

Università Commerciale Luigi Bocconi

Lecture 2: Forecasting stock returns (part 2)

Prof. Manuela Pedio

20541– Advanced Quantitative Methods for Asset Pricing and Structuring

Spring 2020

Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy

Rapach, Strauss, Zhou

Review of Financial Studies (2010)

The Power of Forecast Combinations

- Rapach, Strauss, and Zhou (2010, RFS) argue that model uncertainty and instability seriously impair the forecasting ability of individual predictive regression models
- They recommend combining individual forecasts (from 15 variable) because it delivers statistically and economically significant OOS gains relative to the historical average, consistently over time
- Two sources: (i) combining incorporates information from numerous economic variables while substantially reducing forecast volatility; (ii) combination forecasts are linked to the real economy
- To see the intuition behind forecast combination, consider two predictive regression model forecasts: one based on the dividend yield and the other on the term spreads
 - By themselves, they could capture different components of business conditions, and give a number of "false signals" and/or imply an implausible equity risk premium during certain periods
 - If individual forecasts are weakly correlated, an average of the two forecasts should be less volatile and more reliable

The Power of Forecast Combinations

- Equity risk premium forecasts based on combinations are plausible, with distinct local maxima (minima) of the combination forecasts occurring very near NBER-dated business-cycle troughs (peaks)
 - Individual regressions ⇒ forecasts with implausibly large fluctuations, while the historical average ⇒ a forecast that is very "smooth," thereby ignoring fluctuations corresponding to business-cycle fluctuations
- Combination forecasts of the equity premium are also significantly correlated with future growth in a number of macroeconomic variables, including real GDP, real profits, and real net cash flows
- Once more, the OOS gains corresponding to combination forecasts are especially evident during bad growth periods
- The same combinations also generate consistent significant OOS gains when forming combination forecasts of real GDP, real profit, and real net cash flow growth
 - Cochrane (2007, RFS) emphasizes that equity premium forecasts are more plausibly related to macroeconomic risk if equity premium predictors can also forecast business cycles

Forecast Combination Schemes

$$\hat{r}_{c,t+1} = \sum_{i=1}^{N} \omega_{i,t} \hat{r}_{i,t+1}$$

- With one exception (the mean combination forecast) all of the combinations allow the weights to change at each *t*; however, it is typically desirable to have relatively stable combining weights
- The first class uses simple averaging schemes: mean, median, and trimmed mean)
 - The trimmed mean combination sets $\omega_{i,t} = 0$ for the individual forecasts with the smallest and largest values and $\omega_{i,t} = 1/(N 2)$ for the remaining individual forecasts
- The second class of methods is based on Stock and Watson (2004, JEL), where the weights are functions of the historical performance of the individual models over the holdout OOS period

Discount MSFE:

$$\omega_{i,t} = \phi_{i,t}^{-1} / \sum_{j=1}^{N} \phi_{j,t}^{-1} \qquad \phi_{i,t} = \sum_{s=m}^{t-1} \theta^{t-1-s} (r_{s+1} - \hat{r}_{i,s+1})^2$$

Forecast Combination Schemes

- When $\theta = 1$, there is no discounting \Rightarrow optimal combinations by Bates and Granger (1969, ORQ) for the case where the individual forecasts are uncorrelated (OLS is said not to perform well)
- When $\theta < 1$, greater weight is attached to the recent forecast accuracy of the individual models; paper considers $\theta = 0.9$
- Forecast evaluation is performed using Campbell and Thompson's (2008) OOS R²: $R_{OS}^{2} = 1 - \frac{\sum_{k=q_{0}+1}^{q} (r_{m+k} - \hat{r}_{m+k})^{2}}{\sum_{k=q_{0}+1}^{q} (r_{m+k} - \bar{r}_{m+k})^{2}}$
- The OOS R-square measures the reduction in MSPE relative to the historical average forecast
- They also calculate realized utility gains for a mean-variance investor on a real-time basis
 - Investor estimates the variance using a 10-year rolling window
 - Following Campbell and Thompson (2008, RFS), constrain the weight on stocks to lie between 0% and 150% (inclusive) each month
 - The CER can be interpreted as the management fee that an investor would be willing to pay to have access to a model or combination Lecture 2: Forecasting stock returns – Prof. Pedio 6

