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Abstract

Discrete random probability measures and the exchangeable random partitions they in-

duce are key tools for addressing a variety of estimation and prediction problems in Bayesian

inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman–

Yor process priors, select discrete probability distributions almost surely and, therefore, auto-

matically induce exchangeable random partitions. Here we focus on the family of Gibbs–type

priors, a recent and elegant generalization of the Dirichlet and the Pitman–Yor process pri-

ors. These random probability measures share properties that are appealing both from a

theoretical and an applied point of view: (i) they admit an intuitive characterization in terms

of their predictive structure justifying their use in terms of a precise assumption on the learn-

ing mechanism; (ii) they stand out in terms of mathematical tractability; (iii) they include

several interesting special cases besides the Dirichlet and the Pitman–Yor processes. The

goal of our paper is to provide a systematic and unified treatment of Gibbs–type priors and

highlight their implications for Bayesian nonparametric inference. We will deal with their

distributional properties, the resulting estimators, frequentist asymptotic validation and the

construction of time–dependent versions. Applications, mainly concerning hierarchical mix-

ture models and species sampling, will serve to convey the main ideas. The intuition inherent

to this class of priors and the neat results that can be deduced for it lead one to wonder

whether it actually represents the most natural generalization of the Dirichlet process.

Key words and phrases: Bayesian Nonparametrics; Clustering; Consistency; Dependent pro-

cess; Discrete nonparametric prior; Exchangeable partition probability function; Gibbs–type

prior; Pitman–Yor process; Mixture model; Population Genetics; Predictive distribution;

Species sampling.
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1 Introduction and preliminaries

One of the main research lines within Bayesian Nonparametrics has been the proposal and study

of classes of random probability measures whose laws act as nonparametric priors. Several such

classes contain, as a special case, Ferguson’s Dirichlet process [22], which still represents the

cornerstone of the field. A recent review that covers many of these models and uses completely

random measures as a unifying concept can be found in [45]. When going beyond the Dirichlet

process one typically has to face a trade–off between the desire of generality (which, as far as

inference is concerned, implies flexibility of the model) and tractability, both analytical and

computational. Probably the most successful proposal is represented by the two–parameter

Poisson–Dirichlet process introduced in [57] and further investigated in countless papers, most

notably in [59, 63]. See [62] for a comprehensive review from a probabilistic perspective. Such

a process is also known as Pitman–Yor (PY) process, especially in the Machine Learning com-

munity, according to a terminology introduced in [33] which we will also adopt in the present

paper. For our purposes it is important to note that the PY process reduces to the Dirichlet

process by setting one of its parameters equal to 0. Nonetheless, some important distributional

features of the PY process are fundamentally different according as to whether the value of such

a parameter is equal to 0 or not. A clear understanding of this aspect is possible by identifying

a large class of priors, which embeds the PY process as a special case. Such a class is given by

Gibbs–type priors, introduced in [28] and only briefly addressed in the above mentioned review

of nonparametric priors [45], thus motivating the main focus of this paper. In fact, by close

inspection of the predictive structure they lead to, it will become apparent that the variety of

distributional characteristics can be actually traced back to crucially different assumptions on

the learning mechanism. This leads to a novel classification of discrete nonparametric priors

which also serves as motivation for the use of Gibbs–type priors. Moreover, Gibbs–type priors

have the advantage of pinning down, in a neat way, the analytic tractability issue related to gen-

eral classes of nonparametric priors: in fact, they allow to split the prediction rule in two stages

and to highlight the key quantity allowing simplification of the relevant expressions. Indeed,

throughout the following sections one can appreciate the beauty and simplicity of various ana-

lytical results that admit straightforward application to statistical inference. Finally, it is to be

noted that Gibbs–type priors include other notable special cases of priors beyond the Dirichlet

and the PY processes: for example, normalized inverse Gaussian processes [40] and their gener-

alization given by normalized generalized gamma processes [43] as well as mixtures of symmetric

Dirichlet distributions [28]. Given this, can one state with confidence that Gibbs–type priors

are a natural generalization of the Dirichlet process, maybe the most natural?

The present paper aims at providing a survey on Gibbs–type priors that accounts for recent
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findings both in the probabilistic and statistical literature. This will serve as an important

opportunity for pointing out their analytical tractability, flexibility and suitability in a variety

of inferential problems beyond current applications which include mixture models (see, e.g.,

[33, 43]), linguistics and information retrieval in document modeling ([73, 74]), species sampling

([42, 44, 55]) and survival analysis [37], among others.

1.1 Discrete random probability measures, exchangeable random partitions

and predictive distributions

We first lay out the basics of Bayesian inference in an exchangeable framework and focus on

some key concepts and tools. Suppose (Xn)n≥1 is an (ideally) infinite sequence of observations,

with each Xi taking values in some set X. Moreover, PX is the set of all probability measures on

X. Assuming (Xn)n≥1 to be exchangeable is equivalent to assuming the existence of a probability

distribution Q on PX such that

Xi | p̃
iid∼ p̃, i = 1, . . . , n

p̃ ∼ Q
(1)

for any n ≥ 1. Hence, p̃ is a random probability measure on X and its probability distribution Q,

also termed de Finetti measure, represents the prior distribution when (1) is used as a Bayesian

model with an observed sampleXi, i = 1, . . . , n. WheneverQ degenerates on a finite dimensional

subspace of PX, the inferential problem is usually called parametric. On the other hand, when

the support of Q is infinite–dimensional then one typically speaks of a nonparametric inferential

problem and it is generally agreed (see, e.g., [23]) that having a large topological support is a

desirable property for a nonparametric prior. Given a sample X1, . . . , Xn generated through

(1), the (one–step ahead) predictive distribution coincides with the posterior expected value of

p̃, that is

P(Xn+1 ∈ · |X1, . . . , Xn) =

∫

PX

p( · )Q(dp |X1, . . . , Xn), (2)

where Q( · |X1, . . . , Xn) denotes the posterior distribution of p̃.

Discrete nonparametric priors, i.e. priors which select discrete distributions with probability

1, play a key role in most Bayesian nonparametric procedures. It is well–known that the Dirichlet

and the PY process priors share this property and the same can be said for the broader class of

Gibbs–type priors. In fact, any random probability measure associated to a discrete prior can

be represented as

p̃ =
∞∑

j=1

p̃j δZj
(3)
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where δc stands for the unit point mass concentrated at c, (p̃j)j≥1 is a sequence of non–negative

random variables such that
∑

j≥1 p̃j = 1, almost surely, and (Zj)j≥1 is a sequence of X–valued

random variables. Henceforth, we further assume that (p̃j)j≥1 and (Zj)j≥1 are independent and

that the Zj ’s are iid from a diffuse probability measure P ∗ on X (or in other terms P(Zi ̸= Zj) = 1

for any i ̸= j). Such a general subclass of discrete random probability measures has been called

species sampling models by Pitman [59], a terminology that will be clarified in the following

section.

As far as the observables Xi’s are concerned, the discrete nature of Q implies that any sample

X1, . . . , Xn will feature ties with positive probability, therefore generating Kn = k ≤ n distinct

observations X∗
1 , . . . , X

∗
k with frequencies n1, . . . , nk such that

∑k
i=1 ni = n. When choosing and

analyzing specific predictive structures, the key quantity to consider, from both a conceptual and

a mathematical point of view, is the probability of observing a new distinct value not included

in the sample X1, . . . , Xn, namely

P(Xn+1 = “new” |X1, . . . , Xn), (4)

which will appear throughout the paper. To be more concrete consider the Dirichlet and the

PY processes. In the Dirichlet case, with parameters given by P ∗ and θ > 0, one has

P(Xn+1 = “new” |X1, . . . , Xn) =
θ

θ + n
.

In the PY case, in addition to P ∗, one has two parameters (σ, θ) whose admissible values are

σ ∈ [0, 1) with θ > −σ or σ < 0 with θ = m|σ| for some positive integer m. One then has

P(Xn+1 = “new” |X1, . . . , Xn) =
θ + σk

θ + n

from which it is apparent that the corresponding probability for the Dirichlet process is recovered

by setting σ = 0.

Within such a framework, discrete random probability measures can be characterized in

terms of the exchangeable random partition they imply, another key aspect of the paper for

which we provide some essential background. Given the discreteness ofQ, p̃ induces a partition of

X1, . . . , Xn that is well described by means of an extremely useful tool, namely the exchangeable

partition probability function (EPPF) [59] given by

p(n)k (n1, . . . , nk) =

∫

Xk

E (p̃n1(dx1) · · · p̃nk(dxk)) . (5)

It is also of simple interpretability: it essentially corresponds to the probability, induced by

p̃, of observing a sample of size n, X1, . . . , Xn, exhibiting Kn = k distinct observations with
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frequencies n1, . . . , nk or, equivalently, a specific partition into Kn = k clusters with frequencies

n1, . . . , nk. See [59, 62] for details. Note also that an EPPF satisfies the addition rule

p(n)k (n1, . . . , nk) = p(n+1)
k+1 (n1, . . . , nk, 1) +

k∑

j=1

p(n+1)
k (n1, . . . , nj + 1, . . . , nk). (6)

For both Dirichlet and PY processes, the EPPF is available in closed form. In the former case

it is given by

p(n)k (n1, . . . , nk) =
θk

(θ)n

k∏

i=1

(ni − 1)! (7)

where (θ)n = θ(θ + 1) · · · (θ + n− 1) for any n ≥ 1. For the PY process, it coincides with

p(n)k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏

i=1

(1− σ)ni−1. (8)

The identification of the EPPF leads to the direct determination of the predictive distribution in

(2). Indeed, if X1, . . . , Xn is a sample featuring k ≤ n distinct values with respective frequencies

n1, . . . , nk, one has

P(Xn+1 = “new” |X1, . . . , Xn) =
p(n+1)
k+1 (n1, . . . , nk, 1)

p(n)k (n1, . . . , nk)
(9)

and the predictive distribution in (2) is a linear combination of P ∗( · ) = E(p̃( · )), which can be

interpreted as the prior guess at the shape of p̃, and of a weighted measure of the observations,

namely

P(Xn+1 ∈ · |X1, . . . , Xn) =

p(n+1)
k+1 (n1, . . . , nk, 1)

p(n)k (n1, . . . , nk)
P ∗( · ) +

k∑

j=1

p(n+1)
k (n1, . . . , nj + 1, . . . , nk)

p(n)k (n1, . . . , nk)
δX∗

j
( · ). (10)

Note that the right hand side of (10) is guaranteed to sum up to 1 if evaluated over the whole

space X by the addition rule (6). In the PY process case the predictive distribution takes on

the form

P(Xn+1 ∈ · |X1, . . . , Xn) =
θ + σk

θ + n
P ∗( · ) +

1

θ + n

k∑

j=1

(nj − σ)δX∗

j
( · ) (11)

which, for σ = 0, reduces to the well–known Dirichlet process predictive structure given by a

linear combination of P ∗ and the empirical measure.
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1.2 Applications to species sampling problems and mixture modeling

Discrete nonparametric priors in general, and Gibbs–type priors in particular, are suited for

addressing inferential issues that arise in species sampling problems and in mixture modeling,

among others. We now briefly sketch these frameworks.

