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Differentiability and continuity (1/2) 
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A function f(x) is continuous at 𝑥0 (a point in the domain of the
function) if for any sequence 𝑥𝑛 , f(𝑥𝑛) converges to f(𝑥0). We
say that a function is continuous if it is continuous in any point of
its domain.

Continuity (at a point) is a necessary but not sufficient
condition for differentiability.

Example of a function 
that is NOT continuous



Differentiability and continuity (2/2) 
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A function f is differentiable at 𝑥0 if the limit

exists and is the same for each sequence ℎ𝑛 which converges to 0.

If a function is differentiable at every 𝑥0 in its domain we say that
the function is differentiable

lim
ℎ𝑛→0

𝑓 𝑥0+ℎ𝑛 −𝑓(𝑥0)
ℎ𝑛

Example of a function 
that is continuous but 

NOT differentiable 

No derivative 
at x0=0



Higher order derivatives 
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The derivative of a function f is often called the first derivative
of f. If f ’ is also differentiable, we can differentiate f ’ to get the
second derivative, f ’’. The derivative of f ’’ (if it exists) is called
the third derivative of f and so on. Typically, for our applications
first and second derivatives are enough, bur higher-order
derivatives may be computed

▪ For example, consider the function 𝑓 𝑥 = 2𝑥3 + 6𝑥2

▪ The first derivative is 𝑓′ 𝑥 = 6𝑥2 + 12𝑥

▪ The second derivative is the derivative of f ’, that is 
𝑓′′ 𝑥 = 12𝑥 + 12

▪ The third derivative is 𝑓′′′ 𝑥 = 12

▪ Derivatives from the fourth onwards are equal to zero



Linear approximation and differentials (1/4)
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▪ Linear functions are very easy to manipulate: therefore it is 
natural to try to find a “linear approximation” to a given 
function

▪ Consider a function f(x) that is differentiable at 𝑥 = 𝑥0

▪ The tangent to the graph at (𝑥0, 𝑓(𝑥0)) follows the equation 

y= 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 for x close to 𝑥0

▪ Therefore, a linear approximation of the function f around 
𝑥0 is given by 

𝑓(𝑥) ≅ 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 for x close to 𝑥0

or ∆𝑦 ≅ 𝑓′ 𝑥0 ∆𝑥 provided that ∆𝑥 is small

Differential of the function f at 𝑥0



Linear approximation and differentials (2/4)
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▪ The differential is NOT 
the actual increment in 
y if x is changed to 𝑥 +
∆𝑥 but rather the 
change in y that would 
occur if y continued to 
change at the fixed rate 
f’(x) as x changes to 𝑥 +
∆𝑥



Linear approximation and differentials (3/4)
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▪ The less is the slope of f, the more precise is the 
approximation; in addition, the larger is ∆𝑥, the less precise 
the approximation

▪ We shall see this point in more depth with an example: 
consider the function 𝑦 = ln(𝑥)

▪ Starting from 𝑙𝑛 10 = 2.3 compare the actual change in y
given a certain change in x with its linear approximation that 

is, ∆𝑦 ≈
1

𝑥0
∆𝑥

0.1 0.5 1 5 10 100

Actual Change 0.0100 0.0488 0.0953 0.4055 0.6931 2.3979

Linear Approximation 0.0100 0.0500 0.1000 0.5000 1.0000 10.0000

Size of the "mistake" 0.0000 0.0012 0.0047 0.0945 0.3069 7.6021

  



Linear approximation and differentials (4/4)
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▪ Note: a change ∆𝑥 = 100 is quite big if we are at 𝑥0 = 10, 
leading to a rather imprecise approximation (see previous 
slide)

▪ But what if we are at 𝑥0 = 10000? 

