69 0.976 0.487

The sensitivity of the aggregate cumulative returns on the log dividend-yield βk

increases with the investment horizon. The same is true for the adjusted R2, meaning,
the longer the forecasting term, the higher the predictive power of the value-weighted
dividend-yield.

2.5.2 Anomalies

The evidence of predictability of returns is strengthened by the presence of episodes
of ”anomalies”. An interesting illustration of this type of evidence is the one reported
in Lucca and Moench (2015), who document large average excess returns on U.S.
equities in anticipation of monetary policy decisions made at scheduled meetings of
the Federal Open Market Committee (FOMC) in the past few decades. Following
up on this evidence Cieslak et al. (2019) document that since 1994 the US equity
premium has followed an alternating weekly pattern measured in FOMC cycle time,
i.e. in time since the last Federal Open Market Committee meeting.
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2.5.3 The behaviour of returns at high-frequency

At small horizon (i.e. when k is small: infra-daily, daily, weekly or at most monthly
returns) the following modelling framework is consistent with the data:

Rt,t+k = σk,tut+k

σ2
k,t = f(It) ut+k ∼ IID D(0, 1).

A number of features of this model at high frequency is noteworthy:

1. The distribution of returns is centered around a mean of zero, and the zero
mean model dominates any alternative model based on predictors.

2. The variance is time-varying and predictable, given the information set, It,
available at time t.

3. The distribution of returns at high frequency is not normal, i.e., D(0, 1) may
often differ from N (0, 1)

2.5.4 The cross-section evidence

The CAPM has important empirical implications for the cross sections of returns.

E
(
ri − rf

)
= βiE

(
rM − rf

)
then heterogeneity in excess returns to different assets should be totally explained by
the different exposure to a single common risk factor, the market excess returns.

Given a sample of observations on rit, r
f
t , r

M
t ,the βi can be estimated first by OLS

regression over the time series of returns, then the following second-pass equations
can be estimated over the cross-section of returns:

ri = γ0 + γ1βi + ui

Where riare the average returns in the period over which the βi have been com-
puted.

If the CAPM is valid , then γ0 and γ1 should satisfy:

γ0 = r
f
, γ1 = r

M

where r
M is the mean market excess return.

When the model is estimated with appropriate methods, the restrictions are
strongly rejected (Fama and French (1993), Fama and MacBeth (1973)). This ev-
idence has paved the way to the estimation of multi-factor models of returns. Fama
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and French (1993) introduced a three-factor model based on the integration of the
CAPM with a “small-minus-big” market value (SMB) and “high-minus-low” book-
to-market ratio (HML). These factors are equivalent to zero-cost arbitrage portfolio
that takes a long position in high book-to-market (small-size) stocks and finances
this with a short position in low book-to-market (large-size) stocks. Jegadeesh and
Titman (2011) discovered the importance of a further additional factor in explaining
excess returns: momentum(MOM). An investment strategy that buys stocks that
have performed well and sells stocks that have performed poorly over the past 3-to
12-month period generates significant excess returns over the following year. More
recently Fama and French (2015) have extended the standard factors model based on
the Market, SMB, HML and MOM, to include two more factors: RMW and CMA.
RMW (Robust Minus Weak) is the return on a portfolio long on robust operating
profitability stocks and short on weak operating profitability stocks, while CMA (Con-
servative Minus Aggressive) is the average return on a position long on conservative
investment portfolios and short on aggressive investment. It is interesting to note
that augmenting the CAPM with SMB and HML, does not challenge per se the CER
model, which still holds as valid if the constant expected return model can be applied
to the two additional factors. However, momentum provides direct evidence against
the CER model as it indicates that the conditional expectations of future returns is
not constant.

2.6 The Implications of the new evidence

2.6.1 Asset Pricing with Predictable Returns

The evidence that the CER model does not provide the best representation of the
data opens a very interesting question on the determinants of time-varying expected
returns. An immediate motivation for predictability can be found in market mal-
functions or expectations mechanisms that do not efficiently process the available
information. However, time-varying expected returns can also be understood in the
context of a basic model that stems from the assumption of the absence of ”arbitrage
opportunities” (i.e. by the impossibility of making profits without taking risk). Con-
sider a situation in which in each period k state of nature can occur and each state
has a probability π(k), in the absence of arbitrage opportunities the price of an asset
i at time t can be written as follows:

Pi,t =
k∑

s=1

πt+1(s)mt+1 (s)Xi,t+1 (s)
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where mt+1 (s) is the discounting weight attributed to future pay-offs, which (as
the probability π) is independent from the asset i, Xi,t+1 (s) are the payoffs of the
assets (we have seen that in case of stocks we have Xi,t+1 = Pt+1+Dt+1), and therefore

returns on assets are defined as 1 + Rs,t+1 =
Xi,t+1

Pi,t
.For the safe asset, whose payoffs

do not depend on the state of nature, we have:

Ps,t = Xi,t+1

k∑
s=1

πt+1(s)mt+1 (s)

1 +Rs,t+1 =
1

m∑
j=1

πt+1(s)mt+1 (s)

In general, we can write:

Pi,t = Et (mt+1Xi,t+1)

1 +Rs,t+1 =
1

Et (mt+1)

consider now a risky asset :

Et (mt+1 (1 +Ri,t+1)) = 1

Cov (mt+1Ri,t+1) = 1− Et (mt+1)Et (1 +Ri,t+1)

Et (1 +Ri,t+1) = −Cov (mt+1Ri,t+1)

Et (mt+1)
+ (1 +Rs,t+1)

Turning now to excess returns we can write:

Et (Ri,t+1 −Rs,t+1) = − (1 +Rs,t+1) cov (mt+1Ri,t+1)

Assets whose returns are low when the stochastic discount factor is high (i.e. when
agents value payoffs more) require a higher risk premium, i.e. a higher excess return
on the risk-free rate. Turning to predictability at different horizon, if you consider
the case in which t is defined by taking two points in time very close to each other
the safe interest rate will be approximately zero and m will not vary too much across
states. The constant expected return model (with expected returns equal to zero)
is compatible with the no-arbitrage approach at high frequency. However, consider
now the case of low frequency, when t is defined by taking two very distant points
in time; in this case, safe interest rate will be different from zero and m will vary
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sizeably across different states. The constant expected return model is not a good
approximation at long horizons. Predictability is not necessarily a symptom of market
malfunction but rather the consequence of fair compensation for risk-taking, then it
should reflect attitudes toward risk and variation in market risk over time. Different
theories on the relationship between risk and asset prices should then be assessed on
the basis of their ability to explain the predictability that emerges from the data.

Also, different theories on returns predictability can be interpreted as different
theories of the determination of m and/or different mechanism of formation of expec-
tations. On the one hand we have theories of m based on rational investor behaviour
and rational expectations , on the other hand, we have alternative approaches based
on psychological models of investor behaviour. Our main interest is on how the pre-
dictability of returns can be used for optimal portfolio allocation purposes, rather
than discriminating between the possible sources of predictability.

2.7 Quantitative Risk Management and returns at

high-frequency

Once the portfolio weights (ŵ) are chosen, possibly exploiting the predictability of
the distribution of the relevant future returns, the distribution of portfolio returns
can be described as follows:

Rp ∼ D (
μp, σ

2
p

)
μp = μ′ŵ σ2

p = ŵ′Σŵ

Having solved the portfolio problem and having committed to a given allocation de-
scribed by ŵ, there is a different role that econometrics can play at high frequencies:
measuring volatility and providing information on portfolio risk. As our simple spec-
ification of the previous section shows, noise is not predictable but its volatility is.
The role of econometrics in applied risk management is best seen through a different
statistical model of high-frequency returns. When k is small (i.e., when one is consid-
ering infra-daily, daily, weekly or at most monthly returns) the following framework
is normally referred to:

Rt,t+k = σk,tut+k

σ2
k,t = f(It) ut+k ∼ IID D(0, 1).

The following features of the model at high frequency are noteworthy:

1. The distribution of returns is centered around a mean of zero, and the zero
mean model dominates any alternative model based on predictors.
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2. The variance is time-varying and predictable, given the information set, It,
available at time t.

3. The distribution of returns at high frequency is not normal, i.e., D(0, 1) may
often differ from N (0, 1)

Given these features of the data, econometrics can still be used at high frequency
to assess the risk of a given portfolio. In particular, we shall investigate the role of
econometrics in deriving the time-varying Value-at- Risk (VaR) of a given portfolio.

2.8 Predictive Models in Finance: a General Rep-

resentation.

Predictive models are statistical models of future behaviour in which relations between
the variables to be predicted and the predictors are specified as functional relation
determined by parameters to be estimated. Predictive models can be univariate,
when there is only one variable of interest, or multivariate when we have a vector of
variables of interest.

All predictive models we shall analyze are special cases of the following general
representation:

rt,t+k = f (Xμ
t ,Θ

μ
t ) +Ht+kεt+k (2.1)

Σt+k = Ht+kH
′
t+k.

Σt+k = g (Xσ
t ,Θ

σ
t ) +

∑q

j=1
BjΣt+k−jB′j, (2.2)

εt+k ∼ D (0, I)

where rt,t+k is the vector of returns between time t and time t+k in which we are
interested, Xμ

t is the vector of predictors for the mean of our returns that we observe at
time t, f specifies the functional relation (which is potentially time-varying) between
the mean returns and the predictors that depend also on a set of parameters Θμ

t ,
the matrix Ht+k determines the potentially time varying variance-covariance of the
vector of returns. The process for the variance is predictable as there is a functional
relation determining the relationship between Ht+k and a vector of predictors Xσ

t

that is driven by a vector of unknown parameters Θσ
t .

Our initial discussion of this chapter illustrates that the appropriate specification
of the general predictive model depends on the horizon at which returns are defined.
Consider, for example, the problem of univariate modelling of stock market returns.
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When k is small and high-frequency returns On the one hand, in the simple asset
allocation model, the econometric framework considered for returns is as follows:1

rt,t+k = 0 + σt+kut+k ut+k ∼ IID D(0, 1),
σ2
t+k = ω + ασ2

t+k−1 + βu2
t+k−1, |α + β| < 1

This is a model that features no predictability in the mean of r returns (the expected
future return at any horizon is constant at zero), but there is predictability in the vari-
ance of returns that it is mean reverting towards a long-term value of ω/ (1− α− β).
No assumption of normality is made for the innovation in the process generating
returns. Consider now the case of large k, i.e. long-horizon returns (note that in
the continuously compounded case, rt,t+k ≡

∑k
j=1 rt,t+j), in this case the relevant

predictive model can be written as follows:

rt,t+k = α + β′Xt + σut+k ut+k ∼ IID N (0, 1),

where Xt is a set of predictors observed at time t. In this case we have that returns
feature predictability in mean, constant variance and the innovations are normally
distributed. As the horizon k increases, predictability increases and therefore the un-
certainty related to the unexpected components of returns decreases (i.e., the annual-
ized variance of returns is a downward-sloping function of the horizon). Moreover—as
we have already discussed—the dependence of σt,k on time (i.e., its time-varying na-
ture) declines and long-horizon returns can be described as a (conditional) normal
homoskedastic processes. In the short-run noise dominates and modelling returns on
the basis of fundamentals is very difficult. However, as the horizon increases fun-
damentals become more important to explain returns and the risk associated with
portfolio allocation based on econometric models is reduced. The statistical model
becomes more and more precise as k gets large.

1The sum of IIDness of returns and of normality has also been denoted as ut+k ∼ n.i.d.(0, 1).
Note that IID N(0, 1) and n.i.d.(0, 1) have identical meaning.



Chapter 3

Asset Prices and Returns

3.1 Introduction

In this chapter we shall investigate the main objects of our analysis by illustrating first
how returns can be defined and their relationships with prices and by then illustrating
how returns and prices can be empirically analyzed by using R.

3.2 Returns

Consider an asset that does not pay any intermediate cash income (a zero-coupon
bond, such as a Treasury Bill, or a share in a company that pays no dividends). Let
Pt be the price of the security at time t.

3.2.1 Simple and log Returns

The linear or simple return between times t and t− 1 is defined as1:

Rt = Pt/Pt−1 − 1 (3.1)

The log, or continuously compounded, return is defined as:

rt = ln(Pt/Pt−1) = ln(1 +Rt)

Note that, while Pt means “price at time t”, rt is a shorthand for “return between
time t − 1 and t” so that the notation is not really complete, and its interpretation

1Note that (3.1) defines period returns, there is usually an accrual convention applied to returns
according to which they are transformed on a yearly basis.
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depends on the context. When needed for clarity, we shall specify returns as indexed
by the start and the end point of the interval in which they are computed as, for
instance, in rt−1,t.

The two definitions of return yield different numbers when the ratio between
consecutive prices is far from 1.

Consider the Taylor formula for ln(x) for x in the neighbourhood of 1:

ln(x) = ln(1) + (x− 1)/1− (x− 1)2/2 + ...

if we truncate the series at the first order term we have:

ln(x) ∼= 0 + x− 1

so that if x is the ratio between consecutive prices, then for x close to one the two
definitions give similar values. Note however that ln(x) ≤ x − 1. In fact, x − 1 is
equal to and tangent to ln(x) in x = 1 and above it anywhere else (in fact, the second
derivative of ln(x) is negative). This implies that if one definition of return is used in
place of the other, the approximation errors shall be all of the same sign. This fact
has important consequences when multi-period returns are computed as the difference
between the two definitions will become larger and larger.

3.2.2 Statistical models for asset prices and returns.

A standard model for asset prices is the log random walk model with Gaussian resid-
uals

lnPt = α0 + lnPt−1 + ut (3.2)

ut ∼ N.I.D.[0, σ2]

in this case, log returns are normally distributed, this implies that single period gross
returns are i.i.d lognormal variables, as rt+1 ≡ log

(
1 +Rt+1

)
. Note that, under the

lognormal model

rt,t+1 ∼ n.i.d.(μ, σ2)

E
(
Rt,t+1

)
= exp

(
μ+

1

2
σ2

)
− 1

V ar
(
Rt,t+1

)
= exp

(
2μ+ σ2

) (
eσ

2 − 1
)
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In the case we have a vector of log returns that are normally distributed:

rt,t+1 ∼ i.i.d.(μ,Σ)

E
(
Ri

t,t+1

)
= exp

(
μi +

1

2
σii

)
− 1

Cov
(
Ri

t,t+1, R
j
t,t+1

)
= exp

(
μi + μj +

1

2
(σii + σjj)

)
(eσij − 1)

3.2.3 Multi-period returns and annualized returns

What are multiperiod returns? Multiperiod returns are returns to an investment
which is made with a horizon larger than one. Let us consider the case of the returns
to an investment made in time t until time t + n. In this case, we define the simple
multi-period return as:

Rt,t+n = Pt+n/Pt − 1 (3.3)

=
Pt+n

Pt+n−1

Pt+n−1
Pt+n−2

...
Pt+1

Pt

− 1

=
n

Π
i=1

(1 +Rt+i,t+i−1)− 1

in the case of log returns we have instead:

rt,t+n = ln (Pt+n/Pt) (3.4)

= ln

(
Pt+n

Pt+n−1

Pt+n−1
Pt+n−2

...
Pt+1

Pt

)
=

n∑
i=1

rt+i,t+i−1

Consider the case in which the length of our period in one year, given any mul-
tiperiod returns one can define its annualized value i.e. as the constant annual rate
of return equivalent to the multiperiod returns of an investment in asset i over the
period t,... t+n.

In the case of simple returns, we have
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(
1 +RA

t,t+n

)n
= 1 +Rt,t+n

=
n

Π
i=1

(1 +Rt+i,t+i−1)

RA
t,t+n =

(
n

Π
i=1

(1 +Rt+i,t+i−1)
) 1

n

− 1

the annualized simple rate of return is the geometric mean of the annual returns
over the period t, t+n.

Consider now continuously compounded returns:

nrAt,t+n = rt,t+n

=
n∑

i=1

rt+i,t+i−1

rAt,t+n =
1

n

n∑
i=1

rt+i,t+i−1

The annualized log return is the arithmetic mean of annual log returns.

3.2.4 Working with Returns

Consider the value of a buy-and-hold portfolio invested in shares of k different com-
panies, that pay no dividend, at time t be:

Vt =
k∑

i=1

niPit

The simple one-period return of the portfolio shall be a linear function of the
returns of each stock.

Rt =
Vt

Vt−1
− 1 =

∑
i=1..k

niPit∑
j=1..k njPjt−1

− 1

=
∑
i=1..k

niPit−1∑
j=1..k njPjt−1

Pit

Pit−1
− 1 =
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=
∑
i=1..k

wit(Rit + 1)− 1 = (
∑
i=1..k

witRit +
∑
i=1..k

wit1)− 1 =
k∑

i=1

witRit

Where wit =
niPit−1∑
i niPit−1

are non negative ”‘weights”’ summing to 1 which represent

the percentage of the portfolio invested in the i-th stock at time t− 1.

This simple result is very useful. Suppose, for instance, that you know at time t−1
the expected values for the returns between time t−1 and t. Since the expected value
is a linear operator (the expected value of a sum is the sum of the expected values,
moreover additive and multiplicative constants can be taken out of the expected
value) and the weights wit are known, hence non-stochastic, at time t − 1 we can
easily compute the return for the portfolio as:

E(Rt) =
∑
i=1..k

witE(Rit)

Moreover, if we know all the covariances between rit and rjt (if i = j we simply
have a variance) we can find the variance of the portfolio return as:

V (Rt) =
∑
i=1..k

∑
j=1..k

wiwjCov(Rit;Rjt)

This cross-sectional additivity property does not apply to log returns. In fact, we
have:

rt = ln(
Vt

Vt−1
)

= ln(

k∑
i=1

niPit−1

k∑
i=1

niPit−1

Pit

Pit−1
) = ln(

k∑
i=1

wit exp(rit))

The log return of the portfolio is not a linear function of the log (and also the
linear) returns of the components. In this case assumptions on the expected values
and covariances of the components cannot be translated into assumptions on the
expected value and the variance of the portfolio by simple use of basic “expected
value of the sum” and “variance of the sum” formulas.

On the other hand, log returns are additive when we consider the time series of
returns
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rt,t+n =
n∑

i=1

rt+i,t+i−1

It is then easy, for instance, given the expected values and the covariances of the
sub-period returns, to compute the expected value and the variance of the full-period
return. Interestingly, additivity does not apply to simple returns.

Rt,t+n =
n

Π
i=1

Rt+i,t+i−1 − 1

In general, the expected value of a product is difficult to evaluate and does not
depend only on the expected values of the terms.

To sum up: the two definitions of returns yield different values when the ratio
between consecutive prices is not in the neighbourhood of the unit value. The linear
definition works very well for portfolios over single periods, in the sense that expected
values and variances of portfolios can be derived by expected values variances and
covariances of the components, as the portfolio linear return over a time period is a
linear combination of the returns of the portfolio components. For analogous reasons,
the log definition works very well for single securities over time. However, care must
be exercised when long-horizon returns are computed by cumulating continuously
compounded returns.

3.3 Stock and Bond Returns

The computation of returns for stock and bonds must take into account the existence
of intermediate cash income. In this section we show how this is performed and how
linearization can help the empirical analysis of the stock and bond markets.

3.3.1 Stock Returns and the dynamic dividend growth model

Consider the one-period total holding returns in the stock market, that are defined
as follows:2

Hs
t+1 ≡

Pt+1 +Dt+1

Pt

− 1 =
Pt+1 − Pt +Dt+1

Pt

=
ΔPt+1

Pt

+
Dt+1

Pt

, (3.5)

where Pt is the stock price at time t, Dt is the (cash) dividend paid at time t, and
the superscript s denotes “stock”. The last equality decomposes a discrete holding

2The use of ‘≡’ emphasizes that (3.5) provides a definition. Moreover, ΔXt+1 denotes the first
difference of a generic variable, or ΔXt+1 ≡ Xt+1 −Xt.
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period return as the sum of the percentage capital gain and of (a definition of) the
dividend yield, Dt+1/Pt. Given that one-period returns are usually small, it is some-
times convenient to approximate them with logarithmic, continuously compounded
returns, defined as:

rst+1 ≡ log
(
1 +Hs

t+1

)
= log

(
Pt+1 +Dt+1

Pt

)
= log (Pt+1 +Dt+1)− log (Pt) . (3.6)

Interestingly, while linear returns are additive in the percentage capital gain and the
dividend yield components, log returns are not as

log

(
Pt+1 +Dt+1

Pt

)
�= log

(
Pt+1

Pt

)
+ log

(
Dt+1

Pt

)
However, it is still possible to express log returns as a linear function of the log of
the price dividend and the (log) dividend growth. Dividing both sides of (3.5) by(
1 +Hs

t+1

)
and multiplying both sides by Pt/Dt we have:

Pt

Dt

=
1(

1 +Hs
t+1

)Dt+1

Dt

(
1 +

Pt+1

Dt+1

)
.

Taking logs (denoted by lowercase letters, i.e., xt ≡ logXt for a generic variable Xt),
we have:3

pt − dt = −rst+1 +Δdt+1 + ln
(
1 + ept+1−dt+1

)
(3.7)

as log(Dt+1/Dt) = logDt+1 − logDt = Δ logDt+1 = Δdt+1. Taking a first-order
Taylor expansion of the last term about the point P̄ /D̄ = ep̄−d̄ (where the bar denotes
a sample average), the logarithm term on the right-hand side can be approximated

3−rst+1 follows from

log
1(

1 +Hs
t+1

) = log 1− log
(
1 +Hs

t+1

)
= − log

(
1 +Hs

t+1

)
= −rst+1

based on our earlier definitions and the fact that log 1 = 0 for natural logs. Moreover, notice that

Pt+1

Dt+1
= elog(Pt+1/Dt+1) = elogPt+1−logDt+1 = ept+1−dt+1
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as:

ln
(
1 + ept+1−dt+1

) 	 ln(1 + ep̄−d̄) +
ep̄−d̄

1 + ep̄−d̄
[(pt+1 − dt+1)− (p̄− d̄)]

= − ln(1− ρ)− ρ ln

(
1

1− ρ
− 1

)
+ ρ(pt+1 − dt+1)

= κ+ ρ(pt+1 − dt+1)

where

ρ ≡ ep̄−d̄

1 + ep̄−d̄
=

P̄ /D̄

1 + (P̄ /D̄)
< 1 κ ≡ − ln(1− ρ)− ρ ln

(
1

1− ρ
− 1

)
.

Although ρ ∈ (0, 1) is just a factor that depends on the average price-dividend ratio,
in what follows will be used in a way that resembles a discount factor. At this point,
substituting the expression for the approximated term in (3.7), we obtain that the
log price-dividend ratio is defined as:4

pt − dt 	 κ− rst+1 +Δdt+1 + ρ(pt+1 − dt+1).

Re-arranging this expression shows that total stock market returns can be written as:

rst+1 = κ+ ρ (pt+1 − dt+1) + Δdt+1 − (pt − dt) ,

or a constant κ, plus the log dividend growth rate (Δdt+1), plus the (discounted, at
rate ρ) change in the log price-dividend ratio, ρ (pt+1 − dt+1)− (pt − dt) = Δ(pt+1 −
dt+1)− (1−ρ) (pt+1 − dt+1). Moreover, by forward recursive substitution one obtains:

(pt − dt) = κ− rst+1 +Δdt+1 + ρ(pt+1 − dt+1)

= κ− rst+1 +Δdt+1 + ρ
(
κ− rst+2 +Δdt+2 + ρ(pt+2 − dt+2)

)
= (κ+ ρκ)− (rst+1 + ρrst+2) + (Δdt+1 + ρΔdt+2) + ρ2(pt+2 − dt+2)

= (κ+ ρκ)− (rst+1 + ρrst+2) + (Δdt+1 + ρΔdt+2)+

+ ρ2(κ− rst+3 +Δdt+3 + ρ(pt+3 − dt+3))

= κ(1+ρ+ρ2)− (rst+1+ρrst+2+ρ2rst+3) + (Δdt+1+ρΔdt+2+ρ2Δdt+3) + ρ3(pt+3 − dt+3)

= ... = κ

m∑
j=1

ρj−1 +
m∑
j=1

ρj−1(Δdt+j − rst+j) + ρm (pt+m − dt+m) .

4The approximation notation ‘	’ appears to emphasize that this expression is derived from an
application of a Taylor expansion.
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Under the assumption that there can be no rational bubbles, i.e., that5

lim
m−→∞

ρm (pt+m − dt+m) = 0,

from

lim
m−→∞

m∑
j=1

ρj−1 =
1

1− ρ

if ρ ∈ (0, 1), we get

(pt − dt) =
κ

1− ρ
+

m∑
j=1

ρj−1
(
Δdt+j − rst+j

)
.

This result shows that the log price-dividend ratio, (pt − dt), measures the value of
a very long-term investment strategy (buy and hold) which—apart from a constant
κ/(1 − ρ)—is equal to the stream of future dividend growth discounted at the ap-
propriate rate, which reflects the risk-free rate plus the risk premium required to
hold risky assets, rst+j ≡ rf + (rst+j − rf ).6 Therefore, for long investment horizons,
econometric methods may hope to infer from the data two different types of “infor-
mation”: information concerning the forecasts of future (continuously compounded)
dividend growth rates, i.e., Δdt+1, Δdt+2, ..., Δdt+m as m −→∞, which are measures
of the cash flows paid out by the risky assets (e.g., how well a company will do);
information concerning future discount rates, and in particular future risk premia,
i.e., (rst+1 − rf ), (rst+2 − rf ), ..., (rst+m − rf ) as m −→ ∞. Note that, under the null
hypothesis of constancy of returns, the volatility of the price dividend ratio should
be completely explained by that of the dividend process. The empirical evidence is
strongly against this prediction (see the Shiller(1981) and Campbell-Shiller(1987)).

If we decompose future variables into their expected component and the unex-
pected one (an error term) we can write the relationship between the dividend yield
and the returns one period ahead and over the long horizon as follows:

5This assumption means that as the horizon grows without bounds, the log price-dividend ratio
(hence, the underlying price-dividend ratio) may grow without bounds, but this needs to happen at
a speed that is inferior to 1/ρ > 1, so that when pt+m− dt+m is discounted at the rate ρm, the limit
of the quantity ρm (pt+m − dt+m) is zero.