Consider a discrete random probability measure (3) with the specifications as in Section 1.1.

It is, then, apparent that (3) can be seen as a tool for describing the structure of a population

made of different types or species with certain proportions, which are modeled through (3) as

random proportions p̃j . On the basis of this fact, one can equivalently use the Zi’s or the positive

integers {1, 2, . . .} to label different species or types that can be sampled. Indeed, if (ξn)n≥1 is

an auxiliary integer–valued sequence such that P(ξn = j | p̃) = p̃j , for any n and j, model (1)

corresponds to assuming that Xi = Zξi . Hence the Xn’s can be interpreted as the observed

species labels since, due to the diffuse nature of P ∗, any two data points Xi and Xj , for i ̸= j,

differ if and only if ξi and ξj do. Moreover, one has that P(ξi = ξj) > 0, for any i ̸= j, and

this entails that the i–th and the j–th observations may reveal the same species with positive

probability. It is precisely this connection which motivates the terminology adopted in [60],

species sampling model. Moreover, an exchangeable sequence (Xn)n≥1 for which (1) holds true,

with p̃ a species sampling model, takes on the name of species sampling sequence.

By virtue of this interpretation, there are a number of statistical problems one can face adopt-

ing a Bayesian nonparametric perspective. Indeed, in many statistical applications one typically

observes a sample of species labels X1, . . . , Xn and designs further sampling Xn+1, . . . , Xn+m

on the basis of estimates of some quantities of interest such as, e.g.: the number of new distinct

species that will be detected in a new sample of size m; the number of species with a given

frequency, or with frequency below a certain threshold, in X1, . . . , Xn+m; the probability that

the (n+m+1)–th draw will consist of a species having frequency ℓ ≥ 0 in X1, . . . , Xn+m. These,

in turn, provide measures of overall and rare species diversity and are of interest in biological,

ecological or linguistic studies, just to mention a few. In this respect, the predictive approach

briefly sketched in Section 1.1 plays an important role and provides nice and elegant answers to

these problems in the framework of Gibbs–type priors.

Discrete nonparametric priors are also basic building blocks for hierarchical mixture models

that are typically used for density estimation and clustering but also in more complex dependent

structures. To keep things simple consider the univariate density estimation case and let f( · | · )
denote a kernel defined on R×X and taking values in R+ such that

∫
R
f(y|x) dy = 1, for any x

in X. Hence, f( · |x) defines a density function on R, for any x. The observations are then from
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a sequence (Yn)n≥1 of real–valued random variables such that

Yi |Xi
ind∼ f( · |Xi) i = 1, . . . , n

Xi | p̃
iid∼ p̃ i = 1, . . . , n

p̃ ∼ Q.

(12)

The typical choice for p̃ is represented by the Dirichlet process leading to the Dirichlet process

mixture model introduced by Lo [49], which represents the most popular Bayesian nonparamet-

ric model to date. In addition to density estimation such model serves also clustering purposes.

In fact, here (Xn)n≥1 is a sequence of latent exchangeable random elements and the unobserved

number Kn of distinct values among X1, . . . , Xn is the number of clusters into which the obser-

vations Y1, . . . , Yn can be grouped. Posterior inferences for Kn are of great importance and the

specification of a Gibbs–type prior p̃ in (12) allows for an effective detection of the number of

clusters that have generated the data.

1.3 Outline of the paper

Section 2 first provides an intuitive characterization of Gibbs–type priors based on a suitable

classification of species sampling models. This is, then, followed by a formal definition and an

overview of their distributional properties that are of interest for applications to Bayesian infer-

ence. Particular emphasis is given to the role played by one of the parameters that characterizes

them. Section 3 discusses the use of Gibbs–type priors within hierarchical mixture models for

density estimation and clustering. Section 4 focuses on the application of Gibbs–type priors to

prediction problems and Section 5 deals with their frequentist asymptotic properties. Section 6

concisely discusses extensions of Gibbs–type priors to dynamic contexts. Finally, Section 7

contains some concluding remarks trying to answer the question posed in the title of the paper.

2 Gibbs–type priors

An interesting and useful classification of species sampling models can be given in terms of the

structure of the probability of generating a new value they induce. This leads to an intuitive

characterization of Gibbs–type priors and represents also one of the main motivations for their

use. Our result is somehow in the spirit of Zabell’s [76] characterization of the Dirichlet process in

terms of the so–called Johnson’s sufficientness postulate. To this end, recall that the key quantity

is (4) representing the probability of generating a new value given the past associated to a

species sampling model as specified in Section 1.1. According to its structure one can classify the
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underlying priors in three main categories. Denote by Θ a finite–dimensional parameter possibly

entering the specification of p̃ in (1). In general, one has P(Xn+1 = “new” |X1, . . . , Xn) =

f(n, k, n1, . . . , nk,Θ), which means that the probability of obtaining a new observation depends

on the sample size n, the number of distinct values k, their frequencies (n1, . . . , nk) and the

parameter Θ. We will denote P(Xn+1 = “new” |X1, . . . , Xn) by f(n, k,Θ) if it does not depend

on (n1, . . . , nk) and by f(n,Θ) if it depends neither on (n1, . . . , nk) nor on k.

Proposition 1 Let p̃ be a species sampling model. Then the following classification in terms of

the structure of the probability of generating a new value holds:

(i) P(Xn+1 = “new” |X1, . . . , Xn) = f(n,Θ) if and only if p̃ is a Dirichlet process;

(ii) P(Xn+1 = “new” |X1, . . . , Xn) = f(n, k,Θ) if and only if p̃ is of Gibbs–type;

(iii) P(Xn+1 = “new” |X1, . . . , Xn) = f(n, k, n1, . . . , nk,Θ) otherwise.

Even if the Dirichlet process has proven to perform well in several applied contexts, from a

merely conceptual point of view it seems too restrictive to let the probability of generating new

values depend solely on the sample size n and on its total mass parameter θ and to summarize

all other information contained in the data by means of a suitable specification of the scalar

parameter θ. One would like indeed such a probability to explicitly depend also on (at least)

the number of distinct observed values, since it summarizes the heterogeneity in the sample. By

virtue of (ii), this is tantamount to resorting to a Gibbs–type prior. According to the specific

situation, one might want to model (4) as an increasing or decreasing function of Kn, which

will be shown to correspond to Gibbs–type priors with a parameter, to be identified later, being

either positive or negative, respectively. Case (iii), which corresponds to the most general setup

and prediction of new values explicitly depends on all the information conveyed by the data, is

in principle the most desirable prediction structure. However, there are two main operational

problems that one needs to take into account. On the one hand, the general case (iii) gives rise to

serious analytical hurdles and priors have to be studied on a case-by-case basis typically leading

to quite complicated expressions (see [20]). On the other hand, it is not clear how one should

explicitly specify the dependence of the probability of observing a new species on the observed

frequencies n1, . . . , nk so that it reflects an opinion on the learning mechanism for the data. It

is thus reasonable that such prior opinion be encoded through the finite–dimensional parameter

Θ. Hence, the above classification neatly shows the origin of the mathematical tractability of

Gibbs–type priors, which is due to a precise simplifying assumption on the prediction structure.

Overall, such an assumption appears to be a satisfactory compromise between generality (or
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flexibility) and tractability, and therefore motivates the attempt to study and understand the

behavior of such priors.

After having stated and discussed a predictive characterization of Gibbs–type priors, we now

provide a different, though equivalent, definition which is more useful when one wishes to analyze

their distributional properties. As seen in Section 1, a discrete nonparametric prior p̃ associated

to an exchangeable scheme of the type (1) can be characterized in terms of the associated EPPF

{p(n)k : n ≥ 1, 1,≤ k ≤ n} defined as in (5). Accordingly, one defines a Gibbs–type prior as a

species sampling model such that

p(n)k (n1, . . . , nk) = Vn,k

k∏

i=1

(1− σ)ni−1 (13)

for any n ≥ 1, k ≤ n and positive integers n1, . . . , nk such that
∑k

i=1 ni = n, where σ < 1

and the set of non–negative weights {Vn,k : n ≥ 1, 1 ≤ k ≤ n} satisfies the forward recursive

equation

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1 (14)

for any k = 1, . . . , n and n ≥ 1, with V1,1 = 1. In light of (13) one can rephrase the reason for

their tractability in more mathematical terms, namely the product form of their EPPFs which

allows to handle conveniently the frequencies ni. Given (13), the probability of obtaining a new

distinct observation conditional on a sample X1, . . . , Xn such that Kn = k is

P(Xn+1 = “new” | X1, . . . , Xn) =
Vn+1,k+1

Vn,k
= f(n, k,Θ)

which is in accordance with the above characterization.

Remark 2 According to the classification implied by Proposition 1, mixtures of the Dirichlet

process, obtained by mixing with respect to the total mass θ of the base measure, are in class (ii).

To see this, let π denote the prior on θ so that π(dθ|X1, . . . , Xn) ∝ θkπ(dθ)/(θ)n, where (θ)n is

the n–th ascending factorial. Hence

P(Xn+1 = “new” |X1, . . . , Xn) =

∫

R+

θk+1

(θ)n+1
π(dθ)

will now depend on k. More generally, mixtures of Gibbs–type priors obtained by mixing with

respect to a possible parameter entering the definition of Vn,k are still of Gibbs–type and, thus, still

lie in (ii). In contrast, Gibbs–type priors mixed with respect to σ are such that π(dσ|X1, . . . , Xn) ∝
Vn,k

∏k
i=1(1−σ)ni−1 π(dσ) for some prior π on σ. This clearly implies that the resulting family

of species sampling models is in (iii), although one still preserves a Gibbs structure conditionally

9



on σ.

