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 General goals of the course and definition of risk(s)

 Predicting asset returns: discrete vs. continuous 
compounding and their aggregation properties

 Stylized facts concerning asset returns

 A baseline model for asset returns

 Predicting Densities

 Conditional vs. Unconditional Moments and Densities



General goals
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 There are different kinds of risk we care for:
o Market risk is defined as the risk to a financial portfolio from 

movements in market prices such as equity prices, foreign exchange 
rates, interest rates, and commodity prices

o It is important to choose how much of this risk my be taken on (thus 
reaping profits and losses), and how much hedged away

o Liquidity risk comes from a chance to have to trade in markets  
characterized by low trading volume and/or large bid-ask spreads

o Under such conditions, the attempt to sell assets may push prices 
lower, and assets may have to be sold at prices below their 
fundamental values or within a time frame longer than expected

 This course is about risk and prediction
 Risk must be correctly measured in order to select the 

quantity to be borne vs. to be hedged
 Several kinds of risk: market, liquidity (including funding), 

operational, business, credit
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General goals

4

o Operational (op) risk is defined as the risk of loss due to physical 
catastrophe, technical failure, and human error in the operation of a 
firm, including fraud, failure of management, and process errors
 Although it should be mitigated and ideally eliminated in any firm, this 

course has little to say about op risk because op risk is typically very 
difficult to hedge in asset markets

• But cat bonds…

o Op risk is instead typically managed using self-insurance or third-
party insurance

o Credit risk is defined as the risk that a counterparty may become less 
likely to fulfill its obligation in part or in full on the agreed upon date

o Banks spend much effort to carefully manage their credit risk 
exposure while nonfinancial firms try and remove it completely

 Not always risks may be predicted or, even though these are 
predictable, they may be managed in asset markets

 When they are, then we care for them in this course
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Predicting asset returns
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o Business risk is defined as the risk that changes in variables of a 
business plan will destroy that plan’s viability
• It includes quantifiable risks such as business cycle and demand equation 

risks, and non-quantifiable risks such as changes in technology

o These risks are integral part of the core business of firms
 The lines between the different kinds of risk are often blurred; e.g., 

the securitization of credit risk via credit default swaps (CDS) is an 
example of a credit risk becoming a market risk (price of a CDS)

 How do we measure and predict risks? Studying asset returns
 Because returns have much better statistical properties than price 

levels, risk modeling focuses on describing the dynamics of returns

 When risk is quantifiable and manageable in asset markets, 
then we shall predict the distribution of risky asset returns

(discretely compounded) (continuously compounded)
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Predicting asset returns
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 At daily or weekly frequencies, the numerical differences 
between simple and compounded returns are minor

 Simple rates aggregate well cross-sectionally (in portfolios), 
while continuously compounded returns aggregate over time
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o The two returns are typically fairly similar over short time 
intervals, such as daily:

o The approximation holds because                            when x  1
o The simple rate of return definition has the advantage that the 

rate of return on a portfolio is the portfolio of the rates of return
 If  VPF;t is the value of the portfolio on day t so that

 Then the portfolio rate of return is

where                                   is the portfolio weight in asset i



Predicting asset returns
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o This relationship does not hold for log returns because the log 
of a sum is not the sum of the logs

o However, most assets have a lower bound of zero on the price. 
Log returns are more convenient for preserving this lower 
bound in risk models because an arbitrarily large negative log 
return tomorrow will still imply a positive price at the end of 
tomorrow: 

• If we instead we use the rate of return definition, then tomorrow’s 
closing price is                                            so that the price might go negative 
in the model unless the assumed distribution of tomorrow’s return, rt+1, 
is bounded below by -1

o An advantage of the log return definition is that we can 
calculate the compounded return at the K-day horizon simply as 
the sum of the daily returns:

[ ]



Stylized facts on asset returns
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 Asset returns display a few stylized facts that tend to generally apply 
and that are well-known 
o Refer to daily returns on the 

S&P 500 from January 1, 2001,
through December 31, 2010

o But these properties are much 
more general, see below

① Daily returns show weak 
autocorrelation: 

o Returns are almost impossible to predict  from their own past

② The unconditional distribution of daily returns does not follow the 
normal distribution

 At daily or weekly frequencies, asset returns display weak 
serial correlations (in absolute value)

 Returns are not normal and display asymmetries and fat tails



Stylized facts on asset returns
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o The histogram is more peaked around zero than a normal distribution

o Daily returns tend to have more small positive and fewer small 
negative returns than the normal distribution (fat tails)

o The stock market exhibits occasional, very large drops but not equally 
large upmoves

o Consequently, the distribution is asymmetric or negatively skewed



Stylized facts on asset returns
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③ Std. dev. completely dominates the mean at short horizons
o S&P 500: daily mean of 0.0056% and  daily std. dev. of 1.3771%

④ Variance, measured, for example, by squared returns, displays 
positive correlation with its own past

⑤ Equity and equity indices 
display negative correlation 
between variance and mean
returns, the leverage effect

⑥ Correlation between assets 
appears to be time varying

 At high frequencies, the standard deviation of asset returns 
completely dominates the mean which is often not significant

 Squared and absolute returns have strong serial correlations
and there is a leverage effect

 Correlations between asset returns are time-varying



o Correlations appear to increase in highly volatile down markets 
and extremely so during market crashes

 As the return-horizon increases, the unconditional return 
distribution changes and looks increasingly like a normal

