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 Generalities on forecasting

 Mean squared, mean absolute, mean percentage forecast
accuracy measures

 The difference between statistical and economic loss
functions

 The recovery problem

 Limitations of quadratic loss functions and location-
dependent losses

 Hints to forecast evaluation issues
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 Prediction or forecasting indicates an attempt to determine the 
values that a series is likely to take in the future
o Forecasts might also usefully be made in a cross-sectional 

environment but this is more rarely seen

 Determining the forecasting accuracy of a model is an important 
test of its adequacy

 Some econometricians would go as far as to suggest that statistical 
adequacy of a model in terms of whether it contains insignificant 
parameters, provides a poor fit etc.

 Two approaches to forecasting:
① Econometric (structural) forecasting -- relates one or more 
dependent variable to one or more explanatory variables
o Such models often work well in the long run, when a relationship 

between variables arises from no-arbitrage or market efficiency

There are two key approaches to forecasting over time: 
structural vs. time series
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② Time series forecasting -- predicting the future of a series given 
its previous values and/or previous values of an error term
o The distinction between the two types is somewhat blurred -- for 

example, it is not clear where VAR models fit

 Point forecasts predict a single value for the variable, while interval 
forecasts provide a range of values in which the future value of the 
variable is expected to lie with a given level of confidence

 In-sample forecasts are those generated for the same set of data 
that was used to estimate the model’s parameters
o One would expect the ‘forecasts’ of a model to be relatively good in-

sample, for this reason
o Therefore, a sensible approach to model evaluation through an 

examination of forecast accuracy is not to use all of the observations 
in estimating the model parameters…

o … but rather to hold some observations back (holdout sample)

Forecasts can be point and interval forecasts, in- and out-of-
sample
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 True (possibly) genuine out-of-sample (OOS) forecasts are those 
generated for data not used in estimation
o This includes pseudo OOS forecasts, when estimates are not conta-

minated by data used in assessing the forecasts but some elements of 
model specification or selection may be based on the full sample

o Typically, pseudo OOS exercises are recursive
o OOS may be applied cross-sectionally, e.g., I estimate the ICAPM 

premia on N securities and see whether these price other, M securities
o However, more commonly OOS exercises are time series in nature

o E.g., use data from 1990M1 until 1998M12 to estimate the model 
parameters, and then the observations for 1999 would be forecasted 
from the estimated parameters

Forecasts can be in- and out-of-sample
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 A one-step-ahead forecast is a forecast generated for the next 
observation only, whereas multi-step-ahead forecasts are those 
generated for 2, 3, . . . , H steps
o When H is large enough, given a sample of T observation, a researcher 

would then lose T – H observations, because the last H-step ahead 
forecasts cannot be compared to any data

 A way around the problem is a recursive implementation
 A recursive expanding

model is one where the 
initial estimation date is 
fixed, but additional obs.
are added one at a time 

 A rolling window is one 
where the length of the in-
sample period to estimate
is fixed

Forecasts can be one- vs. multi-step ahead, rolling vs. expanding
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o The start date and end date successively increase by one observation

 How do we construct forecasts? There is no specific rule: as we 
shall see, it depends on loss functions and econometric models how 
“optimal forecasts” may be obtained

 One key idea in the literature: conditional expectations!
E[Yt+h|t]  = E[Yt+h|It] = Et[Yt+h] (when content of t /It is clear)

o Imporant note: this is true only for specific loss functions!

 Often optimal
forecasts are 
compared to 
benchmarks, e.g., 
the random walk
and unconcond. 
mean (historical
sample average)

Optimal forecasts often coincide with conditional expectations
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 In practice, forecasts would usually be produced for the whole OOS 
period and then compared with the actual values
o The differences between them, forecast errors, are then aggregated
o The forecast error for observation i is defined as the difference 

between actual value for observation i and the forecast made for it

 Because the forecast error will be positive (negative) if the forecast 
was too low (high), it is not possible to simply sum the forecast 
errors, since the positive and negative errors will cancel out 

 Before the forecast errors are aggregated, they are usually squared 
or the absolute value taken, which renders them all positive

 Little can be gleaned from considering MSE or MAE because they  
are unbounded from above