The definition (13) implies that the induced predictive distributions are

P
(
Xn+1 ∈ ·

∣∣X1, . . . , Xn
)
=

Vn+1,k+1

Vn,k
P ∗(·) +

Vn+1,k

Vn,k

k∑

i=1

(ni − σ) δX∗

i
(·). (15)

Hence, the predictive distribution is a linear convex combination of the prior guess P ∗ at the

shape of p̃ and of the weighted empirical distribution P̂n = (n − kσ)−1∑k
i=1(ni − σ) δX∗

i
. The

predictive structure (15) exhibits some appealing and intuitive features. In particular, the

mechanism for allocating the predictive mass among “new” and previously observed data can

be split into two stages. Given a sample X1, . . . , Xn, the first step consists in allocating the

mass between a new value X∗
k+1 sampled from P ∗ and the set of observed values {X∗

1 , . . . , X
∗
k}.

This first step depends only on n and k and not on the frequencies n1, . . . , nk. The second step

is the following: conditionally on Xn+1 being a new value, it is sampled from the base measure

P ∗, whereas if Xn+1 coincides with one of the previously observed values X∗
i , for i = 1, . . . , k,

the coincidence probabilities are determined by the size ni of each cluster and by σ. Hence,

even if the frequencies ni do not affect the probability of allocating a predicted value between

“new” and “old”, they are explicitly involved conditional on the predicted value coinciding with a

previously observed one: the more often a past observation is detected, the higher the probability

of re–observing it. Also σ plays an interesting role in weighting the empirical measure since,

for σ > 0, a reinforcement mechanism driven by σ takes place. Indeed, one can see that the

ratio of the probabilities assigned to any pair of (X∗
i , X

∗
j ) is given by (ni − σ)/(nj − σ). As

σ → 0, the previous quantity reduces to the ratio of the sizes of the two clusters and therefore

the coincidence probability is proportional to the size of the cluster. On the other hand, if

σ > 0 and ni > nj , the ratio is an increasing function of σ. Hence, as σ increases the mass is

reallocated from X∗
j to X∗

i . This means that the sampling procedure tends to reinforce, among

the observed clusters, those having higher frequencies, which represents an appealing feature

in certain inferential contexts. See [43] for a discussion of such reinforcement mechanisms and

their use in mixture models. If σ < 0, the reinforcement mechanism works in the opposite way

in the sense that the coincidence probabilities are less than proportional to the cluster size.

Besides influencing the balancedness of the partition of the exchangeable random elements

directed by a Gibbs–type prior, the parameter σ also determines the rate at which the number

of clusters Kn increases, as the sample size n increases. As shown, e.g., in [61], if we introduce

cn(σ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 σ < 0

log n σ = 0

nσ σ ∈ (0, 1)
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for any n ≥ 1, then

Kn

cn(σ)
a.s.−→ Sσ (16)

as n → ∞. The limiting random variable Sσ is termed σ–diversity. See [62] for details. It is

worth noting that if p̃ is the Dirichlet process with parameter measure θP ∗, the σ–diversity is

degenerate on the total mass θ > 0 and Kn ∼ θ log n, for n large enough, almost surely. This

special case was pointed out in [39]. The larger σ, the faster the rate of increase of Kn or, in

other terms, the more new values are generated. Clearly, the case where σ < 0 corresponds to

a model accommodating for a finite number of distinct species in the population.

The combined effect of the reinforcement mechanism and the increase in the rate at which

new values are generated, both driven by σ, is best visualized by looking at the special case

of the PY process. By close inspection of their predictive distributions (11) one notes that a

new value, thus with frequency 1, entering the conditioning sample produces two effects: it is

assigned a mass proportional to (1−σ), instead of 1, in the empirical component of the predictive

and, correspondingly, a mass proportional to σ is added to the probability of generating a new

value. Therefore, if σ > 0, new values are assigned a mass which is less than proportional to

their cluster size (that is 1) and the remaining mass is added to the probability of generating

a new value. The first phenomenon gives rise to the reinforcement mechanism described above:

if the new value is, then, re–observed it increases the associated mass by a quantity which is

now proportional to 1, and not less than proportional. The second effect implies that if Xn+1

is new, the probability of generating yet another new value, which overall still decreases as a

function of n, is increased by a factor of σ/(θ + n+ 1). To sum up, the larger σ the stronger is

the reinforcement mechanism and at the same time the higher is the probability of generating

a new value, which intuitively explains why one then obtains a growth rate of nσ for Kn. If

σ < 0 things work the other way round and one sees that each new generated value decreases

the probability of generating further new values, thus providing intuition for the fact that in the

end only a finite number of values will be generated. If σ = 0, which corresponds to the Dirichlet

process and mixtures of the Dirichlet process over the parameter θ, everything is proportional

to the cluster sizes which do not alter the probability of generating new values. As for another

instance of a Gibbs–type prior, namely the normalized generalized gamma process that will be

discussed later, a mechanism analogous to the PY process with σ ∈ (0, 1) can be identified

though the proportionality constants that rescale the masses are different due to the difference

of the underlying Vn,k’s.
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2.1 Connections between Gibbs–type priors and product partition models

There is also a close connection between Gibbs–type priors, and in particular the random par-

titions they induce, and exchangeable product partition models. The latter were introduced by

[32] and further studied, among others, by [2, 65]. If Πn represents a random partition of the

set of integers {1, . . . , n}, a product partition model corresponds to a probability distribution

for Πn represented as follows

P(Πn = {S1, . . . , Sk}) ∝
k∏

i=1

ρ(Si) (17)

where ρ( · ) is termed cohesion function. Now, let |S| = card(S) and impose the cohesion function

ρ( · ) to depend only on the cardinality of the set S, that is ρ(Si) := ρ(|Si|) = ρ(ni). This is

a natural and reasonable choice for a cohesion function. Then the random partition in (17) is,

for any n ≥ k ≥ 1, the random partition induced by an exchangeable sequence if and only if

ρ(ni) = (1 − σ)ni−1/ni! for i = 1, . . . , k and σ ∈ [−∞, 1] with the proviso that (1 − σ)ni−1 = 1

when σ = −∞ and that Πn reduces to the singleton partition when σ = 1. This is equivalent

to saying that Πn is of Gibbs–type. Such a statement follows immediately from [28]. Therefore,

random probability measures inducing exchangeable product partition models with cohesion

function depending on the cardinality, i.e.

X∗
i |Πn

iid∼ P ∗ i = 1, . . . ,Kn

Πn ∼ product partition distribution with ρ(S) = ρ(|S|),

coincide with the family of Gibbs–type priors.

2.2 Sub–classes of Gibbs–type priors

Many nonparametric priors currently used for Bayesian inference represent particular cases of

Gibbs–type priors, such as the Dirichlet process and the PY family. Indeed, it can be verified

that the set of weights

Vn,k =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1
(18)

satisfies the recursive equation (14) if the pair (σ, θ) is such that σ ∈ [0, 1) and θ > −σ or

σ < 0 and θ = m|σ| for some positive integer m. These constraints identify the set of admissible

values of the parameters (σ, θ). The corresponding Gibbs–type prior, identified by its EPPF (13),

reduces to (7) for σ = 0 therefore leading to the Dirichlet process. For any admissible (σ, θ) the

EPPF (13) coincides with (8), thus recovering the PY family. Another interesting special case

of the PY process, and a fortiori of Gibbs–type priors, is represented by the normalized σ-stable

process introduced by [38] which is obtained as a PY process with σ ∈ (0, 1) and θ = 0.
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Before discussing other special cases of Gibbs–type priors, it is worth having a closer look at

the PY family with σ < 0 and θ = m|σ|. In this case the weights in (18) are as follows

Vn,k =
|σ|k−1∏k−1

i=1 (m− i)

(m|σ|+ 1)n−1
1{1,...,min(n,m)}(k) (19)

where 1A denotes the indicator function of set A. From (19) it is then easy to see (cfr. [62])

that the PY family with σ < 0 and θ = m|σ| corresponds to a population composed by m

different species with proportions distributed according to a symmetric Dirichlet distribution

with density function

fm(p1, . . . , pm−1) =
Γ(m|σ|)
Γm(|σ|)

m−1∏

i=1

p|σ|−1
i (1− p1 − · · · pm−1)

|σ|−1

for any (p1, . . . , pm−1) such that pi ≥ 0 for any i and
∑m−1

i=1 pi ≤ 1. Such a model arises, in the

Population Genetics literature, as the stationary law of a Wright–Fisher model.

The PY family with parameters (σ,m|σ|) and σ < 0 is not only a distinguished special case

of Gibbs–type prior with σ < 0 but actually is its basic building block. In fact, any Gibbs–type

random probability measure with σ < 0 is obtained by specifying a prior π for the total number

of species m in (19) and coincides with a species sampling model having a random (finite)

number of species. Crucially, by [28], the reverse implication holds true as well: any Gibbs–type

prior with σ < 0 is a mixture of PY processes with parameters (σ,m|σ|), the mixing measure

being a probability measure on the positive integers. Therefore, one can equivalently describe

Gibbs–type priors with σ < 0 in terms of a mixture model as

(p̃1, . . . , p̃m̃−1) | m̃ ∼ fm̃

m̃ ∼ π.
(20)

Interesting special cases arise by particular specifications of π. For instance, if

π(m) =
γ(1− γ)m−1

m!
(21)

for m = 1, 2, . . . with γ ∈ (0, 1), one obtains the model introduced by Gnedin [27], which in the

case of σ = −1 admits a completely explicit expression of the weights, namely

Vn,k =
(k − 1)!(1− γ)k−1(γ)n−k

(n− 1)!(1 + γ)n−1
. (22)

The peculiar feature of such a model, which makes it of great use in applications, is that the

heavy-tailedness of (21) implies a model with finite random number of species whose expected

value is infinite. Other interesting models are obtained by specifying the mixing distribution as

a Poisson distribution restricted to the positive integers with parameter λ > 0 , i.e.

π(m) =
e−λ

1− e−λ

λm

m!
(23)
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for m = 1, 2, . . ., or as a geometric mixing distribution

π(m) = (1− η)ηm−1 (24)

for some η ∈ (0, 1) and m = 1, 2, . . .. These will be further discussed in Section 5.2.

Another important sub–class of Gibbs–type priors is the normalized generalized Gamma

(NGG) process which corresponds to

Vn,k =
eβ σk−1

Γ(n)

n−1∑

i=0

(
n− 1

i

)
(−1)i βi/σ Γ

(
k −

i

σ
; β

)
, (25)

where σ ∈ (0, 1), β > 0 and Γ(x, a) =
∫∞
x sa−1 e−s ds is the incomplete gamma function. Also

the NGG process contains several interesting special cases: if σ → 0 one obtains the Dirichlet

process, whereas σ = 1/2 yields the normalized inverse Gaussian process (N–IG) of [40], which

stands out for the availability of a closed form expression of its finite–dimensional distributions.