 Based on the previous list of stylized facts, our model of asset 
returns will take the generic form:

o zt+1 is an innovation term, which we assume is identically and 
independently distributed (i.i.d.) according to the distribution D(0, 1), 
which has a mean equal to zero and variance equal to one

o The conditional mean of the return, Et[Rt+1], is thus t+1, and the 
conditional variance, Et[Rt+1 - t+1,]2; is 2

t+1

o Often assume t+1 = 0 as for daily data this is a reasonable assumption

A baseline model for asset returns
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 Our general model for asset returns is:



o Notice that D(0, 1) does not have to be a normal distribution
o Our task will consist of building and estimating models for both the 

conditional variance and the conditional mean
• E.g., t+1 = 0 + 1Rt and 2

t+1 = 2
t + (1 - )R2

t

o However, robust conditional mean relationships are not easy to find, 
and assuming a zero mean return may be a prudent choice

 In what sense do we care for predicting return distributions? 

Density prediction
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o Our task will consist of building and estimating models for both the 
conditional variance and the conditional mean
• E.g., t+1 = 0 + 1Rt and 2

t+1 = 2
t + (1 - )R2

t

o However, robust conditional mean relationships are not easy to find, 
and assuming a zero mean return may be a prudent choice

 One important notion in this course distinguishes between 
unconditional vs. conditional moments and/or densitiies

 An unconditional moment or density represents the long-run, 
average, “stable” properties of one or more random variables
o Example 1:  E[Rt+1] = 11% means that on average, over all data, one 

expects that an asset gives a return of 11%

Unconditional vs. Conditional objects
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 Unconditional moments and densities represent the long-run, 
average properties of times series of interest

 Conditional moments and densities capture how our 
perceptions of RV dynamics changes over time as news arrive



o Example 2: E[Rt+1] = 11%  is not inconsistent with Et[Rt+1] = -6% if 
news are bad today, e.g., after a bank has defaulted on its obligations

o Example 3: One good reason for the conditional mean to move over 
time is that Et[Rt+1] =  + Xt, which is a predictive regression
• Recall Homework 2 in Theory of Finance?  Ok, that was a conditional 

mean model written in predictive form

o Example 4: This applies also to variances, i..e, there is a difference 
between Var[Rt+1]  2 and Vart[Rt+1]  2

t+1

o Example 5: Therefore the unconditional density of a  time series 
represents long-run average frequencies in one observed sample

o Example 6: The conditional density describes the expected frequen-
cies (probabilities) of the data based on currently available info

 When a series (or a vector of series) is identically and 
independently (i.i..d. or IID) distributed over time, then the 
conditional objects collapse into being unconditional ones

 Otherwise unconditional ones mix over conditional ones…

Unconditional vs. Conditional objects
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 A relationship btw. a set of variables subject to stochastic shocks

 In general, say g(Yt, X1,t-1, X1,t-2, …, X1,t-J1, …., XK,t-1, …,  XK,t-Jk) = 0 
where all variables are random, subject to random perturbations
o To equal zero, is not that important

o When the relationship g() is sufficiently simple, (call it h()) then
some variables will be explained or predicted by others, Yt = h(X1,t-1, 
X1,t-2, …, X1,t-J1, XK,t-1, …,  XK,t-Jk) or even

Yt = h(X1,t-1, X1,t-2, …, X1,t-J1, …, XK,t-1, …,  XK,t-Jk) + t

where X1,t-1, X1,t-2, …, X1,t-J1, XK,t-1, …,  XK,t-Jk are fixed in repeated
samples

o When h() is so incredibly simple to be almost trivial, then it may be 
represented by a linear function:
Yt = 0 + 11X1,t-1+12X1,t-2+ …+1J1X1,t-J1+ … +K1XK,t-1+ …+ KJKXK,t-Jk+ t

o Recall that linear functions may be interpreted as first-order Taylor 
expansions, in this case of h(X1,t-1, X1,t-2, …, X1,t-J1, …, XK,t-1, …,  XK,t-Jk)

Appendix A: What is an econometric model?
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 In  Yt = h(X1,t-1, X1,t-2, …, X1,t-J1, …, XK,t-1, …,  XK,t-Jk) + t

the properties of the shocks t will matter a lot

 In general terms, we say that t  D(0, Vt-1|t; )
o The zero mean in t  D(0, Vt-1|t; ) is a just a standardization because

any deviations may usually be absorbed by the constant(s), 0

o D( ; ) is a parametric distribution from which the shocks are drawn

o This is where statistics communicates to the model and makes into
an econometric model

o  is the vector or matrix collecting such parameters
• For instance, it is the number of degrees of freedom in a t-student

distribution

o Vt-1|t is a variance-covariance (sometimes «dispersion») matrix known on 
the basis of time t-1 information and valid for time t

o «» does not specify whether there is any dependence structure
characterizing the data, but typically we assume t IID D(0, Vt-1|t; )

Appendix A: What is an econometric model?
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Appendix A: What is an econometric model?
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… 

Oh I care for 
this variable!

For instance, 
FTSE MIB daily

returns
Let me look 
for variables

that explain it

Value of Yt
absent other

effects
Marginal

effect of first 
variable

For instance, 
ECB interest

rates

Marginal effect
of first variable, 
increasing lags

Lagged ECB 
interest rates

j  0

Aggregate 
earning-price

ratio

Lagged aggregate 
earning-price

ratio

To capture omitted variables, 
functional misspecifications, and 

measurement errors


