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Differentiability and continuity (1/2)

A function f(x) is continuous at x, (a point in the domain of the

function) if for any sequence {x,}, f{x,,) converges to f(x,). We
say that a function is continuous if it is continuous in any point of
its domain.

Continuity (at a point) is a necessary but not sufficient
condition for differentiability.

Example of a function
that is NOT continuous
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Differentiability and continuity (2/2)

A function fis differentiable at x if the limit

lim f(xo+hn)—f(xo)
h,—0 hn

exists and is the same for each sequence {h,,} which converges to 0.

If a function is differentiable at every x; in its domain we say that
the function is differentiable

Example of a function

that is continuous but
NOT differentiable

No derivative
at xo=0

The graph of f(x)= |x].
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Higher order derivatives

The derivative of a function fis often called the first derivative
of f. If f” is also differentiable, we can differentiate f’ to get the
second derivative, f”. The derivative of f” (if it exists) is called
the third derivative of f and so on. Typically, for our applications
first and second derivatives are enough, bur higher-order
derivatives may be computed

= For example, consider the function f(x) = 2x3 + 6x?2

= The first derivative is f'(x) = 6x? + 12x

= The second derivative is the derivative of f, that is
f'"(x) =12x + 12

= The third derivative is f'"'(x) = 12

= Derivatives from the fourth onwards are equal to zero
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Linear approximation and differentials (1/4)

Linear functions are very easy to manipulate: therefore it is
natural to try to find a “linear approximation” to a given

function

Consider a function f(x) that is differentiable at x = x

The tangent to the graph at (x,, f (xy)) follows the equation

y= f(xo) + f'(xy)(x — xo) forxclose to x,

Therefore, a linear approximation of the function f around

X is given by

f(x) = f(xg) + f'(xg)(x — xp) for x close to x,

or Ay =|f"(xy)Ax

provided that Ax is small

N

Differential of the function fat x
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Linear approximation and differentials (2/4)

= The differential is NOT
the actual increment in
yif xis changed to x +
Ax but rather the
change in y that would
occur if y continued to

change at the fixed rate — x.; - 1

f(x)asxchangestox + poure A geometric representation of the differential.
Ax

Rules for Differentials
d(af + bg) =adf+5dg (a and b are constants)
d(fg) = gdf + f dg

d(i) 89/ — 198 (4 4 0)
g g
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Linear approximation and differentials (3/4)

= The less is the slope of f, the more precise is the

approximation; in addition, the larger is Ax, the less precise

the approximation

= We shall see this point in more depth with an example:

consider the function y = In(x)

= Starting from In(10) = 2.3 compare the actual change in y
given a certain change in x with its linear approximation that

. 1
is, Ay ~ — Ax
X0
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AX 0.1 0.5 1 5 10 100
Actual Change 0.0100| 0.0488| 0.0953| 0.4055| 0.6931) 2.3979
Linear Approximation 0.0100/ 0.0500{ 0.1000{ 0.5000| 1.0000f 10.0000
Size of the "mistake" 0.0000| 0.0012| 0.0047| 0.0945| 0.3069 7.6021
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Linear approximation and differentials (4/4)

= Note: a change Ax = 100 is quite big if we are at x, = 10,
leading to a rather imprecise approximation (see previous

slide)
= Butwhatif we are at x, = 100007

= Starting from In(10000) = 9.20 compare the actual change in
y given a certain change in x with its linear approximation

. 1
thatis, Ay = x—Ax
0

= Now Ax = 100 can be considered small enough to lead to a
quite accurate approximation

AX 0.1 0.5 1 5 10 100
Actual Change 0.0000{ 0.0000| 0.0001| 0.0005| 0.0010| 0.0100
Linear Approximation 0.0000{ 0.0001| 0.0001| 0.0005| 0.0010| 0.0100
Size of the "mistake” 0.0000{ 0.0000| 0.0000{ 0.0000] 0.0000{ 0.0000
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Polynomial Approximations (1/2)

[f approximations provided by linear functions are not

sufficiently accurate it is natural to try quadratic appro-
ximations or approximations by polynomials of higher order

1
f(x) = fxo) + f (%) (x — x0) + Ef”(xo)(x

The quadratic approximation to f (x) about x = x; is

- xo)z

More generally, we can approximate f(x) aboutx = a byan

nth polynomial (the nth-order Taylor polynomial)

Approximation to f(x) about z = a:

" (n)
1@ e L0@
2! n!