Furthermore, if β = 0, the normalized σ-stable process is also recovered from the NGG. See

[67, 35, 43]. The name attributed to this particular Gibbs–type prior is motivated by the

fact that it can be defined by normalizing a generalized gamma completely random measure

introduced in [3] and it therefore also belongs to the class of normalized random measures with

independent increments (NRMI) introduced in [67]. Interestingly, as shown in [48], it turns out

to be the only random probability measure belonging to both classes, NRMIs and Gibbs–type

priors. All other NRMIs, such as for instance the generalized Dirichlet process in [41, 20], are

not of Gibbs–type.

In addition to specific examples described so far and still for the case of σ > 0, one might

wonder whether starting from the prediction rules (15) it is possible to identify the class of

random probability measures generating them. The answer is affirmative and, as shown in

[28], they coincide with the so–called σ–stable Poisson–Kingman models, which are obtained by

means of a particular transformation of σ–stable completely random measures. The technical

background needed for precisely defining such models goes beyond the scope of this review

and we refer the interested reader to [61, 28]. For our purposes it is enough to note that the

derivation of posterior quantities in this setting represents a challenging issue, which has not

found a satisfactory solution to date.

So far we have provided various motivations, of theoretical and practical relevance, for the

use of Gibbs–type priors and the sub–classes discussed in this section provide a glimpse of

the nice and simple structure they share. Nonetheless, we still need to shed some light on

another distributional aspect which is important for assessing their suitability for nonparametric

inference, namely their support. As mentioned in the Section 1, a large topological support is

a desirable property for a nonparametric prior since the essence of being nonparametric can be
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associated to the fact of assigning prior positive probability to as many “ candidate models ”

as possible. When considering the weak topological support, which is the most natural in this

framework, it can be shown (see [8]) that “genuinely nonparametric” Gibbs–type priors comply

with this requirement and have full weak support: in other terms, any weak neighborhood of any

distribution in PX will have a priori positive probability. Here by “ genuinely nonparametric ”

we mean Gibbs–type priors whose realizations are discrete distributions for which the number

of support points is not bounded. This essentially boils down to considering Gibbs–type priors

either with σ ≥ 0 or with σ < 0 and unbounded support of the prior π on the number of

components in (20). Such priors can be shown to possess the full weak support property, i.e.

their topological support coincides with the space of probability measures whose support is

included in the support of the prior guess P ∗. In particular, if the support of P ∗ coincides with

X, the support of Q is the whole space PX.

3 Hierarchical mixture models based on Gibbs–type priors

As outlined in the Introduction an important application of discrete random probability measures

and, then, of Gibbs–type priors occurs within hierarchical mixture models of the type (12): this

corresponds to assuming exchangeable data (Yi)i≥1 from a random density defined by

f̃(y) =

∫

X

f(y | x)p̃(dx). (26)

In particular, when p̃ follows a discrete prior Q, a key ingredient for prior and posterior inferences

is the corresponding EPPF. Indeed, given a set of observables Y1, . . . , Yn modeled according

to the above random density, the clustering structure among the latent variables X1, . . . , Xn

drives both the posterior distribution on the number of components and the posterior density

estimation. In particular,

P(Kn = k | Y1, . . . , Yn) ∝
∑

pn∈Pk
[n]

p(n)k (n1, . . . , nk)
k∏

j=1

∫

X

∏

i∈Cj

f(yi | xj)P ∗(dxj)

where Pk
[n] is the set of all partitions pn of the n latent variables into k disjoint clusters and Cj

identifies the indices of those latent variables xi that belong to the j–th cluster in the partition

pn ∈ Pk
[n]. Therefore, the choice of Q or, equivalently, of the corresponding EPPF, is crucial for

nonparametric Bayesian inferences in this framework and it can be further appreciated through

some numerical illustrations we are going to provide later on in this section.

An appealing feature of Gibbs–type priors is their ability to control the prior mass allocated

to different partitions through the reinforcement mechanism induced by the parameter σ and
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described in Section 2. This can be appreciated by looking at the induced (prior) distribution on

the number Kn of clusters. First note that the determination of the distribution of Kn follows

from a marginalization of (13) and leads to

P(Kn = k) =
Vn,k

σk
C (n, k;σ) (27)

with

C (n, k;σ) =
1

k!

k∑

i=0

(−1)i
(
k

i

)
(−iσ)n

denoting a generalized factorial coefficient. See [5] for details on C (n, k;σ). Substituting expres-

sions (18) and (25) in (27) leads to the prior distributions on the number of different components

for the PY and the NGG processes, respectively. Letting σ → 0 in either of the resulting ex-

pressions one obtains the corresponding distribution for the Dirichlet process case

P(Kn = k) =
θk

(θ)n
|s(n, k)|,

with s(n, k) denoting the Stirling number of the first type. See [5].

A graphical display of these distributions is best suited to highlight their differences. To this

end, fix n = 50 and consider the corresponding distributions of the number of components in

the three above cases. For the Dirichlet process it is well–known that the total mass parameter

θ controls the location of the distribution of K50: larger values of θ lead to a right-shift of

the distribution implying an (a priori) larger number of components essentially affecting its

dispersion. In both the PY process and NGG cases the role of controlling the location is played

by θ and β, respectively. Hence, it is interesting to look at the additional parameter σ. Figure 1

concerns the NGG process and displays the distribution of K50 for a fixed value of β and with σ

ranging between 0.2 and 0.8. Note that in Figures 1, 2 and 3 the probability masses are connected

by straight lines only for visual simplification. From Figure 1 it is evident that the addition of

σ allows to control the flatness, or the variability, of the distribution of K50 thus yielding a

higher degree of flexibility for the model. A similar behavior appears in the PY process. Hence,

replacing the Dirichlet process with a Gibbs–type prior characterized by a value of σ in (0, 1)

allows for a better control of the informativeness of the prior number of groups, since a larger

σ flattens the prior. To better visualize this fact, it is useful to consider a simple comparative

example. In addition to n = 50, suppose that the prior expected number of clusters is 25. This

implies that a reasonable criterion for eliciting the parameters of a nonparametric prior is to

fix them in a way such that E(K50) = 25. We compare five different models: Dirichlet process

with θ = 19.233, PY processes with (σ, θ) = (0.25, 12.2157) and (σ, θ) = (0.73001, 1), and NGG

processes with (σ,β) = (0.25, 48.4185) and (σ,β) = (0.7353, 1), where all reported parameters
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Figure 1: Prior distributions on the number of groups corresponding to the NGG process with

n = 50,β = 1 and σ = 0.2, 0.3, . . . , 0.7 and σ = 0.8.
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are chosen so that E(K50) = 25. The corresponding distributions of K50 are displayed in

Figure 2. Clearly, by increasing the value of σ one obtains a less informative distribution on

K50: when moving from σ = 0 to σ ≈ 0.73 the distribution of K50 becomes flatter, exhibiting

a larger variability. The Dirichlet process, instead, implies a highly peaked distribution of K50,

which in terms of prior specification implies the need for a reliable prior information on the

number of clusters, which is often unavailable. Furthermore, the PY and NGG processes have

a similar behavior with the latter producing slightly lighter tails.

DP(e=19.233) 
NGG(m , `)=(0.25,48.4185) 
PY(m , e)=(0.25,12.2157) 
NGG(m , `)=(0.7353,1) 
PY(m , e)=(0.73001,1) 
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DP(e=19.233) 
NGG(m , `)=(0.25,48.4185) 
PY(m , e)=(0.25,12.2157) 
NGG(m , `)=(0.7353,1) 
PY(m , e)=(0.73001,1) 

Figure 2: Prior distributions on the number of clusters corresponding to the Dirichlet (DP), the

Pitman–Yor (PY) and the normalized generalized gamma (NGG) processes. The values of the

parameters are set in such a way that E(K50) = 25.

Let us now take a further step and compare the above five processes in a toy example to

have a closer look at the implication of such prior specifications on posterior inferences on the

clustering structure of the data. To this end, assume that n = 50 observations are drawn from

a uniform mixture of two well-separated Gaussian distributions, N(1, 0.2) and N(10, 0.2). From

a classification perspective these data clearly identify two groups. We model them with the

following nonparametric mixture model with standard specification

(Yi | mi, vi)
ind∼ N(mi, vi), i = 1, . . . , n

(mi, vi | p̃)
iid∼ p̃ i = 1, . . . , n

p̃ ∼ Q
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with Q corresponding to the five processes above and P ∗(dm, dv) = N(m | µ, τv−1)Ga(v |
2, 1) dm dv, where N(· | a, b) denotes the Gaussian density with mean a and variance b > 0

and Ga(·|c, d) is the density corresponding to a Gamma distribution with mean c/d. A further

hierarchy is assumed for µ and τ , i.e. µ ∼ N(0, 0.001) and τ−1 ∼ Ga(1, 100). In this setup

the parameter specification for the five processes (chosen so that E(K50) = 25) corresponds

to a prior opinion on K50 remarkably far from the true number of components in the mixture

density that has generated the data. Given such a wrong prior specification one then wonders

whether the models possess enough flexibility to shift a posteriori towards the correct number of

components, namely 2. The results are based on 100000 iterations after 5000 of burn in adopting

a standard marginal MCMC algorithm with acceleration step. See [12, 51] for further details on

this algorithm.

Figure 3 depicts the posterior distribution on the number of mixture components. The most

important thing to note is that a larger σ leads to better posterior estimates. Both the PY

and NGG processes with σ = 0.73, have been able to shift most of the mass towards a very

low number of components with the PY process exhibiting a slightly better performance. See

also Table 1 for a display of the numerical values of posterior probabilities associated to the

possible values of K50. This shows how a stronger reinforcement mechanism, implying a flatter

distribution of Kn, allows to recover more effectively the correct number of components. In

contrast, the Dirichlet process is stuck around 10 components, since the high peakedness of its

prior on Kn prevents it from overruling completely the wrong prior information.

Finally, it is important to point out that the above considerations concerning the advantages

of the additional parameter σ hold beyond the present toy example since they represent struc-

tural properties of the models, which are by now well–understood thanks to several analytical

results and computational analyses. See, e.g., [43]. As far as the estimates of the density f̃ in

(26) are concerned, these are displayed in in Figure 4. Even if the considerable heterogeneity in

the posterior inferences on the number of components is not reflected by density estimates, one

can still appreciate a slightly better performance of the NGG and PY processes with σ = 0.73001

since they show a closer adherence to the depicted true density.