6Here we have assumed that the risk-free interest rate is approximately constant. We shall see
that, at least as a first approximation, this is an assumption that holds in practice.
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rst+1 = κ+ ρEt (pt+1 − dt+1) + EtΔdt+1 − (pt − dt) + ρupd
t+1 + uΔd

t+1

m∑
j=1

ρj−1rst+j =
κ

1− ρ
+

m∑
j=1

ρj−1Et (Δdt+j)− (pt − dt) + ρmEt (pt+m − dt+m)+

ρmupd
t+m +

m∑
j=1

ρj−1uΔd
t+j

These two expressions illustrate that when the price dividends ratio is a noisy
process, such noise dominates the variance of one-period returns and the statistical
relation between the price dividend ratio and one-period returns is weak. However,
as the horizon over which returns are defined gets longer, noise tends to be dampened
and the predictability of returns given the price dividend ratio increases.

3.3.2 Bond Returns: Yields-to-Maturity and Holding Period
Returns

We turn now to bonds. We distinguish between two types of bonds: those paying a
coupon each given period and those that do not pay a coupon but just reimburse the
entire capital upon maturity (zero-coupon bonds).

Zero-Coupon Bonds

Define the relationship between price and yield to maturity of a zero-coupon bond as
follows:

Pt,T =
1

(1 + Yt,T )
T−t , (3.8)

where Pt,T is the price at time t of a bond maturing at time T , and Yt,T is yield to
maturity. Taking logs of the left and the right-hand sides of the expression for Pt,T ,
and defining the continuously compounded yield, yt,T , as log(1 + Yt,T ), we have the
following relationship:

pt,T = − (T − t) yt,T , (3.9)

which clearly illustrates that the elasticity of the yield to maturity to the price of a
zero-coupon bond is the maturity of the security. Therefore, the duration of the bond
equals maturity as no coupons are paid. The one-period uncertain holding-period
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return on a bond maturing at time T , rTt,t+1, is then defined as follows:

rTt,t+1 ≡ pt+1,T − pt,T = − (T − t− 1) yt+1,T + (T − t) yt,T (3.10)

= yt,T − (T − t− 1) (yt+1,T − yt,T ) ,

= (T − t) yt,T − (T − t− 1) yt+1,T , (3.11)

which means that yields and returns differ by a scaled measure of the change between
the yield at time t+ 1, yt+1,T , and the yield at time t, yt,T .

Coupon Bonds

The relationship between price and yield to maturity of a constant coupon (C) bond
is given by:

P c
t,T =

C(
1 + Y c

t,T

) +
C(

1 + Y c
t,T

)2 + ...+
1 + C

(1 + Yt,T )
T−t .

When the bond is selling at par, the yield to maturity is equal to the coupon rate.
To measure the length of time that a bondholder has invested money for we need to
introduce the concept of duration:

Dc
t,T =

C

(1+Y c
t,T )

+ 2 C

(1+Y c
t,T )

2 + ...+ (T − t) 1+C

(1+Yt,T )
T−t

P c
t,T

=

C
T−t∑
i=1

i

(1+Y c
t,T )

i +
(T−t)

(1+Yt,T )
T−t

P c
t,T

.

Note that when a bond is floating at par we have

Dc
t,T = Y c

t,T

T−t∑
i=1

i(
1 + Y c

t,T

)i + (T − t)

(1 + Yt,T )
T−t

= Y c
t,T

(
(T − t) 1

1+Y c
t,T
− (T − t)− 1

)
1

(1+Y c
t,T )

T−t+1 +
1

1+Y c
t,T(

1− 1
1+Y c

t,T

)2 +
(T − t)

(1 + Yt,T )
T−t

=
1− (

1 + Y c
t,T

)−(T−t)
1− (

1 + Y c
t,T

)−1 ,
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because when |x| < 1,

n∑
k=0

kxk =
(nx− n− 1) xn+1 + x

(1− x)2
.

Duration can be used to find approximate linear relationships between log-coupon
yields and holding period returns. Extending the formula of zero-coupon bonds
(where duration is equal to maturity) to coupon bonds, we have

rct+1 = Dc
t,Ty

c
t,T −

(
Dc

t,T − 1
)
yct+1,T ,

Shiller (1979) proposes a linearization which takes duration as constant and considers
the following approximation in the neighbourhood yt,T = yt+1,T = y = C:

Ht,T 	 DTyt,T − (DT − 1) yt+1,T

DT =
1−

(
1 + Y

c

t,T

)−(T−t)
1−

(
1 + Y

c

t,T

)−1
DT =

1− γT−t−1

1− γ
=

1

1− γT

γT =

{
1 + Y

c

t,T

[
1− 1/(1 + Y

c

t,T )
T−t−1

]−1}−1
lim

T−→∞
γT = γ = 1/(1 + y)

Solving this expression forward, we generate the equivalent of the DDG model in
the bond market:

yt,T =
T−t−1∑
j=0

γj (1− γ)Ht+j,T + γT−tyT−1,T

In this case, by equating one-period risk-adjusted returns, we have

E

[
yt,T − γyt+1,T

1− γ
| It

]
= rt + φt,T (3.12)

From the above expression, by recursive substitution, under the terminal condition



3.4. GOING TO THE DATA WITH R 75

that at maturity the price equals the principal, we obtain:

yt,T = y∗t,T + E[ΦT | It] = 1− γ

1− γT−t

T−t−1∑
j=0

γjE[rt+j | It] + E[ΦT | It] (3.13)

where the constant Φt,T is the term premium over the whole life of the bond:

Φt,T =
1− γ

1− γT−t

T−t−1∑
j=0

γjφt+j,T

For long-bonds, when T − t is very large, we have :

yt,T = y∗t,T + E[ΦT | It] = (1− γ)
T−t−1∑
j=0

γjE[rt+j | It] + E[ΦT | It]

Subtracting the risk-free rate from both sides of this equation we have

St,T = yt,T − rt =
T−1∑
j=1

γjE[Δrt+j | It] + E[ΦT | It]

= S∗t,T + E[ΦT | It]

3.4 Going to the data with R

A statistical package is needed to take all the modelling steps in practice. Going from
loading the data to transforming them, graphing them, analyzing them, modelling
them and using them to estimate parameters and generate model-based simulations
and, eventually, producing a report. We will use R and run R through the user
interface RStudio. When using R and Rstudio Chat GPT can be used as an online
assistant. If you ask Chat GPT ”what is R Studio?” you will get an answer similar
to the following one.

RStudio is an integrated development environment (IDE) for the R programming
language. It provides a user-friendly and feature-rich environment for working with
R, making it easier for data scientists, statisticians, and researchers to write, run, and
manage R code. Here are some key features and components of RStudio:

• Script Editor: RStudio includes a script editor with features like syntax high-
lighting, code completion, and code formatting to enhance your coding experi-
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ence.

• Console: It has an interactive R console that allows you to run R code and see
the results in real-time. You can also save your command history for future
reference.

• Data Viewer: RStudio provides a data viewer that lets you examine and ma-
nipulate data frames and other data structures visually.

• Plots and Visualization: You can create and customize plots and charts using
R’s graphical capabilities. RStudio displays plots within the IDE, making it
easier to visualize your data.

• Package Management: It simplifies the management of R packages, allowing
you to install, update, and load packages with ease.

• Integrated Help: RStudio integrates with R’s documentation and help system,
making it simple to access information about functions, packages, and syntax.

• Version Control: It offers version control integration with Git and SVN, allowing
you to manage your R projects and code revisions efficiently.

• Project Management: RStudio supports project organization, making it easy
to keep your code, data, and files organized within a project folder.

• R Markdown: RStudio supports R Markdown, a format for creating dynamic
documents that combine R code, text, and visualizations. This is useful for
creating reports, presentations, and publications.

• Shiny: RStudio includes Shiny, a web application framework for building in-
teractive web applications with R. This is particularly useful for creating data
dashboards and interactive data applications.

3.4.1 Getting Started

To get started with R and Rstudio you should first install them, then learn what R
packages R, how to install them and how to call them. A very useful short piece by
Torfs and Brauer (2014) provides all the relevant information to download, install
and get started with R and RStudio. You should also be aware of how to get help
from the web. The best way to do so Is to ask Chat GPT.
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Ask Chat GPT

Here is the Chat GPT answer to the question ”How can you help me in using R with
RStudio?”

I can assist you in using R with RStudio in various ways, including:

• Coding and Syntax Assistance: I can provide explanations, examples, and code
snippets to help you understand and write R code in RStudio. If you encounter
errors or have questions about specific functions or packages, feel free to ask for
guidance.

• Data Manipulation and Analysis: I can assist you in performing data manip-
ulation, cleaning, and analysis tasks in RStudio. Whether you need help with
data frames, statistical analysis, or visualization, I can provide guidance and
suggestions.

• Package Recommendations: If you’re looking for R packages to solve specific
tasks or problems, I can suggest relevant packages and explain how to install
and use them in your RStudio environment.

• R Markdown and Reports: I can assist you in creating dynamic reports using
R Markdown in RStudio. I can provide guidance on formatting, adding code
chunks, and generating documents with embedded R code and output.

• Plotting and Visualization: I can help you create various types of plots and
visualizations in RStudio using packages like ggplot2, base R graphics, and
others. I can also explain how to customize and export your plots.

• Debugging and Troubleshooting: If you encounter errors or bugs in your R code
within RStudio, I can help you understand and debug the issues. I can provide
strategies for identifying and fixing common programming problems.

• Version Control with Git: I can guide you through the process of using Git for
version control within RStudio. This includes initializing repositories, commit-
ting changes, and collaborating with others using Git.

• Project Organization: I can provide advice on organizing your R projects within
RStudio, including creating project directories, managing files, and maintaining
a tidy project structure.

• Customization and Configuration: I can help you customize your RStudio en-
vironment by explaining how to change themes, set preferences, and install
extensions or add-ons that enhance your workflow.
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• Tips and Best Practices: I can offer tips and best practices for efficient coding,
data analysis, and project management in RStudio to improve your productiv-
ity.

To get assistance with any specific R-related task or question you have in RStudio,
simply provide me with the details of your problem or topic of interest, and I’ll do
my best to provide guidance and support.

3.4.2 Data Objects in R

When working with data in R the first step is to know how to identify them and orga-
nize them. R makes available various common datatypes: double, integer, complex,
logical, character, factor, date and time, and missing data. Data are then organized
into datasets that are called data structures . The basic data structures we shall
use are: vector, matrix, array, dataframes, tibble, time-series, and lists. Chapter 2 of
Singh and Allen (2017) provides a good introduction to data objects in R.

Ask Chat GPT

Here is the Chat GPT answer to the question ”What is the difference between a
data-frame a tibble and a time-series object in R?”7 In R, dataframes, tibbles, and
time-series objects are all data structures used for different purposes, and they have
distinct characteristics and functionality:

1. Dataframe. A dataframe is a fundamental data structure in R. It is a two-
dimensional tabular data structure where columns can contain different data
types (numeric, character, factor, etc.). Dataframes are often used for storing
and manipulating structured data, such as data imported from spreadsheets or
databases. Dataframes are versatile and widely used for various data analysis
tasks.

2. Tibble.A tibble is an enhanced dataframe introduced as part of the tidyverse
ecosystem in R, available through the tibble package. Tibbles are designed to
be more user-friendly and consistent than traditional dataframes. They have
stricter rules, such as not automatically converting strings to factors, which can
lead to fewer surprises. Tibbles are particularly well-suited for data wrangling
and analysis with tools like dplyr and ggplot2.

7Chat GPT will also provide example codes on how to create dataframe,tibbles and time-series
objects
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3. Time-Series Object.A time-series object is used specifically for handling time-
series data, where data points are associated with specific timestamps or time
intervals. Time-series objects can be created using various packages, such as the
ts function from base R, or with packages like xts and zoo for more advanced
time-series manipulation. Time-series objects have additional attributes and
methods for time-based operations, like lagging, differencing, and time-based
subsetting. They are essential for time-series analysis and forecasting tasks.

In summary, the choice between a dataframe, tibble, or time-series object depends on
your specific data and analysis needs. Dataframes and tibbles are suitable for general
data analysis, while time-series objects are specialized for handling time-dependent
data. Tibbles, in particular, provide a more consistent and user-friendly experience
for data manipulation tasks, which can be beneficial in many scenarios.

3.4.3 Data Handling in R

Data Handling involves getting the data, import them into R and pre-processing
them.

Importing Data into R

To get data from the web in R one can use packagesR!Importing data, such as quant-
mod, that allow to get data from yahoo.finance or from the online Federal Reserve
Database FRED (https://fred.stlouisfed.org/). Alternatively, data can be accessed
from web provider by providing the appropriate URL or via Application Programme
Interfaces (API) that can be run within R. Data from Excel or other foreign languages
can also be read into R. Time-series Financial Data in Excel format used in this book
have been downloaded Robert Shiller’s webpage (http://www.econ.yale.edu/˜shiller/)
and Ken French’s webpage (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.htm
In the website associated to the book several example programmes to download and
import data in R are made available.

An Illustrative R program

The following code, after preliminaries (such as setting the working directory and
running all the relevant packages, after making sure that they are all available, down-
loads data from Yahoo Finance and the Fred Website illustrates how to change their
frequency and how to save them locally in EXCEL format, it also shows how data
available from a specific URL can be downloaded and organized.

1

2 #clear the environment
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3 rm(list=ls())

4

5 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
6 # packages used

7 listofpackages <- c("tidyverse","ellipse","reshape2","xts","xlsx","readxl",

8 "quantmod")

9 #installation of "xlsx" requires Java

10

11 for (j in listofpackages){

12 if(sum(installed.packages ()[, 1] == j) == 0) {

13 install.packages(j)

14 }

15 library(j, character.only = T)

16 }

17

18 tickers <- c(’AXP’,’AMGN’,’AAPL’,’BA’,’CAT’,’CSCO’,’CVX’,’GS’,’HD’,’HON’,

19 ’IBM’,’INTC’,’JNJ’,’KO’,’JPM’,’MCD’,’MMM’,’MRK’,’MSFT’,’NKE’,

20 ’PG’,’TRV’,’UNH’,’CRM’,’VZ’,’V’,’WBA’,’WMT’,’DIS’,’DOW’,’^DJI’)

# ,’^GSPC ’,,’^IRX ’)

21

22 #download the historical prices

23 getSymbols.yahoo(tickers ,

24 env = globalenv (),

25 index.class =’Date’,

26 from = "1985 -01 -31",

27 to = "2023 -07 -31",

28 periodicity ="monthly")

29

30 stocks =

merge(AXP[,6],AMGN[,6],AAPL[,6],BA[,6],CAT[,6],CSCO[,6],CVX[,6],GS[,6],HD[,6],HON[,6],

31 IBM[,6],INTC[,6],JNJ[,6],KO[,6],JPM[,6],MCD[,6],MMM[,6],MRK[,6],MSFT[,6],NKE[,6],

32 PG[,6],TRV[,6],UNH[,6],CRM[,6],VZ[,6],V[,6],WBA[,6],WMT[,6],DIS[,6],DOW[,6],DJI[,6])

33

34 colnames(stocks) <-

c(’AXP’,’AMGN’,’AAPL’,’BA’,’CAT’,’CSCO’,’CVX’,’GS’,’HD’,’HON’,

35 ’IBM’,’INTC’,’JNJ’,’KO’,’JPM’,’MCD’,’MMM’,’MRK’,’MSFT’,’NKE’,

36 ’PG’,’TRV’,’UNH’,’CRM’,’VZ’,’V’,’WBA’,’WMT’,’DIS’,’DOW’,’DJI’)

37

38 write.xlsx(as.data.frame(stocks), "2023_monthly_stocks.xlsx", row.names =

TRUE)

39 rm(list = c(’AXP’,’AMGN’,’AAPL’,’BA’,’CAT’,’CSCO’,’CVX’,’GS’,’HD’,’HON’,

40 ’IBM’,’INTC’,’JNJ’,’KO’,’JPM’,’MCD’,’MMM’,’MRK’,’MSFT’,’NKE’,

41 ’PG’,’TRV’,’UNH’,’CRM’,’VZ’,’V’,’WBA’,’WMT’,’DIS’,’DOW’,’DJI’))

42

43 stocks_quarterly = to.quarterly(stocks$AXP)[,4]
44

45 for(i in 2:ncol(stocks)){

46 x = to.quarterly(stocks[, i])[,4]

47 stocks_quarterly = merge(stocks_quarterly , x)

48 }

49

50 colnames(stocks_quarterly) <-
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c(’AXP’,’AMGN’,’AAPL’,’BA’,’CAT’,’CSCO’,’CVX’,’GS’,’HD’,’HON’,

51 ’IBM’,’INTC’,’JNJ’,’KO’,’JPM’,’MCD’,’MMM’,’MRK’,’MSFT’,’NKE’,

52 ’PG’,’TRV’,’UNH’,’CRM’,’VZ’,’V’,’WBA’,’WMT’,’DIS’,’DOW’,’DJI’)

53

54 write.xlsx(as.data.frame(stocks_quarterly), "2023_quarterly_stocks.xlsx",

row.names = TRUE)

55

56 # set tickers

57 tickers1 <- c("FEDFUNDS", "DGS10", "GDPPOT")

58 getSymbols.FRED(tickers1 ,

59 env = globalenv (),

60 return.class = "xts",

61 index.class =’Date’

62 )

63 # import data from FRED database

64 quarterly_fedfunds <- apply.quarterly(FEDFUNDS , last)

65

66 urlfile="https://raw.githubusercontent.com/pcm -dpc/COVID -19/

67 master/dati -regioni/dpc -covid19 -ita -regioni.csv"

68 COVID_all <-read_csv(url(urlfile)) #read_csv in package tidyverse

69 #COVID_all <-read.csv(url(urlfile)) #read.csv in package xlxs

70 LOMBARDIA=subset(COVID_all ,denominazione_regione =="Lombardia",select=c(1:1 ,4:4 ,7:20))

71 VENETO=subset(COVID_all ,denominazione_regione =="Veneto",select=c(1:1 ,4:4 ,7:20))

Pre-Processing Data

pre-processing data involves extracting subsets, combining dataframe, and construct-
ing tables. Once the relevant database has been constructed data transformations
are necessary to build returns from prices, to construct portfolios and to track their
performance over time. R programming and the use of loops, control-flows and func-
tions is very useful when the same operations are iterated for different series, think for
example of constructing the returns on the 30 DJ stocks given their prices. Chapter
3 of Singh and Allen (2017) provides a good introduction to R programming and
control flow.

3.4.4 Data Exploration and Graphics

Data Exploration and Graphics of the relevant transformed series complete the initial
stage of the modelling process. Data exploration involves the use of descriptive uni-
variate and multivariate statistics while graphics is implemented with the utilization
of time-series plots, cross-sectional plots, histograms and QQ-plots. The packages gg-
plot and highcharter allow graphical analysis of data respectively formatted as tibble
and time-series objects.
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Ask Chat GPT

Here is the Chat GPT answer to the question ”What can I do with ggplot in R?”

ggplot2 is a powerful data visualization package in R that allows you to create a
wide range of high-quality plots and charts. It is based on the ”Grammar of Graphics”
concept, which means you can build complex plots by specifying their components
in a structured and intuitive manner. Here are some of the things you can do with
ggplot2 in R:

1. Scatter Plots: Create scatter plots to visualize the relationship between two
continuous variables.

ggplot(data = df, aes(x = variable1, y = variable2)) + geom point()

2. Line Plots: Generate line plots for time series or continuous data.

ggplot(data = df, aes(x = time, y = value)) + geom line()

3. Bar Charts: Create bar charts to display the distribution of categorical data.

ggplot(data = df, aes(x = category, y = count)) + geom bar(stat = ”identity”)

4. Histograms: Visualize the distribution of a single continuous variable.

ggplot(data = df, aes(x = variable)) + geom histogram(binwidth = 1, f ill =
”blue”, color = ”black”)

5. Box Plots: Generate box plots to display the distribution of a variable’s quartiles
and outliers.

ggplot(data = df, aes(x = category, y = value)) + geom boxplot()

6. Density Plots: Create density plots to visualize the distribution of a variable as
a smooth curve.

ggplot(data = df, aes(x = variable)) + geom density()

7. Heatmaps: Generate heatmaps to display patterns in a matrix of data.

ggplot(data = df, aes(x = variable1, y = variable2, f ill = value))+geom tile()

8. Faceting: Split your data into multiple smaller plots based on a categorical
variable.

ggplot(data = df, aes(x = variable1, y = variable2))+geom point()+facet wrap( category)
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9. Customize Aesthetics: You can customize the appearance of your plots by mod-
ifying colors, labels, titles, and more using ggplot2’s extensive options.

ggplot(data = df, aes(x = variable1, y = variable2)) + geom point(color =
”red”)+labs(title = ”MyScatterP lot”, x = ”X−axislabel”, y = ”Y−axislabel”)

10. Combine Layers: Combine multiple geometric layers to create complex plots.

ggplot(data = df, aes(x = variable1, y = variable2))+geom point()+geom smooth(method =
”lm”)

These are just some of the things you can do with ggplot2. It offers a flexible
and versatile framework for data visualization in R, making it a popular choice for
creating informative and visually appealing graphs and charts.

An Illustrative R Code

1 rm(list=ls())

2 #Check the working directory before importing else provide full path

3 #setwd(path)

4 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
5

6 # packages used

7 listofpackages <- c("dygraphs",

"tidyverse","ellipse","reshape2","highcharter","xts","xlsx","readxl","quantmod")

8

9 for (j in listofpackages){

10 if(sum(installed.packages ()[, 1] == j) == 0) {

11 install.packages(j)

12 }

13 library(j, character.only = T)

14 }

15

16 raw_data = read_xlsx("../data/2023_monthly_stocks.xlsx")

17 names(raw_data)[1] = ’Date’

18 typeof(raw_data)

19 typeof(raw_data$Date)
20 typeof(raw_data$AXP)
21 typeof(raw_data$CSCO)
22

23 dates <-seq(as.Date("1985 -02 -01"),length =462, by="months")

24 params <- c("Date","AXP","AMGN","AAPL","BA","CAT","CSCO", "DJI")

25 data <- raw_data[, c(params)]

26 data <- na.omit(data)

27 data <- data %>%

28 mutate(Date = as.Date(Date , format = "%Y-%m-%d"))

29

30 params1 <- c("AXP","AMGN","AAPL","BA","CAT","CSCO", "DJI")

31 tsdata <- xts(raw_data[, c(params1)], order.by=dates) # creates a time

series object



84 CHAPTER 3. ASSET PRICES AND RETURNS

32 tsdata <- na.omit(tsdata) # omitting the rows with NA presence

33 data <- na.omit(data)

34 ## having created the database with all observation we generate a subset

35 #tsdata1 <- tsdata ["1992 -02 -01/1993 -02 -01"]

36 #data=subset(data ,select=c(1:12))

37

38 ## --------------------

39 # DATA TRANSFORMATIONS

40 ## --------------------

41 #1. from prices to returns

42 # exact monthly returns

43 t1<-nrow(data)

44 data$AXP_ret <- data$AMGN_ret <- array(data = NA, dim = t1)

45 for (i in 2:t1) {

46 data[i, "AMGN_ret"][[1]]=( data[i, "AMGN"][[1]] - data[i-1,

"AMGN"][[1]])/data[i-1, "AMGN"][[1]]

47 data[i, "AXP_ret"][[1]]=( data[i, "AXP"][[1]] - data[i-1,

"AXP"][[1]])/data[i-1, "AXP"][[1]]

48 }

49

50 # the following lines of R apply the same transfromation to

51 # two series AXP and AMGN available in .xts format in a frame called tsdata.

52 # Could you do the same transformation in a more parsimonious way by having

53 # a loop over the serie names AXP and AMGN ?