f'a)

f = @)+

(x —a)+

(x —a)”

However, typically linear or quadratic approximations are

sufficient in most of the applications we are interested in
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Polynomial Approximations (2/2)

= Consider the function f(x) = x°and see what happens when
we try to approximate it around 2 with linear vs. quadratic

approximations:
Ax 0.1 0.2 0.3 0.4 0.5
Actual change 8.84101 19.53632 32.36343 47.62624 65.65625
Linear Approximation 8.00000 16.00000 24.00000 32.00000 40.00000
Quadratic Approximation 8.80000 19.20000 31.20000 44.80000 60.00000

= QOther example: f(x) = In(x) to be approximated around 1
(recall that f(1) = In(1) = 0)
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AX 0.1 0.2 0.3 0.4 0.5

Actual chan ge 0.09531 0.18232 0.26236 0.33647 0.40547

Linear Approximation 010000| 020000  030000|  040000|  0.50000

Quadratic Approximation 0.09500 0.18000 0.25500 0.32000 0.37500
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Natural exponential functions (1/5)

= Consider the following function:

1 m
o =(1+2)

m

= When m increases towards infinity, f (m) will converge to

2.71828 ... = ¢ m/f(m)
1 2
| 1\ 2 2.25
e = lim {1+— 3 2.37037
M —o00 m

4 2.44141
5 2.48832

Heuristic proof
(if interested 100 2.70481
look at Chang, 1000 2.71692
Chapter 10) 100000 2.71827
10000000 2.71828
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Natural exponential functions (2/5)

= Why do we care?

= In economics and finance, the number e carries a special
meaning, as it can be interpreted as the result of a special
process of interest compounding, that is, continuous
compounding

= Suppose that we invest 1 euro today and we earn an annual
nominal interest of 100% (just for simplicity, we shall
consider something more reasonable in a minute); clearly if
the interest is compounded once a year, at the end of the year

we will get 2 euros:
1 1
V(l) = (1 + I)
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Natural exponential functions (3/5)

Alternatively, if the interest is compounded semi-annually, we

- 2
willget oy — (1 4+ 509%) (1 + 50%) = (1 n %)

More generally, 1\
V(im) = (1 + —)

m

Therefore, if we increase the frequency of compounding to
infinity, we know from the previous slide that we will earn
euro 1 xe=2.718

This result can be generalized in three ways:
" (1) More years of compounding
= (2) Principal different from 1 euro

* (3) Nominal interest rate different from 100%

13
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Natural exponential functions (4/5)

= (1) and (2) are trivial to implement

= Simply, the amount of money that one will have after t years
with an annual rate of 100% continuously compounded is
equal to Ae!, where A is the capital invested at the beginning

= Suppose now that we want to feature an annual interest rate r
= 504

= We can manipulate the formula to get

L \myr]Tt
V(m)=A[(1+—) ]

m

= With continuous compounding we get
V(m) = Ade™

14
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Natural exponential functions (5/5)

A Survey of the Properties of e*
The natural exponential function
flx)=¢€ (e =2.71828...)

is differentiable and strictly increasing for all real numbers x. In fact,

fy=e = fx)=fx)=¢
The following properties hold for all exponents s and r:
(a) ese: - EJ-H' (b) es!:e.' — e:—! (C) (85): _ E.‘a‘.’

FIGURE 8.3 The natural exponential function.
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Natural logarithmic functions (1/2)

= The inverse of the natural exponential function is the natural
logarithmic function, y = Inx

hx=y & ¢ =3 &' = yand Ine = x

Useful Rules for In

In(xy) =lnx+Iny (x and y are positive) (a)

(The logarithm of a product is equal to the sum of the logarithms of
each of the factors.)

x
In S Inx =Iny (x and y are positive) (b)
(The logarithm of a quotient is equal to the difference between the
logarithms of its numerator and denominator.)
Inx” = plnx  (x is positive) (c)

(The logarithm of a power is equ;al to the exponent muitiplied by the
logarithm of the base.)