 The data are standard from Goyal's web site, but because these are quarterly they also use the Investment-to-capital ratio, I/K, the ratio of aggregate (private nonresidential fixed) investment to aggregate capital for the entire economy (as in Cochrane, 1991, JF)

In	dividual pre	dictive reg	gression mod	del forecasts		Combination forecasts			
Predictor	$R^2_{OS}(\%)$	Δ (%)	Predictor	$R^2_{OS}(\%)$	Δ (%)	Combining method	$R^2_{OS}(\%)$	Δ (%)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
		F	Panel A. 196	5:1-2005:4	out-of-sa	mple period			
D/P	0.34*	0.55	LTY	-3.09	2.29	Mean	3.58***	2.34	
D/Y	0.25*	1.41	LTR	0.33	1.30	Median	3.04***	1.03	
E/P	0.36	0.64	TMS	-2.96	5.14	Trimmed mean	3.51***	2.11	
D/E	-1.42	0.58	DFY	-2.72	-0.83	DMSPE, $\theta = 1.0$	3.54***	2.41	
SVAR	-12.97	0.13	DFR	-1.10	0.57	DMSPE, $\theta = 0.9$	3.49***	2.59	
B/M	-2.60	-0.58	INFL	-0.84	1.39				
NTIS	-0.91	0.08	I/K	1.44**	2.80	Mean, CT	3.23***	1.25	
TBL	-2.78	2.60							
		P	anel B. 197	6:1–2005:4	out-of-sai	mple period			
D/P	-5.08	-0.70	LTY	-5.59	-0.89	Mean	1.19*	0.57	
D/Y	-6.22	-0.54	LTR	-0.27	1.43	Median	1.51**	0.53	
E/P	-1.70	0.75	TMS	-7.24	2.08	Trimmed mean	1.23*	0.59	
D/E	-2.26	-1.65	DFY	-2.48	-1.18	DMSPE, $\theta = 1.0$	1.11*	0.54	
SVAR	-22.47	0.06	DFR	-2.14	-0.64	DMSPE, $\theta = 0.9$	1.01^{*}	0.46	
B/M	-4.72	-1.27	INFL	-0.08	0.45				
NTIS	0.10	0.60	I/K	-3.47	-0.85	Mean, CT	1.20^{*}	0.55	
TBL	-7.31	-0.82							

• Only I/K individually "opposes" some resistance to forecast combos

 Tests are implemented using Clark-West (2007, JoE) MSPE-difference test which adjusts standard Diebold Mariano's for nested models Lecture 2: Forecasting stock returns – Prof. Pedio

- While they allow for unequal and time-varying weights, the DMSPE combinations select weights relatively close to the 1/N rule over time
- Some evidence of deterioration of predictive power after the 1970s, but the combinations prove rather resilient
- Via encompassing tests, they demonstrate that combining incurporates useful information from a variety of economic variables $\hat{r}_{t+1}^* = (1 \lambda)\hat{r}_{i,t+1} + \lambda\hat{r}_{j,t+1} \quad 0 \le \lambda \le 1$
 - If $\lambda = 0$, then model *i* forecast encompasses model *j* forecast, as model j does not contain any useful information—beyond that already contained in model and viceversa
- Harvey, Leybourne, and Newbold (1998, JBES) develop a statistic to test the null hypothesis that model *i* forecast encompasses model *j* forecast (H_0 : $\lambda = 0$) against the (one-sided) alternative H_1 : $\lambda > 0$

$$MHLN = [(q - q_0 - 1)/(q - q_0)][\hat{V}(\bar{d})^{-1/2}]\bar{d}$$

$$d_{t+1} = (\hat{u}_{i,t+1} - \hat{u}_{j,t+1})\hat{u}_{i,t+1}$$

$$\bar{d} = [1/(q - q_0)]\sum_{k=q_0+1}^{q} d_{R+k}$$

Lecture 2: Forecasting stock returns – Prof. Pedio

- HLN recommend using the MHLN statistic and the t_{q-q0-1} distribution to assess statistical significance
- Individual predictive regression model forecasts are frequently unable to encompass forecasts from other individual models
- The combinations are able to encompass the forecasts from the individual predictive regressions and other combining methods
- Combination work because they reduce forecast variance and stabilizes the individual forecasts, thereby improving performance in terms of an MSPE metric, as long as the combination forecasts do not have substantial biases