The mean squared forecast error (MSE) and mean absolute 
error (MAE) are the two key measures of predictive accuracy
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o Normally, MSE or MAE from one model would be compared with 
those of other models for the same data and forecast period

o Mean absolute percentage error (MAPE) is a relative measure:

 Another criterion which is popular is Theil’s U-statistic (1966), 
where fbt,s is the forecast obtained from
a benchmark model (e.g., a simple 
model such as a naive or random walk)

 A U-statistic of one implies that the 
model under consideration and the 
benchmark model are equally (in)accurate

 A value of less than one implies that the model is superior to the 
benchmark, and vice versa for U > 1

 However, if fbt,s is the same as yt+s , U will be infinite

Theil’s U-statistic assess relative predictive accuracy 
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 Many econometric forecasting studies evaluate the models’ success 
using statistical loss functions

 It is not necessarily the case that models classed as accurate 
because they have small MSFE are useful in practical situations
o We have many examples that the accuracy of forecasts according to 

traditional statistical criteria may give little guide to the potential 
profitability of those forecasts in a market trading strategy

o Models that perform poorly on statistical grounds may still yield a 
profit if used for trading, and vice versa

 Models that can accurately forecast the sign, or can predict turning 
points have been found to be more profitable, i.e., to perform best 
in terms of economic loss functions (Leitch and Tanner, 1991, AER)
o Two possible indicators of the ability of a model to predict direction 

changes irrespective of their magnitude are those suggested by 
Pesaran and Timmerman (1992, JBES) and by Refenes (1995, JFor)

Often statistical measures of predictive accuracy poorly 
correlate with economic measures, such as trading profits
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o The relevant formulae are, respectively:

o In each case, the criteria give the proportion of correctly predicted 
signs and directional changes for some lead time s, respectively

o There exist forecasters who may be operating independently so that 
forecasts are produced and there are several potential users

 A decision maker will typically have a payoff or utility function U(x, 
α), which depends upon some uncertain variable or vector x which 
will be realized and observed at a future time T

The mean percentage proportions of sign predictions is a 
measure that often associates with economic measures
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 The variable or vector α is a decision variable which must be 
chosen out of a set A at some earlier time t < T
 For instance, x  X ⊂ R1 and α  A ⊂ R1 after the forecast is learned, 

but before x is realized

 The decision maker can base her choice of α upon a current scalar 
forecast (a “point forecast”) xF of the variable x, and make the 
choice α(xF ) ≡ argmaxα∈AU(xF, α)

 Given the realized value xR, the decision maker’s ex post utility 
U(xR, α(xF)) can be compared with the maximum possible utility 
they could have attained, namely U(xR, α(xR))

 This shortfall can be averaged over a number of such situations, to 
obtain the decision maker’s average loss in terms of foregone utility

 U(x, α(x)) does not necessarily correspond to a standard statistical 
metrics, such as RMSFE
o E.g., if one forecasting method has a lower (or zero) bias but higher 

average squared error than a second one, clients with different goals 
or preferences may disagree on which of the two techniques is “best”
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 A decision problem consists of the following components:

 For point forecasts, the decision maker’s optimal action function 
α(·) is given by:

 Assume that max U(·, ·) has interior solutions α(xF), and also that it 
satisfies the following conditions on its second and cross-partial 
derivatives, which ensure that α(xF) is unique and increasing in xF:

 The “loss” arising from a forecast xF, when x is realized to be xR, is 
the loss in utility or profit due to the imperfect prediction
o The amount by which utility falls short of what it would have been if 

the decision maker had instead exactly foreseen the realized value xR
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 We define the point-forecast/point-realization loss function
induced by the decision problem as

o In defining the loss, realized utility is compared to what would have 
been if the forecast had been the realized value, and not with what 
utility would be if the realization had been the forecast, U(xF, α(xF))

 Therefore there is no reason why L(xR, xF) should necessarily be 
symmetric in xR and xF

 Under our assumptions, the loss function L(xR, xF) satisfies the 
following properties:

The “loss” arising from a forecast xF, when x is realized to be xR, 
is the loss in utility or profit due to the imperfect prediction
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 These properties generalize in interesting ways to density 
forecasting, see Granger and Machina (2006)
o Whereas a point forecast xF conveys information on the general 