Inl =0, Ine = 1. x = e~ and Ine* = x (d)
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Natural logarithmic functions (2/2)

= Sometimes economists prefer to represent (and study) a
function y = f(x) in log-log terms

= This means that they apply a change to the variables such that

= In(y) and X = In(x); therefore x = e* andj—f{ =eX =x

= Hence, in XY-coordinates, fbecomes Y = In f(x) = Inf (e*X) =
F(X)

= The slope of the graph in the log-log terms is

oy &L % change of a
dx f (x) function f
/ relative to a %
df(x)x _Af x =

change of x

L X 3f/é£ :
dr  fx) aAx f(x) |fx)/ x° Y
elasticity
17
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A primer on integration (1/7)

= Integration is the “inverse operator” vs. differentiation

= If differentiation of a given primitive function F(x) yields the
derivative f(x) then we can integrate f(x) to find F(x)

The function F(x) is referred to as the integral of the function
fx)

* Importantly, while any primitive function has a unique
derivative, the reverse is not true: if F(x) is an integral of f{x),
then also F(x) plus any constant is an integral of f(x) (the
derivative of a constant is zero!)

= Standard notation for the integration of f{x) with respect to x

iSff@C%dx LF(x)=f(x) = [f(x)dx=F(x)+c

INTEGRAND

One Variable Calculus: Foundations and Applications
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A primer on integration (2/7)

= (Given that there are precise rules of differentiation, we can
also develop a set of rules of integration

Rule I (the power rule)

" — I 1ol .
f:a: a‘x—”+1,r + ¢ (n+ —1)

. 1
" Forinstance, [ x*dx = Jx* + ¢

Rule I1 (the exponential rule) Rule IIT  (the logarithmic rule)

fe-l'dx=€-\'+f fidx=lnx+ﬂ (x > 0)
Rule IIa Rule Illa
ff’(x)ﬁ’f{”dx=€f”‘}+f ff((x;dx-lnf(x]+<: [f(x) > 0]

19
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A primer on integration (3/7)

Rule IV (the integral of a sum) The integral of the sum of a finite number of
functions 1s the sum of the integrals of those functions. For the two-function case,
this means that

f[f(x] +g(x)] dx = ff{x) dx + fg(x) dx

= Forinstance, [(x3+x + 1)dx = ix‘* +%x2 +x+c

Rule V (the integral of a multiple) The integral of & times an integrand (k&
being a constant) is & times the integral of that integrand. In symbols,

fkf(x}dx=kff{x)dx
= For instance, [ 2x°dx = 2§x3 +c
= For instance, [ 3x%dx = 3§x3 +c=x34+c

20
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A primer on integration (4/7)

Rule VI (the substitution rule) The integral of f(u) du/dx) with respect to
the variable x is the integral of f(u) with respect to the variable u:

ff{ ——d.:-:~ff u) du = F(u) + c

where the operation {du has been substituted for the operation | dx.

= This is the integral calculus counterpart for the chain rule

= For example, find [ 8e?**3dx

U Letu=2x+3;thenZ—Z=20rdx=C;—u

fE gy = fﬂe—“4f€”du=4e”+c=4ez'“+3+f
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A primer on integration (5/7)

Rule VII (integration by parts) The integral of v with respect to u 1s equal to
uv less the integral of u with respect to v:

fﬂdu=u1:— fudﬁ

= For instance, find [ Inx dx

= Note that here we cannot use the logarithmic rule! Indeed,

. . 1
that rule applies to integrand -

= Hence, let v = Inx, implying dv = idx and also let u=x

flnxdx=jﬁdu=uﬂ—-fudu

xln,:-;—*fd*ra::xln,r-,t:-’r-c:x(lnx—1)+f

22
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A primer on integration (6/7)

Till now we have discussed indefinite integrals: they yield
no definite numerical result

For a given indefinite integral of a continuous function f{(x),

ff(x}dx = F(x)+c

if we choose two values of x in the domain a, and b, a<b, then
[F(b) +¢c] — [F(a) + ¢] = F(b) — F(a)

This is called definite integral of f(x) from a to b; a and b are
the lower and upper limit of integration, respectively

We write ff Ydx = F(x) +F(b)—F(ﬂ)

23
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A primer on integration (7/7)

= Every definite integral gives a definite numerical result

= This value can be interpreted to be the area under the graph
of continuous function y = f(x) over the [a, b] interval inside

its domain

H
A* =3 f(x;)dx, )
i= : - f,/'f
APPROXIMATION OF A | '“’7—7;;‘(1]
THE AREA UNDER | E i
O 9 ! U O T | ¥
f(x) i A
H {b)
: : CONTINUOUS
nlinl- Z f(xi} .ﬂ_?{, - ”1_11 A* = area A COUNTERPART OF
e ' SUMMATION

24

One Variable Calculus: Foundations and Applications



Appendix: Bond Mathematics (1/8)