Lecture 2: Forecasting stock returns – Prof. Pedio

TBL

NTIS

Squared forecast bias

DFY

2

× 10⁻⁴

LTY

LTR

1

B/M DFR

substantial biases
 The mean combination has a lower forecast variance vs. all individual predictive regression models and also modest bias

Correlations between equity premium forecasts and growth rates in three macroeconomic variables, 1965:1–2005:4

Combining method	Real GDP growth	Real profit growth	Real net cash flow growth
(1)	(2)	(3)	(4)
Mean	0.28***	0.35***	0.34***
Median	0.17**	0.24***	0.23***
Trimmed mean	0.31***	0.36***	0.35***
DMSPE, $\theta = 1.0$	0.28***	0.35***	0.34***
DMSPE, $\theta = 0.9$	0.34***	0.36***	0.36***

• Combination forecasts of the equity premium are significantly correlated with growth rates in three macroeconomic variable Forecast horizon: one quarter Forecast horizon: four quarters

			_				_	
Combining method	Overall	Good	Normal	Bad	Overall	Good	Normal	Bad
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		Panel	A. Sorting of	on real GD	P growth			
Mean	3.58***	1.82	1.71	6.17***	8.19***	3.07	3.63*	11.58***
Median	3.04***	2.67**	0.39	5.02***	6.99***	12.74***	6.35**	5.23***
Trimmed mean	3.51***	2.25*	1.24	5.94***	8.13***	5.41*	4.01*	10.63***
DMSPE, $\theta = 1.0$	3.54***	1.71	1.56	6.26***	7.87***	2.32	3.15	11.46***
DMSPE, $\theta = 0.9$	3.49***	1.60	1.36	6.33***	5.96***	4.71*	0.27	8.27***

• The OOS gains come from extreme periods, especially bad times

Predictive regressions with timevarying coefficients

Dangl and Halling

Journal of Financial Economics (2012)

OPTIONAL (I.E., NO QUESTIONS ON THIS PAPER IN THE EXAM)

The Key Point

- Not only the evidence in favor of time-varying predictive coefficients is strong (in a Bayesian set up), but this also leads to precisely estimated and persistent economic value
- Dangl and Halling (2012, JFE) evaluate predictive regressions that explicitly consider the time-variation of coefficients in a comprehensive Bayesian framework
 - Time-variation and OOS predictability carry a business cycle meaning
 - Several reasons coefficients might vary over time, e.g., due to changes in regulatory conditions, market sentiment, in monetary policies, in the institutional framework, or in macroeconomic interrelations
- For monthly S&P 500 returns, they report statistical and economic evidence of OOS predictability relative to using the historical mean
- Predictive regression coefficients follow a random walk, which gives the maximum degree of instability; in an appendix they verify that RW thetas outperform stationary AR models in OOS terms
- A Bayesian model averaging (BMA) approach allows to address both parameter uncertainty and the choice (inclusion) of predictors

The Econometric Framework

- The benchmark models with constant coefficients used in the paper are equal to ordinary least squares (OLS) regressions with an extending window
 - In an appendix they show that their methodology also dominates rolling-window OLS regressions
- For each degree of time-variation of coefficients, estimate $2^{k}-1$ dynamic linear models from all possible combinations of predictive variables $r_{t+1} = X'_t \theta_t + v_{t+1}$, $v \sim N(0, V)$ (observation equation).

 $\theta_t = \theta_{t-1} + \omega_t$, $\omega \sim N(0, W_t)$ (system equation)

- They are aware that this implies that coefficients follow a random walk and that they might drift to arbitrarily high or low values, hence causing returns to be non-stationary
- Must impose some structure on the system equation but their results reveal that any deviation from the assumption of no predictability in the shocks on coefficients reduces the predictive power
- If the system variance matrix W_t equals zero, the regression coefficients are constant over time: model nests the specification of constant regression coefficients