▪ Starting from ln 10000 = 9.20 compare the actual change in 
y given a certain change in x with its linear approximation 

that is, ∆𝑦 ≈
1

𝑥0
∆𝑥

▪ Now ∆𝑥 = 100 can be considered small enough to lead to a 
quite accurate approximation

0.1 0.5 1 5 10 100

Actual Change 0.0000 0.0000 0.0001 0.0005 0.0010 0.0100

Linear Approximation 0.0000 0.0001 0.0001 0.0005 0.0010 0.0100

Size of the "mistake" 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

  



Polynomial Approximations (1/2)
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▪ If approximations provided by linear functions are not 
sufficiently accurate it is natural to try quadratic appro-
ximations or approximations by polynomials of higher order

▪ The quadratic approximation to 𝑓(𝑥) about 𝑥 = 𝑥0 is 

𝑓 𝑥 ≈ 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 +
1

2
𝑓′′(𝑥0) 𝑥 − 𝑥0

2

▪ More generally, we can approximate 𝑓(𝑥) about 𝑥 = 𝑎 by an 
nth polynomial (the nth-order Taylor polynomial)

▪ However, typically linear or quadratic approximations are 
sufficient in most of the applications we are interested in



Polynomial Approximations (2/2)
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▪ Consider the function 𝑓 𝑥 = 𝑥5and see what happens when 
we try to approximate it around 2 with linear vs. quadratic 
approximations:

▪ Other example: 𝑓 𝑥 = ln(𝑥) to be approximated around 1 
(recall that 𝑓 1 = 𝑙𝑛 1 = 0)

∆x 0.1 0.2 0.3 0.4 0.5

Actual change 8.84101          19.53632        32.36343        47.62624        65.65625        

Linear Approximation 8.00000          16.00000        24.00000        32.00000        40.00000        

Quadratic Approximation 8.80000          19.20000        31.20000        44.80000        60.00000        

∆x 0.1 0.2 0.3 0.4 0.5

Actual change 0.09531          0.18232          0.26236          0.33647          0.40547           

Linear Approximation 0.10000          0.20000          0.30000          0.40000          0.50000           

Quadratic Approximation 0.09500          0.18000          0.25500          0.32000          0.37500           



Natural exponential functions (1/5)
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▪ Consider the following function:

𝑓 𝑚 = 1 +
1

𝑚

𝑚

▪ When m increases towards infinity, 𝑓 𝑚 will converge to 
2.71828… ≡ 𝑒 m/f(m)

1 2

2 2.25

3 2.37037

4 2.44141

5 2.48832

…

100 2.70481

1000 2.71692

100000 2.71827

10000000 2.71828

𝑒 ≡ lim
𝑚→∞

1 +
1

𝑚

𝑚

Heuristic proof 
(if interested 
look at Chang, 
chapter 10)



Natural exponential functions (2/5)
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▪ Why do we care?

▪ In economics and finance, the number e carries a special 
meaning, as it can be interpreted as the result of a special 
process of interest compounding, that is, continuous 
compounding

▪ Suppose that we invest 1 euro today and we earn an annual 
nominal interest of 100% (just for simplicity, we shall 
consider something more reasonable in a minute); clearly if 
the interest is compounded once a year, at the end of the year 
we will get 2 euros:

𝑉 1 = 1 +
1

1

1



Natural exponential functions (3/5)
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▪ Alternatively, if the interest is compounded semi-annually, we 
will get  

▪ More generally, 

▪ Therefore, if we increase the frequency of compounding to 
infinity, we know from the previous slide that we will earn 
euro 1 x e = 2.718

▪ This result can be generalized in three ways: 

▪ (1) More years of compounding

▪ (2) Principal different from 1 euro

▪ (3) Nominal interest rate different from 100%

𝑉 2 = 1 + 50% 1 + 50% = 1 +
1

2

2

𝑉 𝑚 = 1 +
1

𝑚

𝑚



Natural exponential functions (4/5)
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▪ (1) and (2) are trivial to implement 

▪ Simply, the amount of money that one will have after t years 
with an annual rate of 100% continuously compounded is 
equal to 𝐴𝑒𝑡 , where A is the capital invested at the beginning

▪ Suppose now that we want to feature an annual interest rate r 
= 5%

▪ We can manipulate the formula to get 

▪ With continuous compounding we get 

𝑉 𝑚 = 𝐴𝑒𝑟𝑡

𝑉 𝑚 = 𝐴 1 +
𝑟

𝑚

𝑚/𝑟 𝑟𝑡



Natural exponential functions (5/5)
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Natural logarithmic functions (1/2)
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▪ The inverse of the natural exponential function is the natural 
logarithmic function, 𝑦 = 𝑙𝑛𝑥