54

55 series_names <- c("AAPL","BA","CAT","CSCO","DJI")

56

57 for (name in series_names) {

58 return_col_name <- paste0(name , "_ret")

59 data[, return_col_name] <- array(data = NA, dim = t1)

60 for (i in 2:nrow(data)) {

61 data[i, return_col_name ][[1]] <- (data[i, name ][[1]] - data[i - 1,

name ][[1]]) / data[i - 1, name ][[1]]

62 }

63 }

64

65 # same in .xts

66 t1<-nrow(tsdata)

67

68 tsdata$AXP_ret <- tsdata$AMGN_ret <- tsdata$AAPL_ret <- tsdata$BA_ret <-
array(data = NA , dim = t1)

69 tsdata$CAT_ret <-tsdata$CSCO_ret <- tsdata$DJI_ret <- array(data = NA , dim =

t1)

70 for (i in 2:t1) {

71 tsdata[i, "AMGN_ret"][[1]]=( tsdata[i, "AMGN"][[1]] - tsdata[i-1,

"AMGN"][[1]])/data[i-1, "AMGN"][[1]]

72 tsdata[i, "AXP_ret"][[1]]=( tsdata[i, "AXP"][[1]] - tsdata[i-1,

"AXP"][[1]])/data[i-1, "AXP"][[1]]

73 # tsdata[i, "AAPL_ret "][[1]]=( tsdata[i, "AAPL "][[1]] - tsdata[i-1,

"AAPL "][[1]])/data[i-1, "AAPL "][[1]]

74 # tsdata[i, "BA_ret "][[1]]=( tsdata[i, "BA"][[1]] - tsdata[i-1,

"BA "][[1]])/data[i-1, "BA "][[1]]
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75 # tsdata[i, "CAT_ret "][[1]]=( tsdata[i, "CAT "][[1]] - tsdata[i-1,

"CAT "][[1]])/data[i-1, "CAT "][[1]]

76 # tsdata[i, "CSCO_ret "][[1]]=( tsdata[i, "CSCO "][[1]] - tsdata[i-1,

"CSCO "][[1]])/data[i-1, "CSCO "][[1]]

77 # tsdata[i, "DJI_ret "][[1]]=( tsdata[i, "DJI "][[1]] - tsdata[i-1,

"DJI "][[1]])/data[i-1, "DJI "][[1]]

78 }

79

80 # the loop is a bit different in .xts

81 series_names <- c("AAPL","BA","CAT","CSCO","DJI")

82

83 for (name in series_names) {

84 return_col_name <- paste0(name , "_ret")

85 temporary_column <- array(data = NA , dim = t1)

86

87 tsdata <- merge.xts(tsdata , temporary_column) # add last column

88 colnames(tsdata)[ncol(tsdata)] = return_col_name # rename it

89

90 for (i in 2:nrow(data)) {

91 tsdata[i, return_col_name] <- (tsdata[i, name ][[1]] - tsdata[i - 1,

name ][[1]]) / tsdata[i - 1, name ][[1]]

92 }

93 }

94

95 # buy and hold returns

96 ## what would happen had we invested $1 in the DJI and AXP at t0

97 ## initializing values

98 data$DJI_cum <- data$AXP_cum <- array(data = NA , dim = nrow(data))

99

100 data[1, c("DJI_cum", "AXP_cum")] <- 1

101 t1<-nrow(data)

102 for (i in 2:t1) {

103 data[i, "DJI_cum"][[1]]= data[i-1, "DJI_cum"][[1]]*(1+ data[i,

"DJI_ret"][[1]])

104 data[i, "AXP_cum"][[1]]= data[i-1, "AXP_cum"][[1]]*(1+ data[i,

"AXP_ret"][[1]])

105 }

106

107

108 tsdata$DJI_cum <- array(data = NA , dim = nrow(tsdata))

109 tsdata$AXP_cum <- array(data = NA , dim = nrow(tsdata))

110 tsdata[1, c("DJI_cum", "AXP_cum")] <- 1

111 t1<-nrow(data)

112 for (i in 2:t1) {

113 tsdata[i, "DJI_cum"][[1]]= tsdata[i-1, "DJI_cum"][[1]]*(1+ tsdata[i,

"DJI_ret"][[1]])

114 tsdata[i, "AXP_cum"][[1]]= tsdata[i-1, "AXP_cum"][[1]]*(1+ tsdata[i,

"AXP_ret"][[1]])

115 }

116

117 ## -------------------------

118 # monthly log stock returns
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119 ## -------------------------

120 data$DJI_lp<-log(data$DJI_cum)
121 data$AXP_lp<-log(data$AXP_cum)
122 data$DJI_lret <- c(NA ,diff(data$DJI_lp))
123 data$AXP_lret <- c(NA ,diff(data$AXP_lp))
124 # value of a buy -and -hold portfolio using cumulative log returns

125 data$DJI_cuml <- array(data = NA , dim = nrow(data))

126 data[1, c("DJI_cuml")] <- 1

127 for (i in 2:t1) {

128 data[i, "DJI_cuml"][[1]]= data[i-1, "DJI_cuml"][[1]]*(1+ data[i,

"DJI_lret"][[1]])

129 }

130

131 tsdata$DJI_lp<-log(tsdata$DJI_cum)
132 tsdata$AXP_lp<-log(tsdata$AXP_cum)
133 tsdata$DJI_lret <- diff(tsdata$DJI_lp)
134 tsdata$AXP_lret <- diff(tsdata$AXP_lp)
135 tsdata$DJI_cuml <- array(data = NA , dim = nrow(tsdata))

136 tsdata[1, c("DJI_cuml")] <- 1

137 for (i in 2:nrow(tsdata)) {

138 tsdata[i, "DJI_cuml"][[1]]= tsdata[i-1, "DJI_cuml"][[1]]*(1+ tsdata[i,

"DJI_lret"][[1]])

139 }

140

141 tsdata.df <- as.data.frame(tsdata)

142 save(data , file=’data.Rdata ’)

143 save(tsdata , file=’tsdata.Rdata ’)

144 save(tsdata.df, file=’tsdata.df.Rdata ’)

145

146 ## ---------------------------

147 # time -series plots

148 #-----------------------------

149 #(1) plot .xts series

150 plot(tsdata$DJI_ret , col = "blue", lwd = 2, main = "", ylab = "")

151 lines(tsdata$AXP_ret , col = "green", lwd = 2)

152 addLegend("topleft",

153 legend.names = c("DJI", "AXP"),

154 lty = c(1, 1), lwd = c(2, 2),

155 col = c("blue", "green"))

156 dev.copy2pdf(width = 5.72, out.type = "pdf",file="Figure_1xts.pdf")

157 dev.off()

158 #(2) use highchart with .xts series

159 highchart(type = "stock") %>%

160 hc_title(text = "Monthly Log Returns") %>%

161 hc_add_series(data=tsdata[, "DJI_ret"], name = "DJI_ret")%>%

162 hc_add_series(data=tsdata[, "AXP_ret"], name = "AXP_ret")%>%

163 hc_add_theme(hc_theme_flat()) %>%

164 hc_navigator(enabled = FALSE) %>%

165 hc_scrollbar(enabled = FALSE) %>%

166 hc_exporting(enabled = TRUE) %>%

167 hc_legend(enabled = TRUE)

168
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169 #(2) use ggplot with the standard dataframe

170 plot <- ggplot(data , aes(x = Date)) +

171 geom_point(aes(y = DJI_ret , color = "DJI"), size = 2) +

172 geom_point(aes(y = AXP_ret , color = "AXP"), size = 2) +

173 labs(title = "Returns",

174 x = "Time", y = " Value") +

175 scale_color_manual(values = c("DJI" = "red", "AXP" = "blue")) +

176 theme_minimal () +

177 theme(axis.line = element_line(color = "black")) #+

178

179 print(plot)

180 ggsave(filename = "Figure_1.pdf", plot = plot , device = "pdf",width =

5.72, height =3.12)

181 # dev.copy2pdf(width = 4, out.type = "pdf",file=" Figure_1.pdf")

182 # dev.off()

183

184 ## ---------------------------

185 # comparing returns and log -returns

186 #-----------------------------

187

188 plot(tsdata$DJI_ret , ylab = "Returns", main = "S&P500 ", col = "blue", lwd

= 2)

189 lines(tsdata$DJI_lret , col = "red")

190

191 # time -series plot of cumulative returns

192 plot(tsdata$DJI_cum ,
193 type = "l", col = "red", ylim = c(0, 15),

194 ylab = "cumulative return mkt")

195 lines(tsdata$DJI_cuml , col = "blue",type = "l",ylab = "cumulative log

return mkt")

196

197 # cross -plot of exact and log -linearized returns

198 plot(x=data$DJI_ret , y=data$DJI_lret , col="red")

199 lines(x=data$DJI_ret , y=data$DJI_ret ,col = "blue")

200

201 #cross -plot of returns of AXP and their value predicted from the market

202 fm1 <- lm(AXP_ret ~ DJI_ret , data=data)

203 summary(fm1)

204 data$AXP_retfit <-c(NA ,fitted(fm1))
205 plot(x=data$DJI_ret , y=data$AXP_ret , col="red")

206 lines(x=data$DJI_ret , y=data$AXP_retfit ,col = "blue")

207

208 plotactfit <- ggplot(data , aes(x = DJI_ret , y = AXP_ret)) +

209 geom_point(color = "red") +

210 geom_line(aes(x = DJI_ret , y = AXP_retfit), color = "blue") +

211 geom_hline(yintercept = 0, linetype = "dashed", color = "black") #

Adding the zero line

212

213 # Display the plot

214 print(plotactfit)

215

216
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217 #--------------------

218 #plotting prices

219 #--------------------

220 sfDJI <- as.numeric(tsdata$DJI [1])
221 sfAXP <- as.numeric(tsdata$AXP [1])
222 plot(tsdata$DJI/sfDJI ,col = "blue",lwd = 2)

223 lines(tsdata$AXP/sfAXP , col = "green",lwd = 2)

224 addLegend("topleft", on=1,

225 legend.names = c("DJIrs", "AXPrs"),

226 lty=c(1, 1), lwd=c(2, 1),

227 col=c("blue", "green", "red"))

228

229 # you can interact with Chat GPT to improve on this version of the graphs

230

231 #First Question When I run the following sequence in R I get a graph with

tsdata$DJI
232 #written at the top left of it. How do I remove this from the graph ?

233 #ANSWER

234

235 plot(tsdata$DJI/3267.70 , col = "blue", lwd = 2, main = "", ylab = "")

236 lines(tsdata$AXP/3.277914 , col = "green", lwd = 2)

237 addLegend("topleft",

238 legend.names = c("DJI", "AXPrs"),

239 lty = c(1, 1), lwd = c(2, 2),

240 col = c("blue", "green")) # Remove "red" from col argument

241

242 #Second Question > I would like to have the same graph in a double scale

243 # with DJI on the left hand scale and AXP on the right hand scale

244 combined_data <- data.frame(DJI = tsdata$DJI , AXP = tsdata$AXP )

245 dygraph(combined_data , main = "Double -Scale Time Series Graph") %>%

246 dySeries("DJI", label = "DJI", color = "blue") %>%

247 dySeries("AXP", label = "AXP", color = "green", axis = "y2") %>%

248 dyAxis("y", label = "DJI") %>%

249 dyAxis("y2", label = "AXP", independentTicks = TRUE) %>%

250 dyLegend(width = 250)

251

252

253

254 #--------------------

255 #plotting series from a list using GGPLOT

256 #--------------------

257 plot <- ggplot(data , aes(x = Date)) +

258 geom_line(aes(y = DJI/3267.70 , color = "DJI"), size = 2) +

259 geom_line(aes(y = AXP/3.277914 , color = "AXP"), size = 2) +

260 labs(title = "Trends",

261 x = "Time", y = " Value") +

262 scale_color_manual(values = c("DJI" = "red", "AXP" = "blue")) +

263 theme_minimal () +

264 theme(axis.line = element_line(color = "black")) +

265 scale_x_continuous(breaks = data$Date , labels = data$Date) # Add this

line for x-axis labels

266
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267 # Print the plot

268 print(plot)

269

270 #Ask Chat GPT: When I run the following code in R I get "too many "

labels on the x axis ,

271 #how can I reduce the number of labels (say one every 5 years) ?

272 #Answer

273 #To reduce the number of x-axis labels in your ggplot , you can use the

scale_x_date() function

274 #with the date_breaks argument to specify the intervals at which you want

the labels to appear.

275 #In your case , you want to display labels every 5 years. Here ’s how you

can modify your code to achieve this:

276 ggplot(data , aes(x = Date)) +

277 geom_line(aes(y = DJI/3267.70 , color = "DJI"), size = 1) +

278 geom_line(aes(y = AXP/3.277914 , color = "AXP"), size = 1) +

279 labs(title = "Trends",

280 x = "Time", y = " Value") +

281 scale_color_manual(values = c("DJI" = "red", "AXP" = "blue")) +

282 theme_minimal () +

283 theme(axis.line = element_line(color = "black")) +

284 scale_x_date(date_breaks = "5 years", date_labels = "%Y")

285 #In the code above:

286 #scale_x_date() is used to control the x-axis (date) scale.

287 #date_breaks = "5 years" specifies that you want to display labels every

5 years.

288 #date_labels = "%Y" specifies the date format you want to use for the

labels (in this case , the year only).

289 #This should result in a plot with x-axis labels appearing every 5 years ,

making the plot more readable when you have a large time series

dataset. Adjust the date_breaks argument as needed to control the

spacing of the labels according to your preferences.

290

291

292

293 ## ----------------------------------------------------------

294 # combine several plots on one canvas

295 ## ----------------------------------------------------------

296

297 par(mfrow = c(2, 2))

298

299 plot(tsdata$DJI_ret , ylab = "Returns", main = "DJ30 ", col = "blue", lwd

= 2)

300

301 plot(x=data$DJI_ret , y=data$DJI_lret , col="red")

302 lines(x=data$DJI_ret , y=data$DJI_ret ,col = "blue")

303

304 plot(x=data$AXP_ret , y=data$AXP_lret , col="red",ylim = c(-0.5, 1))

305 lines(x=data$AXP_ret , y=data$AXP_ret ,col = "blue")

306

307 plot(tsdata$DJI_cum ,
308 type = "l", col = "red", ylim = c(0, 12),main = "DJ30 ",
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309 ylab = "cumulative return mkt")

310

311 par(mfrow = c(1, 1))

312

313

314 ## -------------------------

315 # HISTOGRAMS AND QQ PLOTS

316 ## -------------------------

317

318 ## Histograms

319 s1 <- na.omit(tsdata$DJI_ret)
320 hist(s1, breaks = seq(min(s1), max(s1), l = 20+1) ,prob=TRUE , main =

"histogram of monthly returns")

321 curve(dnorm(x,mean=mean(s1),sd=sd(s1)),col=’darkblue ’,lwd=2,add=TRUE)

322

323 ## Histograms with Highcharter using .xts data

324

325 hc_hist <- hist(coredata(tsdata$DJI_lret), breaks = 50, plot = FALSE)

326 hchart(hc_hist , color = "cornflowerblue")%>%

327 hc_title(text =

328 paste("DJI",

329 "Log Returns Distribution",

330 sep = " ")) %>%

331 hc_add_theme(hc_theme_flat()) %>%

332 hc_exporting(enabled = TRUE) %>%

333 hc_legend(enabled = FALSE)

334

335 hc_hist <- hist(tsdata[, "DJI_lret"], breaks = 50, plot = FALSE)

336 hchart(hc_hist , color = "cornflowerblue")%>%

337 hc_title(text =

338 paste("DJI",

339 "Log Returns Distribution",

340 sep = " ")) %>%

341 hc_add_theme(hc_theme_flat()) %>%

342 hc_exporting(enabled = TRUE) %>%

343 hc_legend(enabled = FALSE)

344 ## ------------------------

345

346 qqplot(tsdata.df$DJI_ret ,
347 tsdata.df$DJI_lret ,
348 ylim = c( -0.15 ,0.15), xlim = c( -0.15 ,0.15),

349 ylab = "monthly return. log approximation",

350 xlab = "monthly return. exact computation",

351 main = "Quantile -Quantile plot (Q-Q plot)")

352 mod5 <- lm(tsdata.df$DJI_ret ~ tsdata.df$DJI_lret)
353 abline(reg = mod5 , col = "red")

354

355 # qq -plot versus normal dist

356 qqnorm(tsdata$DJI_ret ,
357 ylim = c( -0.15 ,0.15),ylab = "monthly return. sample quantile",

358 xlab = "monthly return. theoretical quantiles",

359 main = "Normal (Q-Q plot)")
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360 qqline(tsdata$DJI_ret , datax = FALSE , distribution = qnorm ,

361 probs = c(0.25 , 0.75), qtype = 7)

362

363 ## ---------------------

364 # CORRELATION ANALYSIS

365 ## ---------------------

366 tsdata.df <- as.data.frame(tsdata)

367 # Select specific columns and observations from the start date onward

368 selected_cols <- c("AMGN_ret", "AXP_ret", "AAPL_ret", "BA_ret",

"CAT_ret", "CSCO_ret", "DJI_ret")

369 datashow <- subset(tsdata.df[, selected_cols])

370 datashow <-na.omit(datashow)

371 # Print the resulting subset

372 summary(datashow) # this is very useful to get a grip on the data

structure

373 mean(datashow[,"AMGN_ret"])

374 sd(datashow[,"AMGN_ret"])

375 var(datashow[,"AMGN_ret"])

376 cor(datashow)

377 cor.datacor = cor(datashow , use="complete.obs")

378 cor.datacor

379

380 ## ---------------------

381 ord <- order(cor.datacor [1,])

382 ordered.cor.datacor <- cor.datacor[ord , ord]

383 plotcorr(ordered.cor.datacor , col=cm.colors (11)[5*ordered.cor.datacor +

6])

384

385

386 ## ---------------------

387 cormat <- round(cor(datashow) ,2)

388 head(cormat)

389 melted_cormat <- melt(cormat)

390 head(melted_cormat)

391 ggplot(data = melted_cormat , aes(x=Var1 , y=Var2 , fill=value)) +

392 geom_tile()

393 # Get lower triangle of the correlation matrix

394 get_lower_tri <-function(cormat){

395 cormat[upper.tri(cormat)] <- NA

396 return(cormat)

397 }

398 # Get upper triangle of the correlation matrix

399 get_upper_tri <- function(cormat){

400 cormat[lower.tri(cormat)]<- NA

401 return(cormat)

402 }

403 upper_tri <- get_upper_tri(cormat)

404 upper_tri

405 # Melt the correlation matrix

406 melted_cormat <- melt(upper_tri , na.rm = TRUE)

407 # Heatmap

408 ggplot(data = melted_cormat , aes(Var2 , Var1 , fill = value))+
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409 geom_tile(color = "white")+

410 scale_fill_gradient2(low = "blue", high = "red", mid = "white",

411 midpoint = 0, limit = c(-1,1), space = "Lab",

412 name="Pearson\nCorrelation") +

413 theme_minimal ()+

414 theme(axis.text.x = element_text(angle = 45, vjust = 1,

415 size = 12, hjust = 1))+

416 coord_fixed()

3.4.5 Interacting with Chat GPT

There many ways to use to use ChatGPT to learn R. The more precise is the query,
the more precise will be the answer. But in any case interaction is fundamental
for two reasons: either becasue chatCPT may not provide the exact answer to your
question or because the snippet you receive in the answer might be ”close” to the one
that works but non quite there. One can think of three possible ways to interact with
ChatGPT (1) Ask to generate a code snippet based on your query (2) Ask ChatGPT
to explain a code snippet or a part of it that you do not understand (3) Ask ChatGPT
to modify a code snippet of your or suggest improvements. In all of these three cases
some interaction will be required before converging to a solution. Convergence will be
much faster in case (3) than in case (1) , case (2) will be intermediate in that you will
get a clear explanation but putting it at work in solving the specific problem at your
hand will require some more effort. To illustrate a case of interaction with ChatGPT
think of a generic USER who has found on the web the following R programme that
computes the frontier and the efficient frontier for sample portfolio made of two and
three assets.

1 #clear the environment

2 rm(list=ls())

3 ## ------------------------------------------------------------------------

4 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
5 library(data.table)

6 library(scales)

7 library(ggplot2)

8 library(xts)

9 link <-

"https://raw.githubusercontent.com/DavZim/Efficient_Frontier/master/data/fin_data.csv"

10 dt <- fread(link)

11 dt[, date := as.Date(date)]

12

13 # create indexed values

14 dt[, idx_price := price/price [1], by = ticker]

15

16 # plot the indexed values

17 ggplot(dt, aes(x = date , y = idx_price , color = ticker)) +

18 geom_line() +
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19 # Miscellaneous Formatting

20 theme_bw() + ggtitle("Price Developments") +

21 xlab("Date") + ylab("Price\n(Indexed 2000 = 1)") +

22 scale_color_discrete(name = "Company")

23 # calculate the arithmetic returns

24 dt[, ret := price / shift(price , 1) - 1, by = ticker]

25

26 # summary table

27 # take only non -na values

28 tab <- dt[!is.na(ret), .(ticker , ret)]

29

30 # calculate the expected returns (historical mean of returns) and

volatility (standard deviation of returns)

31 tab <- tab[, .(er = round(mean(ret), 4),

32 sd = round(sd(ret), 4)),

33 by = "ticker"]

34 ggplot(tab , aes(x = sd, y = er, color = ticker)) +

35 geom_point(size = 5) +

36 # Miscellaneous Formatting

37 theme_bw() + ggtitle("Risk -Return Tradeoff") +

38 xlab("Volatility") + ylab("Expected Returns") +

39 scale_y_continuous(label = percent , limits = c(0, 0.03)) +

40 scale_x_continuous(label = percent , limits = c(0, 0.1))

41

42

43

44 # load the data

45 link <-

"https://raw.githubusercontent.com/DavZim/Efficient_Frontier/master/data/mult_assets.csv"

46 df <- data.table(read.csv(link))

47

48 df_table <- melt(df)[, .(mean = mean(value), sd = sd(value)), by = variable]

49

50 er_x <- mean(df$x)
51 er_y <- mean(df$y)
52 er_z <- mean(df$z)
53 sd_x <- sd(df$x)
54 sd_y <- sd(df$y)
55 sd_z <- sd(df$z)
56 cov_xy <- cov(df$x, df$y)
57 cov_xz <- cov(df$x, df$z)
58 cov_yz <- cov(df$y, df$z)
59

60 # two assets

61 two_assets_seq <- seq(from = 0, to = 1, length.out = 1000)

62

63 two <- data.table(wx = two_assets_seq ,

64 wy = 1 - two_assets_seq)

65

66 two[, ’:=’ (er_p = wx * er_x + wy * er_y,

67 sd_p = sqrt(wx^2 * sd_x^2 +

68 wy^2 * sd_y^2 +
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69 2 * wx * (1 - wx) * cov_xy))]

70

71 # plot_two <- ggplot () +

72 # geom_point(data = two , aes(x = sd_p, y = er_p, color = wx)) +

73 # geom_point(data = df_table[variable != "z"],

74 # aes(x = sd , y = mean), color = "red", size = 3, shape = 18) +

75 # theme_bw() + ggtitle (" Possible Portfolios with Two Risky Assets ") +

76 # xlab(" Volatility ") + ylab(" Expected Returns ") +

77 # scale_y_continuous(label = percent , limits = c(0, max(two$er_p) * 1.2))

+

78 # scale_x_continuous(label = percent , limits = c(0, max(two$sd_p) * 1.2))

+

79 # scale_color_continuous(name = expression(omega[x]), labels = percent)

80 #

81 # ggsave(plot_two , file = "two_assets.png", scale = 1, dpi = 600)

82

83 ggplot () +

84 geom_point(data = two , aes(x = sd_p, y = er_p, color = wx)) +

85 geom_point(data = df_table[variable != "z"],

86 aes(x = sd , y = mean), color = "red", size = 3, shape = 18) +

87 theme_bw() + ggtitle("Possible Portfolios with Two Risky Assets") +

88 xlab("Volatility") + ylab("Expected Returns") +

89 scale_y_continuous(label = percent , limits = c(0, max(two$er_p) * 1.2)) +

90 scale_x_continuous(label = percent , limits = c(0, max(two$sd_p) * 1.2)) +

91 scale_color_continuous(name = expression(omega[x]), labels = percent)

92

93 # three assets

94 three_assets_seq <- seq(from = 0, to = 1, length.out = 1000)

95

96 three <- data.table(wx = rep(three_assets_seq , each =

length(three_assets_seq)),

97 wy = rep(three_assets_seq , length(three_assets_seq)))

98

99 three[, wz := 1 - wx - wy]

100

101 three[, ’:=’ (er_p = wx * er_x + wy * er_y + wz * er_z,

102 sd_p = sqrt(wx^2 * sd_x^2 +

103 wy^2 * sd_y^2 +

104 wz^2 * sd_z^2 +

105 2 * wx * wy * cov_xy +

106 2 * wx * wz * cov_xz +

107 2 * wy * wz * cov_yz))]

108

109 three <- three[wx >= 0 & wy >= 0 & wz >= 0]

110

111 plot_three <- ggplot () +

112 geom_point(data = three , aes(x = sd_p, y = er_p, color = wx - wz)) +

113 geom_point(data = df_table , aes(x = sd, y = mean), color = "red", size =

3, shape = 18) +

114 theme_bw() + ggtitle("Possible Portfolios with Three Risky Assets") +

115 xlab("Volatility") + ylab("Expected Returns") +

116 scale_y_continuous(label = percent , limits = c(0, max(three$er_p) * 1.2))
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+

117 scale_x_continuous(label = percent , limits = c(0, max(three$sd_p) * 1.2))

+

118 scale_color_gradientn(colors = c("red", "blue", "yellow"),

119 name = expression(omega[x] - omega[z]), labels =

percent)

120

121 ggsave(plot_three , file = "three_assets.png", scale = 1, dpi = 600)

The USER, after understanding the code, immediately realizes that the curse of
dimensionality applies very rapidly and the procedure becomes very inefficient as the
number of assets considered to form the portfolio gets larger.

So an interaction with Chat GPT begins to get a more general version of the code.

USER

I have a database containing sample of returns on five assets, say A,B,C,D,E. I
would like to write an R code to derive the efficient frontier and plot it in the space of
the mean and the standard deviation of the portfolio together with points identified
bythe mean and the standard deviation of the five assets. can you do it ?

Chat GPT

Certainly! To derive the efficient frontier and plot it in R, you can follow these
steps. I’ll provide you with a code template to get you started. Please make sure you
have the necessary packages like quantmod and ggplot2 installed:

1 # Load necessary libraries

2 library(quantmod)

3 library(ggplot2)

4

5 # Sample returns for five assets (replace with your data)

6 returns <- data.frame(

7 A = c(0.05 , 0.06, 0.07, 0.04, 0.03),

8 B = c(0.08 , 0.09, 0.06, 0.07, 0.05),

9 C = c(0.10 , 0.12, 0.11, 0.13, 0.09),

10 D = c(0.06 , 0.05, 0.04, 0.03, 0.07),

11 E = c(0.07 , 0.08, 0.09, 0.06, 0.05)

12 )

13

14 # Calculate mean and standard deviation of asset returns

15 mean_returns <- colMeans(returns)

16 sd_returns <- apply(returns , 2, sd)

17

18 # Number of random portfolios to simulate

19 n_portfolios <- 10000

20

21 # Create a function to simulate random portfolios

22 simulate_portfolios <- function(n_portfolios , returns) {

23 portfolio_returns <- numeric(n_portfolios)

24 portfolio_volatility <- numeric(n_portfolios)

25
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26 for (i in 1:n_portfolios) {

27 weights <- runif(ncol(returns))

28 weights <- weights / sum(weights)

29 portfolio_returns[i] <- sum(weights * mean_returns)

30 portfolio_volatility[i] <- sqrt(t(weights) %*% cov(returns) %*% weights)

31 }

32

33 portfolio_data <- data.frame(Return = portfolio_returns , Volatility =

portfolio_volatility)

34 return(portfolio_data)

35 }

36

37 # Simulate random portfolios

38 set.seed (123) # For reproducibility

39 portfolios <- simulate_portfolios(n_portfolios , returns)

40

41 # Plot the efficient frontier

42 ggplot(portfolios , aes(x = Volatility , y = Return)) +

43 geom_point(alpha = 0.5) +

44 geom_point(aes(x = sd_returns , y = mean_returns), color = "red", size =

3) +

45 labs(x = "Standard Deviation (Risk)", y = "Mean Return") +

46 ggtitle("Efficient Frontier") +

47 theme_minimal ()

This code first calculates the mean and standard deviation of the returns for the five
assets and then simulates a large number of random portfolios to derive the efficient
frontier. It finally plots the efficient frontier along with points representing the mean
and standard deviation of the five assets in the mean-risk space.