The Econometric Framework

- For the time t = 0 specification of the prior $V | D_0 \sim IG[\frac{1}{2}, \frac{1}{2}S_0]$, information, use a **natural conjugate** *g*-prior specification: $\theta_0 | D_0, V \sim N[0, gS_0(X'X)^{-1}]$,
- This is a diffused prior centered around the where null-hypothesis of no-predictability
- *g* serves as the scaling factor that determines $S_0 = \frac{1}{N-1}r'(I-X(X'X)^{-1}X')r$. the confidence assigned to the null-hypothesis of no-predictability
- The forecast of the t+1 return (i.e., the predictive density) is found by integrating the conditional density of r_{t+1} over the support of θ and V, it is a Student-t-distribution (see Hamilton, 1994)
- They add some ad-hoc structure to W_t to capture the fact that in periods of low system variance, the estimation error of the coefficient vector θ tends toward zero as the sample size increases
- A simple way to capture this relation is to assume that W_t is proportional to the variance/covariance matrix of θ with scaling factor is assumed to be $(1-\delta)/\delta$ with $0 < \delta_i \le 1$
- West and Harrison (1997) call δ a discount factor: $\delta = 1 \Leftrightarrow$ to $W_t = 0$, i.e., to the assumption that the regression coefficients are constant

The Econometric Framework

- They consider values on a grid for δ ($\delta \in \{0.96, 0.97, 0.98, 0.99, 1.00\}$)
- A Bayesian updating approach integrates (sums) over the range of the discount factor
- Considering a number of *d* different discrete values of δ leads to a total of d $d(2^k 1)$ possible dynamic linear models
- Use a Bayesian model selection to assign posterior probability weights across individual models that differ in selected variables
- The posterior probability of each of the d(2^k 1) models is updated month by month according to Bayes rule; i.e., based on the realized likelihood of the model's return prediction
- Dangl and Halling use the same data as Goyal and Welch (2008)
 - Exclude "investment to capital ratio", "percent equity issuing", and "consumption, wealth, income ratio", not available at a monthly frequency; "Dividend-to-price ratio" almost perfectly correlated to DY
 - Considerable emphasis on the dividend yield and the cross-sectional premium, the beta spread between high- and low-beta stocks according to Polk, Thompson, and Vuolteenaho (2006)

Main Findings: Predictive Accuracy

- As for the prior probabilities of individual models and model families, they start with an uninformed prior giving equal weight to each individual model (i.e., 1/(d · (2^k-1)) + robustness checks
- Predictive regressions with time-varying coefficients predict market returns significantly better than the unconditional mean and perform significantly better than regressions with constant coefficients

Predictive model	Models incl. T	/ar-Coeff.		Models excl. T	Var-Coeff.	Comp	
	Diff. in MSPE	<i>p</i> -Value		Diff. in MSPE	<i>p</i> -Value	<i>p</i> -Value	
BMA-Model	0.0192	0.00		0.0046	0.08	0.00	
ер	0.0055	0.02	est	0.0026	0.04	0.12	
svar bmr	0.0004	0.41) te	- 0.0005	0.95	0.30	
tbl	0.0055	0.02	<u></u> 9	0.0033	0.08	0.01	
ltr	0.0050	0.01		0.0018	0.14	0.01	
dfy	0.0035	0.02	5	-0.0001	0.64	0.02	
inf	0.0027	0.09	t (0.0009	0.16	0.18	
dy	0.0044	0.01	S	0.0036	0.02	0.08	
dpayr	0.0027	0.17	Ň	-0.0001	0.54	0.12	
csp	0.0094	0.01		0.0052	0.02	0.01	
ntis	0.0043	0.01	rk	0.0020	0.10	0.04	
lty	0.0035	0.08	la	0.0025	0.13	0.06	
dfr	0.0008	0.16	C	-0.0005	0.81	0.02	
MOST-Model	0.0054	0.10		0.0054	0.10		
MEDIAN-Model	0.0220	0.00		0.0028	0.22	$17^{0.00}$	

Sample period: 1947+

Main Findings: Economic Value from Mean-Variance

- BMA shifts weights between models Ο depending on historical performance
- MOST and MEDIAN models fix a \bigcirc selection of variables \Rightarrow any performance differences from these models we still use Bayesian model averaging to average btw including and excluding timevarying coefficients is related to the influence of time-varying coefficients
- They test whether the OOS predictability of monthly S&P 500 returns may support an investor who rationally uses the predictions for portfolio optimization
- An investor with a single-period horizon and mean-variance preferences and determine monthly realized MV utility where we use daily returns to estimate monthly variance

BMA-Model incl. (excl.) TVar-Coeff.: This model represents the Bayesian model average across all individual models including (excluding) models with time-varying coefficients.