“location” of x, it conveys no information as to x’s potential variability
o Forecasters who seek to formally communicate their own extent of 

uncertainty, or alternatively, who seek to communicate their 
knowledge of the stochastic mechanism that generates x, would 
report a distribution forecast FF, e.g., the CFD over the interval X

o A decision maker receiving a distribution forecast, and who seeks to 
maximize expected utility or expected profits, would have an optimal 
action function α(·) and loss functions defined by:

 For point forecasts, the optimal action function α(·) satisfies the 
first-order conditions:
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 In practice, loss functions are typically not derived from an under-
lying decision problem, but rather are postulated exogenously

 Because decision-based loss functions inherit certain necessary 
properties, it is worth asking precisely when a given loss function 
(or functional form) can or cannot be viewed as being derived from 
an underlying decision problem
o When they can, it is then worth asking about the restrictions this loss 

function implies about the underlying utility function or constraints
o When they cannot, one wonders of the rationality of decision-makers

 Granger and Machina (2006, JoE) demonstrated that for an 
arbitrary loss function L(·, ·), the class of objective functions that 
generate L(·, ·) has the following specification:

for some function f (·): X →R1 and monotonic function g(·): A → X

The standard, rationality properties of loss functions impose 
restrictions on the structure of the underlying loss functions
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o This theorem states that an objective function U(x,α) and choice space 
A are consistent with the loss L(xR, xF) if and only if they can be 
obtained from the function − L(xR, xF) by one or both of the two types 
of transformations (called “inessential”)

o These consist of either transforming the action monotonically or of  
adding some quantity f(x) that does not depend on the optimal action

 Therefore the relationship between decision makers’ loss functions 
and their underlying decision problems is tight but far from unique

 The most frequently used loss function in statistics is unquestio-
nably the squared-error form:

which satisfies standard properties
 It must be that for an arbitrary squared-error function with k > 0, 

an objective function U(·, ·): X × A →R1 with strictly monotonic 
optimal action α(·) will generate LSq(·, ·) as its loss iff:

The relationship between decision makers’ loss functions and 
their underlying decision problems is tight but far from unique
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for some function f (·): X → R1 and monotonic function g(·): A → X
 Utility functions of this form are not particularly standard!
 One property is that changes in the level of the choice variable α do 

not affect the curvature (i.e. the second and higher order 
derivatives) of U(x, α) with respect to x, but only lead to uniform 
changes in the level and slope with respect to x
o For any pair of values α1, α2 ∈ A, the difference U(x, α1) − U(x, α2) is an 

affine function of x:

 Another disturbing property is revealed by the canonical form of 
the utility function that leads to a squared loss:

The utility functions recoverable from standard quadratic loss
functions are rather unusual and have odd properties
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o E.g., this implies that when a firm faces a realized output price of x, its 
shortfall from optimal profits due to having planned for an output 
price of xF only depends upon the difference between x and xF (their 
square), and not upon how high or how low the two values are

o Thus, the profit shortfall from having underpredicted a realized 
output price of $10 by one dollar is the same as the profit shortfall 
from having underpredicted a realized price of $2 by one dollar

o This is clearly unrealistic in any decision problem which exhibits 
“wealth effects” or “location effects” in the uncertain variable

o E.g., as a firm could make money if the realized output price was $7, 
but would want to shut down if the realized output price was only $4 
(in which case there would be no profit loss at all from having 
underpredicted the price by $1)

 One argument for the squared-error form is that if the forecast 
errors xR - xF are not too big then this functional form is the natural 
second-order approximation to any smooth loss function that 
exhibits the necessary properties stated earlier

 However, this argument is fallacious
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o The figure shows the level 
curves of some smooth loss 
L(xR, xF), along with the region 
where |xR - xF|  some small , 
a constant-width band about 
the 45° line

o This region does not constitute
a small neighborhood in R2, 
even as  → 0

o The 2nd order approximation 
to L(xR, xF) when xR and xF are 
both small and approximately 
equal to each other is not the 
same as the 2nd order 
approximation to L(xR, xF) when xR and xF are both large

o Legitimate 2nd approx. can only be taken in over small neighborhoods of 
points in R2, and not over bands (even narrow bands about the 45◦ line

o The “quadratic approximation” LSq(xR, xF) ≡ k (xR - xF)2 over such bands 
is not justified by Taylor’s theorem
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