Natural logarithmic functions (2/2)
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▪ Sometimes economists prefer to represent (and study) a 
function 𝑦 = 𝑓(𝑥) in log-log terms 

▪ This means that they apply a change to the variables such that 

Y= ln(𝑦) and  = ln(𝑥); therefore 𝑥 = 𝑒𝑋 and 
𝑑𝑥

𝑑𝑋
= 𝑒𝑋 = 𝑥

▪ Hence, in XY-coordinates, f becomes 𝑌 = ln 𝑓 𝑥 = 𝑙𝑛𝑓 𝑒𝑋 ≡
𝐹 𝑋

▪ The slope of the graph in the log-log terms is

% change of a 
function f 
relative to a % 
change of x

elasticity



A primer on integration (1/7)
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▪ Integration is the “inverse operator” vs. differentiation 

▪ If differentiation of a given primitive function F(x) yields the
derivative f(x) then we can integrate f(x) to find F(x)

▪ The function F(x) is referred to as the integral of the function
f(x)

▪ Importantly, while any primitive function has a unique
derivative, the reverse is not true: if F(x) is an integral of f(x),
then also F(x) plus any constant is an integral of f(x) (the
derivative of a constant is zero!)

▪ Standard notation for the integration of f(x) with respect to x
is 𝑓׬ 𝑥 𝑑𝑥

INTEGRAND



A primer on integration (2/7)
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▪ Given that there are precise rules of differentiation, we can 
also develop a set of rules of integration

▪ For instance, ׬𝑥3𝑑𝑥 =
1

4
𝑥4 + 𝑐



A primer on integration (3/7)
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▪ As there are some rules of derivation we can also develop a 
set of rules of integration

▪ For instance, ׬(𝑥3+𝑥 + 1)𝑑𝑥 =
1

4
𝑥4 +

1

2
𝑥2 + 𝑥 + 𝑐

▪ For instance, 2׬𝑥2𝑑𝑥 = 2
1

3
𝑥3 + 𝑐

▪ For instance, 3׬𝑥2𝑑𝑥 = 3
1

3
𝑥3 + 𝑐 = 𝑥3 + 𝑐



A primer on integration (4/7)
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▪ This is the integral calculus counterpart for the chain rule

▪ For example, find 8׬𝑒2𝑥+3𝑑𝑥

▪ Let 𝑢 = 2𝑥 + 3; then 
𝑑𝑢

𝑑𝑥
= 2 or 𝑑𝑥 =

𝑑𝑢

2



A primer on integration (5/7)
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▪ For instance, find ׬ 𝑙𝑛𝑥 𝑑𝑥

▪ Note that here we cannot use the logarithmic rule! Indeed, 

that rule applies to integrand 
1

𝑥

▪ Hence, let 𝑣 = 𝑙𝑛𝑥, implying 𝑑𝑣 =
1

𝑥
𝑑𝑥 and also let u=x



A primer on integration (6/7)
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▪ Till now we have discussed indefinite integrals: they yield 
no definite numerical result

▪ For a given indefinite integral of a continuous function f(x),

if we choose two values of x in the domain a, and b, a<b, then

▪ This is called definite integral of f(x) from a to b; a and b are 
the lower and upper limit of integration, respectively

▪ We write 



A primer on integration (7/7)
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▪ Every definite integral gives a definite numerical result

▪ This value can be interpreted to be the area under the graph 
of continuous function 𝑦 = 𝑓(𝑥) over the [a, b]  interval inside 
its domain 

APPROXIMATION OF 
THE AREA UNDER 

f(x)

CONTINUOUS 
COUNTERPART OF 

SUMMATION



Appendix: Bond Mathematics (1/8)
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▪ A bond is a security issued with a fixed “face value” 
(redemption value)

▪ Bonds feature a maturity date at which point the principal is 
repaid to the holder of the security

▪ Bonds pay fixed periodic amounts of interest (coupons) (but 
ZCB, zero coupon bonds, are instead purchased at discount vs. 
face value)

▪ Their market value 
differs from their face 
value depending on 
the coupon rate and 
how it compares with 
current market rates



Appendix: Bond Mathematics (2/8)
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▪ The yield-to-maturity of a bond is the internal rate of return 
implied by a certain coupon, i.e., the rate of discount that 
equates the discounted value of coupons and final payment to 
today’s market price 