- Univariate Models incl. (excl.) TVar-Coeff.: These models consider only one predictive variable at a time. In the cases in which we include time-varying coefficients, across models with different assumptions of the degree of time-variation of the coefficient.
- MOST-Model incl. (excl.) TVar-Coeff.: The MOST-Models represent the individual models that receive most posterior probability - among all individual models including (excluding) models with time-varying coefficients - at the end of the month before the evaluation period starts. Then we keep this model specification (the variable selection and degree of time-variation of the coefficients) constant during the evaluation period, but we update the coefficient estimates.
- MEDIAN-Model incl. (excl.) TVar-Coeff .: The MEDIAN-Model is determined in the following way. At the end of the month before the evaluation period starts, we identify all predictive variables that receive more than 50% posterior probability in the BMA-Model incl. TVar-Coeff. (the 50%-threshold is basically an ad hoc way to determine variables that show decent predictive performance). Then we focus on the model that includes these predictive variables. The MEDIAN-Model incl. (excl.) TVar-Coeff. is the model that includes these predictive variables and has *time-varying* (constant)

Main Findings: Economic Value from Mean-Variance

Predictive model		Models incl	. TVar-Coeff.			Models exe	cl. TVar-Coeff.	
	1947+	1965+	1976+	1988+	1947+	1965+	1976+	1988+
BMA-Model	2.57*	5.75 ***	4.82***	1.76	-1.97	0.16	-1.87	-5.79
ер	-0.61	1.07	- 1.36	-1.77	- 1.60	-0.22	-1.40	-1.79
svar	- 0.77	0.35	-1.67	-2.95	-1.69	-0.46	-1.80	-2.97
bmr	-1.74	-0.71	-3.67	-3.27	-3.13	-2.07	-3.83	-6.41
tbl	-0.55	0.63	-2.72	- 4.04	-1.47	0.14	-3.30	-4.66
ltr	0.38	1.60	-0.73	-2.80	-0.96	1.14	-0.82	-2.89
dfy	0.01	1.36	-1.01	-2.27	-1.46	-0.46	-1.67	-3.12
inf	-0.23	0.74	-2.05	-3.13	-0.75	0.51	-1.98	-3.14
dy	-0.77	0.74	-2.27	-4.84	-1.47	0.38	-2.43	-5.08
dpayr	- 0.82	0.36	-2.47	-4.56	-1.81	-0.26	-2.58	-4.72
csp	0.88	2.90 *	1.22	2.94	-1.11	1.20	-1.71	-1.98
ntis	-0.13	1.16	-1.13	-3.15	-1.66	-0.05	-1.34	-3.22
lty	- 1.03	0.37	-2.79	-3.82	-1.33	0.31	-2.84	-3.88
dfr	- 0.82	0.51	-1.38	-3.69	-1.87	-0.46	-1.69	-3.41
MOST-Model	-2.30	3.55*	4.24**	2.93	-2.30	-2.44	-4.06	-4.36
MEDIAN-Model	2.68*	4.04**	4.92**	2.26	-2.87	-3.06	-3.97	-3.31

Bold utility gains in columns 3–5 indicate that the models including time-varying coefficients perform significantly better than the models excluding time-varying coefficients at least at the 10% level.

- The BMA and the MEDIAN model show best performance, i.e., consistently positive and large utility gains, under time-varying coefficients
- These utility gains are statistically significant during all evaluation periods except the 1988+ period

Business Cycle Variation of OOS Predictability

 Consistent with other papers (Henkel, Martin, and Nardari, 2011, JFE; Rapach, Strauss, and Zhou, 2010, RFS), they find significantly stronger evidence for predictability during recessions

Time period	Models incl. TVar-Coeff.		Models excl. TV	ar-Coeff.	Model comparison	
	Diff. MSPE	Util. gain	Diff. MSPE	Util. gain	Diff. MSPE	Util. gain
Rec. Exp. Diff.	0.0600*** 0.0121** -0.0479***	24.967*** 1.622 -23.345***	0.0168** 0.0052 –.0116	9.378* – 1.990 – 11.369**	0.0478 ^{%+ek} 0.0152 ^{%+ek}	15.589*** 3.613**
Late exp. Early rec. Late rec. Early exp.	0.0327*** 0.1156*** 0.0490** 0.0075	16.597* 47.849*** 6.421 - 2.273	0.0148 0.0707*** - 0.0092 - 0.0039	3.841 30.543** - 6.810 - 8.321*	0.0184* 0.0401** 0.0752*** 0.0266***	12.756 17.306** 13.230 6.048