4 Prediction in species sampling problems

As already mentioned in Section 1, Gibbs–type priors are a powerful tool for addressing pre-

diction and estimation in species sampling problems when observations are recorded from a

population composed of individuals belonging to different types or species. This situation oc-

curs in many applied research areas, including genetics, biology, ecology, economics and lin-
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Figure 3: Posterior distributions on the number of components corresponding to mixtures of the

Dirichlet (DP), the Pitman–Yor (PY) and the normalized generalized gamma (NGG) processes

with n = 50 and parameters set so that E(K50) = 25.

k DP(19.233) NGG(0.25,48.4185) PY(0.25,12.216) NGG(0.7353,1) PY(0.73001,1)

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0011 0.0039 0.0132 0.2143 0.4630

3 0.0068 0.0209 0.0487 0.2854 0.3015

4 0.0220 0.0514 0.0979 0.2263 0.1399

5 0.0484 0.0894 0.1419 0.1360 0.0573

6 0.0789 0.1229 0.1528 0.0713 0.0225

7 0.1069 0.1412 0.1506 0.0361 0.0092

8 0.1257 0.1368 0.1245 0.0163 0.0037

9 0.1301 0.1187 0.0921 0.0079 0.0016

10 0.1205 0.0976 0.0659 0.0035 0.0007

11 0.1031 0.0746 0.0435 0.0017 0.0003

12 0.0816 0.0516 0.0283 0.0007 0.0002

13 0.0597 0.0353 0.0170 0.0003 0.0001

≥ 14 0.1151 0.0556 0.0237 0.0004 0.0001

Table 1: Posterior distributions on the number of components arising from mixtures of the

Dirichlet process (DP), the normalized generalized Gamma (NGG) process and the Pitman-Yor

(PY) process centered such that the prior expected value of the number of components is 25

with the sample size n = 50.
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Figure 4: Density estimates corresponding to the 5 mixture models that have been considered.

guistics. Hence, in this section we will think of the observations Xi in (1) as species labels.

The sample data X1, . . . , Xn one can rely on for inferential purposes yield the following pieces

of information: the number Kn of distinct species in the sample; the observed species labels

X∗
1 , . . . , X

∗
Kn

; the frequencies Nn = (N1,n, . . . , NKn,n) associated to each of the observed species.

Note that the last quantity can be alternatively reformulated in terms of the frequency counts

Mn = (M1,n, . . . ,Mn,n), where Mi,n is the number of species that have appeared with frequency

i in the observed sample. It is obvious that these vectors must satisfy the following constraints:

Kn∑

i=1

Ni,n = n,
n∑

i=1

Mi,n = Kn,
n∑

i=1

iMi,n = n.

In such problems species labels are typically not of interest, and the data can be efficiently

summarized by either Nn or Mn, namely the partition they form. Since the EPPF (5) can also

be seen as the partition distribution induced by a sample, it is natural to resort to the class of

priors which have the most general yet tractable partition distribution. This naturally leads to

work with Gibbs–type priors which are characterized by the product–form EPPF (13).

In this framework a novel Bayesian nonparametric methodology for deriving estimators of

quantities related to an additional unobserved sample Xn+1, . . . , Xn+m from p̃, conditional on

X1, . . . , Xn, has been proposed in [42] and [47]. An important applied problem is the estima-

tion of the so-called overall species variety, which can be measured by estimating the number
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K(n)
m = Kn+m − Kn of “new” distinct species that will be observed in the additional sample.

A generalization has been recently derived in [18] and it corresponds to the estimator of the

so-called rare species variety

M̂ (n)
m (τ) =

τ∑

i=1

M̂ (n)
i,m =

τ∑

i=1

E(Mi,n+m |X1, . . . , Xn) (28)

namely the number of distinct species with frequency less than or equal to a specific threshold

of abundance τ that will be detected in the additional sample of size m. Note that both the

estimator of K(n)
m , denoted by K̂(n)

m , and M̂ (n)
m (τ) can be thought of as global measures of overall

and rare species variety respectively, since they are referred to the whole additional sample of

size m. On the other hand, one may also need the corresponding local measures, which can

be quantified in terms of the discovery probability at step (n+m+ 1) of the sampling process.

Bayesian estimators of the latter have been determined in [19]. More specifically, if ∆i,n+m

is the set including species labels that appear with frequency i ≥ 0 in the enlarged sample

X1, . . . , Xn+m, one is interested in estimating

Un+m,i = P(Xn+m+1 ∈ ∆i,n+m |X1, . . . , Xn). (29)

An estimator will be obtained by averaging over all possible realizations of the unobserved

additional sample Xn+1, . . . , Xn+m, conditional on the basic sample X1, . . . , Xn. Here Un+m,0

stands for the probability of sampling a new species at step (n+m+1), whereas
∑τ

i=0 Un+m,i for

the probability of sampling either a species not yet observed or one with frequency less than τ .

Such local estimates are relevant, for example, in determining the size m of the additional sample

Xn+1, . . . , Xn+m: a possible criterion consists in fixing m equal to the maximum possible value

for which the estimated discovery probability of new or rare species is above a certain threshold

probability.

If the population is composed by a large number of unknown species (genes, agents, categories

etc.) and the basic sample X1, . . . , Xn displays only a small fraction of the species present in the

population, Gibbs–type priors with σ ∈ [0, 1) are particularly suited. An effective and popular

example is offered by the analysis of Expressed Sequence Tags [44] or Serial Analysis of Gene

Expression [31] data. Indeed, in these experiments either complementary DNA (cDNA) libraries

or messenger RNA (mRNA) populations are considered and typical goals consist in identifying

the genes they are composed of, the relative frequencies of such genes and also in comparing

libraries/populations in terms of diversity. Due to time and cost constraints only a small portion

of the whole library or population is typically sequenced and prediction is required to assess the

overall characteristics. A similar experimental framework takes place in biological applications

such as, for example, in the analysis of T-cell identification problems (see [71]). In this case
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one can characterize the immunological status of an organism by estimating the number of

distinct clonotypes in a T-cell repertoire and the clonal size distribution, which is the frequency

of clonotypes with a certain clonal size. In contrast, if the population has a limited number of

species, a common situation in Ecology, Gibbs–type models with σ < 0 are more appropriate

[15]. In what follows, for brevity we will deal with the case σ ∈ [0, 1). This implies that, when

specializing the results to the PY process, one also has θ > −σ. However, it is to be noted that

most of the displayed findings carry over to the case of σ < 0.

On this topic there exists a well–estalibished frequentist literature. The most relevant contri-

butions typically draw inspiration from papers by I.J. Good ([29]) and I.J. Good and G.H. Toul-

min ([30]). See, e.g., [53] and [54]. For example, the popular Turing estimator for the discovery

probability (displayed in [29] and credited to A. Turing) is

Ǔn,i = (i+ 1)
Mi+1,n

n
. (30)

For i = 0 it provides an estimator for the probability that the (n + 1)–th observation is new.

Equivalently, 1 − Ǔn,0 provides an estimator of the sample coverage, namely the proportion of

species observed in the sample, which is an important quantity in many applied frameworks.

Moreover, estimates of K(n)
m and of the discovery probability Un+m,0 for any m ≥ 1 have been

established in [30] and shall be henceforth termed Good–Toulmin estimators. They coincide

with

Ǔn+m,0 = n−1
∞∑

i=1

(−λ)i−1 i Mi,n, Ǩ(n)
m =

∞∑

i=1

(−1)i−1λiMi,n (31)

where λ = m/n. Due to the alternating sign of the sums, when λ is large they can yield

inadmissible numerical values. This instability arises even for values of m moderately large with

respect to n, typically m greater than n is enough for it to appear. An illustration is provided

in Section 4.1. On the other hand, we are not aware of frequentist estimators of the discovery

probabilities Un+m,i when both m and i are positive integers.

4.1 Bayesian inference on overall species variety

Based on the EPPF (13), an explicit expression for the distribution of the number of “new”

distinct species observed in the additional sample, K(n)
m , conditional on the information provided

by X1, . . . , Xn, has been determined in [42] and is given by

P(K(n)
m = j |X1, . . . , Xn) =

Vn+m,k+j

Vn,k

C (m, j;σ,−n+ kσ)

σj
(32)
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where X1, . . . , Xn is partitioned into Kn = k clusters with respective frequencies n1, . . . , nk and

C (n, k;σ, γ) is the non–central generalized factorial coefficient

C (m, j;σ,−n+ kσ) = (j!)−1
j∑

r=0

(−1)r
(
j

r

)
(n− σ(r + k))m.

See [5]. An important implication of (32) is the sufficiency of Kn for predicting the number

of “new” distinct species. The expression in (32) serves then as a basis for determining the

Bayesian nonparametric estimator, with respect to a squared loss function, of the overall species

variety as

K̂(n)
m = E(K(n)

m |Kn = k, Nn = n) (33)

with n = (n1, . . . , nk). This can be seen as a Bayesian counterpart of the Good–Toulmin

estimator.

When p̃ is the PY process, with parameter (σ, θ), (32) becomes

P(K(n)
m = j |Kn = k,Nn = n) =

(θ/σ + k)j
(θ + n)m

C (m, j;σ,−n+ kσ). (34)

As shown in [16], the estimator for K(n)
m in (33) then reduces to

K̂(n)
m =

(
k +

θ

σ

)(
(θ + n+ σ)m
(θ + n)m

− 1

)
. (35)

The main advantage of (35), and of other estimators devised in [16] for measuring the overall

species variety, is that they are explicit and can be exactly evaluated even when the size m of

the additional sample is large compared to the size of the basic sample n. This happens, for

instance, in genomic applications where one has to deal with relevant portions of cDNA libraries

consisting of millions of genes.