Make sure to replace the sample returns with your actual data for assets A, B, C,
D, and E.

USER
this looks good but I doubt it will work with say 20 assets. What would you do

if you need to derive exactly the efficient frontier with 20 assets ?
Chat GPT
When dealing with a larger number of assets, such as 20, you can still derive the

efficient frontier using R, but you might need to use more advanced optimization
techniques to find the optimal portfolio weights. Here’s an outline of the steps you
can take:

1. Collect Data: Make sure you have the historical returns of the 20 assets in
your dataset.

2. Define the Objective Function: You’ll need to define an objective function
that calculates the portfolio return and risk (standard deviation) given a set of
portfolio weights.
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3. Optimization: Use optimization techniques like the quadratic programming
solver in R to find the weights that maximize return for a given level of risk
(standard deviation) while satisfying the constraint that the sum of weights
equals 1.

4. Generate a Range of Target Returns: To plot the efficient frontier, you’ll
need to generate a range of target returns and find the portfolio with the mini-
mum risk for each target return.

Here’s a high-level code template to help you get started. This example uses the
quadprog package for quadratic programming:

1 # Load necessary libraries

2 library(quadprog)

3 library(ggplot2)

4

5 # Sample returns for 20 assets (replace with your data)

6 # Ensure you have a matrix of returns with 20 columns

7 returns_matrix <- read.csv("your_returns_data.csv") # Replace with your

data

8

9 # Calculate the mean returns and covariance matrix

10 mean_returns <- colMeans(returns_matrix)

11 cov_matrix <- cov(returns_matrix)

12

13 # Define the objective function to minimize risk (standard deviation)

14 portfolio.objective <- function(weights , cov_matrix) {

15 portfolio_return <- sum(weights * mean_returns)

16 portfolio_volatility <- sqrt(t(weights) %*% cov_matrix %*% weights)

17 return(portfolio_volatility)

18 }

19

20 # Set up constraints (sum of weights = 1)

21 A_eq <- matrix(1, 1, ncol(returns_matrix))

22 b_eq <- 1

23

24 # Generate a range of target returns

25 target_returns <- seq(min(mean_returns), max(mean_returns), length.out =

100)

26

27 # Initialize vectors to store results

28 portfolio_returns <- numeric(length(target_returns))

29 portfolio_volatilities <- numeric(length(target_returns))

30

31 # Optimize for each target return

32 for (i in 1: length(target_returns)) {

33 target_return <- target_returns[i]

34

35 # Set up the quadratic programming problem

36 Dmat <- cov_matrix
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37 dvec <- rep(0, ncol(returns_matrix))

38 Amat <- matrix(c(mean_returns , 1), nrow = 1)

39 bvec <- target_return

40

41 # Solve the optimization problem

42 weights <- solve.QP(Dmat , dvec , Amat , bvec , meq = 1)$solution
43

44 # Calculate portfolio risk (volatility)

45 portfolio_volatility <- portfolio.objective(weights , cov_matrix)

46

47 # Store results

48 portfolio_returns[i] <- target_return

49 portfolio_volatilities[i] <- portfolio_volatility

50 }

51

52 # Create a data frame for efficient frontier points

53 efficient_frontier <- data.frame(Return = portfolio_returns , Volatility =

portfolio_volatilities)

54

55 # Plot the efficient frontier

56 ggplot(efficient_frontier , aes(x = Volatility , y = Return)) +

57 geom_line() +

58 labs(x = "Standard Deviation (Risk)", y = "Mean Return") +

59 ggtitle("Efficient Frontier") +

60 theme_minimal ()

Chat GPT

In this code, we use a loop to iterate over a range of target returns, solving the
quadratic programming problem for each target return to find the corresponding
portfolio weights and risk. Finally, we plot the efficient frontier. Make sure to replace
ÿour returns data.csv” with the actual file path to your returns data.

Unfortunately, the code provided by Chat GPT has some issues. First, the A eq
and the B eq are defined but they are never used in the code. Second, the matrices
that define the optimization problem and its constraints to run the optimizer are not
correctly defined. In fact, some of them are transposed and only one constraint is
imposed rather than two ( the sum of weight being equal to one and the return being
equal to the target). You would need to check the working of the solve.QP function
in r by digiting ?solve.QP in the R console and some iteration with Chat GPT to get
to the following version of the code that we put at work on the data set of US stocks
defined earlier in the chapter.

1 rm(list=ls())

2 #Check the working directory before importing else provide full path

3 #setwd(path)

4 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
5

6 # packages used

7 listofpackages <- c("dygraphs",
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"tidyverse","ellipse","reshape2","highcharter","xts","xlsx","readxl","quantmod","quadprog

8

9 for (j in listofpackages){

10 if(sum(installed.packages ()[, 1] == j) == 0) {

11 install.packages(j)

12 }

13 library(j, character.only = T)

14 }

15

16 raw_data = read_xlsx("../data/2023_monthly_stocks.xlsx")

17 names(raw_data)[1] = ’Date’

18 typeof(raw_data)

19 typeof(raw_data$Date)
20 typeof(raw_data$AXP)
21 typeof(raw_data$CSCO)
22

23 dates <-seq(as.Date("1985 -02 -01"),length =462, by="months")

24 params <- c("Date","AXP","AMGN","AAPL","BA","CAT","CSCO","CVX","GS",

25 "HD","HON","IBM","INTC","JNJ","KO","JPM")

26 data <- raw_data[, c(params)]

27 data <- na.omit(data)

28 data <- data %>%

29 mutate(Date = as.Date(Date , format = "%Y-%m-%d"))

30

31 t1<-nrow(data)

32 series_names <- c("AXP","AMGN","AAPL","BA","CAT","CSCO","CVX","GS",

33 "HD","HON","IBM","INTC","JNJ","KO","JPM")

34

35 for (name in series_names) {

36 return_col_name <- paste0(name , "_ret")

37 data[, return_col_name] <- array(data = NA, dim = t1)

38 for (i in 2:nrow(data)) {

39 data[i, return_col_name ][[1]] <- (data[i, name ][[1]] - data[i - 1,

name ][[1]]) / data[i - 1, name ][[1]]

40 }

41 }

42

43 params1 <-

c("AXP_ret","AMGN_ret","AAPL_ret","BA_ret","CAT_ret","CSCO_ret","CVX_ret","GS_ret",

44 "HD_ret","HON_ret","IBM_ret","INTC_ret","JNJ_ret","KO_ret","JPM_ret")

45 returns_data <- data[, c(params1)]

46 returns_data <- na.omit(returns_data)

47

48 returns_matrix <-as.matrix(returns_data)

49

50 # Calculate the mean returns and covariance matrix

51 mean_returns <- colMeans(returns_matrix)

52 cov_matrix <- cov(returns_matrix)

53

54 # Define the objective function to minimize risk (standard deviation)

55 portfolio.objective <- function(weights , cov_matrix) {

56 portfolio_return <- sum(weights * mean_returns)
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57 portfolio_volatility <- sqrt(t(weights) %*% cov_matrix %*% weights)

58 return(portfolio_volatility)

59 }

60

61 # Set up constraints (sum of weights = 1)

62 $A_eq <- matrix(1, nrow = 1, ncol = ncol(returns_matrix))

63 $b_eq <- matrix(1, nrow = 1)

64

65 # Generate a range of target returns

66 target_returns <- seq(min(mean_returns), max(mean_returns), length.out =

1000)

67

68 # Initialize vectors to store results

69 portfolio_returns <- numeric(length(target_returns))

70 portfolio_volatilities <- numeric(length(target_returns))

71

72 # Optimize for each target return

73 for (i in 1: length(target_returns)) {

74 target_return <- target_returns[i]

75

76 # Set up the quadratic programming problem

77 Dmat <- 2*cov_matrix

78 dvec <- matrix(rep(0, ncol(returns_matrix)),ncol =1)

79 a1mat <- matrix(mean_returns , nrow =ncol(returns_matrix))

80 a2mat <-matrix(rep(1, ncol(returns_matrix)), nrow =ncol(returns_matrix))

81 Amat <- cbind(a1mat , a2mat)

82 bvec <- matrix(c(target_return , 1),ncol =1)

83

84 # Solve the optimization problem

85 weights <- solve.QP(Dmat , dvec , Amat , bvec , meq = 2)$solution
86

87 # Calculate portfolio risk (volatility)

88 portfolio_volatility <- portfolio.objective(weights , cov_matrix)

89

90 # Store results

91 portfolio_returns[i] <- target_return

92 portfolio_volatilities[i] <- portfolio_volatility

93 }

94

95 # Create a data frame for efficient frontier points

96 efficient_frontier <- data.frame(Return = portfolio_returns , Volatility =

portfolio_volatilities)

97

98 # Plot the efficient frontier

99 ggplot(efficient_frontier , aes(x = Volatility , y = Return)) +

100 geom_line() +

101 labs(x = "Standard Deviation (Risk)", y = "Mean Return") +

102 ggtitle("Efficient Frontier") +

103 theme_minimal ()
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3.5 Appendix: The Data

All empirical applications will be based on publicly available databases of US data
observed at monthly (and therefore lower) frequency. They have been downloaded
from Robert Shiller’s webpage

(http://www.econ.yale.edu/˜shiller/)
and Ken French’s webpage
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html) and

directly form yahoo finance.
The time series made available by Robert Shiller are saved in the successive

columns of the EXCELworksheet DATA in the file IE DATA.XLS

The time-series in the IE DATA.XLS files

identifier description
P S&P composite index

D S&P dividend (at annual rate)

E S&P earnings

CPI US consumer price index

GS10 YTM of 10-year US Treasuries

CAPE cyclically adjusted PE ratio

As described in the section ”Online Data” of the webpage these stock market data
are those used in the book, Irrational Exuberance [Princeton University Press 2000,
Broadway Books 2001, 2nd ed., 2005] and cover the period 1871-Present . This data
set consists of monthly stock price, dividends, and earnings data and the consumer
price index (to allow conversion to real values), all starting January 1871. The price,
dividend, and earnings series are from the same sources as described in Chapter 26
of the book Market Volatility [Cambridge, MA: MIT Press, 1989], although they are
observed at monthly, rather than annual frequencies. Monthly dividend and earnings
data are computed from the S&P four-quarter totals for the quarter since 1926, with
linear interpolation to monthly figures. Dividend and earnings data before 1926 are
from Cowles and associates (Common Stock Indexes, 2nd ed. [Bloomington, Ind.:
Principia Press, 1939]), interpolated from annual data. The CPI-U (Consumer Price
Index-All Urban Consumers) published by the U.S. Bureau of Labor Statistics begins
in 1913; for years before 1913 1 spliced to the CPI Warren and Pearson’s price index,
by multiplying it by the ratio of the indexes in January 1913. December 1999 and
January 2000 values for the CPI-Uare extrapolated. See George F. Warren and Frank
A. Pearson, Gold and Prices (New York: John Wiley and Sons, 1935). Data are from
their Table 1, pp. 11–14.
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The time series made available by Ken French are saved in the successive columns
of the EXCELworksheet DATA in the file FF DATA.XLS.

The time-series in the FF Data.xls files

identifier description
EXRET MKT MKT excess ret

SMB returns on SMB

HML returns on HML

RF returns on the risk-free asset

MOM returns on MOM

RMW returns on RMW

CMA returns on CMA

PR(i,j) returns on 25 FF portolios (i=1,...5,j=1,...,5)

The construction of the Fama French factors is described at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f 5 factors 2x3.html,

while the construction of the FF portfolios is described at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/tw 5 ports.html

Finally, data on the components of the DJ30 and the index have been downloaded
from yahoo.finance using the quantmod package in R.



Chapter 4

The Modelling Process at Work:
the CER model

4.1 Introduction

In this chapter, we shall consider a very basic model for returns and illustrate how
model specification, estimation and simulation can be applied to find optimal portfolio
weights, measure the risk of a portfolio and backtest the portfolio performance

4.2 Model Specification: the Constant Expected

Return Model

Our objective is the specification of a statistical model for asset prices and returns.
To this end, consider the (naive) log random walk (LRW) hypothesis on the evolution
of prices states that prices evolve approximately according to the stochastic difference
equation:

lnPt = μ+ lnPt−1 + εt

where the ’innovations’ εt are assumed to be uncorrelated across time (cov(εt; εt′) =
0 ∀t �= t′), with constant expected value 0 and constant variance σ2. Sometimes, a
further hypothesis is added and the εt are assumed to be jointly normally distributed.
In this case, the assumption of non correlation becomes equivalent to the assumption
of independence.

Since lnPt − lnPt−1 = r∗t−1;t the LRW is obviously equivalent to the assumption
that log returns are uncorrelated random variables with constant expected value and
variance.

A linear random walk in prices was sometimes considered in the earliest times of
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quantitative financial research, but it does not seem a good model for prices since a
sequence of negative innovations may result in negative prices. Moreover, while the
hypothesis of constant variance for (log) returns may be a good first-order approxima-
tion of what we observe in markets, the same hypothesis for prices is not empirically
sound: in general price changes tend to have a variance which is an increasing function
of the price level.

If we take prices as inclusive of dividends, then we can write the following model
for log-returns

rt,t+1 = μ+ σεt

εt ∼ i.i.d.(0, 1)

This simple specification has some appealing properties for the n period returns
rt,t+n:

If we assume the LRW and consider a sequence of n log returns r∗t at times
t, t− 1, t− 2, ..., t− n+ 1 (just for the sake of simplicity in notation we suppose each
time interval Δ to be of length 1 and drop the generic Δ) we have the following:

E(rt,t+n) = E(
n∑

i=1

rt+i,t+i−1) =
n∑

i=1

E(rt+i,t+i−1) = nμ

V ar(rt,t+n) = V ar(
n∑

i=1

rt+i,t+i−1) =
n∑

i=1

V ar(rt+i,t+i−1) = nσ2

This obvious result, which is a direct consequence of the assumption of constant
expected value and variance and of non-correlation of innovations at different times
is typically applied, for annualization purposes, also when the LRW is not considered
to be valid.

So, for instance, given an evaluation of σ2 on monthly data, this evaluation is
annualized by multiplying it by 12

This is not a convention, but the correct procedure, if the LRW model holds. In
this case, in fact, the variance over n time periods is equal to n times the variance
over one time period. If the LRW model is not believed to hold, for instance, if the
expected value and-or the variance of return are not constant over time or if we have
correlation among the εt, this procedure becomes just as a convention.1

1Empirical computation of variances over different time intervals typically results in sequences
which increase less than linearly wrt the increase of the time interval between consecutive observa-
tions. This could be interpreted as the existence of (small) on average negative correlations between
returns.
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4.2.1 Stocks for the long run

The fact that, under the LRW, the expected value grows linearly with the length
of the time period while the standard deviation (square root of the variance) grows
with the square root of the number of observations, has created a lot of discussion
about the existence of some time horizon beyond which it is always proper to hold a
stock portfolio. This problem, conventionally called ’time diversification’, and more
popularly ’stocks for the long run’, has attracted some considerable attention.

We have three flavors of the “stocks for the long run” argument. The first and
the second are a priori arguments depending on the log random walk hypothesis or
something equivalent to it, the third is an a posteriori argument based on historical
data.

The basic idea of the first version of the argument can be sketched as follows.
Assume that single period (log) returns have (positive) expected value μ and variance
σ2. Moreover, assume for simplicity that the investor requires a Sharpe ratio of say
S. Under the above hypotheses, plus the log random walk hypothesis, the Sharpe
ratio over n time periods is given by

S =
nμ√
nσ

=
√
n
μ

σ

so that, if n is large enough, any required value can be reached. Another way of
phrasing the same argument, when we add the hypothesis of normality on returns, is
that, for any given probability α and any given required return C there is always an
horizon for which the probability for n period return less than C is less than α.

Pr (Rp < C) = α.

Pr (Rp < C) = α⇐⇒ Pr

(
Rp − nμ√

nσ
<

C − nμ√
nσ

)
= α

⇐⇒ Φ

(
C − μp

σp

)
= α,

C = nμ+ Φ−1 (α)
√
nσ

But nμ + Φ−1 (α)
√
nσ, for

√
n > 1

2
Φ−1(α)

μ
σ is an increasing function in n so that for

any α and any chosen value C, there exists a n such that from that n onward, the
probability for an n period return less than C is less than α.

The investment implication could be that for a time horizon of an undetermined
number n of years, the investment that has the highest expected return per unit
of standard deviation is optimal even if the standard deviation is very high. This
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investment can be very risky in the ”short run”, but there is always a time horizon
for which, the probability of any given loss is as small as you like or, that is the same,
the Sharpe ratio as big as you like. Typically, such high return (and high volatility)
investment are stocks, so: ”stocks for the long run”.

Note, however, that the value of n for which this lower bound crosses a given C
level is the solution of

nμ+ Φ−1 (α)
√
nσ ≥ C

In particular, for C = 0 the solution is

√
n ≥ −Φ−1 (α) σ

μ

Consider now the case of a stock with σ/μ ratio for one year is of the order of 6.
Even allowing for a large α,say 0.25, so that Φ−1 (α) is near minus one , the required
n shall be in the range of 36 which is only slightly shorter than the average working
life.

As a matter of fact, based on the analysis of historical prices and risk adjusted
returns, stocks have been almost always a good long-run investment. However, some
care must be exercised in interpreting this evidence because history is what we have
observed and one could doubt the possibility of an institution such as the stock market
to survive without providing a sustainable impression of offering some opportunities.
Unfortunately, the arrow of time is uni-directional and experimental data for financial
time-series are not available.

4.3 Model Estimation

Model specification has led us to the following description for the vector of one-period
returns on assets used to build a portfolio:

rt,t+1 = μ+Hεt+1

Σ = HH′.

εt+k ∼ D (0, I)

where rt,t+k is the vector of returns between time t and time t+k in which we are
interested, μ is the vector of mean returns and the matrix H determines the time
invarying variance-covariance matrix of returns.

Model estimation allows to find values for μ,Σ. In the case of CER this step is
easily solved by n OLS regressions of the n returns on a constant.
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μ̂i =
1

T

T∑
t=1

rit,t+1

σ̂ii =
1

T

T∑
t=1

(
rit,t+1 − μ̂i

)2

σ̂ij =
1

T − 1

T∑
t=1

(
rit,t+1 − μ̂i

)(
rjt,t+1 − μ̂j

)

4.3.1 Parameters Estimation in a linear model

The CER is a special case of a linear model, consider the following general represen-
tation of a linear model :

y = Xβ + ε,

y =

⎛⎜⎜⎜⎜⎝
y1
.
.
.
yN

⎞⎟⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎜⎝
x11 x12 . . x1k

. . . . .

. . . . .

. . . . .
xN1 xN2 . . xNk

⎞⎟⎟⎟⎟⎠ ,

β =

⎛⎜⎜⎜⎜⎝
β1

.

.

.
βk

⎞⎟⎟⎟⎟⎠ , ε =

⎛⎜⎜⎜⎜⎝
ε1
.
.
.
εN

⎞⎟⎟⎟⎟⎠ .

The simplest way to derive estimates of the parameters of interest is the ordinary
least squares (OLS) method. Such a method chooses values for the unknown param-
eters to minimize the magnitude of the non-observable components. The best fit is
obtained by minimizing the sum of squared vertical deviations of the data points from
the fitted line.

Define the following quantity:

e (β) = y −Xβ,

where e (β) is a (n× 1) vector. If we treat Xβ, as a (conditional) prediction for y,
then we can consider e (β) as a forecasting error. The sum of the squared errors is
then

S (β) = e (β)′ e (β) .
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The OLS method produces an estimator of β, β̂, defined as follows:

S
(
β̂
)
= min

β
e (β)′ e (β) .

Given β̂, we can define an associated vector of residual ε̂ as ε̂ = y−Xβ̂. The OLS
estimator is derived by considering the necessary and sufficient conditions for β̂ to be
a unique minimum for S:

1. X′ε̂ = 0;

2. rank(X) = k.

Condition 1 imposes orthogonality between the X variables and the OLS residuals, it ensures that

residuals have zero mean when a constant is included among the regressors. Condition 2 requires

that the columns of the X matrix are linearly independent.

From 1. we derive an expression for the OLS estimates:

X′ε̂ = X′
(
y −Xβ̂

)
= X′y −X′Xβ̂ = 0,

β̂ = (X′X)
−1

X′y.
ˆ
σ
2

=
ε̂′ε̂

T − k

OLS in the CER

In the CER we have:
y = Xβ + ε,

y =

⎛⎜⎜⎜⎜⎝
r1
.
.
.
rT

⎞⎟⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎜⎝
1
.
.
.
1

⎞⎟⎟⎟⎟⎠ ,

β = μ, ε =

⎛⎜⎜⎜⎜⎝
ε1
.
.
.
εT

⎞⎟⎟⎟⎟⎠ .
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From one-period to multi-period returns in the CER

Notice that once one-step ahead returns are known, then also n-step ahead returns
are known:

Et(rt,t+n) = nμ̂

V ar(rt,t+n) = nΣ̂

As a consequence of these properties of the data, weights in an optimal multi-
horizon portfolio coincide with weights in a single-period horizon portfolio:

ŵT =
Σ−1

(
μ−rfe)

e′Σ−1 (μ−rfe) ,

=
Σ−1(nn−1)

(
μ−rfe)

e′Σ−1(nn−1) (μ−rfe)

4.4 Model Simulation: Monte-Carlo and Bootstrap

Methods

Once parameters in the CER have been estimated the model can be simulated to
derive the distribution of asset returns in the future, this is done by simulating pseudo
data from the model. Model can be simply used to create the distribution of returns
in the future and derive Value-at-Risk measures, but they can also evaluated via the
following procedure:

• split the sample into two parts, a training sample and a test sample.

• Use the training sample to estimate model parameters’.

• Use the model to simulate artificial observation for the test sample.

• Evaluate the model by comparing actual data in the test sample with model-
simulated data over the same period.

We shall consider two ways of simulating pseudo-data: Monte-Carlo Simulation
and Bootstrap. To use Monte-Carlo Simulation to generate pseudo data from the CER
model, some estimates of μ σ are necessary. Given these estimates an assumption
must be made on the distribution of εt. Then an artificial sample for εt of the length
matching that of the available can be computer simulated. The simulated residuals
are then mapped into simulated returns via μ, σ. This exercise can be replicated
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N times (and therefore a Monte-Carlo simulation generates a matrix of computer-
simulated returns whose dimensions are defined by the sample size T and by the
number of replications N). The distribution of model-predicted returns can be then
constructed and one can ask if the observed data can be considered as one draw from
this distribution.

One of the possible limitations of the Monte-Carlo approach is the choice of a
distribution from which the residuals are to be drawn. It might be very well the case
that the model goes wrong because the choice of the statistical distribution is not
the correct one. Bootstrap methods overcome this problem by sampling residuals
from their empirical distribution. All the steps in a bootstrap simulation are the
same as the Monte-Carlo simulation except that different observations for residuals
are constructed by taking the deviation of returns from their sample mean putting
them in an urn and resampling from the urn with replacement.

4.5 The CER model at work with R

In this section, we shall illustrate codes in R that apply model specification, esti-
mation and simulation to the CER model to perform Optimal asset allocation and
backtesting.

4.5.1 Asset Allocation with the CER

The following code runs after the usual preliminaries ( setting working directory,
upload relevant packages) uses the inbuilt database BERNDINVEST in the package
Ecofin to perform optimal asset allocation adopting the CER model for US stocks.

First, Data transformation is applied via a loop to construct, from monthly returns
monthly prices, i.e. the value over-time of a buy and hold portfolio in each stock, and
monthly log-prices.

Second, descriptive graphical analysis is implemented using the facilities in the
package ggplot.

Third, the relevant parameters in the CER are estimated and optimal asset allo-
cation is found by computing weights for the tangency portfolio.

Lastly, the utilization of the package fPortfolio in R is described. Research (2023)
is an excellent online guide to Fportfolio. The program illustrates how to get the data
in the appropriate format, set constraints for the portfolio optimization, compute
efficient frontiers and optimal portfolio weights and provide graphic illustration of
the results.

1 # Asset Allocation with CER

2 # elaboration on the original code produced by E.Zivot by C. Favero
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3 # author: Carlo Favero

4 # created: August , 2023

5 # comments: Original Examples are taken from chapter 11 in Zivot and Wang

(2006)

6

7 rm(list=ls()) #Removes all items in Environment!