- Utility gains vs. no-predictability benchmark are huge in recessions
 - The no-predictability benchmark is overly optimistic about the equity premium and thus suffers from severe losses during recessions
- There is clear dominance of models with time-varying coefficients prevails during both recessions and expansions
- Significant levels of OOS predictability during expansions, but only for models including time-varying coefficients

Business Cycle Variation of OOS Predictability

- The asset allocation strategy of an investor relying on the BMA-Model incl. TVar-Coeff. seems to time the market very wells
 - The investor withdraws from the market quickly at the beginning of a recession, and then moves back in towards the end of it
 - In contrast, an investor using predictions from the BMA-Model excl. TVar-Coeff. pulls out of the market after a peak but completely fails to move into it again towards the end of the recession
- The model is consistent with implications of asset pricing models that use time-varying risk aversion to generate time-varying risk premiums (e.g., see Campbell and Cochrane, 1999, JPE)

Portfolio weights of market Predictability 0.60 0.60 reflects bu-0.40 0.40 siness cycle risk vs. market 8 0.20 inefficiency 0.00 0.00 -3 -2 +3 -3 -2 -1 +1 +2 Therefore, Peak Trough

predictability is not driven away over time

Where Does Predictive Power Come From?

- Decompose prediction uncertainty into four components:
- (1) The unexplained variance in the predictive relation
- (2) The estimation uncertainty in coefficients
- 3 Model uncertainty w.r.t. the choice of predictive variables
- 4 Model uncertainty w.r.t. to time-variation in coefficients
 - Starting with the decomposition with respect to different values of δ , we write $\operatorname{Var}(r) = \operatorname{E}_{\delta}(\operatorname{Var}(r|\delta)) + \operatorname{Var}_{\delta}(\operatorname{E}(r|\delta)) + \sum_{i} \left[\sum_{i} (X'_{t}R_{t}X_{t}|M_{i},\delta_{j},D_{t})P(M_{i}|\delta_{j},D_{t}) \right] P(\delta_{j}|D_{t})$
 - The term $E_{\delta}(Var(r|\delta))$ represents the first three terms
 - o In a second step, the term $E_{\delta}(\operatorname{Var}(r|\delta)) \text{can be further} \\ \text{decomposed into} \\ \operatorname{Var}(r|\delta) = E_{M}(\operatorname{Var}(r|M,\delta)) + \operatorname{Var}_{M}(\operatorname{E}(r|M,\delta)) \xrightarrow{j} F(\delta_{j}|D_{t})$
- The dominant source of uncertainty is observational variance

Where Does Predictive Power Come From?

- The estimation uncertainty in coefficients captures more than half of the remaining variance
- In periods of stress, model uncertainty peaks
- Uncertainty about the correct degree of time-variation (δ) is, in general, relatively low except for individual periods
- Constant-coefficient models (i.e., $\delta = 1$) perform well over the first 15 years but lose support from the data in and after 1955

Where Does Predictive Power Come From?

 In the case of the BMA-Model excluding time-varying coefficients, the posterior prob. assigned to the Top-10 models does not account for more than 7% at the end of the sample and never exceeds 16%

The posterior prob. assigned to 1940m1 1960m1 1980m1 2000m the Top-10 models of the BMA Model including time-varying coefficients increases to more than 80%