In several applied contexts it is useful to accompany point estimates such as (35) with the

corresponding credible intervals. These can be easily derived from the conditional distribution

(34). However, if the sample sizes are very large the computation of the non-central generalized

factorial coefficient may become cumbersome. To circumvent such a problem one could resort to

asymptotic credible intervals. This motivates, also from a practical point of view, the asymptotic

analysis of K(n)
m , conditional on Kn, for a fixed n and as m → ∞, provided in [16]. Let fσ stand

for the density function of a positive σ-stable random variable, and let Uq, for any q ≥ 0, be a

positive random variable characterized by the following density function

fUq(u) =
Γ(qσ + 1)

σΓ(q + 1)
uq−1−1/σfσ

(
u−1/σ

)
.
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Moreover, set Ba,b as a beta random variable with parameters (a, b). Conditional on the infor-

mation provided by X1, . . . , Xn, one has

K(n)
m

mσ
a.s.−→ Zn,k, (36)

as m → ∞, where Zn,k
d
= Bk+θ/σ,n/σ−kU(θ+n)/σ with Bk+θ/σ,n/σ−k and U(θ+n)/σ being indepen-

dent. A similar asymptotic result has been obtained also for the NGG process in [17]. Note

that the σ-diversity discussed in (16) can be recovered from (36) by setting n = k = 0. Turning

back to the practical uses of (36) for the determination of credible asymptotic intervals for K(n)
m ,

it is apparent that one still needs to derive the quantiles of Zn,k. From an analytical point of

view this is a challenging task, which nonetheless can be avoided by resorting to straightforward

computational algorithms that allow to sample from the limit random variable Zn,k, and thus

to approximate the quantiles. See [16, 9] for details.

4.2 Bayesian inference on rare species variety

The problem of deriving estimators for the rare species variety has been recently considered

in [17] and [19]. One of such estimators is represented by the number of distinct species with

frequencies less than or equal to a specified threshold of abundance τ , for any τ ≤ n+m, that

are generated by the additional sample, as displayed in (28). The determination of M̂ (n)
i,m, under

a square loss function, is eased by resorting to the decomposition

M̂ (n)
i,m = N̂ (n)

i,m + Ô(n)
i,m

where N̂ (n)
i,m is the estimator of the number of “new” distinct species with frequency i not detected

in X1, . . . , Xn and Ô(n)
i,m is the estimator of the number of “old” distinct species (i.e. included in

X1, . . . , Xn) that appear with frequency i in the enlarged sample. This implies that M̂ (n)
m (τ) in

(28) arises as the sum of two well-defined quantities: (i) the estimator of the number of “new”

distinct species with frequencies less than or equal to τ ≤ m and generated by the additional

sample, i.e. N̂ (n)
m (τ) =

∑τ
i=1 N̂

(n)
i,m; (ii) the estimator of the number of “old” distinct species with

frequencies less than or equal to τ ≤ n + m and generated by updating the frequencies of the

partition induced by the basic sample with the additional sample, i.e. Ô(n)
m (τ) :=

∑τ
i=1 Ô

(n)
i,m.

It is apparent that if τ = m one obtains N̂ (n)
m (τ) = K̂(n)

m . In this respect, the concept of rare

species variety can be interpreted as a generalization of the concept of overall species variety.

A result in [17] gives explicit expressions of the moments, of any order, of both the number

of “new” species with frequency i in Xn+1, . . . , Xn+m and of the number of “old” species with

frequency i in the enlarged sample X1, . . . , Xn+m. From these one deduces N̂ (n)
i,m and Ô(n)

i,m thus

25



obtaining an estimator of rare species variety. It can be seen that

Ô(n)
i,m =

i∑

t=1

(
m

i− t

)
Mt,n (t− σ)i−t

m∑

j=0

Vn+m,k+j

Vn,k

C (m− (i− t), j;σ,−n+ t+ (k − 1)σ)

σj
. (37)

From (37), it is clear that (Kn,M1,n, . . . ,Mτ,n) is a sufficient statistic for predicting the number

of “old” distinct species with frequency less than or equal to τ . Moreover,

N̂ (n)
i,m =

(
m

i

)
(1− σ)i−1

i∑

j=0

Vn+m,k+j+1

Vn,k

C (m− i, j;σ,−n+ kσ)

σj
(38)

and Kn is sufficient for predicting the number of “new” distinct species with frequency less than

or equal to τ . Finally, M̂ (n)
i,m can be derived as the sum of the estimators in (37) and (38) and,

then, M̂ (n)
m (τ) from (28).

If we focus on the special case where the Gibbs–type prior is the PY process, then the

expressions (37) and (38) considerably simplify and reduce to

Ô(n)
i,m =

i∑

t=1

(
m

i− t

)
Mt,n (t− σ)i−t

(θ + n− t+ σ)m−(i−t)

(θ + n)m

N̂ (n)
i,m =

(
m

i

)
(1− σ)i−1(θ + kσ)

(θ + n+ σ)m−i

(θ + n)m
.

It is worth noting that the determination of estimators of the rare species variety poses a major

technical hurdle that does not occur when estimating the overall species variety. Indeed, one

has to consider all possible modifications, induced by the observations in the additional sample,

on the frequencies of the species detected in the basic sample.

In the special PY process case, one can establish the asymptotic behavior of rare species

variety as m → ∞. This is somehow in the spirit of (36) in the context of overall species variety.

In this case, as shown in [17], one has for any i ≥ 1

Mi,n+m |X1, . . . , Xn

mσ
d−→

σ(1− σ)i−1

i!
Zn,k,

as m → ∞, where Zn,k is the limit random variable introduced in (36) and
d−→ stands for

convergence in distribution. This implies that Kn is asymptotically sufficient for predicting the

number of distinct species with frequency i that are generated after observing the additional

sample, conditional on the information provided by the random partition of the basic sample.

Rare species variety can be further assessed locally in terms of discovery probabilities Un+m,i

as defined in (29). This leads to the proposal of Bayesian nonparametric counterparts to the

Turing and the Good–Toulmin estimators that are recalled in (30) and in (31), respectively. If
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one assumes a square loss function, then an estimator of Un,i is

Ûn,i =
Vn+1,k

Vn,k
(i− σ)Mi,n (39)

for any i ≤ n, while the discovery probability of a new species, i.e. i = 0, can be easily deduced

from the predictive distribution (15) and is given by Ûn,0 = Vn+1,k+1/Vn,k. Note that, unlike the

Turing estimator, Ûn,i depends on Mi,n which seems to be more coherent with what intuition

would suggest. If we now let m ≥ 1 and j ≤ n +m, an estimator of the discovery probability

turns out to be1

Ûn+m,i =
i∑

l=1

Ml,n(l − σ)i+1−l

(
m

i− l

)
Q(n,k)

m,i (l, 0, l − σ) (40)

+ σ(1− σ)i

(
m

i

)
Q(n,k)

m,i (1, 1, 0)

where

Q(n,k)
m,i (α,β, γ) =

m−i+α∑

r=β

Vn+m+1,k+r

Vn,k

C (m− i+ α− β, r − β;σ,−n+ kσ + γ)

σr
.

When i = 0 and m ≥ 1, this yields the following Bayesian analog of the Good–Toulmin estimator

for the probability of discovering a new species

Ûn+m,0 =
m∑

i=0

Vn+m+1,k+i+1

Vn,k

C (m, i;σ,−n+ kσ)

σi
(41)

whereas there is no frequentist counterpart to (40) when both m and k are positive integers.

From these closed form expressions one can deduce a further measure of rare species variety as

Ûn+m(τ) =
∑τ

i=0 Ûn+m,i.

If one adopts a specification of the Vn,k’s yielding a PY process, nice and simple forms of the

estimators of the discovery probabilities and of rare species variety are obtained. For example,

the analog of the Turing estimator (30) reduces to

Ûn,i =
i− σ

θ + n
Mi,n

and the Bayesian counterpart (41) of the Good–Toulmin estimator coincides with

Ûn+m,0 =
θ + kσ

θ + n

(θ + n+ σ)m
(θ + n+ 1)m

. (42)

1The estimators in (40) and (43) slightly differ from those in [19], since the latter contain a minor inaccuracy

that we have corrected here.
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Library 1 2 3 4 5 6 7 8 9 10 11

Naegleria Aerobic 346 57 19 12 9 5 4 2 4 5 4

Naegleria Anaerobic 491 72 30 9 13 5 3 1 2 0 1

Library 12 13 14 15 16 17 18 27 55 j n

Naegleria Aerobic 1 0 0 0 1 1 1 1 1 473 959

Naegleria Anaerobic 0 1 3 0 0 0 0 0 0 631 969

Table 2: ESTs from two Naegleria gruberi libraries. Reported data include: frequency counts

Mi, for different values of i, total number of distinct genes j and sample size n. Source: Susko

and Roger (2004).

Finally, the probability that the (n+m+ 1)–th observation coincides with a species detected j

times in the enlarged sample X1, . . . , Xn+m is

Ûn+m,i =
i∑

l=1

Ml,n(l−σ)i+1−l

(
m

i− l

)
(θ + n− l + σ)m−i+l

(θ + n)m+1
+(1−σ)i

(
m

i

)
(θ + kσ)(θ + n+ σ)m−i

(θ + n)m+1
.

(43)

To briefly illustrate the behavior of the Bayesian nonparametric estimator based on the PY

process and compare it with the Good–Toulmin estimator let us consider genomic data, which

consists of Expressed Sequence Tags (EST) obtained from Naegleria gruberi cDNA libraries.

Naegleria gruberi is a widespread free–living soil and freshwater amoeboflagellate widely studied

in the biological literature. The two considered datasets are sequenced from two cDNA libraries

prepared from cells grown under different culture conditions, aerobic and anaerobic, and have

been previously analyzed in [72, 44]. The sequenced data, which will constitute the basic samples,

are reported in Table 4.2.

If one is interested in the probability of discovering a new gene at the (n +m + 1)–th step

of the sequencing process, one has two options: the Good–Toulmin estimator Ǔn+m,0 reported

in (31) or the estimator Ûn+m,0 in (42) which is based on the PY process. To complete the

specification of the latter let us mention that the parameters (σ, θ) are fixed according to an

empirical Bayes specification, which yields (0.66, 155.5). The results are displayed in Figure 5. It

is clear that the Good–Toulmin estimator exhibits an erratic behavior for values of the additional

sample relatively larger than that of the basic sample n. This phenomenon is avoided by the

Bayesian nonparametric estimator since it relies on a well–defined probabilistic model in which

all quantities are modeled jointly and coherently. For sizes of m for which the Good–Toulmin

estimator works well, the estimators essentially coincide. Note that, in terms of the specific

application, the anearobic library exhibits the clearly higher genetic diversity. Furthermore, as

already mentioned, one can use such estimates to fix the size of the additional sample m as the
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maximum integer for which the discovery probability lies above the desired threshold, which is

typically determined also on the basis of cost considerations.
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Figure 5: EST data from Naegleria gruberi aerobic and anaerobic cDNA libraries with basic sam-

ple n ∼= 950: Good–Toulmin (GT) and Pitman–Yor process (PY) estimators of the probability

of discovering a new gene at the (n+m+ 1)–th sampling step for m = 1, . . . , 2000.