8 #setwd(path)

9 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
10

11 # set output options

12 options(width = 70, digits =4)

13

14 #install.packages (" fEcofin", repos="http://R-Forge.R-project.org")

15 library(fEcofin)

16 # load required packages

17 listofpackages <- c("ellipse","dygraphs","ggplot2")

18

19 for (j in listofpackages){

20 if(sum(installed.packages ()[, 1] == j) == 0) {

21 install.packages(j)

22 }

23 library(j, character.only = T)

24 }

25

26 install.packages(c("cluster","mvoutlier","pastecs","fPortfolio"),

27 repos="http://cran.r-project.org")

28 # load required packages

29 library(cluster)

30 library(mvoutlier)

31 library(pastecs)

32 library(fPortfolio)

33

34 ####################################################

35 # Data Loadings and Transform: Descriptive Analysis

36 ####################################################

37

38 # create data frame with dates as rownames

39 berndt.df = berndtInvest[, -1]

40 berndt.df$date <- as.Date(berndtInvest[, 1])

41 rownames(berndt.df) = as.character(berndtInvest[, 1])

42 colnames(berndt.df)

43 dimnames(berndt.df)[[2]] #command alternative to the previous one

44

45 # transform the data and compute cumulative returns

46

47 t0 <- which(berndt.df$date == "1978 -01 -01")

48 t1 <- which(berndt.df$date == "1987 -12 -01")

49

50 series_names <-

c("CITCRP","CONED","CONTIL","DATGEN","DEC","DELTA","GENMIL","GERBER","IBM",

51 "MARKET","MOBIL","PANAM","PSNH","TANDY","TEXACO","WEYER","RKFREE")

52
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53 for (name in series_names) {

54 P_col_name <- paste0(name ,"_P")

55 LP_col_name <- paste0("L",P_col_name)

56 berndt.df[t0, P_col_name] <- 1

57 for (i in (t0+1):(t1)) {

58 berndt.df[i, P_col_name ][[1]] <- berndt.df[i-1, P_col_name ][[1]] *

(1+ berndt.df[i, name ][[1]] )

59 }

60 berndt.df[, LP_col_name] <- log(berndt.df[, P_col_name])

61 }

62 # add a trend to the database

63 berndt.df$TREND <- array(data = NA , dim = nrow(berndt.df))

64 berndt.df[t0, c("TREND")] <- 1 # don ’t need to repeat the value to make the

array being assigned be of the same length. be careful though as it is

one of the few cases of exception

65

66 ############################

67 # Descriptive Analysis

68 ############################

69

70 #We can now plot , please note the difference with plotting from a

time -series object

71

72 plot(berndt.df$date[t0:t1],berndt.df$TEXACO[t0:t1],ylab =

"TEXACO",xlab="year", main = "Monthly Returns", col = "blue", lwd =

2,type="l")

73

74

75 plot(berndt.df$date[t0:t1],berndt.df$TEXACO[t0:t1], col = ’blue’, type =

"l",

76 ylab = "returns TEXACO and MKT", xlab = "date",lwd = 2)

77 lines(y = rep(mean(berndt.df$TEXACO[t0:t1], na.rm = T),

length(berndt.df$TEXACO[t0:t1])), x = berndt.df$date[t0:t1], col =

"red")

78 lines(y = berndt.df$MARKET[t0:t1], x = berndt.df$date[t0:t1], col =

"green",lwd = 2)

79 legend("topleft", legend = c("TEXACO", "MKT"),

80 col = c("blue", "green"), lty = 1)

81

82 plot(berndt.df$date[t0:t1],berndt.df$LTEXACO_P[t0:t1], col = ’blue’, type =

"l",

83 ylab = "portfolios TEXACO and MKT", xlab = "date",ylim = c(-0.5,

2),lwd = 2)

84 lines(y = berndt.df$LMARKET_P[t0:t1], x = berndt.df$date[t0:t1], col =

"green",lwd = 2)

85 legend("topleft", legend = c("TEXACO", "MKT"),

86 col = c("blue", "green"), lty = 1)

87

88 # Create the plot using ggplot , as generated by Chat GPT

89 ggplot(berndt.df, aes(x = date)) +

90 geom_line(aes(y = LTEXACO_P), color = "blue", size = 2, linetype =

"solid") +
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91 geom_line(aes(y = LMARKET_P), color = "green", size = 2, linetype =

"solid") +

92 labs(x = "Date", y = "Portfolios TEXACO and MKT") +

93 ylim(-0.5, 2) +

94 theme_minimal () +

95 theme(

96 legend.position = "topleft",

97 legend.title = element_blank (),

98 legend.text = element_text(size = 12),

99 axis.text = element_text(size = 12),

100 axis.title = element_text(size = 14),

101 plot.title = element_text(size = 16, hjust = 0.5)

102 ) +

103 scale_color_manual(

104 values = c("blue", "green"),

105 guide = guide_legend(override.aes = list(size = 2, linetype = "solid"))

106 ) +

107 guides(fill = guide_legend(override.aes = list(size = 2)))

108

109 ############################

110 # Asset Allocation with CER

111 ############################

112 returns.df=berndt.df[, c(1:9 ,11:16)]

113 #returns.df = berndt.df[, c(-10, -17)

114 exreturns.df=returns.df -berndt.df$RKFREE
115 returns.mat = as.matrix(exreturns.df)

116 n.obs = nrow(returns.mat)

117

118 #Estimation of CER model parameters

119 cov.sample=var(returns.mat)

120 mu = matrix(colMeans(returns.mat), nrow = ncol(returns.mat), ncol = 1)

121

122 #

123 # compute tangency portfolio

124 #

125

126 e = matrix(1, nrow = nrow(cov.sample), ncol = 1) # unitary column vector e

127 w.tan.sample =

(solve(cov.sample)%*%(mu))/as.numeric(t(e)%*%(solve(cov.sample)%*%(mu)))

128

129 colnames(w.tan.sample) = "sample"

130 barplot(t(w.tan.sample), horiz=F, main="Weights", col="blue", cex.names =

0.75, las =2)

131

132

133 ################################

134 # Using the fportfolio package

135 ################################

136

137 #returns.df=berndt.df[, c(1:9 ,11:16)]

138 #exreturns.df=returns.df -berndt.df$RKFREE
139 companies <- colnames(exreturns.df)
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140 #ts

141 tsdata <- ts(exreturns.df, start = c(1978, 1), frequency = 12, names =

companies)

142 s1 <- window(tsdata[, "TEXACO"], start = c(1978, 1), end = c(1987, 12))

143 dygraph(s1 , ylab = "TEXACO", main = "monthly excess returns")

144 data01ts <- as.timeSeries(tsdata)

145 # financial data description

146 ddown <-drawdowns(data01ts)

147 ddowndata <- ts(ddown , start = c(1978 , 1), frequency = 12, names =

companies)

148 s1 <- window(ddowndata[, "TEXACO"], start = c(1978, 1), end = c(1987, 12))

149 dygraph(s1 , ylab = "TEXACO", main = "drawdowns")

150 drawdownsStats(data01ts[, "TEXACO"])

151 #-----------------------

152 # Portfolio Allocation

153 #-----------------------

154

155 # Step 1 define the data in our case 15 excess returns data in data01ts

156 showClass("fPFOLIODATA")

157

158 lppData <- portfolioData(data = data01ts , spec = portfolioSpec ())

159 # once the data have been defined we can get info on them

160 str(lppData , width = 65, strict.width = "cut")

161 print(lppData)

162 getData(portfolioData(lppData))[-1]

163 getStatistics(portfolioData(lppData))

164

165 # Step 2 Set Portfolio Constraints

166

167 showClass("fPFOLIOCON")

168 #default constraints: long -only

169 Data <-data01ts

170 Spec <- portfolioSpec ()

171 setTargetReturn(Spec) <- mean(Data)

172 Constraints <- "LongOnly"

173 defaultConstraints <- portfolioConstraints(Data , Spec , Constraints)

174 str(defaultConstraints , width = 65, strict.width = "cut")

175 print(defaultConstraints)

176

177 # short constraints

178 shortConstraints <- "Short"

179 portfolioConstraints(Data , Spec , shortConstraints)

180

181 # box constraints

182 box.1 <- "minW [1:15] = 0.1"

183 box.2 <- "maxW [1:15] = 1" # you can have more boxes before combining them

184 boxConstraints <- c(box.1, box .2)

185 boxConstraints

186 portfolioConstraints(Data , Spec , boxConstraints)

187

188

189 # Step 3 Computing Optimal Portfolios
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190

191 #3.0 A benchmark: equal weight portfolio

192 ewSpec <- portfolioSpec ()

193 nAssets <- ncol(data01ts)

194 setWeights(ewSpec) <- rep(1/nAssets , times = nAssets)

195 ewPortfolio <- feasiblePortfolio(

196 data = data01ts ,

197 spec = ewSpec ,

198 constraints = "LongOnly")

199 print(ewPortfolio)

200

201 # Efficient Frontier plot

202 setNFrontierPoints(ewSpec) <- 25

203 eff_ew_frontier <- portfolioFrontier(data = data01ts , spec = ewSpec ,

constraints = "LongOnly")

204 tailoredFrontierPlot(object = eff_ew_frontier)

205

206 #3.1 Long -Only

207 tgSpec <- portfolioSpec ()

208 setRiskFreeRate(tgSpec) <- 0

209 constraints <- "longOnly"

210 tgPortfolio <- tangencyPortfolio(

211 data = data01ts ,

212 spec = tgSpec , constraints = constraints)

213 print(tgPortfolio)

214

215 #printing the results

216 col <- seqPalette(ncol(data01ts), "BuPu")

217 weightsPie(tgPortfolio , box = FALSE , col = col)

218 mtext(text = "Tangency MV Portfolio", side = 3, line = 1.5,

219 font = 2, cex = 0.7, adj = 0)

220 weightedReturnsPie(tgPortfolio , box = FALSE , col = col)

221 mtext(text = "Tangency MV Portfolio", side = 3, line = 1.5,

222 font = 2, cex = 0.7, adj = 0)

223 covRiskBudgetsPie(tgPortfolio , box = FALSE , col = col)

224 mtext(text = "Tangency MV Portfolio", side = 3, line = 1.5,

225 font = 2, cex = 0.7, adj = 0)

226

227 efficient_frontier <- portfolioFrontier(data = data01ts , spec = tgSpec ,

constraints = constraints)

228 print(efficient_frontier)

229 # Efficient Frontier plot

230 setNFrontierPoints(tgSpec) <- 25

231 efficient_frontier <- portfolioFrontier(data = data01ts , spec = tgSpec ,

constraints = constraints)

232 tailoredFrontierPlot(object = efficient_frontier)

233

234 #---------------------

235 #3.2 Box -Constraints

236 #---------------------

237 boxSpec <- portfolioSpec ()

238 setRiskFreeRate(boxSpec) <- 0
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239 boxConstraints <- c("minW [1:15]=0.05", "maxW [1:15]=0.5")

240 tgPortfolio1 <- tangencyPortfolio(

241 data = data01ts ,

242 spec = boxSpec , constraints = boxConstraints)

243 print(tgPortfolio1)

244

245 #printing the results

246 col <- seqPalette(ncol(data01ts), "BuPu")

247 weightsPie(tgPortfolio1 , box = FALSE , col = col)

248 mtext(text = "Tangency MV Portfolio", side = 3, line = 1.5,

249 font = 2, cex = 0.7, adj = 0)

250 weightedReturnsPie(tgPortfolio , box = FALSE , col = col)

251 mtext(text = "Tangency MV Portfolio", side = 3, line = 1.5,

252 font = 2, cex = 0.7, adj = 0)

253 covRiskBudgetsPie(tgPortfolio , box = FALSE , col = col)

254 mtext(text = "Tangency MV Portfolio", side = 3, line = 1.5,

255 font = 2, cex = 0.7, adj = 0)

4.5.2 Model Simulation with the CER: backtesting and VaR

To illustrate model simulation we consider the application to backtesting and Value
at Risk. The following illustrative code starts by building the tangency and the
minimum variance portfolio on the stocks considered in the previous section and by
implementing within-sample evaluation of the properties of the optimized portfolios.
This type of exercise suffers from the well-known problem of ”look-ahead bias” as data
not available in real time have been used to construct weights. True backtesting, when
the available data are divided into a ”training Sample” and a test sample, is then
implemented using the package fPortfolio. A procedure is used according to which a
rolling sample is used to build the allocation that reflects the information available
in real-time at the end of the sample, allocations are then evaluated out-of-sample
and then re-optimized. The possibility of smoothing optimal weights in the rolling
procedure is also considered. Backtesting is then conducted by assessing ex-post
the performance of each allocation. Finally, in the last part of the code, the CER
model is applied to the Tangency portfolio to simulate, via bootstrap and Monte-
Carlo procedures, the distribution of the returns and to produce one-month ahead
Value-at-Risk.

1 # Asset Allocation with CER

2 # elaboration on the original code produced by E.Zivot by C. Favero

3 # author: Carlo Favero

4 # created: August , 2023

5 #

6 # comments: Original Examples are taken from chapter 11 in Zivot and Wang

(2006)

7

8 rm(list=ls()) #Removes all items in Environment!
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9 #setwd(path)

10 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
11

12 #install.packages (" fEcofin", repos="http://R-Forge.R-project.org")

13 library(fEcofin)

14 # load required packages

15 listofpackages <- c("ellipse","dygraphs","ggplot2","reshape2")

16

17 for (j in listofpackages){

18 if(sum(installed.packages ()[, 1] == j) == 0) {

19 install.packages(j)

20 }

21 library(j, character.only = T)

22 }

23

24 install.packages(c("cluster","mvoutlier","pastecs","fPortfolio"),repos="http://cran.r-project

25 # load required packages

26 library(cluster)

27 library(mvoutlier)

28 library(pastecs)

29 library(fPortfolio)

30

31

32 # create data frame with dates as rownames

33 berndt.df = berndtInvest[, -1]

34 rownames(berndt.df) = as.character(as.Date(berndtInvest[, 1]))

35

36

37 ################################################################################

38 # Derive the optimal portfolio weights (i.e. the weights in the tangency

portfolio)

39 # using the CER for (i) the Minimun Variance Portfolio , (ii) the tangency

portfolio.

40 ###############################################################################

41 returns.df=berndt.df[, c(1:9 ,11:16)]

42 #returns.df = berndt.df[, c(-10, -17)

43 exreturns.df=returns.df -berndt.df$RKFREE
44 returns.mat = as.matrix(exreturns.df)

45 # using ggplot to plot series in returns

46 berndt.df$date <- as.Date(row.names(berndt.df))

47

48 # Create the time series plot using ggplot

49 ggplot(data = berndt.df, aes(x = date , y = WEYER)) +

50 geom_line() + # Add a line plot

51 labs(x = "Date", y = "WEYER") # Label the axes

52

53

54 #

55 # compute global min variance portfolio

56 #

57 # use CER model: estimate the relevant unknown parameters with the sample

covariances
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58 returns.mat = as.matrix(exreturns.df)

59 n.obs = nrow(returns.mat)

60 cov.sample=var(returns.mat)

61 mu = matrix(colMeans(returns.mat), nrow = ncol(returns.mat), ncol = 1)

62 e = matrix(1, nrow = nrow(cov.sample), ncol = 1) # unitary column vector e

63 #

64 # compute GMIN portfolio

65 #

66 w.gmin.sample = solve(var(returns.mat))%*%rep(1,nrow(cov.sample))

67 w.gmin.sample = w.gmin.sample/sum(w.gmin.sample)

68 berndt.df$GMIN <-returns.mat%*%w.gmin.sample
69

70 barplot(t(w.gmin.sample), horiz=F, main="Weights", col="blue", cex.names =

0.75, las =2)

71

72 ggplot(data = berndt.df, aes(x = date , y = GMIN)) +

73 geom_line() + # Add a line plot

74 labs(x = "Date", y = "GMIN") # Label the axes

75

76 #

77 # compute tangency portfolio

78 #

79 w.tan.sample = (solve(cov.sample)%*%as.numeric(mu))

80 w.tan.sample =w.tan.sample/as.numeric(t(e)%*%(solve(cov.sample)%*%(mu)))

81

82 berndt.df$TAN <-returns.mat%*%w.tan.sample
83

84 # visualize the differences

85 par(mfrow=c(1,2))

86 barplot(t(w.tan.sample), horiz=T, main="Tangency Port CER", col="blue",

cex.names = 0.75, las =1)

87 barplot(t(w.gmin.sample), horiz=T, main="Min Var Port CER", col="red",

cex.names = 0.75, las =1)

88 par(mfrow=c(1,1))

89

90 plot <- ggplot(data= berndt.df, aes(x = date)) +

91 geom_line(aes(y = TAN , color = "TAN"), size = 1) +

92 geom_line(aes(y = GMIN , color = "GMIN"), size = 1) +

93 labs(title = "Returns",

94 x = "Time", y = "Monthly Returns") +

95 scale_color_manual(values = c("TAN" = "red", "GMIN" = "blue")) +

96 theme_minimal () +

97 theme(axis.line = element_line(color = "black"))

98

99 print(plot)

100

101

102 #################################################

103 # Graphs the value over -time of 1 dollar invested in 1978:1 until the end

of the

104 # available sample in the two alternative tangency portfolios and in the

market
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105 #################################################

106 berndt.df$Port_mkt <- berndt.df$Port_TAN <- berndt.df$Port_GMIN <-

array(data = NA , dim = nrow(berndt.df))

107

108 berndt.df[1, c("Port_mkt", "Port_TAN","Port_GMIN")] <- 1

109 t1<-nrow(berndt.df)

110 for (i in 2:t1) {

111 berndt.df[i, "Port_mkt"][[1]]= berndt.df[i-1,

"Port_mkt"][[1]]*(1+ berndt.df[i, "MARKET"][[1]])

112 berndt.df[i, "Port_TAN"][[1]]= berndt.df[i-1,

"Port_TAN"][[1]]*(1+ berndt.df[i, "TAN"][[1]])

113 berndt.df[i, "Port_GMIN"][[1]]= berndt.df[i-1,

"Port_GMIN"][[1]]*(1+ berndt.df[i, "GMIN"][[1]])

114 }

115

116

117 # time series Plot of the three Portfolios

118

119 plot <- ggplot(data= berndt.df, aes(x = date)) +

120 geom_line(aes(y = Port_mkt , color = "Port_mkt"), size = 1) +

121 geom_line(aes(y = Port_GMIN , color = "Port_GMIN"), size = 1) +

122 geom_line(aes(y = Port_TAN , color = "Port_TAN"), size = 1) +

123 labs(title = "Returns",

124 x = "Time", y = "Monthly Returns") +

125 scale_color_manual(values = c("Port_mkt" = "red", "Port_GMIN" =

"blue","Port_TAN" = "green")) +

126 theme_minimal () +

127 theme(axis.line = element_line(color = "black"))

128

129

130 # compare means and sd values on global min variance portfolios

131

132 mu.gmin.sample = as.numeric(colMeans(berndt.df$GMIN))
133 mu.tan.sample = as.numeric(colMeans(berndt.df$TAN))
134 sd.gmin.sample = as.numeric(apply(berndt.df$GMIN ,2,sd))
135 sd.tan.sample = as.numeric(apply(berndt.df$TAN ,2,sd))
136 cbind(mu.tan.sample ,mu.gmin.sample , sd.tan.sample , sd.gmin.sample)

137

138 ## ------------------------------

139 # BACKTESTING with fPortfolio

140 ## ------------------------------

141 companies <- colnames(berndt.df)

142 #getting the data in ts format

143 tsdata <- ts(berndt.df, start = c(1978, 1), frequency = 12, names =

companies)

144 data01ts <- as.timeSeries(tsdata)

145 ddown <-drawdowns(data01ts)

146 ddowndata <- ts(ddown , start = c(1978 , 1), frequency = 12, names =

companies)

147 s1 <- window(ddowndata[, "TAN"], start = c(1978, 1), end = c(1987, 12))

148 dygraph(s1 , ylab = "TAN", main = "drawdowns")

149 drawdownsStats(data01ts[, "TAN"])
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150 ## ------------------------------

151 # out -of -sample BACKTESTING

152 ## ------------------------------

153

154 Data <- data01ts

155 Spec <- portfolioSpec ()

156 Constraints <- "LongOnly"

157 Backtest <- portfolioBacktest ()

158 setWindowsHorizon(Backtest) <- "60m"

159 equidistWindows(data = Data , backtest = Backtest)

160

161

162 #Specify assets for backtesting

163 #Formula <- MARKET ~ CITCRP + CONED + CONTIL + DATGEN + DEC + DELTA +

164 # + GENMIL + GERBER +IBM+MOBIL+PANAM+PSNH+TANDY+TEXACO+WEYER

165 Formula <- MARKET ~ CITCRP + CONED + CONTIL + DATGEN + DEC + DELTA +

166 GENMIL + GERBER + IBM + MOBIL + PANAM + PSNH + TANDY + TEXACO + WEYER

167

168 #Optimize rolling portfolios and run backtests

169 #btportfolios <- portfolioBacktesting(formula = Formula ,

170 # +data = data01ts , spec = Spec ,

constraints = Constraints ,

171 # + backtest = Backtest , trace = FALSE)

172

173 btportfolios <- portfolioBacktesting(formula = Formula ,

174 data = data01ts , spec = Spec ,

constraints = Constraints ,

175 backtest = Backtest , trace = FALSE)

176

177

178 #Weights are rebalanced on a monthly basis

179 Weights <- round (100 * btportfolios$weights , 2)[1:60 , ]

180 Weights

181

182 setSmootherLambda(btportfolios$backtest) <- "1m"

183 SmoothPortfolios <- portfolioSmoothing(object = btportfolios ,trace = FALSE)

184 smoothWeights <- round (100 * SmoothPortfolios$smoothWeights ,2) [1:60, ]

185 smoothWeights

186

187 backtestPlot(SmoothPortfolios , cex = 0.6, font = 1, family = "mono")

188

189 netPerformance(SmoothPortfolios)

190

191 ## --------------------

192 # MODEL -SIMULATION

193 ## --------------------

194

195 ## -----------------------------------

196 # model specification and estimation

197 mod_TAN <- lm(berndt.df$TAN ~ 1)

198 summary(mod_TAN)

199
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200

201 ## -----------------------------------

202 # parameter calibration and choice of the number of replications in the

simulation and of the sample size for simulated data

203 vol <- sd(mod_TAN$residuals)
204 alpha <- mod_TAN$coefficients [[1]]
205 nrep <- 1000

206 TT <- nrow(berndt.df)

207 # here I create the containers to be filled with the generated data.

208 y_bt <- y_mc <- array(1, c(TT , nrep))

209 x_bt <- x_mc <- array(alpha , c(TT , nrep))

210

211 # now , the loop

212

213 for (i in 1:nrep){

214 u <- rnorm(TT)

215 res <- sample(mod_TAN$residuals , replace = T) # this (re)samples from the

data

216

217 x_mc[, i] <- alpha + vol * u # the Monte Carlo way

218 x_bt[, i] <- alpha+res # the bootstrap way

219

220 # now we simply construct and store the bootstrapped and MC cumulative

returns

221 for (j in 2:TT){

222 y_mc[j, i] <- y_mc[j-1, i] * (1 + x_mc[j, i])

223 y_bt[j, i] <- y_bt[j-1, i] * (1 + x_bt[j, i])

224 }

225 }

226

227 # now we want to construct the series of means and quantiles of the

resulting collection of drawn series

228 for (i in 1:TT){

229 # obtaining the means

230 berndt.df$y_bt_mean[i] <- mean(y_bt[i, ])

231 berndt.df$x_bt_mean[i] <- mean(x_bt[i, ])

232 berndt.df$y_mc_mean[i] <- mean(y_mc[i, ])

233 berndt.df$x_mc_mean[i] <- mean(x_mc[i, ])

234

235 # and the quantiles

236 berndt.df$y_bt_q05[i] <- quantile(y_bt[i, ], 0.05)

237 berndt.df$x_bt_q05[i] <- quantile(x_bt[i, ], 0.05)

238 berndt.df$y_mc_q05[i] <- quantile(y_mc[i, ], 0.05)

239 berndt.df$x_mc_q05[i] <- quantile(x_mc[i, ], 0.05)

240

241 berndt.df$y_bt_q95[i] <- quantile(y_bt[i, ], 0.95)

242 berndt.df$x_bt_q95[i] <- quantile(x_bt[i, ], 0.95)

243 berndt.df$y_mc_q95[i] <- quantile(y_mc[i, ], 0.95)

244 berndt.df$x_mc_q95[i] <- quantile(x_mc[i, ], 0.95)

245

246 }

247
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248 ## ----------------------------------------------

249 # plotting

250 plot <- ggplot(data= berndt.df, aes(x = date)) +

251 geom_line(aes(y = TAN , color = "TAN"), size = 1) +

252 geom_line(aes(y = x_mc_mean , color = "x_mc_mean"), size = 1) +

253 geom_line(aes(y = x_mc_q05 , color = "x_mc_q05"), size = 1) +

254 geom_line(aes(y = x_mc_q95 , color = "x_mc_q95"), size = 1) +

255 labs(title = "Simulation",

256 x = "Time", y = "Monthly Returns") +

257 scale_color_manual(values = c("TAN" = "blue", "x_mc_q05" =

"red","x_mc_q95" = "red","x_mc_mean" = "green")) +

258 theme_minimal () +

259 theme(axis.line = element_line(color = "black"))

260

261 ## --------------------------------------------

262 # Value at Risk via Monte Carlo simulation

263 ## --------------------------------------------

264 s1_mc=x_mc[2,]

265 hist(s1_mc , breaks = seq(min(s1_mc), max(s1_mc), l = 20+1) ,prob=TRUE , main

= "histogram of monthly returns")

266 curve(dnorm(x,mean=mean(s1_mc),sd=sd(s1_mc)),col=’darkblue ’,lwd=2,add=TRUE)

267 VaR_mc <- quantile(s1_mc , 0.05)

268 VaR_mc



Chapter 5

Factor Models for Asset Prices and
Returns

5.1 Introduction: Factor Models and Reduction in

Dimensionality

The traditional approach to asset allocation among N risky assets requires the pre-
diction of their future distribution r ∼ D (μ,Σ). One of the most relevant problems in
the implementation of the traditional approach to portfolio allocation is dimension-
ality. The implementation of asset allocation and risk measurement among n assets
requires the estimation of a very large number of parameters: n(n+1)

2
+n. The relevant

dimension for the use of factor models in asset allocation is the time-series as Factor
models allows to reduce of the dimensionality of the number of parameters to be es-
timated to derive the predictive distribution of returns. Moreover, linear multi-factor
models (e.g., Fama and French, 1993; Fama and French, 2015; Ang, 2014; Hou et al.,
2018) represent the workhorse of empirical asset pricing. These models have been
also successfully employed to parsimoniously characterize the cross-section of average
one-period (often monthly) returns.
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5.2 Factor Models:Time-Series Representation

The statistical distribution of excess returns on N assets (i=1...n) can be conditioned
on a vector of K factors f (where N is large and K is small)

rit,t+k = γi
0 + γ

i′
1 ft,t+k + vit,t+k (5.1)

ft,t+k = μf +Hfεt,t+k

Σf = HfHf ′.