Some Robustness Checks: Predictive Performance

Sample period: 1947 +

Predictive model	Models incl. T	/ar-Coeff.	Models excl. T	/ar-Coeff.	Comp	
	Diff. in MSPE	<i>p</i> -Value	Diff. in MSPE	<i>p</i> -Value	<i>p</i> -Value	
BMA-Model	0.0192	0.00	0.0046	0.08	0.00	
ер	0.0055	0.02	0.0026	0.04	0.12	
svar	0.0004	0.41	-0.0005	0.95	0.30	
bmr	0.0031	0.21	0.0031	0.14	0.05	
tbl	0.0055	0.02	0.0033	0.08	0.01	
ltr	0.0050	0.01	0.0018	0.14	0.01	
dfy	0.0035	0.02	-0.0001	0.64	0.02	
inf	0.0027	0.09	0.0009	0.16	0.18	
dy	0.0044	0.01	0.0036	0.02	0.08	
dpayr	0.0027	0.17	-0.0001	0.54	0.12	
csp	0.0094	0.01	0.0052	0.02	0.01	
ntis	0.0043	0.01	0.0020	0.10	0.04	
lty	0.0035	0.08	0.0025	0.13	0.06	
dfr	0.0008	0.16	-0.0005	0.81	0.02	
MOST-Model	0.0054	0.10	0.0054	0.10		
MEDIAN-Model	0.0220	0.00	0.0028	0.22	0.00	

To cut execution times, I have used the 7 stronger predictors as reported in the original paper based on OLS performance: DY, EP, Payout ratio, LTY, LTR, DFY, DFR, lagged inflation

	MSPE for Historical Mean	Best OLS Predictor	Best TVP Bayesian Predictor	Bayesian Model Average	Recession BMA	Expansion BMA	Bayesian Model Average with TVP	Recession BMA with TVP	Expansion BMA with TVP
Basolino: 1967-2017	0 0010799	0.0037962 (LTR)	0.0039134 (Payout)	0.0019204	0.0032261	0.0016796	0.0019147	0.0034535	0.0016309
Dasenne: 1907-2017	0.0019700	CW p-val: 0.061	CW p-val: 0.251	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.140	CW p-val: 0.237	CW p-val: 0.196

Some Robustness Checks: Predictive Performance

	MSPE for Historical Mean	Best OLS Predictor	Best TVP Bayesian Predictor	Bayesian Model Average	Recession BMA	Expansion BMA	Bayesian Model Average with TVP	Recession BMA with TVP	Expansion BMA with TVP
Basalina: 1967-2017	0 0019788	0.0037962 (LTR)	0.0039134 (Payout)	0.0019204	0.0032261	0.0016796	0.0019147	0.0034535	0.0016309
Dasenne. 1707-2017	0.0017700	CW p-val: 0.061	CW p-val: 0.251	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.140	CW p-val: 0.237	CW p-val: 0.196
Longer: 1947-2017	0 0017373	0.002947 (log DY)	0.0048197 (LTY)	0.0016411	0.0028954	0.0013954	0.0019147	0.0034535	0.0016309
Longer. 1947-2017	0.001/5/5	CW p-val: 0.047	CW p-val: 0.156	CW p-val: 0.073	CW p-val: 0.577	CW p-val: 0.018	CW p-val: 0.140	CW p-val: 0.237	CW p-val: 0.196
$\gamma = 1$ (CRRA)	0.0019788	0.0037962 (LTR)	0.0039134 (Payout)	0.0019204	0.0032261	0.0016796	0.0016305	0.0027881	0.0015252
γ-1 (σκκ)		CW p-val: 0.061	CW p-val: 0.251	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.51734	CW p-val: 0.15612	CW p-val: 0.63235
$\gamma = 5 (CBB \Delta)$	0 0019788	0.0037962 (LTR)	0.0039134 (Payout)	0.0019204	0.0032261	0.0016796	0.0019147	0.0034535	0.0016309
	0.0017700	CW p-val: 0.061	CW p-val: 0.251	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.140	CW p-val: 0.237	CW p-val: 0.196
δ =0.9; 0.925; 0.95; 0.975;	0 0019788	0.0037962 (LTR)	0.0039134 (Payout)	0.0019204	0.0032261	0.0016796	0.0019508	0.003433	0.0016775
1	0.0017700	CW p-val: 0.061	CW p-val: 0.251	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.220	CW p-val: 0.071	CW p-val: 0.649
σ-20	0 0019788	0.0037962 (LTR)	0.0039302 (Payout)	0.0019204	0.0032261	0.0016796	0.0019484	0.0033566	0.0016887
g -20	0.0017700	CW p-val: 0.061	CW p-val: 0.250	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.298	CW p-val: 0.104	CW p-val: 0.680
σ-90	0 0019788	0.0037962 (LTR)	0.0039302 (Payout)	0.0019204	0.0032261	0.0016796	0.0018508	0.0036371	0.0015213
g = 70	0.0017700	CW p-val: 0.061	CW p-val: 0.250	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.111	CW p-val: 0.456	CW p-val: 0.088
Rolling window for	0 0017373	0.002947 (log DY)	0.0048197 (LTY)	0.0016411	0.0028954	0.0013954	0.0019147	0.0034535	0.0016309
variance = 60 months	0.001/5/5	CW p-val: 0.047	CW p-val: 0.156	CW p-val: 0.073	CW p-val: 0.577	CW p-val: 0.018	CW p-val: 0.140	CW p-val: 0.237	CW p-val: 0.196
Absolute Loss Function	0.033734	0.51749 (LTY)	0.68653 (Payout)	0.029759	0.039091	0.028038	0.025886	0.035573	0.0241
ADSOLUTE FOSS LAUCTION	0.033734	CW p-val: 0.396	CW p-val: 0.299	CW p-val: 0.690	CW p-val: 0.224	CW p-val: 0.923	CW p-val: 0.931	CW p-val: 0.426	CW p-val: 0.978
Recursive, 30-month	0 0020397	0.017105 (LTR)	0.012875 (DYF)	0.0019204	0.0032261	0.0016796	0.001933	0.003441	0.0016554
Rolling Mean Benchmark	0.0020377	CW p-val: 0.001	CW p-val: 0.002	CW p-val: 0.062	CW p-val: 0.015	CW p-val: 0.732	CW p-val: 0.225	CW p-val: 0.225	CW p-val: 0.401