5 Frequentist asymptotics

During the last two decades frequentist consistency has gained a major role in Bayesian non-

parametrics and is generally accepted as a key validation criterion for the use of a nonparametric

prior in applied problems. See [25] for a recent review on the subject. The idea that underlies

the study of consistency consists in assuming that the data (Xn)n≥1 are iid from some “ true ”

P0 ∈ PX and in verifying whether the posterior distribution Q( · |X1, . . . , Xn) accumulates in

any suitably defined neighborhood of P0. Therefore, while the posterior is derived based on an

assumption of exchangeability of the data as described in (1), the frequentist asymptotic eval-

uation postulates plain independence of the data generating process. This explains why such

an approach has also been termed “what if ” approach by P. Diaconis. See [10]. Here we shall

discuss consistency for Gibbs–type priors. In this respect, note that frequentist asymptotics of

Bayesian procedures is different from the kind of asymptotics discussed in Section 4 which pre-
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serves a Bayesian flavor since it aims at achieving a large sample approximation of the posterior

without modifying the dependence assumption among the data.

Let us start by fixing some notation and introducing some useful concepts. First the data

Xi’s are assumed to be iid from some “ true ” P0 or, in other terms, the distribution of the

sequence of observations (Xn)n≥1 is the infinite product measure P∞
0 = P0 × P0 × · · · . If

Aϵ denotes a neighborhood of P0 of radius ϵ, the posterior is said to be consistent at P0 if

Q(Aϵ|X1, . . . , Xn) → 1 almost surely with respect to P∞
0 , as n → ∞ and for any ϵ > 0. In

the case of Gibbs–type priors, the natural choice for Aϵ is represented by weak neighborhoods.

Clearly, consistency can be achieved only at P0 whose weak neighborhoods have a priori positive

probability. In this respect, the full support property of Gibbs–type priors recalled in Section 2.2

is important since it ensures that consistency can potentially be achieved at any given P0.

Furthermore, note that the full support property represents a desirable property not only when

studying consistency in the case where Gibbs–type priors are used to model directly the data,

but also in the context of mixture models as in (12). Indeed, together with some other features

of Gibbs–type priors, it allows to extend known consistency results for Dirichlet process mixture

models in a straightforward way and the condition for it to hold will be essentially the same.

See [26, 46].

As explained in some detail below, recent results suggest that Gibbs–type priors are always

consistent with respect to (w.r.t.) discrete P0’s. On the other hand, when they are used to

model data coming from diffuse distributions, inconsistency may arise. Possible inconsistency

at diffuse P0 should not, however, be interpreted as a serious issue: what really matters is the

data generating mechanism the nonparametric prior is designed for so that consistency must

hold w.r.t. choices of P0 that are compatible with such a mechanism. Since Gibbs–type priors

are discrete random probability measures, one should be primarily interested in investigating

consistency w.r.t. discrete P0’s. Indeed, Gibbs–type priors, and discrete nonparametric priors in

general, are designed to model discrete distributions and they should under no circumstance be

used to model data coming from diffuse distributions. In the latter case they should be exploited

within hierarchical mixtures.

5.1 General results

The strategy for showing consistency consists in first identifying the weak limit of the posterior,

say P ′ in PX, which will be some function of P0, and then checking whether P ′ = P0 so that

consistency is achieved. The candidate weak limit P ′ is identified by investigating the asymptotic

behavior of the predictive distribution (15) (i.e. the posterior expected value), which in explicit

cases allows to guess P ′ quite easily. Then one has to show that the posterior variance of p̃
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in (3) converges to 0, a.s.-P∞
0 , which suffices to establish that the posterior concentrates in a

weak-neighborhood of the predictive distribution. See [34, 8] for details. Now, let X1, . . . , Xn

denote a sample with κn distinct values with corresponding frequencies n1, . . . , nκn . Even if κn

denotes the same quantity identified as Kn in previous sections, we shall use a different symbol

to emphasize the fact that here the asymptotic behavior of the number of observed distinct

species κn is dictated by P0 from which the iid sequence is sampled and not by a Gibbs–type

prior directing an exchangeable sequence according to (1). Different choices of P0 clearly yield

different (almost sure) limiting behaviors for κn. On the one hand, if P0 is discrete with N point

masses, for any N ∈ N∪ {∞}, then P∞
0 (limn κn = N) = 1 and P∞

0 (limn n−1κn = 0) = 1 even if

N = ∞. On the other hand, if P0 is diffuse, P∞
0 (κn = n) = 1 for any n ≥ 1. Henceforth we shall

focus on these two cases and adopt the shorter notation κn ≪a.s. n and κn ∼a.s. n, which stand

for κn/n → 0 and κn/n → 1 a.s.-P∞
0 , respectively. It turns out that a key quantity for studying

the asymptotics of the predictive distribution is given by the probability (4) of discovering a

new observation at the (n+ 1)–th sampling step, which is given by Vn+1,κn+1/Vn,κn in the case

of Gibbs–type priors. Considering a Gibbs–type prior with base measure P ∗ having support X

and assuming that
Vn+1,κn+1

Vn,κn

→ α a.s.-P∞
0 (H)

as n → ∞ for some constant α ∈ [0, 1], in [8] it is shown that

Q(A′
ϵ|X1, . . . , Xn) → 1 a.s.-P∞

0

as n → ∞ and for any ϵ > 0 where A′
ϵ is a weak neighborhood of P ′. Moreover, one has

P ′ = αP ∗(·) + (1− α)P0(·). (44)

Some comments regarding the above convergence result are in order. As for the condition (H),

it is worth noting that it holds true for all Gibbs–type priors for which an explicit expression of

the Vn,κn ’s is known, regardless as to whether P0 is discrete or diffuse. It therefore represents

only a mild regularity condition. Moreover, the posterior distribution converges to a point mass

at (44), a linear combination of the prior guess P ∗ and the “true” distribution P0. Hence, weak

consistency is guaranteed if α = 0 (and in the trivial case P ∗ = P0 to be excluded henceforth)

and it is sufficient to check whether the probability of discovering a new value converges to 0,

a.s.-P∞
0 . Also, one can assess the departure from consistency by looking at the size of α: the

larger α, the heavier the limiting mass assigned to the prior guess P ∗. One can even think of

a case of “total inconsistency”, i.e. α = 1, the worst case scenario where the posterior tends to

concentrate around the prior guess P ∗ and no learning at all takes place.
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To better visualize the above convergence result it is useful to look at special cases of the PY

process with σ ∈ [0, 1) and θ > −σ, for which such convergence had already been established in

[34]. From the form of their predictive distributions (11), one can immediately conjecture the

following result: when P0 is discrete (κn ≪a.s. n) we have α = 0, implying consistency; when P0

is diffuse (κn ∼a.s. n), we have α = σ, hence inconsistency, unless σ = 0, which corresponds to

the Dirichlet case. See also [36]. An analogous result has been established for the NGG process

together with some results concerning the case of Gibbs–type priors with σ > 0 in [36].

Focusing now on Gibbs–type priors with σ < 0 allows to highlight the occurrence of in-

teresting phenomena. Recall from Section 2.2 that these priors coincide with mixtures of PY

processes with parameters {(σ, m|σ|) : m = 1, 2, . . . , } and they can be represented in hierar-

chical form as (20). It turns out that, according to the nature of the “ true ” distribution P0,

a sufficient condition can be stated in terms of the tail behavior of the mixing distribution π

in (20). More precisely, for Gibbs–type priors with parameter σ < 0 and prior guess P ∗ whose

support coincides with X, in [8] consistency is shown to hold

(i) at any discrete P0 if for sufficiently large m

π(m+ 1)

π(m)
≤ 1; (T1)

(ii) at any diffuse P0 if for sufficiently large m and for some M < ∞

π(m+ 1)

π(m)
≤

M

m
. (T2)

Condition (T1) is an extremely mild assumption on the regularity of the tail of the mixing

π: it requires x .→ π(x) to be ultimately decreasing, a condition met by the commonly used

probability measures on N. Hence one can conclude that Gibbs–type priors with parameter

σ < 0 are essentially always consistent when P0 is discrete. On the other hand, condition (T2)

requires the tail of π to be sufficiently light, so when P0 is diffuse one needs to closely investigate

the tail behavior of π.

5.2 Illustrations

In light of the results stated above one is naturally led to wonder what happens when (T2) is

not satisfied. To this end we consider three different Gibbs–type priors presented in Section

2.2 with σ = −1: each prior is characterized by a specific choice of the mixing distribution π.

We focus on the case of diffuse P0, which leads to some interesting conclusions. In the case of

discrete P0 it is straightforward to show that (T1) holds, hence ensuring consistency.
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The first prior we consider, introduced in [27], is characterized by the heavy-tailed mixing

distribution (21), which does not admit a finite expected value. Since π(m + 1)/π(m) = (m −
γ)/(m + 1) cannot be eventually bounded by M/m for some constant M , condition (T2) does

not hold true. Given the Vn,κn ’s admit the simple closed form expression (22), the weights of

the prediction rule simplify to
Vn+1,κn+1

Vn,κn

=
κn(κn − γ)

n(γ + n)
.

It is easy to see that, if P0 is diffuse, implying κn ∼a.s. n, condition (H) holds true with α = 1

and the weak limit coincides with the prior guess P ∗, whatever the “true” distribution of the

data P0. This means we are in the case of “ total ” inconsistency.

The second example has a Poisson mixing distribution (23) on the positive integers. Such a

π has light tails and condition (T2) is satisfied since π(m + 1)/π(m) = λ/(m + 1). Therefore,

by (T2), the posterior is consistent when P0 is diffuse.

The last sub-family of Gibbs–type priors with σ = −1 is identified by a geometric mixing

distribution (24). Note that π(m + 1)/π(m) = η so that condition (T2) does not hold true. It

turns out that, with P0 diffuse and κn ∼a.s. n, one obtains

Vn+1,κn+1

Vn,κn

→ α =
2− η − 2

√
1− η

η
∈ [0, 1]. (45)

See [8] for details. The limit α in (45) can be any point in [0, 1] according to the value of η and

therefore we can obtain the whole spectrum of weak limits (44) ranging from consistency (α = 0)

to “ total ” inconsistency (α = 1). In particular, α is increasing in η, so the larger η, the heavier

the limiting mass assigned to the prior guess. Small values of η identify a situation similar to

the second example since they yield a light-tailed π. Conversely, large values of η are more in

line with the first example giving rise to heavy-tailed π. Finally, it is worth remarking that a

minimal deviation from condition (T2) already produces inconsistent behaviors, even extreme

ones, showing that (T2) is close to being necessary.