E
(
vit,t+k, v

j
t,t+k

)
= 0

E
(
vit,t+k, ε

j
t,t+k

)
= 0

εt+k ∼ D (0, I)

Note that the projection of the large number of N excess returns on the small number
K of factors allows decomposing the compensation for risk into two orthogonal com-
ponents: a common risk component captured by the factors γ

i′
1 f and an idiosyncratic

component captured by the residuals of the projection of returns on factors vit,t+k. By
their nature, idiosyncratic components are not correlated with each other and there-
fore while the variance-covariance matrix of N excess returns contains N(N+1)/2
parameters the variance-covariance matrix of the residuals of the projections of ex-
cess returns on factors is diagonal and contains only N parameters to be estimated.
The application of the CER model for asset allocation to select a portfolio from N
assets requires the estimation of N+N(N+1)/2 parameters, while the adoption of a
structure of K factors requires the estimation of (2N+NK)+ (K+K(K+1)/2) param-
eters. Think, for example, of an asset allocation problem with 30 assets and 4 factors.
The CER would require the estimation of 505 parameters, the factor model would re-
duce that number to 194. The traditional factor model results from a combination of
the application of the CER to factors and of the projection of returns to factors. the
constancy of conditional expectations of factors implies the absence of predictability
for them which immediately translates into the absence of predictability for returns.
In the traditional factor model, we have:

E (ft,t+k) = μf (5.2)

E
(
rit,t+k

)
= γi

0 + γ
i′
1E (ft,t+k)

= γi
0 + γ

i′
1 μ

f

and the model rules out predictability both for factors and returns.
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5.3 Factor Models: Cross-Sectional representation

If we consider the cross-section of returns rather than their time-series, the multifactor
model has the following cross-sectional representation for the (Nx1) vector of returns
between time t and time t + k as a linear projection of factors between time t and
time t+ k

rt,t+k
(Nx1)

= α
(Nx1)

+ B
(NxK)

ft,t+k
(Kx1)

+ vt
(Nx1)

(5.3)

ft,t+k
(Kx1)

= μf

(Kx1)

+ Hf

(KxK)
εf

(Kx1)

Σv =

⎡⎢⎢⎣
σ1 0 0 0
0 σ2 0 0
.. .. .. ..
0 0 0 σn

⎤⎥⎥⎦
Σf = HfHf ′.

The specification and estimation of a factor model allow to parsimoniously compute
optimal portfolio weights. In fact, we have

E
(Nx1)

rt,t+k = α
(Nx1)

+ B
(NxK)

μf

(Kx1)

(5.4)

Σ
(NxN)

r = B
(NxK)

Σ
(KxK)

f B′
(KxN)

+ Σ
(NxN)

v

from which optimal weights are derived for the different specifications of the optimal
portfolio.

5.4 Factor-based Portfolios and Factor Exposures

After optimal portfolio weights have been set using a specific criterion, the exposure
of portfolios to factors can be assessed by computing the share of the total portfo-
lio variance attributable to each factor. Define the returns of an optimal portfolio
obtained by combining n assets as rpt+1 =

∑N
i=1 wir

i
t+1

rpt+1 = α1 + βf1f 1
t+1 + βf2f 2

t+1 + · · ·+ βfkfk
t+1 + vt+1
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V ar
(
rpt+1

)
= Cov

(
rpt+1, r

p
t+1

)
= βf1Cov

(
f 1
t+1, r

p
t+1

)
+ . . . βfkCov

(
fk
t+1, r

p
t+1

)
+ Cov

(
vt+1, r

p
t+1

)
The factor exposure can then be computed as the share of the total variance portfolio
attributable to each factor:

EXP p
f i =

βf iCov
(
f i
t+1, r

p
t+1

)
V ar

(
rpt+1

)
The above decomposition resembles the risk parity approach that we have seen in
the first chapter. In fact, as risk parity can be considered as an alternative method
to allocate assets, ”smart beta” strategies can be implemented through alternative
weighting methods that emphasize the exposures to specific factors.

5.5 A single factor model:The CAPM

We shall illustrate factor models with the most famous single factor model for asset
returns: the CAPM (Sharpe, 1964; Lintner, 1965). In the CAPM the common factor
to all asset returns is identified with the market. The CAPM has the following time-
series representation for the return the i-th assets to be included in the portfolio

(
rit − rrft

)
= β0,i + β1,i

(
rmt − rrft

)
+ ui,t(

rmt − rrft

)
= μm + um,t

ui,t ∼ n.i.d.
(
0, σ2

i

)(
ui,t

um,t

)
∼ n.i.d.

[(
0
0

)
,

(
σii 0
0 σmm

)]
The hypothesis of crucial importance for the validity of the factor representation is
that of orthogonality between the common shock um,t and all the idiosyncratic shocks
ui,t. The cross-sectional representation of the vectors of N returns in the CAPM is
then:
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rt = β0 + β1r
m
t + ut

rmt = E (rm) + σmum,t

Σ = β1β1
′σ2

m + Σu

μ = β0 + β1E (rm)

Note that while if a CER model is adopted for all returns the total number of
parameters to be estimated is N +N(N+1)

2
(the parameters in the mean vector+the

parameters in the variance-covariance matrix of returns), while and μ,Σ can be ob-
tained with the estimation of 3N+2 parameters when the CAPM is adopted.

5.5.1 Asset Allocation with the CER and the CAPM in R

The following R code allows uploading a data set of US stock market returns, per-
forming descriptive and graphical analysis of the performance of the single index
model applied to returns and tracking the capability of the model for returns to track
prices in the case of a specific stock, implementing optimal portfolio allocation with
the CER model, implementing optimal portfolio allocation with the CAPM model,
comparing the results, and checking the validity of the CAPM model by comparing
the correlation matrix of returns with the correlation matrix of their estimated id-
iosyncratic components. The code also exploits alternative approaches to run CAPM
regressions for many assets using first multivariate least squares and then iterating
OLS regressions for all available returns.

1 # elaboration on the original produced by E.Zivot by C. Favero

2 # author: Carlo Favero

3 # created: July , 2021

4 #

5 # comments: Original Examples follow chapter 11 in Zivot and Wang (2006)

6

7

8 rm(list=ls()) #Removes all items in Environment!

9 #setwd(path)

10 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
11

12 # set output options

13 # options(width = 70, digits =4)

14 listofpackages <- c("dygraphs",

"dplyr","ellipse","reshape2","ggplot2","PerformanceAnalytics","zoo")

15

16 for (j in listofpackages){

17 if(sum(installed.packages ()[, 1] == j) == 0) {

18 install.packages(j)

19 }
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20 library(j, character.only = T)

21 }

22 install.packages("fEcofin", repos="http://R-Forge.R-project.org")

23 # load required packages

24 library(fEcofin) # various data sets

25

26 #########################

27 # Data Loadings and Transform Descriptive Analysis

28 ##########################

29

30 # create data frame with dates as rownames

31 berndt.df = berndtInvest[, -1]

32 berndt.df$date <- as.Date(berndtInvest[, 1])

33 rownames(berndt.df) = as.character(berndtInvest[, 1])

34 colnames(berndt.df)

35 dimnames(berndt.df)[[2]] #command alternative to the previous one

36

37 # transform the data and compute cumulative returns

38

39 t0 <- which(berndt.df$date == "1978 -01 -01")

40 t1 <- which(berndt.df$date == "1987 -12 -01")

41

42 series_names <-

c("CITCRP","CONED","CONTIL","DATGEN","DEC","DELTA","GENMIL","GERBER","IBM",

43 "MARKET","MOBIL","PANAM","PSNH","TANDY","TEXACO","WEYER","RKFREE")

44

45 for (name in series_names) {

46 P_col_name <- paste0(name ,"_P")

47 LP_col_name <- paste0("L",P_col_name)

48 berndt.df[t0, P_col_name] <- 1

49 for (i in (t0+1):(t1)) {

50 berndt.df[i, P_col_name ][[1]] <- berndt.df[i-1, P_col_name ][[1]] *

(1+ berndt.df[i, name ][[1]] )

51 }

52 berndt.df[, LP_col_name] <- log(berndt.df[, P_col_name])

53 }

54 # add a trend to the database

55 berndt.df$TREND <- array(data = NA , dim = nrow(berndt.df))

56 berndt.df[t0, c("TREND")] <- 1 # don ’t need to repeat the value to make the

array being assigned be of the same length. be careful though as it is

one of the few cases of exception

57

58 ####################################

59 # Descriptive Analysis of prices and returns

60 ####################################

61 # plot log prices

62 ggplot(berndt.df, aes(x = date)) +

63 geom_line(aes(y = LTEXACO_P), color = "blue", size = 1, linetype =

"solid") +

64 geom_line(aes(y = LMARKET_P), color = "green", size = 1, linetype =

"solid") +

65 labs(x = "Date", y = "Portfolios TEXACO and MKT") +
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66 ylim(-0.5, 2) +

67 theme_minimal () +

68 theme(

69 legend.position = "topleft",

70 legend.title = element_blank (),

71 legend.text = element_text(size = 12),

72 axis.text = element_text(size = 12),

73 axis.title = element_text(size = 14),

74 plot.title = element_text(size = 16, hjust = 0.5)

75 ) +

76 scale_color_manual(

77 values = c("blue", "green"),

78 guide = guide_legend(override.aes = list(size = 2, linetype = "solid"))

79 ) +

80 guides(fill = guide_legend(override.aes = list(size = 2)))

81 # plot returns

82 ggplot(berndt.df, aes(x = date)) +

83 geom_line(aes(y = TEXACO), color = "blue", size = 1, linetype = "solid") +

84 geom_line(aes(y = MARKET), color = "green", size = 1, linetype = "solid")

+

85 labs(x = "Date", y = "Portfolios TEXACO and MKT") +

86 ylim(-0.45, 0.45) +

87 theme_minimal () +

88 theme(

89 legend.position = "topleft",

90 legend.title = element_blank (),

91 legend.text = element_text(size = 12),

92 axis.text = element_text(size = 12),

93 axis.title = element_text(size = 14),

94 plot.title = element_text(size = 16, hjust = 0.5)

95 ) +

96 scale_color_manual(

97 values = c("blue", "green"),

98 guide = guide_legend(override.aes = list(size = 2, linetype = "solid"))

99 ) +

100 guides(fill = guide_legend(override.aes = list(size = 2)))

101

102

103

104 ################################

105 # CAPM FOR TEXACO

106 ################################

107 capm_tex <-lm(TEXACO ~ MARKET , data=berndt.df)

108 summary(capm_tex)

109 berndt.df$TEXACO_fitted <-capm_tex$fitted.values
110

111 #fitting returns

112

113 plot(berndt.df$date[t0:t1],berndt.df$TEXACO[t0:t1], col = ’blue’, type =

"l",

114 ylab = " actual and fitted returns", xlab = "date",lwd = 2,)

115 lines(y = rep(mean(berndt.df$TEXACO[t0:t1], na.rm = T),
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length(berndt.df$TEXACO[t0:t1])), x = berndt.df$date[t0:t1], col =

"red")

116 lines(y = berndt.df$TEXACO_fitted[t0:t1], x = berndt.df$date[t0:t1], col =

"green",lwd = 2)

117 legend("topright", legend = c("TEXACO ACTUAL", "TEXACO FITTED"),

118 col = c("blue", "green"), lty = 1)

119 grid(nx = 6, ny = 7, col = "lightgray", lty = "dotted",

120 lwd = par("lwd"), equilogs = TRUE)

121

122 #fitting prices

123 berndt.df$TEXACO_P_FITTED <- array(data = NA, dim = nrow(berndt.df))

124 berndt.df$TEXACO_P_FITTED[t0] <- 1

125 for (i in (t0+1):(t1)) {

126 berndt.df$TEXACO_P_FITTED[i] <- berndt.df$TEXACO_P_FITTED[i-1] * (1 +

berndt.df$TEXACO_fitted[i])}
127

128 plot(berndt.df$date[t0:t1],berndt.df$TEXACO_P[t0:t1], col = ’blue’, type =

"l",

129 ylab = " actual and fitted prices", xlab = "date",lwd =

2,ylim=c(0.9 ,5))

130 #lines(y = rep(mean(berndt.df$TEXACO[t0:t1], na.rm = T),

length(berndt.df$TEXACO[t0:t1])), x = berndt.df$date[t0:t1], col =

"red")

131 lines(y = berndt.df$TEXACO_P_FITTED[t0:t1], x = berndt.df$date[t0:t1], col

= "green",lwd = 2)

132 legend("topleft", legend = c("TEXACO ACTUAL", "TEXACO FITTED"),

133 col = c("blue", "green"), lty = 1)

134 grid(nx = 6, ny = 7, col = "lightgray", lty = "dotted",

135 lwd = par("lwd"), equilogs = TRUE)

136 #dev.copy2pdf(width = 8.5, out.type = "pdf",file="CAPM.pdf")

137 #dev.off()

138 ####################

139 # Optimal Portfolio weights with the CER approach

140 ###################

141

142 returns.df=berndt.df[, c(1:9 ,11:16)]

143 #returns.df = berndt.df[, c(-10, -17)

144 exreturns.df=returns.df -berndt.df$RKFREE
145 returns.mat = as.matrix(exreturns.df)

146 n.obs = nrow(returns.mat)

147

148 #Estimation of CER model parameters

149 cov.sample=var(returns.mat)

150 mu = matrix(colMeans(returns.mat), nrow = ncol(returns.mat), ncol = 1)

151 #

152 # compute global min variance portfolio

153 #

154 w.gmin.sample = solve(var(returns.mat))%*%rep(1,nrow(cov.sample))

155 w.gmin.sample = w.gmin.sample/sum(w.gmin.sample)

156 colnames(w.gmin.sample) = "sample"

157 barplot(t(w.gmin.sample), horiz=F, main="Weights", col="blue", cex.names =

0.75, las =2)
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158 ################################

159 # A Single index model: the CAPM

160 ################################

161

162 ##

163 ## use multivariate regression and matrix algebra

164 ##

165 returnsmkt.df=berndt.df[, c(10:10 ,17:17)]

166 #returns.df = berndt.df[, c(-10, -17)

167 returnsmkt.df$EXRETMKT=returnsmkt.df$MARKET -returnsmkt.df$RKFREE
168 market.mat = as.matrix(returnsmkt.df[,3, drop=F])

169 n.obs = nrow(returns.mat)

170 X.mat = cbind(rep(1,n.obs),market.mat)

171 colnames(X.mat)[1] = "intercept"

172 XX.mat = crossprod(X.mat)

173

174 # multivariate least squares

175 G.hat = solve(XX.mat)%*%crossprod(X.mat ,returns.mat)

176 # can also use solve(qr(X.mat), returns.mat)

177 beta.hat = G.hat[2,]

178 E.hat = returns.mat - X.mat%*%G.hat

179 #D.hat=crossprod(E.hat)

180 diagD.hat = diag(crossprod(E.hat)/(n.obs -2))

181 # compute R2 values from multivariate regression

182 sumSquares = apply(returns.mat , 2, function(x) {sum( (x - mean(x))^2 )})

183 R.square = 1 - (n.obs -2)*diagD.hat/sumSquares

184

185 # print and plot results

186 cbind(beta.hat , diagD.hat , R.square)

187

188 par(mfrow=c(1,2))

189 barplot(beta.hat , horiz=T, main="Beta values", col="blue", cex.names =

0.75, las =1)

190 barplot(R.square , horiz=T, main="R-square values", col="blue", cex.names =

0.75, las =1)

191 par(mfrow=c(1,1))

192

193 # compute single index model covariance/correlation matrices

194 cov.si = as.numeric(var(market.mat))*beta.hat%*%t(beta.hat) +

diag(diagD.hat)

195 cor.si = cov2cor(cov.si)

196 #

197 # COMPARE CORRELATIONS

198 #

199 # FACTOR MODEL BASED CORRELATION MATRIX using plotcorr () from ellipse

package

200 #

201 rownames(cor.si) = colnames(cor.si)

202 ord <- order(cor.si[1,])

203 ordered.cor.si <- cor.si[ord , ord]

204 plotcorr(ordered.cor.si, col=cm.colors (11)[5*ordered.cor.si + 6])

205 plotcorr(cor.si, col=cm.colors (11)[5*cor.si + 6])
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206 #

207 # SAMPLE CORRELATION MATRIX

208 #

209 cor.sample = cor(returns.mat)

210 ord <- order(cor.sample [1,])

211 ordered.cor.sample <- cor.sample[ord , ord]

212 plotcorr(ordered.cor.sample , col=cm.colors (11)[5*ordered.cor.sample + 6])

213 plotcorr(cor.sample , col=cm.colors (11)[5*cor.sample + 6])

214 #

215 # CAPM residuals CORRELATION MATRIX

216 #

217 cor.resid = cor(E.hat)

218 ord <- order(cor.resid [1,])

219 ordered.cor.resid <- cor.resid[ord , ord]

220 plotcorr(ordered.cor.resid , col=cm.colors (11)[5*ordered.cor.resid + 6])

221 #

222 # compute global min variance portfolio

223 #

224 # use CAPM covariance (1-factor model)

225 w.gmin.si = solve(cov.si)%*%rep(1,nrow(cov.si))

226 w.gmin.si = w.gmin.si/sum(w.gmin.si)

227 colnames(w.gmin.si) = "single.index"

228

229

230 #par(mfrow=c(2,1))

231 #barplot(t(w.gmin.si), horiz=F, main=" Single Index Weights", col="blue",

cex.names = 0.75, las =2)

232 #barplot(t(w.gmin.sample), horiz=F, main=" Sample Weights", col="blue",

cex.names = 0.75, las =2)

233 #par(mfrow=c(1,1))

234

235

236 #compare weights delivered by the two alternative methods

237 pdf("output.pdf", width = 10, height = 8)

238 par(mfrow = c(2, 1))

239 barplot(t(w.gmin.si), horiz=F, main="Single Index Weights", col="blue",

cex.names = 0.75, las =2)

240 barplot(t(w.gmin.sample), horiz=F, main="Sample Weights", col="blue",

cex.names = 0.75, las =2)

241 par(mfrow = c(1, 1))

242 dev.off()

243

244

245

246 # compare means and sd values on global min variance portfolios

247 mu.vals = colMeans(returns.mat)

248 mu.gmin.si = as.numeric(crossprod(w.gmin.si, mu.vals))

249 sd.gmin.si = as.numeric(sqrt(t(w.gmin.si)%*%cov.si%*%w.gmin.si))

250 mu.gmin.sample = as.numeric(crossprod(w.gmin.sample , mu.vals))

251 sd.gmin.sample =

as.numeric(sqrt(t(w.gmin.sample)%*%var(returns.mat)%*%w.gmin.sample))

252 cbind(mu.gmin.si ,mu.gmin.sample , sd.gmin.si , sd.gmin.sample)
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253

254

255 ########################################

256 ## AN ALTERNATIVE APPROACH to compute parameters in CAPM:

257 ## use lm function to compute single index model regressions for each asset

258 #######################################

259

260 asset.names = colnames(returns.mat)

261 asset.names

262

263 # initialize list object to hold regression objects

264

265 reg.list = list()

266 # loop over all assets and estimate time series regression

267 for (i in asset.names) {

268 reg.df = berndt.df[, c(i, "MARKET")]

269 si.formula = as.formula(paste(i,"~", "MARKET", sep=" "))

270 reg.list[[i]] = lm(si.formula , data=reg.df)

271 }

272

273 # examine the elements of reg.list - they are lm objects!

274 names(reg.list)

275 class(reg.list$CITCRP)
276 reg.list$CITCRP
277 summary(reg.list$CITCRP)
278

279 # plot actual vs. fitted over time

280 # use chart.TimeSeries () function from PerformanceAnalytics package

281

282 dataToPlot = cbind(fitted(reg.list$CITCRP), berndt.df$CITCRP)
283 colnames(dataToPlot) = c("Fitted","Actual")

284 dev.off()

285

286 # Verify the data

287 str(dataToPlot)

288 summary(dataToPlot)

289

290 # Create the time series chart

291 chart.TimeSeries(dataToPlot , main = "Single Index Model for CITCRP",

292 colorset = c("black", "blue"), legend.loc = "bottomleft")

293

294

295 # scatterplot of the single index model regression

296 plot(berndt.df$MARKET , berndt.df$CITCRP , main="SI model for CITCRP",

297 type="p", pch=16, col="blue",

298 xlab="MARKET", ylab="CITCRP")

299 abline(h=0, v=0)

300 abline(reg.list$CITCRP , lwd=2, col="red")

301

302 ## extract beta values , residual sd ’s and R2 ’s from list of regression

objects

303 ## brute force loop
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304 reg.vals = matrix(0, length(asset.names), 3)

305 rownames(reg.vals) = asset.names

306 colnames(reg.vals) = c("beta", "residual.sd", "r.square")

307 for (i in names(reg.list)) {

308 tmp.fit = reg.list[[i]]

309 tmp.summary = summary(tmp.fit)

310 reg.vals[i, "beta"] = coef(tmp.fit)[2]

311 reg.vals[i, "residual.sd"] = tmp.summary$sigma
312 reg.vals[i, "r.square"] = tmp.summary$r.squared
313 }

314 reg.vals

315

316 # alternatively use R apply function for list objects - lapply or sapply

317 extractRegVals = function(x) {

318 # x is an lm object

319 beta.val = coef(x)[2]

320 residual.sd.val = summary(x)$sigma
321 r2.val = summary(x)$r.squared
322 ret.vals = c(beta.val , residual.sd.val , r2.val)

323 names(ret.vals) = c("beta", "residual.sd", "r.square")

324 return(ret.vals)

325 }

326 reg.vals = sapply(reg.list , FUN=extractRegVals)

327 t(reg.vals)

5.6 Validating Factor Models

In the previous section, we have seen that a first validation of a factor model can be
implemented by exploiting the fact that the diagonality of the variance-covariance ma-
trix of the residuals coming from projecting asset returns on factors is a necessary–and
testable–requirement for the validity of any factor model. However, further validation
can be based on testing restrictions on the estimated coefficients in any given factor
model.

Consider once again the time-series representation of a factor model

rit+1 = α1 + βf1

i f 1
t+1 + βf2

i f 2
t+1 + · · ·+ βfk

i fk
t+1 + vt+1 (5.5)

After having estimated N equations for the N assets you have available the fol-
lowing k vectors of coefficients, each of length N:

βf1, βf2,..., βfk. Using the sample of t observations on the returns of the N assets
you can compute the vector of length N of average sample returns for the assets:
E(r).

You can now run the affine expected return-beta cross-sectional regression:

E(r) = γ0 + γ1βf1 + γ2βf2 + · · ·+ γkβfk + u
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A two-step test Fama and MacBeth (1973) for the validity of any factor model can
be run by considering the following null hypothesis:

γ̂0 = r
f
, γ̂i = E

(
f i
)

care must be exercised in the test as the variance-covariance matrix of the residuals
in the cross-sectional regression will not be diagonal and corrections for heteroscedas-
ticity should be implemented. Note also that, if both test assets and factors are
excess returns, the validity of the model can be simply tested by evaluating the null
that all intercepts in the time-series model for excess returns are zero. This null is
inevitably rejected in the single-factor CAPM model. Two industries have emerged
(i) the factors ”zoo”, that looks for omitted factors (ii) the performance evaluation
industry that classifies fund manager performance according to their alphas.

5.6.1 Which Factors ?

Many different set of factors have been considered in the literature :

• Fundamental Factors

– Fama-French five factors with observable characteristics and estimated be-
tas (MKT, SMB, HML, RMW, CMA and momentum MOM

– BARRA factors with known time-invariant betas and unobservable factor
realizations estimated by cross-sectional regressions.

• Macroeconomic Factors (inflation, growth and uncertainty)

• Statistical Factors (for example principal components)

5.7 Factor Models with Predictability

Factor models are commonly used to characterize parsimoniously the predictive dis-
tribution of asset returns. Specifically, multi-factor models in which k factors char-
acterize in a lower parametric dimension the distribution of n asset returns, have the
following general form:

ri,t+1 = αi + β′ift+1 + vi,t+1, (5.6)

ft+1 = E (ft+1 | It) + εt+1 with εt+1 ∼ D (0,Σ) (5.7)

where Cov (vi,t+1, vj,t+1) = 0 for i �= j, ft+1 is a k-dimensional vector of factors at time
t + 1, ri,t+1 is the return on the i-th of the n assets at time t + 1, and the vector β′i
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contains the loadings for asset i on the k factors. Equation (5.6) specifies the condi-
tional distribution of returns on factors, while equation (5.7) specifies the predictive
distribution for factors at time t+1 conditioning on information available at time t. A
baseline specification for this system assumes away factors predictability thus imply-
ing that conditional expectations of factors have no variance (i.e., E (ft+1 | It) = μ).

In equation (5.6) it is often assumed without further qualification that returns and
factors are stationary variables. The model, however, leaves prices undetermined: the
long-run forecast for asset prices is independent from the long-run forecast of factors.
A factor model that leaves asset prices undetermined does not exploit information in
the data that can be used for (i) factor selection, and (ii) asset allocation.

Consider an asset i and denote its log one-period return by ri,t. We define the log
price of this asset as:

lnPi,t = lnPi,t−1 + ri,t , (5.8)

i.e., prices of any asset are cumulative returns. The analogous of the (log) price for
an asset can be constructed for any given factor. We define as factor (log) price the
cumulative returns of a portfolio investing in standard factors (e.g., the aggregate
market return). The generic prices associated to factors with a log period returns of
ft evolve according to the following process:

lnFt = lnFt−1 + ft . (5.9)

If returns to test assets and factors are stationary, then portfolio prices and factor-
prices are non-stationary. In fact, imagine simulating data using the model given by
equations (5.6), (5.7), (5.8), (5.9). The simulated data will deliver a linear relationship
between returns and factors but no relationship between asset prices and factor prices.
Asset prices and factor prices will follow two unrelated stochastic trends. In technical
jargon, the model given by (5.6)–(5.9) rules out the hypothesis of the existence of a
long-run relation (cointegration) between asset prices and factor prices by assumption.
The presence of co-integration which is, at least in some cases, borne out by the
data it is not tested for, nor it is reflected in the factor model specification when
appropriate. This has two implications. First, in the absence of cointegration, the
opportunity of discarding factor models that do not explain the long-run trends in
prices is not exploited. Second, in the presence of cointegration, its implications for
portfolio returns predictability are left unexplored.