= Abondis a security issued with a fixed “face value”
(redemption value)

= Bonds feature a maturity date at which point the principal is
repaid to the holder of the security

= Bonds pay fixed periodic amounts of interest (coupons) (but
ZCB, zero coupon bonds, are instead purchased at discount vs.

face value)

Final payment of
face value and
last coupon

= Their market value
differs fr()m their face Stream of regular coupons over

] Initial the life of the bond
Value dependlng on purchase

the couponrateand | “* | [ | 1 | T
how it compares with
current market rates

25
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Appendix: Bond Mathematics (2/8)

* The yield-to-maturity of a bond is the internal rate of return
implied by a certain coupon, i.e., the rate of discount that
equates the discounted value of coupons and final payment to
today’s market price

= The yield is inversely related to the price

= Suppose that you buy a bond with face value 100 Eur and
coupon of 5% paid each year, which matures in 3 years from
now and whose price today is 96 Euro (for simplicity we
assume that last coupon has been just paid)

5 105 YIELD=

96 =
1 + yield * (1 + yield)? * (1 + yield)3| 6-5%

= The yield-to-maturity is the effective rate of return of a bond
under the assumption that coupons are reinvested at the

same yield-to-maturity
One Variable Calculus: Foundations and Applications
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Appendix: Bond Mathematics (3/8)

= Jtis easy to see that the
relationship between yield and

price is an inverse one

YIELD GOES W4 F’:_

FPRICE GOFS
DoW N

= If price increases to 102 Euro,

yield decreases to 4.27%

Relationship Description

Coupon Rate = :
At Par Price = 100
Yield to Maturity
Coupon Rate > At a Premium :
P >1
Yield to Maturity ‘Above Par’ rice > 100
Coupon Rate < At a Discount :
<
Yield to Maturity ‘Below Par’ Price < 100

27
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Appendix: Bond Mathematics (4/8)

= For simplicity earlier we have assumed that the coupon has
been just paid

= If this is not the case, i.e.,, when we buy the bond between two
coupon dates, “clean” and “dirty” price are different, because
the seller is entitled to receive part of the coupon

= The dirty price will be the clean price plus the “accrued
interest” that is calculated as

Face Value x Coupon Rate X Day Count Fraction

Per Period ‘

The number of days assumed since the previous coupon date
The total number of days assumed between coupon payments

28
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Appendix: Bond Mathematics (5/8)

= |n order to understand the risk of a bond, we need to measure
how sensitive the bond price is to changes in yield

= The Macaulay duration of a bond is the sum of the present
values of each cash flow divided by the dirty price of the
bond, weighted by the time when it occurs

= Jtrepresents a measure of the average life of the bond

@ » Cash flows

n
B k=1Tk (1+ y)t yis the
b= P yield-to-
maturity
* The modified duration is instead equal to
D
MD = ——
1+y

29
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Appendix: Bond Mathematics (6/8)

= Look at the mathematical meaning of the two:

= P=)r 1 Tyt )tk so that its derivative is

n Fi _ n Ft _

= Therefore, MD can be used to approximate the (%) change in

the price for a certain (small) change in the yield exactly as
we discussed in the section about differentials

= Exploiting the fact that we know that for a function f(x), the
linear approximation is Af (x) =~ f'(x)Ax, we get that

dP ~ —MDxPxAy

P < —MDxA
p - U

One Variable Calculus: Foundations and Applications
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Appendix: Bond Mathematics (7/8)

= Because the relationship between yield and price is non-
linear, we may find it convenient to approximate it with a
quadratic Taylor expansion

= Convexity measures the degree of the curvature in the
relationship between prices and yields
F

n t
Z 1+ y)tk
C —_ (tk + tkz) ( Py)
k=1

= We can then approximate the % change of price for a small
change in yield by using

C Ay?
A+y)2~7

1
— ~ —MDxAy + =
p A8V TS

31
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Appendix: Bond Mathematics (8/8)

= Play with the excel sheet provided on the course web page to
understand how duration and convexity interact with time-
to-maturity, coupon rate, coupon frequency, etc.

= Some useful excel functions for bonds are:

PRICE (to get the bond clean price of a security paying
periodic interest) [PREZZO in ITA]

YIELD (to compute the yield to maturity of a security
paying periodic interest) [REND in ITA]

ACCRINT (compute accrued interest)
[INT.MATURATO.PER in ITA]
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