- Results seem to be rather fragile to changing the predictors (but one may argue these are too few) and the sample period
- It remains generally the case that there is more predictability in recessions than in expansions
- BMA TVP tends to outperform BMA but by a smaller margin

Some Robustness Checks: Predictive Performance

	Realized Utility for Historical Mean	Best OLS Realized Utility	Best TVP Bayesian Realized Utility	Bayesian Model Average	Recession BMA	Expansion BMA	Bayesian Model Average with TVP	Recession BMA with TVP	Expansion BMA with TVP
Baseline: 1967-2017	0.0041844	0.25082 (LTY)	0.22292 (LTY)	-0.042064	0.61261	-0.16603	-0.11285	0.84016	-0.20083
Longer: 1947-2017	0.0064946	0.1127 (LTY)	0.11591 (LTY)	-0.0060828	0.13832	-0.03524	-0.071446	1.0565	-0.29515
γ=1	0.0077718	0.1307 (LTR)	0.081402 (LTR)	-0.055846	0.41226	-0.14259	0.0014212	0.68061	-0.12427
γ=5	0.0042964	0.21031 (LTY)	0.16834 (LTY)	-0.046929	0.36937	-0.12624	0.039997	0.66553	-0.078972
δ =0.9; 0.925; 0.95; 0.975; 1	0.0041844	0.25082 (LTY)	0.22292 (LTY)	-0.042064	0.61261	-0.16603	0.058014	0.6354	-0.051926
g =20	0.0041844	0.25082 (LTY)	0.23032 (LTY)	-0.042064	0.61261	-0.16603	0.12807	1.6117	-0.15057
g =90	0.0041844	0.25082 (LTY)	0.288 (LTY)	-0.042064	0.61261	-0.16603	0.099238	0.30234	0.061787
Rolling window for variance = 60 months	0.0048769	0.17737 (LTY)	0.14398 (LTY)	-0.048673	0.39793	-0.13259	0.077633	0.92575	-0.081444
Absolute Loss Function	0.0041844	0.25082 (LTY)	0.22292 (LTY)	-0.042064	0.61261	-0.16603	-0.11285	0.84016	-0.20083
Recursive, 30-month Mean Benchmark	0.005337	0.13557 (LTY)	0.12259 (LTY)	-0.042064	0.61261	-0.16603	0.14147	1.2116	-0.060281

 Results concerning economic value are more in line with the findings of the paper, even though also individual predictors seem to generate risk-adjusted profits

27

- It is very hard to generate profits during expansions while riskadjusted returns are massive during recessions
- The g parameter seem to affect economic value considerably Lecture 2: Forecasting stock returns – Prof. Pedio