In fact, if factor prices are the non-stationary variables that drive the non-stationary
dynamics of portfolio prices, then a linear combination of prices and risk drivers should
be stationary, i.e., asset and factor prices should be cointegrated.

Consider the following model describing the exposure of a given portfolio price
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Pi,t to factor prices Ft:

lnPi,t = α0,i + α1,it+ β′i lnFt + ui,t .

The estimation of such regression delivers stationary residuals ui,t anytime the chosen
set of factor prices captures the stochastic trend that determines the long-run dynam-
ics of prices. In this case, the linear combination of the right-hand side variables of
the equation defines the long-run equilibrium value determined by the factor prices
and ui,t captures temporary deviations of asset prices from it. Thus, it is natural to
refer to the residuals ui,t as the “Equilibrium Correction Term” (henceforth, ECT )
associated with asset i at time t. Formally, we define the residual from the long-run
cointegrating relationship as:

ECTi,t ≡ lnPi,t − α̂0,i − α̂1,it− β̂′i lnFt . (5.10)

For expository purposes, it is useful to specify the error term ui,t as an AR(1)
process. In sum, we model the joint distribution of asset prices, factor prices, asset
returns and factors as follows:

lnPi,t+1 = α0,i + α1,it+ β′i lnFt+1 + ui,t+1 (5.11)

ui,t+1 = ρiui,t + vi,t+1

ft+1 = E (ft+1 | It) + εt+1

lnPi,t = lnPi,t−1 + ri,t

lnFt = lnFt−1 + ft

where εt+1 ∼ D (0,Σ), ui,t+1 and vi,t+1 have zero mean and variance σ2
u,i and σ2

v,i,
respectively, and Cov (vi,t+1, vj,t+1) = 0 for i �= j.

By taking first differences of our model in (5.11) we obtain a novel specification
for returns and factors, where asset returns relate to factors plus the ECT :

ri,t+1 = α1,i + β′ift+1 + (ρi − 1)︸ ︷︷ ︸
δi

ui,t︸︷︷︸
≡ECTi,t

+ vi,t+1. (5.12)

Eq. (5.12) represents the Factor Error Correction Model (FECM).1

Two comments are in order. First, we include a linear trend in Eq. (5.11) since
it allows us to recover the standard short-run specification—returns are regressed on
factors plus a constant—when taking first-differences. In other words, a positive α1

1The equilibrium correction representation (5.12) of cointegrated time-series (see the system of
equations in (5.11)) is warranted by the Engle and Granger (1987) representation theorem.
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in the long-run relation (5.11) generates “alpha” in returns.2

Second, when ECTi,t is stationary, then asset and factor prices are cointegrated.
The stationarity of ECTi,t implies that, in the relation (5.12) linking returns to factors,
this term appears with a coefficient δi capturing the speed with which the system
eliminates disequilibria with respect to the long-run relationship. Indeed, δi is related
to the persistence ρi of ECTi,t, see Eq. (5.12).

When factor prices explain the buy-and-hold value of a portfolio, cointegration
implies that portfolio returns respond to the Equilibrium Correction Term so far
omitted in the empirical asset pricing literature. The inclusion of the ECT ensures
that the specification for returns is consistent with the long-run relationship between
asset and factor prices. The omission of the ECT leads to a misspecification of the
factor model, in the sense that the factor model leaves price dynamics undetermined.

Interestingly, a traditional factor model would not be affected by omitting the
disequilibrium term only if factor prices and asset prices are not cointegrated (i.e.,
when | ρi |= 1). However, this case also implies that a given factor model is unable to
price the buy-and-hold portfolios since asset prices do not track factor prices in the
long-run. The significance of the ECM terms generates predictability that is relevant
for computing optimal portfolio weights. The standard cross-sectional representation
of 1-period ahead returns becomes now

rt,t+1
(Nx1)

= α
(Nx1)

+ B
(NxK)

ft,t+1
(Kx1)

+ Γ
(NxN)

ut
(Nx1)

+ vt
(Nx1)

(5.13)

ft,t+1
(Kx1)

= μf

(Kx1)

+ Hf

(KxK)
εf

(Kx1)

Σv =

⎡⎢⎢⎣
σ1 0 0 0
0 σ2 0 0
.. .. .. ..
0 0 0 σn

⎤⎥⎥⎦
Σf = HfHf ′.

Predictability emerges as the conditional expectations of one-period ahead expected
returns is time varying, the relevant conditional variance-covariance matrix of pre-
dicted asset returns also changes asthe variance of the one-period ahead predictive

2Moreover, as discussed by Engle and Yoo (1987) and MacKinnon (2010), the inclusion of a trend
is a simple way to avoid the dependence of the distribution of test statistics for residuals on α1.
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error is different for the variance of asset returns. In fact, we have

E
(Nx1)

rt,t+1 = α
(Nx1)

+ B
(NxK)

μf

(Kx1)

+ Γ
(NxN)

ut
(Nx1)

(5.14)

Σ
(NxN)

r = B
(NxK)

Σ
(KxK)

f B′
(KxN)

+ Σ
(NxN)

v

Where Γ is a diagonal matrix when asset returns depend exclusively on their own
price disequilibria. The analysis of the long-run (cointegrating) relationship between
asset prices and factor prices provides an opportunity to validate factor models that
is left unexploited by the standard factor model specification in equation (5.6)-(5.7).
Furthermore, looking at the short-run FECM specification in (5.12), the omission of
the ECT omits a source of predictability of the conditional distribution of test assets
returns that has relevant consequences for asset allocation and risk management. For
example, consider the situation in which the portfolio price is aligned with the long-
run value determined by the risk drivers, and assume a negative shock (to price)
occurs. The returns predictive distribution based on the ECT is then shifted to the
right. This shift represents an opportunity to be exploited for asset allocation and
relevant information for risk measurement.

5.7.1 An illustration with R

The following R code considers the assets in the previous asset allocation example
runs the long runs regressions of asset prices and factor prices and concentrates on
a case study on TEXACO to show the relevance of predictability and illustrate how
the CAPM can be modified to derive a factor model with returns predictability

1

2 # The effect of omitting long -run trends from factor models

3

4 rm(list=ls()) #Removes all items in Environment!

5 #setwd(path)

6 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
7

8 # set output options

9 options(width = 70, digits =4)

10 listofpackages <- c("dygraphs",

"dplyr","ellipse","reshape2","ggplot2","PerformanceAnalytics","zoo")

11

12 for (j in listofpackages){

13 if(sum(installed.packages ()[, 1] == j) == 0) {

14 install.packages(j)

15 }

16 library(j, character.only = T)

17 }

18 install.packages("fEcofin", repos="http://R-Forge.R-project.org")
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19

20 # load required packages

21 library(fEcofin) # various data sets

22

23 ########################

24 # Data Loadings and Transform Descriptive Analysis

25 ########################

26

27 # create data frame with dates as rownames

28 berndt.df = berndtInvest[, -1]

29 berndt.df$date <- as.Date(berndtInvest[, 1])

30 rownames(berndt.df) = as.character(berndtInvest[, 1])

31 colnames(berndt.df)

32 dimnames(berndt.df)[[2]] #command alternative to the previous one

33

34 # transform the data and compute cumulative returns

35

36 t0 <- which(berndt.df$date == "1978 -01 -01")

37 t1 <- which(berndt.df$date == "1987 -12 -01")

38

39 series_names <-

c("CITCRP","CONED","CONTIL","DATGEN","DEC","DELTA","GENMIL","GERBER",

40 "IBM","MARKET","MOBIL","PANAM","PSNH","TANDY","TEXACO","WEYER","RKFREE")

41

42 for (name in series_names) {

43 P_col_name <- paste0(name ,"_P")

44 LP_col_name <- paste0("L",P_col_name)

45 berndt.df[t0, P_col_name] <- 1

46 for (i in (t0+1):(t1)) {

47 berndt.df[i, P_col_name ][[1]] <- berndt.df[i-1, P_col_name ][[1]] *

(1+ berndt.df[i, name ][[1]] )

48 }

49 berndt.df[, LP_col_name] <- log(berndt.df[, P_col_name])

50 }

51 # add a trend to the database

52 berndt.df$TREND <- array(data = NA , dim = nrow(berndt.df))

53 berndt.df[t0, c("TREND")] <- 1 # don ’t need to repeat the value to make the

array being assigned be of the same length. be careful though as it is

one of the few cases of exception

54 for (i in (t0+1):(t1)) {

55 berndt.df[i, "TREND"][[1]] <- berndt.df[i-1, "TREND"][[1]] +1

56 }

57

58 #########################

59 # Descriptive Analysis

60 #########################

61 ggplot(berndt.df, aes(x = date)) +

62 geom_line(aes(y = LTEXACO_P, color = "TEXACO"), size = 1, linetype =

"solid") +

63 geom_line(aes(y = LMARKET_P, color = "MARKET"), size = 1, linetype =

"solid") +

64 labs(x = "Date", y = "Portfolios TEXACO and MKT") +
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65 ylim(-0.5, 2) +

66 theme_minimal () +

67 theme(

68 legend.position = c(0.15, 0.95) , # Set the legend position (top -left)

69 legend.title = element_blank (),

70 legend.text = element_text(size = 8),

71 axis.text = element_text(size = 8),

72 axis.title = element_text(size = 10),

73 plot.title = element_text(size = 12, hjust = 0.5)

74 ) +

75 scale_color_manual(

76 values = c("blue", "green"),

77 labels = c("TEXACO", "MARKET")

78 )

79

80

81 # plot returns

82 ggplot(berndt.df, aes(x = date)) +

83 geom_line(aes(y = TEXACO , color = "TEXACO"), size = 1, linetype =

"solid") +

84 geom_line(aes(y = MARKET , color = "MARKET"), size = 1, linetype =

"solid") +

85 labs(x = "Date", y = "Returns TEXACO and MKT") +

86 ylim(-0.45, 0.45) +

87 theme_minimal () +

88 theme(

89 legend.position = c(0.15, 0.95) , # Set the legend position (top -left)

90 legend.title = element_blank (),

91 legend.text = element_text(size = 8),

92 axis.text = element_text(size = 8),

93 axis.title = element_text(size = 8),

94 plot.title = element_text(size = 12, hjust = 0.5)

95 ) +

96 scale_color_manual(

97 values = c("blue", "green"),

98 labels = c("TEXACO", "MARKET")

99 )

100

101 ##############################

102 # Standard CAPM Factor Models

103 ##############################

104

105 ## use lm function to compute single index model regressions for each asset

106 ##

107 returns.mat = as.matrix(berndt.df[, c(1:9 ,11:16) ])

108 asset.names = colnames(returns.mat)

109 asset.names

110

111 # initialize list object to hold regression objects

112

113 reg.list = list()

114 # loop over all assets and estimate time series regression
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115 for (i in asset.names) {

116 reg.df = berndt.df[, c(i, "MARKET")]

117 si.formula = as.formula(paste(i,"~", "MARKET", sep=" "))

118 reg.list[[i]] = lm(si.formula , data=reg.df)

119 }

120

121 # examine the elements of reg.list - they are lm objects!

122 names(reg.list)

123 class(reg.list$TEXACO)
124 reg.list$TEXACO
125 summary(reg.list$TEXACO)
126

127 # plot actual vs. fitted over time

128 # use chart.TimeSeries () function from PerformanceAnalytics package

129 dataToPlot = cbind(fitted(reg.list$TEXACO), berndt.df$TEXACO)
130 colnames(dataToPlot) = c("Fitted","Actual")

131 chart.TimeSeries(dataToPlot , main="Single Index Model for TEXACO",

132 colorset=c("black","blue"), legend.loc="bottomleft")

133

134 # scatterplot of the single index model regression

135 plot(berndt.df$MARKET , berndt.df$TEXACO , main="SI model for CITCRP",

136 type="p", pch=16, col="blue",

137 xlab="MARKET", ylab="TEXACO")

138 abline(h=0, v=0)

139 abline(reg.list$TEXACO , lwd=2, col="red")

140

141 ## extract beta values , residual sd ’s and R2 ’s from list of regression

objects

142

143 reg.vals = matrix(0, length(asset.names), 3)

144 rownames(reg.vals) = asset.names

145 colnames(reg.vals) = c("beta", "residual.sd", "r.square")

146 for (i in names(reg.list)) {

147 tmp.fit = reg.list[[i]]

148 tmp.summary = summary(tmp.fit)

149 reg.vals[i, "beta"] = coef(tmp.fit)[2]

150 reg.vals[i, "residual.sd"] = tmp.summary$sigma
151 reg.vals[i, "r.square"] = tmp.summary$r.squared
152 }

153 reg.vals

154

155 # print regression results

156

157 par(mfrow=c(1,2))

158 barplot(reg.vals[,1], horiz=T, main="Beta values", col="blue", cex.names =

0.75, las =1)

159 barplot(reg.vals[,3], horiz=T, main="R-square values", col="blue",

cex.names = 0.75, las =1)

160 par(mfrow=c(1,1))

161

162

163 #######################
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164 # CAPM in levels

165 #######################

166

167 ## use lm function to compute single index model regressions for each asset

168 ##

169 selected_columns <-

c("LCITCRP_P","LCONED_P","LCONTIL_P","LDATGEN_P","LDEC_P","LDELTA_P","LGENMIL_P",

170 "LGERBER_P","LIBM_P","LMOBIL_P","LPANAM_P","LPSNH_P","LTANDY_P","LTEXACO_P","LWEYER_P")

171

172 # Extract the specified columns and store them in a matrix

173 lprices.mat <- as.matrix(berndt.df[, selected_columns ])

174

175 asset.names = colnames(lprices.mat)

176 asset.names

177

178 # initialize list object to hold regression objects

179

180 reg1.list = list()

181 # loop over all assets and estimate time series regression

182 for (i in asset.names) {

183 #reg.df = berndt.df[, c(i, "LMARKET_P")]

184 si.formula = as.formula(paste(i,"~", "LMARKET_P+TREND", sep=" "))

185 reg1.list[[i]] = lm(si.formula , data=berndt.df)

186 }

187

188 # examine the elements of reg.list - they are lm objects!

189 names(reg1.list)

190 class(reg1.list$LTEXACO_P)
191 reg1.list$LTEXACO_P
192 summary(reg1.list$LTEXACO_P)
193

194 # plot actual vs. fitted over time

195 # use chart.TimeSeries () function from PerformanceAnalytics package

196 dataToPlot = cbind(fitted(reg1.list$LTEXACO_P), berndt.df$LTEXACO_P)
197 colnames(dataToPlot) = c("Fitted","Actual")

198 chart.TimeSeries(dataToPlot , main="Single Index Model for price TEXACO",

199 colorset=c("black","blue"), legend.loc="bottomleft")

200

201 # scatterplot of the single index model regression

202 plot(berndt.df$LMARKET_P, berndt.df$LTEXACO_P, main="SI model for

LTEXACO_P",

203 type="p", pch=16, col="blue",

204 xlab="MARKET", ylab="TEXACO")

205 abline(h=0, v=0)

206 abline(reg.list$TEXACO , lwd=2, col="red")

207

208 ## extract beta values , residual sd ’s and R2 ’s from list of regression

objects

209

210 reg.vals1 = matrix(0, length(asset.names), 3)

211 rownames(reg.vals1) = asset.names

212 colnames(reg.vals1) = c("beta", "residual.sd", "r.square")
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213 for (i in names(reg1.list)) {

214 tmp.fit = reg1.list[[i]]

215 tmp.summary = summary(tmp.fit)

216 reg.vals1[i, "beta"] = coef(tmp.fit)[2]

217 reg.vals1[i, "residual.sd"] = tmp.summary$sigma
218 reg.vals1[i, "r.square"] = tmp.summary$r.squared
219 }

220 reg.vals1

221

222 # print regression results

223

224 par(mfrow=c(1,2))

225 barplot(reg.vals1[,1], horiz=T, main="Beta values", col="blue", cex.names =

0.75, las =1)

226 barplot(reg.vals1[,3], horiz=T, main="R-square values", col="blue",

cex.names = 0.75, las =1)

227 par(mfrow=c(1,1))

228

229 ########################################

230 # a Single Factor Model with Predictability : an illustration with TEXACO

231 #######################################

232

233 #Log Level linear model between LCITCRP_P TREND an MARKET

234 model_TEXACO_P=lm(berndt.df$LTEXACO_P ~ berndt.df$LMARKET_P+berndt.df$TREND)
235 summary(model_TEXACO_P)

236

237 ggplot(berndt.df, aes(x = date)) +

238 geom_line(aes(y = LTEXACO_P, color = "TEXACO"), size = 1, linetype =

"solid") +

239 geom_line(aes(y = fitted(model_TEXACO_P), color = "Fitted"), size = 1,

linetype = "solid") +

240 labs(x = "Date", y = "Actual and Fitted") +

241 ylim(-0.5, 2) +

242 theme_minimal () +

243 theme(

244 legend.position = c(0.15, 0.95) , # Set the legend position (top -left)

245 legend.title = element_blank (),

246 legend.text = element_text(size = 8),

247 axis.text = element_text(size = 8),

248 axis.title = element_text(size = 10),

249 plot.title = element_text(size = 12, hjust = 0.5)

250 ) +

251 scale_color_manual(

252 values = c("blue", "green"),

253 labels = c("TEXACO", "Fitted")

254 )

255

256

257 #store log level residuals as u and test for their stationarity

258 u_TEXACO=as.matrix(model_TEXACO_P$residuals)
259 DuTEXACO=diff(u_TEXACO ,lag=1)

260 model_DuTEXACO=lm(DuTEXACO ~ u_TEXACO [1:( nrow(u_TEXACO) -1)]-1)
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261 summary(model_DuTEXACO)

262 D12uTEXACO=diff(u_TEXACO ,lag =12)

263 model_D12uTEXACO=lm(D12uTEXACO ~ u_TEXACO [1:( nrow(u_TEXACO) -12)]-1)

264 summary(model_D12uTEXACO)

265 ##############################

266

267 #Compute Log Returns for 1M ahead timespan (1 months)

268 logret1M_TEXACO=diff(berndt.df$LTEXACO_P,lag =1)
269 logret1M_MARKET=diff(berndt.df$LMARKET_P,lag =1)
270

271 #Compute Log Returns for 1Y ahead timespan (12 months)

272 logret1Y_TEXACO=diff(berndt.df$LTEXACO_P,lag =12)
273 logret1Y_MARKET=diff(berndt.df$LMARKET_P,lag =12)
274

275 #############################

276

277 #model the regression on log returns appending the u residuals as another

variable

278 model_d_TEXACO_1M=lm(logret1M_TEXACO ~

logret1M_MARKET+u_TEXACO [1:( nrow(u_TEXACO) -1)])

279 summary(model_d_TEXACO_1M)

280

281 model_d_TEXACO_1Y=lm(logret1Y_TEXACO ~

logret1Y_MARKET+u_TEXACO [1:( nrow(u_TEXACO) -12)])

282 summary(model_d_TEXACO_1Y)

283

284 model_d_TEXACO_1Y_CAPM=lm(logret1Y_TEXACO ~ logret1Y_MARKET)

285 summary(model_d_TEXACO_1Y_CAPM)
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Chapter 6

Models for Risk Measurement

6.1 Risk Measurement

Once the portfolio weights (ŵ) are chosen, possibly exploiting the predictability of
the distribution of the relevant future returns, the distribution of portfolio returns
can be described as follows:

Rp ∼ D (
μp, σ

2
p

)
μp = μ′ŵ σ2

p = ŵ′Σŵ

Having solved the portfolio problem and having committed to a given allocation
described by ŵ, there is a further role that econometrics can play : measuring portfolio
riskChristoffersen (2011). Note that even if portfolio weights can be decided at low
frequency with a horizon of, say, one or more years, risk is run at high frequency and
therefore what matters for risk measurement is the predictive distribution of returns
at high frequencies. The question ”What is the risk of my portfolio tomorrow?” is
relevant even if the portfolio is built with a ten-year perspective

6.1.1 Value at Risk (VaR)

A natural measure of risk is Value at Risk (VaR) . The VaR is the percentage loss
obtained with a probability at most of α per cent:

Pr
(
Rp

t+1 < −V aRα

)
= α.

VaR depends on the predictive distribution of returns at high frequency, once α is
chosen, V aRα is defined by the predictive distribution of returns

147
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6.2 VaR without predictability

We start our discussion of risk measurement by illustrating how the standard models
used so far, which imply no predictability for the distribution of returns, can be used
to compute VaR.

6.2.1 VaR with the CER

Applying the CER model to the univariate distribution of portfolio returns, we have

rPt,t+1 = μ+ σεt+1

εt+1 ∼ D (0, 1)

Given some estimates of the unknown parameters in the model (μ σ in our case), the
distribution of returns at t+1 (say tomorrow) can be simulated either by making an
assumption on the distribution of ε̂t+1 and resampling from it(Monte-Carlo), or by
re-sampling from the estimated residuals of the model (Bootstrap). In both cases an
artificial sample for ε̂t+1 of the desired length can be generated. Simulated residuals
are then mapped into simulated returns via the model’s parameters. This exercise
can be replicated N times to construct the distribution of model-predicted returns.
Once the distribution is derived, then VaR is available

6.2.2 VaR with the CAPM:

Factor models can also be simulated to derive VaR. Suppose you are invested in a
specific portfolio and apply the CAPM to derive the distribution of its future returns

RPort
t+1 = γ0 + γ1R

Mkt
t+1 + σPortv1,t+1

RMkt
t+1 = μ+ σMktzt+1

vi,t+1 ∼ IID N (0, 1),

zt+1 ∼ IID N (0, 1),

After parameters’ estimation , get residuals for a training sample. Then, at each point
in time after your training sample generate an artificial sample for the residuals. The
model has two residuals: capturing the common risk component and the idiosyncratic
risk component. By their nature these two residuals can be simulated independently,
drawing them independently from their marginal distribution rather than drawing
them simultaneously from their joint distribution. Simulated residuals can then be
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mapped into simulated returns via the model, to construct the distribution of model-
predicted returns and derive the VaR for the portfolio. Note that both in the case
of the VaR with CER and the VaR with CAPM the absence of predictability will
imply that the VaR is constant over time. A model with no predictability rules out
variability and/or persistence in the VaR measures.

6.3 The Evidence from high-frequency data

Figure 6.1 illustrated the behaviour of one-day returns and squared returns for the
SP500. Data at high-frequency show:

• very little or no persistence in the first moments

• persistence in the variance

• non-normality

• Volatility “clusters” in time: high (low) volatility tends to be followed by high
(low) volatility



150 CHAPTER 6. MODELS FOR RISK MEASUREMENT

2000 2005 2010 2015 2020

−0
.1

0
0.

00
0.

10

time

re
tu

rn
s

SP500 daily returns

2000 2005 2010 2015 2020

0.
00

0
0.

01
0

time

sq
ua

re
d 

re
tu

rn
s

SP500 squared daily returns

Figure 6.1. Daily SP500 Returns and Squared Returns

These features of the data can be used to build appropriate models with pre-
dictability in the distribution of future returns driven by the predictability in the
second moments and use them to construct time-varying measures of VaR.
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6.4 A general model for high-frequency data

The data at high frequency suggest a different modelling framework from the standard
models with no-predictability :

Rt+1 = σt+1ut+1

σ2
t+1 = f(It) ut+1 ∼ IID D(0, 1).

The following features of the model are noteworthy:

1. The distribution of returns is centered around a mean of zero, and the zero
mean model dominates any alternative model based on predictors.

2. The variance is time-varying and predictable, given the information set, It,
available at time t.

3. The distribution of returns at high frequency is not normal, i.e., D(0, 1) may
often differ from N (0, 1)

6.4.1 GARCH Models for Heteroscedasticity.

Generalizing the seminal contribution of modelling time-varying volatility by Engle
(1982),Bollerslev (1986) proposed a parsimonious model capable of capturing all the
features of high-frequency returns:

Rt+1 = μt + σt+1zt+1 zt+1 ∼ IID N (0, 1),

σ2
t+1 = ω + α (Rt − μt)

2 + βσ2
t

α + β < 1

where returns have a constant mean (that is usually zero) and a time varying GARCH(1,1)
structure.

In a model like this the innovation εt ≡ σtzt has zero mean and is serially uncor-
related at all lags j � 1. Where μt is often, but not necessarily, set to 0.

6.4.2 GARCH Properties

Rt+1 has a finite unconditional long-run variance of ω
1−α−β
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σ2 = E
(
σ2
t+1

)
= ω + αE (Rt − μ)2 + βσ2

= ω + ασ2 + βσ2

=
ω

1− α− β

Substituting ω out of the GARCH expression:

σ2
t+1 = (1− α− β) σ2 + αR2

t + βσ2
t

= σ2 + α
(
(Rt − μ)2 − σ2

)
+ β

(
σ2
t − σ2

)
which illustrates the relation between predicted variance and long-run variance in

a GARCH model.

6.4.3 GARCH Forecasting

σ2
t+1|t = σ2 + α

[
(Rt − μt)

2 − σ2
]
+ β

(
σ2
t − σ̄2

)
,

σ2
t+2|t = σ2 + (α + β) σ2

t+1|t
σ2
t+n+1|t = σ2 + (α + β)n σ2

t+1|t

6.4.4 Testing for GARCH

The presence of a (G)ARCH in returns/disturbances can be tested via the Lagrange
multiplier test proposed by Engle (1982) the test is implemented the following two
steps: First, use simple OLS to estimate the most appropriate regression equation or
ARMA model on asset returns and let {ẑ2t } denote the squares of the standardized
returns (residuals), for instance, coming from a homoskedastic model, ẑ2t = R2

t /σ̂
2;

Second, regress these squared residuals on a constant and on q lagged values ẑ2t−1,
ẑ2t+2, ..., ẑ

2
t−q (et is a white noise shock):

ẑ2t = ξ0 + ξ1ẑ
2
t−1 + ξ2ẑ

2
t−2 + ...+ ξqẑ

2
t−q + et.