▪ The yield is inversely related to the price

▪ Suppose that you buy a bond with face value 100 Eur and 
coupon of 5% paid each year, which matures in 3 years from 
now and whose price today is 96 Euro (for simplicity we 
assume that last coupon has been just paid) 

96 =
5

1 + 𝑦𝑖𝑒𝑙𝑑
+

5

(1 + 𝑦𝑖𝑒𝑙𝑑)2
+

105

(1 + 𝑦𝑖𝑒𝑙𝑑)3

▪ The yield-to-maturity is the effective rate of return of a bond 
under the assumption that coupons are reinvested at the 
same yield-to-maturity 

YIELD= 
6.5%



Appendix: Bond Mathematics (3/8)
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▪ It is easy to see that the 
relationship between yield and 
price is an inverse one

▪ If price increases to 102 Euro, 
yield decreases to 4.27%



Appendix: Bond Mathematics (4/8)
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▪ For simplicity earlier we have assumed that the coupon has 
been just paid

▪ If this is not the case, i.e., when we buy the bond between two 
coupon dates, “clean” and “dirty” price are different, because 
the seller is entitled to receive part of the coupon 

▪ The dirty price will be the clean price plus the “accrued 
interest”, that is calculated as 



Appendix: Bond Mathematics (5/8)
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▪ In order to understand the risk of a bond, we need to measure 
how sensitive the bond price is to changes in yield 

▪ The Macaulay duration of a bond is the sum of the present 
values of each cash flow divided by the dirty price of the 
bond, weighted by the time when it occurs

▪ It represents a measure of the average life of the bond

𝐷 =

σ𝑘=1
𝑛 𝑡𝑘

𝐹𝑡𝑘
(1 + 𝑦)𝑡𝑘

𝑃

▪ The modified duration is instead equal to 

𝑀𝐷 =
𝐷

1 + 𝑦

Cash flows 

y is the 
yield-to-
maturity
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▪ Look at the mathematical meaning of the two:

▪ 𝑃 = σ𝑘=1
𝑛 𝐹𝑡

(1+𝑦)𝑡𝑘
so that its derivative is

σ𝑘=1
𝑛 −𝑡𝑘

𝐹𝑡

(1+𝑦)𝑡𝑘+1
= −σ𝑘=1

𝑛 𝑡𝑘
𝐹𝑡

1+𝑦 𝑡𝑘+1
= −𝑀𝐷 × 𝑃

▪ Therefore, MD can be used to approximate the (%) change in 
the price for a certain (small) change in the yield exactly as 
we discussed in the section about differentials

▪ Exploiting the fact that we know that for a function f(x), the 
linear approximation is ∆𝑓(𝑥) ≈ 𝑓′(𝑥)∆𝑥, we get that 

𝑑𝑃 ≈ −𝑴𝑫𝒙𝑷𝑥∆𝑦

𝑑𝑃

𝑃
≈ −𝑀𝐷𝑥∆𝑦



Appendix: Bond Mathematics (7/8)

31One Variable Calculus: Foundations and Applications 

▪ Because the relationship between yield and price is non-
linear, we may find it convenient to approximate it with a 
quadratic Taylor expansion 

▪ Convexity measures the degree of the curvature in the 
relationship between prices and yields   

𝐶 = ෍

𝑘=1

𝑛

(𝑡𝑘 + 𝑡𝑘
2)

𝐹𝑡
(1 + 𝑦)𝑡𝑘

𝑃

▪ We can then approximate the % change of price for a small 
change in yield by using

𝑑𝑃

𝑃
≈ −𝑀𝐷𝑥∆𝑦 +

1

2

𝐶

(1 + 𝑦)2
∆𝑦2
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▪ Play with the excel sheet provided on the course web page to 
understand how duration and convexity interact with time-
to-maturity, coupon rate, coupon frequency, etc. 

▪ Some useful excel functions for bonds are: 

▪ PRICE (to get the bond clean price of a security paying 
periodic interest) [PREZZO in ITA]

▪ YIELD (to compute the yield to maturity of a security 
paying periodic interest) [REND in ITA]

▪ ACCRINT (compute accrued interest) 
[INT.MATURATO.PER in ITA]