6 Dependent processes for Gibbs–type priors

In this section we briefly discuss possible extensions of the previous results to a dynamic set-

ting. In particular, here we refer to time-indexed random objects, with some specification of

the temporal transition mechanism, whose stationary, or at least marginal, states coincide in

distribution with some random probability measure of Gibbs-type. In this respect, it is impor-

tant to distinguish between two different research areas on time-dependent random probability

measures, both related to Bayesian nonparametric priors. The main difference between these
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two approaches, outlined below, lies in the fact that the former is mostly driven by inferential

purposes, while the second is more concerned with the analytical properties of the constructed

objects. If on one hand the first is closer to the interest of the Bayesian community, on the other

it is our opinion that the two approaches have a strong potential of reciprocally benefitting from

one another.

The first area, concerned with so-called dependent processes, is at present an extremely ac-

tive front in Bayesian Nonparametrics. Besides the pioneering contributions in [6], the modern

approaches to the problem can be traced back to [52]. Generally speaking, the aim is to inves-

tigate generalizations of the Dirichlet process (or other random measures) to frameworks which

allow for types of dependence less restrictive than exchangeability. These include for example

dependence on time or, more generally, on covariates. See, for example, [1] for some up-to-date

references. Most contributions in this direction exploit the representation (3) and dependence

is quite easily induced via the weights and/or the atoms. Moreover, this allows to exploit sim-

ulation techniques such as the slice sampler ([75], [7]) and the retrospective sampler [56]. The

combination of these two main factors leads then to efficient inferential procedures in such non

exchangeable frameworks.

The second research area has its roots in Applied Probability and is concerned with stochastic

population dynamics, but is also closely related to Bayesian nonparametric modeling. The main

idea underlying the constructions in this framework is that of approximating the dynamics

of a large population with a diffusion process, where the process dimension depends on the

number of species the population is allowed to have. When the species can be of infinitely-

many types, this gives rise to infinite-dimensional or measure-valued diffusions. In some cases

the individual reproduction mechanisms yield populations whose frequencies have marginal or

stationary states such as the one- and two-parameter Poisson-Dirichlet distribution ([13],[58]),

the Dirichlet process ([14]), the normalized-inverse Gaussian distribution ([70]). From a Bayesian

perspective these clearly represent dependent priors. At least in the authors’ opinion, such an

approach represents a highly promising research line for the definition of dependent processes,

since the possibility of studying their analytical properties also yields a deeper understanding of

their behavior. Other reasons of interest for the Bayesian community include the use of Pólya

urn schemes for constructing some of these dependent random probability measures ([69],[64];

see also [4]), and the investigation of the so-called σ-diversity processes (in the notation of

Section 2). These constitute a dynamic counterpart of (16), and make explicit the dynamics

and distributional properties concerning the evolution of the clustering structure within the

population, as a consequence of the specific modeling dynamics at hand. See [70] and [68].
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7 Concluding remarks

An intense research activity, started after the introduction of the Dirichlet process, has produced

a vast literature concerning classes of random probability measures whose laws can be used as

nonparametric priors. In current research the choice among these classes is often dictated by

taste (one’s “favorite prior”), mathematical tractability or a blend of the two. For instance,

neutral to the right priors ([11]) are typically used in survival analysis contexts since they are

conjugate also w.r.t. right censored observations. However, there is no conceptual reason to prefer

a conjugate prior over a non–conjugate one and it all boils down to mathematical convenience

since it allows to evaluate posterior inferences of interest. With Gibbs–type priors things go

the opposite way: one makes a precise assumption on the learning mechanism according to

which the prediction of a new value depends on the sample size n and on the number of distinct

values observed so far Kn = k but not on their frequencies n1, . . . , nk, and only afterwards

investigates the implications of such an assumption. This is very much in the spirit of de Finetti

himself who constantly emphasizes in his works the importance of formulating assumptions on

empirically “observable” rather than on “unobservable” quantities. In this respect Gibbs–type

priors can be seen somehow as counterparts to characterizations of parametric families in terms

of exchangeability and some other characteristic of the observables. Consider, for instance,

Freedman’s characterization [21] of exchangeable and rotational invariant sequences as mixtures

of Gaussians: it is the request of rotational invariance on the observables that justifies the use

of Gaussian distributions. In a nonparametric context, an analogous type of result (see [66, 50])

legitimates the use of the Dirichlet process: by assuming exchangeability and a prediction rule

given by a linear combination of the prior guess and the empirical measure one automatically

obtains the Dirichlet process.

Turning back to the Gibbs–case, once the assumption on the learning mechanism is made,

one realizes that the high degree of mathematical tractability is nothing but an implication and

not a motivation. This then allows to work out a wealth of results concerning the behavior of

Gibbs–type priors. Importantly, one is not anymore constrained to a logarithmic increase of Kn

as in the Dirichlet case and the whole spectrum going from a finite Kn to an almost linearly

increasing Kn is available. This, in turn, produces a significantly more flexible prior on the

number of components in mixture models. Furthermore, distributional properties and (often)

closed form expressions for estimators of the quantities of statistical interest can be derived. An

appealing feature is also represented by the fact that such quantities retain an intuitive flavor

by directly relating to the key learning assumption. For instance, in the context of species

sampling, one coherently has that Kn is a sufficient statistic for predictions concerning “new”

values. In contrast, if predictions are required for both “new” values and already observed values
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with frequency less than or equal to τ , the sufficient statistics becomes (Kn,M1,n, . . . ,Mτ,n),

which includes species with frequency not larger than τ . Although more subtle, this is also

in accordance with the key learning assumption and the implied reinforcement mechanism,

described in the paper. Moreover, given the sound assumption on the learning scheme and

its persuasive implications, it seems natural to use the Gibbs–framework also as basis for the

definition of dependent processes.

Summing up, with this review we hope to have provided an affirmative and convincing

answer to the question posed in the title of the paper. And we are confident that the future

will see more statistical problems laid out in the well grounded general Gibbs–type framework.

This would bring a solid foundation to the story and obviously would not prevent to use one’s

favorite Gibbs–type prior (e.g. the PY process) in the concrete application or even, if dropping

the dependence on Kn is legitimated by the problem at issue, returning to the “safe” Dirichlet

world.
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Appendix

Proof of Proposition 1

Recall that for any species sampling model the probability of generating a new value is of the

form (9). For it not to depend on (n1, . . . , nk) for any n ≥ 1 and k ≤ n, p(n)k necessarily has

to be of product form. [28] have shown that an EPPF associated to a infinite exchangeable

random partition is of product form if and only if it is given by (13) or, equivalently, if p̃ is of

Gibbs–type. Therefore (9) depends only on n and k if and only if it is of Gibbs–type. This

proves the categorization of species sampling models p̃ in classes (ii) and (iii).

We are now left with showing that the Dirichlet process is the only species sampling model

for which (9) neither depends on the frequencies nor on k. Given the above, this amounts to

showing that the subclass (i) of the family of Gibbs–type priors (ii) contains only the Dirichlet

process.
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First we show by a contradiction argument that for (9) not to depend on k it must necessarily

be σ = 0. Then we conclude that the only Gibbs–type prior with σ = 0 for which (9) does not

depend on k is the Dirichlet process. Confining ourselves to the Gibbs–type case (since in all

other cases (9) even depends on the frequencies), one has

P(Xn+1 = “new” |X1, . . . , Xn) =
Vn+1,k+1

Vn,k
= 1− (n− σ k)

Vn+1,k

Vn,k

and we assume it does not depend on k. This amounts to requiring that (n−σ k)Vn+1,k(Vn,k)−1

does not depend on k, namely
Vn+1,k

Vn,k
=

cn
(n− σ k)

, (46)

for some cn not depending on k and, by using (14),

Vn+1,k+1

Vn,k
= (1− cn). (47)

The combination of (46) and (47) implies

P(Xn+1 ∈ A |X1, . . . , Xn) = (1− cn)P0(A) + cn

k∑

j=1

(nj − σ)

(n− σ k)
δX∗

j
(A). (48)

However, this is a prediction rule corresponding to an infinite exchangeable sequence if and only

if σ = 0. To see this, note that in view of [24, Proposition 3.2] infinite exchangeability requires

(48) to satisfy

P(Xn+1 ∈ A, Xn+2 ∈ B |X1, . . . , Xn) = P(Xn+1 ∈ B, Xn+2 ∈ A |X1, . . . , Xn) (49)

for any n ≥ 1 and A,B in X . Consider, now, two sets A and B such that A ∩ B = ∅,

A ∩ {X1, . . . , Xn} = ∅ and B ∩ {X1, . . . , Xn} ≠ ∅. Hence, the left–hand side of (49) coincides

with

cnP0(A)

⎧
⎨

⎩cn+1P0(B) + (1− cn+1)
1

n+ 1− (k + 1)σ

k∑

j=1

(nj − σ) δX∗

j
(B)

⎫
⎬

⎭

whereas the right–hand side of (49) coincides with

cn+1P0(A)

⎧
⎨

⎩cnP0(B) + (1− cn)
1

n− kσ

k∑

j=1

(nj − σ) δX∗

j
(B)

⎫
⎬

⎭

and the two are equal if and only if, for any k = 1, . . . , n, one has

cn+1(1− cn)

n− kσ
=

cn(1− cn+1)

n+ 1− (k + 1)σ
.
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Assuming n ≥ 2, with k = 1 the above condition becomes

cn+1(1− cn)

n− σ
=

cn(1− cn+1)

n+ 1− 2σ
(50)

and with k = 2, one has
cn+1(1− cn)

n− 2σ
=

cn(1− cn+1)

n+ 1− 3σ
. (51)

Taking the ratios of the terms in (50) and those in (51) yields

n− 2σ

n− σ
=

n+ 1− 3σ

n+ 1− 2σ

and this holds true if and only if σ2 = σ. This therefore contradicts the assumption that

P(Xn+1 = “new” | X1, . . . , Xn) does not depend on k for σ ̸= 0. A different proof can also be

derived by using the recursion (14) iterated over two prediction steps.

Finally, recall that [28, Theorem 13], showed that Gibbs–type priors with σ = 0 correspond

to the Dirichlet process or the Dirichlet process mixture over its total mass parameter. On the

other hand, when σ = 0, (48) characterizes the Dirichlet process (see [50], [66]). Hence, Dirichlet

process mixture over the total mass cannot belong to class (i), i.e. P(Xn+1 = “new”|X1, . . . , Xn)

must depend also on k. The proof is, then, complete. !
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