If there are no ARCH effects, the estimated values of ξ1 through ξq should be zero,
ξ1 = ξ2 = ... = ξq.
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6.5 Estimation of GARCH Models

Standard OLS estimation cannot be applied to GARCH models as σt+1 is not ob-
served. Maximum Likelihood methods are necessary in this case. These methods are
promptly available in R and we shall describe their working in a simple case. Think
of the following Data Generating Process for returns

Rt+1 = σt+1zt+1 zt+1 ∼ IID N (0, 1),

σ2
t+1 = ω + αR2

t + βσ2
t

α + β < 1

The assumption of IID normal shocks (zt), implies (from normality and identical
distribution of zt+1) that the density of the time t observation is:

lt ≡ Pr(Rt;θ) =
1

σt(θ)
√
2π

exp

(
−1

2

R2
t

σ2
t (θ)

)
,

where the notation σ2
t (θ) emphasizes that conditional variance depends on θ ∈ Θ,

θ = (α, β, ω).

Because each shock is independent of the others (from independence over time of
zt+1), the total probability density function (PDF) of the entire sample is then the
product of T such densities:

L(R1, R2, ..., RT ;θ) ≡
T∏
t=1

lt =
T∏
t=1

1

σt(θ)
√
2π

exp

(
−1

2

R2
t

σ2
t (θ)

)
.

taking logs

L(R1, R2, ..., RT ;θ) = −T

2
log 2π − 1

2

T∑
t=1

log σ2
t (θ)−

1

2

T∑
t=1

R2
t

σ2
t (θ)

Substituting an expression for σ2
t (θ)(given by the chosen GARCH specification)

given the observations on the returns and given an initial observation for variance
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L(R1, R2, ..., RT ;θ) = −T

2
log 2π − 1

2

T∑
t=1

log
[
ω + αR2

t−1 + βσ2
t−1

]
−1

2

T∑
t=1

R2
t

ω + αR2
t−1 + βσ2

t−1
,

σ2
0 =

ω

1− α− β

maximizing the log-likelihood to select the unknown parameters will deliver the MLE,

denoted as θ̂
ML

T

6.5.1 Quasi MLE Estimation

The QMLE result says that we can still use MLE estimation based on normality
assumptions even when the shocks are not normally distributed, if our choices of
conditional mean and variance functions are defendable, at least in empirical terms
(i.e. conditional mean and conditional variance are correctly specified). However,
because the maintained model still has that Rt+1 = σt+1zt+1 with zt+1 ∼ IID D(0, 1),
the shocks will have to be anyway IID: you can just do without normality, but the
convenience of zt+1 ∼ IID D(0, 1) To illustrate QMLE consider the following example.

Because we know that the long-run (ergodic) variance from a GARCH(1,1) is
σ̄2 = ω/(1− α− β), instead of jointly estimating ω, α, and β, you simply set

ω̃ = (1− α− β)

[
1

T

T∑
t=1

R2
t

]

for whatever values of α and β. Note that (i) you impose the long-run variance esti-
mate on the GARCH model directly and avoid that the model may yield nonsensical
estimates;(ii) you have reduced the number of parameters to be estimated in the
model by one. These benefits must be carefully contrasted with the well-known costs,
the loss of efficiency caused by QMLE.

6.6 From GARCH to VaR

After estimation a GARCH model can be simulated using bootstrap or Monte-Carlo
to derive the distribution of returns and the relevant VaR
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Rt+1 = μ+ σt+1zt+1 zt+1 ∼ IID N (0, 1),

σ2
t+1 = ω + α (Rt − μt)

2 + βσ2
t

α + β < 1

Given estimation, derive ẑt = Rt

σ̂t
. At time t you can now predict σ2

t+1 and the
distribution of Rt+1 can now be simulated via the preferred method.

Recursion can then be applied to derive the distribution of Rt+n with n > 1.

6.6.1 GARCH with factors

Think of modelling the returns of many assets at a high frequency with a (single)
factor model

Ri
t+1 = γ0 + γ1ft+1 + σivi,t+1

ft+1 = μt + σt+1zt+1

σ2
t+1 = ω + α (Rt − μt)

2 + βσ2
t

vi,t+1 ∼ IID N (0, 1),

zt+1 ∼ IID N (0, 1),

α + β < 1

one GARCH estimation will allow to model many returns distribution. Again
factor models allow parsimonious representation.

6.7 Measuring risk: an illustration with R.

The following programme illustrates how to construct VaR in models with and with-
out predictability. A data set on monthly returns on the Dow Jones index and Bank
of America is extracted to estimate the model for a training sample up to December
2005 and the to compute one-step ahead Var over the period 2006:1 2015:1. The
Var is computed using the CAPM model with a CER for the market and the CAPM
model with a GARCH for the market. While the first measure of risk is constant
through the sample the second one reflects the predictability of the volatility fitted
with a GARCH(1,1).

1 rm(list=ls())

2 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
3 # packages used
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4 listofpackages <- c("tidyverse","dygraphs", "rugarch",

"forecast","dplyr","ellipse","reshape2","ggplot2","xts","xlsx","readxl")

5

6 for (j in listofpackages){

7 if(sum(installed.packages ()[, 1] == j) == 0) {

8 install.packages(j)

9 }

10 library(j, character.only = T)

11 }

12

13 # setting the seed for replication

14 set.seed (77)

15

16 raw_data = read_xlsx("../data/2023_monthly_stocks.xlsx")

17 names(raw_data)[1] = ’Date’

18 typeof(raw_data)

19 typeof(raw_data$Date)
20 typeof(raw_data$AXP)
21 typeof(raw_data$CSCO)
22

23 dates <-seq(as.Date("1985 -02 -01"),length =462, by="months")

24 params <- c("Date","BA", "DJI")

25 data <- raw_data[, c(params)]

26 data <- na.omit(data)

27 data <- data %>%

28 mutate(Date = as.Date(Date , format = "%Y-%m-%d"))

29

30 params1 <- c("BA", "DJI")

31 tsdata <- xts(raw_data[, c(params1)], order.by=dates) # creates a time

series object

32 tsdata <- na.omit(tsdata) # omitting the rows with NA presence

33 data <- na.omit(data)

34 ## having created the database with all observation we generate a subset

35 #tsdata1 <- tsdata ["1992 -02 -01/1993 -02 -01"]

36 #data=subset(data ,select=c(1:12))

37

38 ## --------------------

39 # DATA TRANSFORMATIONS

40 ## --------------------

41 #1. from prices to returns

42 # exact monthly returns

43 t1<-nrow(data)

44 data$BA_ret <- data$DJI_ret <- array(data = NA , dim = t1)

45 for (i in 2:t1) {

46 data[i, "BA_ret"][[1]]=( data[i, "BA"][[1]] - data[i-1,

"BA"][[1]])/data[i-1, "BA"][[1]]

47 data[i, "DJI_ret"][[1]]=( data[i, "DJI"][[1]] - data[i-1,

"DJI"][[1]])/data[i-1, "DJI"][[1]]

48 }

49

50

51 # same in .xts
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52 t1<-nrow(tsdata)

53

54 tsdata$BA_ret <- tsdata$DJI_ret <- array(data = NA , dim = t1)

55

56 for (i in 2:t1) {

57 tsdata[i, "BA_ret"][[1]]=( tsdata[i, "BA"][[1]] - tsdata[i-1,

"BA"][[1]])/data[i-1, "BA"][[1]]

58 tsdata[i, "DJI_ret"][[1]]=( tsdata[i, "DJI"][[1]] - tsdata[i-1,

"DJI"][[1]])/data[i-1, "DJI"][[1]]

59

60 }

61

62 ## ----------------------------------

63 ## VAR with CER -CAPM

64 ## ----------------------------------

65

66

67 ## -----------------------------------

68 ## MODEL SPECIFICATION AND ESTIMATION

69 ## -----------------------------------

70 start_date <- as.Date("1992 -03 -01") # Replace with your start date

71 end_date <- as.Date("2005 -12 -01") # Replace with your end date

72

73 # Extract observations between ’start_date ’ and ’end_date ’

74

75 data_est <- subset(x = data , Date >= start_date & Date <= end_date)

76

77 # estimation

78 cer_mkt <- lm(data_est$DJI_ret ~ 1)

79 capm_BA <- lm(data_est$BA_ret ~ data_est$DJI_ret)
80 summary(cer_mkt)

81 summary(capm_BA)

82

83 ## ------------------

84 ## MODEL SIMULATION

85 ## ------------------

86

87 tt <- as.Date("2006 -01 -01")

88 tT <- as.Date("2015 -12 -01")

89 data_sim <- subset(x = data , Date >= tt & Date <= tT)

90

91 # creating the containers

92 nrep <- 1000

93 BA_bt_2 <- mkt_bt_2 <- array(0, c(length(data_sim$DJI_ret), nrep))

94

95 # resampling the residuals

96 res_mkt_bt_2 <- matrix(sample(resid(cer_mkt), size =

length(data_sim$DJI_ret) * nrep , replace = T),

97 nrow = length(data_sim$DJI_ret), ncol = nrep)

98 res_BA_bt_2 <- matrix(sample(resid(capm_BA), size =

length(data_sim$DJI_ret) * nrep , replace = T),

99 nrow = length(data_sim$DJI_ret), ncol = nrep)
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100

101

102 # the loop

103 for (i in 1:nrep){

104 for (j in 1: length(data_sim$DJI_ret)){
105 mkt_bt_2[j, i] <- coef(cer_mkt)[1] + res_mkt_bt_2[j, i]

106 BA_bt_2[j, i] <- coef(capm_BA)[1] + coef(capm_BA)[2] * mkt_bt_2[j, i] +

res_BA_bt_2[j, i]

107 }

108 }

109

110 # the quantiles

111 var_BA_capm <- array(0, length(data_sim$DJI_ret))
112 for (j in 1: length(data_sim$DJI_ret)){
113 var_BA_capm[j] <- quantile(BA_bt_2[j, ], probs = 0.05)

114 }

115 data_sim$var_BA_capm <-var_BA_capm
116 # plotting

117 ggplot(data_sim , aes(x = Date)) +

118 geom_line(aes(y = BA_ret , color = "BA"), size = 1, linetype = "solid") +

119 geom_line(aes(y = var_BA_capm , color = "VaR"), size = 1, linetype =

"solid") +

120 labs(x = "Date", y = "Returns and VaR") +

121 ylim(-0.15, 0.15) +

122 theme_minimal () +

123 theme(

124 legend.position = c(0.15, 0.95) , # Set the legend position (top -left)

125 legend.title = element_blank (),

126 legend.text = element_text(size = 8),

127 axis.text = element_text(size = 8),

128 axis.title = element_text(size = 10),

129 plot.title = element_text(size = 12, hjust = 0.5)

130 ) +

131 scale_color_manual(

132 values = c("blue", "green"),

133 labels = c("BA", "VaR")

134 )

135

136

137

138 ## -------------------

139 ## GARCH MODELLING

140 ## -------------------

141

142 # the market GARCH regression

143 ## specification

144 mkt_garch <- ugarchspec(variance.model = list(garchOrder = c(1, 1)),

145 mean.model = list(armaOrder = c(0, 0)))

146 ## estimation

147 mkt_garchfit <- ugarchfit(mkt_garch , data = data_est$DJI_ret)
148 mkt_garchfit

149



6.7. MEASURING RISK: AN ILLUSTRATION WITH R. 159

150

151 # forecasting and plotting the results

152 horizon <- 10*12 # ten years

153 mygarchforecast <- ugarchforecast(mkt_garchfit , n.ahead = 10*12)

154

155 plotdata <- cbind(mygarchforecast@forecast$seriesFor ,
156 mygarchforecast@forecast$seriesFor +

mygarchforecast@forecast$sigmaFor*1.96,
157 mygarchforecast@forecast$seriesFor -

mygarchforecast@forecast$sigmaFor*1.96)
158 colnames(plotdata) <- c("mean", "upper", "lower")

159 dygraph(ts(plotdata , start = c(2006 ,1), frequency = 12), main = "Forecast

of the mean") %>%

160 dySeries(c("lower", "mean", "upper"))

161

162 plotdata2 <- as.matrix(mygarchforecast@forecast$sigmaFor ^2)
163 colnames(plotdata2) <- "var"

164 dygraph(ts(plotdata2 , start = c(2006, 1), frequency = 12), main = "Forecast

of the variance")

165

166

167 ## ---------------------

168 ## GARCH SIMULATION

169 ## ---------------------

170

171 ## coefficients

172 gamma0 <- coef(mkt_garchfit)[1]

173 omega0 <- coef(mkt_garchfit)[2]

174 omega1 <- coef(mkt_garchfit)[3]

175 omega2 <- coef(mkt_garchfit)[4]

176 sigma2 <- sigma(mkt_garchfit) # this constructs the series of standard

deviations conditional on information at "t-1". Is thus a vector.

177

178 # the CAPM

179 ## estimation

180 capm_BA <- lm(data_est$BA_ret ~ data_est$DJI_ret)
181 summary(capm_BA)

182

183 beta0 <- coef(capm_BA)[1]

184 beta1 <- coef(capm_BA)[2]

185

186

187

188 ## -----------------

189 # simulation

190 # output containers

191 nrep <- 1000

192 BA_bt <- mkt_bt<- sigma <- array(0, c(length(data_sim$DJI_ret), nrep))

193

194 # extracting the errors and resampling

195

196 res_mkt <- as.numeric(residuals(mkt_garchfit , standardize = T)) # the
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standardized residuals from the market equation

197

198 res_mkt_bt <- matrix(sample(res_mkt , size = length(data_sim$DJI_ret) *

nrep , replace = T),

199 nrow = length(data_sim$DJI_ret), ncol = nrep)

200 res_BA_bt <- matrix(sample(resid(capm_BA), size = length(data_sim$DJI_ret)
* nrep , replace = T),

201 nrow = length(data_sim$DJI_ret), ncol = nrep)

202

203 # initial values

204 mkt_bt[1, ] <- data_sim$DJI_ret[1]
205 BA_bt[1, ] <- beta0 + beta1*mkt_bt[1, ]

206 sigma[1, ]<- ugarchforecast(mkt_garchfit)@forecast$sigmaFor [1] #takes the

first value (the one step ahead)

207 # the loop

208 for (i in 1:nrep){

209 for (j in 2: length(data_sim$DJI_ret)){
210 sigma[j, i] <- sqrt(omega0+omega1*( data_sim$DJI_ret[j-1]- gamma0)^2 +

omega2*(sigma[j-1, i])^2)

211 mkt_bt[j, i] <- gamma0 + res_mkt_bt[j, i] * sigma[j,i]

212 BA_bt[j, i] <- beta0 + beta1 * mkt_bt[j, i] + res_BA_bt[j, i]

213 }

214 }

215

216 # getting the quantiles

217 var_BA_garch <- array(0, length(data_sim$DJI_ret))
218 for (j in 1: length(data_sim$DJI_ret)){
219 var_BA_garch[j] <- quantile(BA_bt[j, ], probs = 0.05)

220 }

221

222 data_sim$var_BA_garch <-var_BA_garch
223

224 # plotting

225 tt <- as.Date("2006 -02 -01")

226 tT <- as.Date("2015 -12 -01")

227 data_simplot <- subset(x = data_sim , Date >= tt & Date <= tT)

228 ggplot(data_simplot , aes(x = Date)) +

229 geom_line(aes(y = BA_ret , color = "BA"), size = 1, linetype = "solid") +

230 geom_line(aes(y = var_BA_capm , color = "Var CAPM"), size = 1, linetype =

"solid") +

231 geom_line(aes(y = var_BA_garch , color = "VaR GARCH"), size = 1, linetype

= "solid") +

232 labs(x = "Date", y = "Returns and VaR") +

233 ylim(-0.30, 0.20) +

234 theme_minimal () +

235 theme(

236 legend.position = c(0.15, 0.95) , # Set the legend position (top -left)

237 legend.title = element_blank (),

238 legend.text = element_text(size = 8),

239 axis.text = element_text(size = 8),

240 axis.title = element_text(size = 10),

241 plot.title = element_text(size = 12, hjust = 0.5)
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242 ) +

243 scale_color_manual(

244 values = c("blue", "green", "red"),

245 labels = c("BA", "VaR CAPM", "Var GARCH")

246 )

247

248 save(data_simplot ,file="VaRdata.Rdata")

6.8 Backtesting VaR

How do we test the validity of a VaR model ? The relevant evidence to judge a VaR
model are violations:

Min(Rt+1 − V aRp
t+1, 0)

(a) A good VaR model should not feature neither too few nor too many violations.

(b) We have too few violations when a VaR at the confidence level of alpha shows
less than 100*alpha violations in a sample of 100 observations. In this case, the VaR
model is too conservative.

(c) when we have violations there are two interesting aspects of that: their number
and their timing. A five per cent VaR that features 5 violations in five successive
periods cannot be taken as a valid VaR model as violations are not independent.
Clustering of violations is a problem that should lead to reject specific VaR models.
Kupiec (2002) proposed a formal test of VaR validity based on these two aspects.

6.8.1 Unconditional Coverage Testing

Given a time-series of VaR and observed returns the ”hit sequence” of VaR violations
is defined as follows:

It+1 = 1, if Rt+1 > V aRp
t+1

It+1 = 0, if Rt+1 > V aRp
t+1

If the VaR is a valid model violations should not be predictable: the probability
of a VaR violation should be p every day. The hit sequence in this case should be
distributed over time as a Bernoulli variable that takes the value 1 with probability
p and the value 0 with probability 1− p. So
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H0 : It+1 ∼ i.i.d. Bernoulli (p)

f (It+1, p) = (1− p)1−It+1 pIt+1

The first test of the validity of a VaR is therefore constructed as follows. Take a
Bernoulli distribution (It+1, x) for the that the number of violations, derive a maxi-
mum likelihood estimator x̂ of x, and test using a likelihood ratio test that x̂ is not
statistically different from p.

L (It+1, x) =
T

Π
i=1

(1− x)1−It+1 xIt+1

= (1− x)T0 xT1

where T1 is the number of violations of the VaR observed in the sample, and
T0 = T − T1.

The maximum likelihood estimator x̂ = T1

T
.

A likelihood ratio test of the null hypothesis x̂ = p, can then be constructed as
follows:

LRuc = −2 ln
[
L (p)

L (x̂)

]
which is distributed as a χ2 with one degree of freedom.

Note that usually the number of violations and the number of observations avail-
able will not be large, so rather than relying upon the χ2 distribution, it is advisable
to use Monte-Carlo simulations to build the relevant distribution to conduct the test.
In this case the simulated P-values would be obtained by drawing an artificial sample
of the relevant size from the null, and using as a P-value the share of simulated test
that are larger than the observed ones.

6.8.2 Independence Testing

We concentrate now on a test able to reject a VaR with clustered violations. In
this case the hit sequence is dependent over time and its evolution over time can be
described by a so-called Markov sequence where the transition from the relevant states
(violation and no violation) can be described by the following transition probability
matrix
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X1 =

[
x00 1− x00

1− x11 x11

]
where:

x00 = Pr (It+1 = 0 | It = 0)

1− x00 = Pr (It+1 = 1 | It = 0)

x11 = Pr (It+1 = 1 | It = 1)

1− x11 = Pr (It+1 = 0 | It = 1)

If we observe a sample of T observations the likelihood function of the first order
Markov process can be written as follows:

L (X1, It+1) = xT00
00 (1− x00)

T01 (1− x11)
T10 xT11

11

The maximum likelihood estimates of the relevant parameters are then

x̂00 =
T00

T00 + T01

x̂11 =
T11

T10 + T11

and so

X̂1 =

[ T00

T00+T01

T01

T00+T01
T10

T10+T11

T11

T10+T11

]
Independence Testing

Under independence

X̂ id
1 =

[
1− x̂ x̂
1− x̂ x̂

]
and therefore the independence hypothesis (1− x̂00) = x̂11 can be tested using a

likelihood ratio test

LRind = −2 ln
⎡⎣L

(
X̂ id

1

)
L
(
X̂1

)
⎤⎦ ∼ χ2

1
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As for the unconditional coverage test, small sample problems can be fixed by
Monte Carlo simulation of the critical values, moreover samples in which T11 = 0 are
often observed. In this cases, the likelihood function is computed as

L (X1, It+1) = xT00
00 (1− x00)

T01

6.8.3 Conditional Coverage Testing

Conditional Coverage Testing
Having constructed the test for independence we can test jointly the hypothesis

of conditional coverage and independence via the following likelihood ratio test:

LRcc = −2 ln
⎡⎣ L (p)

L
(
X̂1

)
⎤⎦ ∼ χ2

2

note that

LRcc = LRuc + LRind

6.8.4 Backtesting VaR in R

The following programme implements the Kupiec (2002) test on the Var measures
derived in Section 7.

1 rm(list=ls())

2 setwd(dirname(rstudioapi :: getActiveDocumentContext ()$path))
3 # packages used

4 listofpackages <- c("tidyverse","dygraphs", "rugarch",

"forecast","dplyr","ellipse","reshape2","ggplot2","xts","xlsx","readxl")

5

6 for (j in listofpackages){

7 if(sum(installed.packages ()[, 1] == j) == 0) {

8 install.packages(j)

9 }

10 library(j, character.only = T)

11 }

12

13 # loading the databases

14 load("VaRdata.Rdata")

15 ggplot(data_simplot , aes(x = Date)) +

16 geom_line(aes(y = BA_ret , color = "BA"), size = 1, linetype = "solid") +

17 geom_line(aes(y = var_BA_capm , color = "Var CAPM"), size = 1, linetype =

"solid") +
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18 geom_line(aes(y = var_BA_garch , color = "VaR GARCH"), size = 1, linetype

= "solid") +

19 labs(x = "Date", y = "Returns and VaR") +

20 ylim(-0.30, 0.20) +

21 theme_minimal () +

22 theme(

23 legend.position = c(0.15, 0.95) , # Set the legend position (top -left)

24 legend.title = element_blank (),

25 legend.text = element_text(size = 8),

26 axis.text = element_text(size = 8),

27 axis.title = element_text(size = 10),

28 plot.title = element_text(size = 12, hjust = 0.5)

29 ) +

30 scale_color_manual(

31 values = c("blue", "green", "red"),

32 labels = c("BA", "VaR CAPM", "Var GARCH")

33 )

34 ## ---------------

35 # VaR tail

36 alpha <- 0.1

37

38

39 ## --------------

40 violations <- (data_simplot$BA_ret - data_simplot$var_BA_capm) < 0

41 table(violations)

42 plot(y = violations*runif(length(violations), min = 0.99, max = 1.01) , x =

data_simplot$Date , main = "VaR violations",

43 ylab = "violations", xlab = "time") # adding jitter to make sure that

adjacent observations don ’t overlap

44

45 ## testing

46 ### Unconditional coverage

47 p <- alpha

48 T1 <- sum(violations)

49 T0 <- length(violations) - sum(violations)

50

51 x <- T1/(T1+T0) # violations as fraction of sample length , which is also

the test statistic estimate

52

53 L_p <- (1-p)^T0 * p^T1

54 L_x <- (1-x)^T0 * x^T1

55

56 LR_uc <- -2 * log(L_p/L_x) # test statistic

57 critical <- qchisq(p = 0.95, df = 1) # the 5% critical value

58

59 LR_uc; critical

60 LR_uc > critical

61

62 ### Independence testing

63 temp1 <- abs(diff(violations)) # to identify moments of change

64 temp2 <- violations [2: length(violations)] # to identify the ending points

65 T01 <- sum(temp2 * temp1) # those that finish with 1 and had a change
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66 T11 <- sum(temp2 * (1-temp1)) # those that finish with 1 and had no change

67 T10 <- sum ((1 - temp2) * temp1) # those finishing with 0 and having a change

68 T00 <- sum((1- temp2) * (1-temp1)) # finishing with 0 and no change

69

70 xhat <- x # from before

71 x00 <- T00/(T00 + T01)

72 x11 <- T11/(T11 + T10)

73

74 L_x_different <- x00^T00 * (1-x00)^T01 * (1-x11)^T10 * x11^T11

75 L_x_equal <- (1-xhat)^T00 * xhat^T01 * (1-xhat)^T10 * xhat^T11

76

77 LR_ind <- -2 * log(L_x_equal/L_x_different)

78 critical <- qchisq(p = 0.95, df = 1) # the 5% critical value

79 LR_ind; critical

80 LR_ind > critical

6.9 Beyond GARCH: non-linear and multivariate

models

GARCHmodels can be extended in many ways (Christoffersen (2011),Zivot andWang
(2006)) A number of empirical papers have emphasized that for many assets and sam-
ple periods, a negative return increases conditional variance by more than a positive
return of the same magnitude does, the so-called leverage effect.

A way of capturing the leverage effect is to directly build a model that exploits
the possibility to define an indicator variable, It , to take on the value 1 if on day t
the return is negative and zero otherwise. For concreteness, in the simple (1,1) case,
variance dynamics can now be specified as:

σ2
t+1 = ω + αR2

t + αθItR
2
t + βσ2

t It ≡
{

1 if Rt < 0
0 if Rt ≥ 0

or

σ2
t+1 =

{
ω + α(1 + θ)R2

t + βσ2
t if Rt < 0

ω + αR2
t + βσ2

t if Rt ≥ 0
.

A θ > 0 will capture the leverage effect.

This model is sometimes referred to as the GJR-GARCH model—from Glosten
et al. (1993) paper—or threshold GARCH (TGARCH) model.

In this model, because when 50% of the shocks are assumed to be negative and
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the other 50% positive, so that E[It] = 1/2, the long-run variance equals:

σ̄2 ≡ E[σ2
t+1] = ω + αE[R2

t ] + αθE[ItR
2
t ] + βE[σ2

t ]

= ω + ασ̄2 + αθE[It]σ̄
2 + βσ̄2

= ω + ασ̄2 +
1

2
αθσ̄2 + βσ̄2 =⇒ σ̄2 =

ω

1− α(1 + 0.5θ)− β
.

Visibly, in this case the persistence index is α(1 + 0.5θ) + β
Another important dimension of extension of GARCH modelling is from the uni-

variate to the multivariate framework, see, for example, chapter 13 in Zivot and
Wang (2006). When considering multivariate volatility modelling an important as-
pect is the parsimonious parameterization, to this end a factor structure might again
be helpful and the approach presented in this chapter of a factor structure in which
the time-varying volatility is driven by the common risk component only while the
idiosyncratic components are homoscedastic can prove very useful to handle portfolio
allocation problems with many assets (large N) and few factors (small K).
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